WorldWideScience

Sample records for high temperature sulfuric

  1. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  2. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  3. High-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines

    International Nuclear Information System (INIS)

    Gladyhev, V.P.; Andreeva, N.N.; Kim, E.M.; Kovaleva, S.V.

    1985-01-01

    This paper attempts to determine the possibility of conducting high-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines (TAA) using higher hydrocarbon-paraffin mixtures as the diluent of the extraction system. Substitution of kerosene by paraffin in the extraction system would permit decreasing the danger of fire and explosions during he extraction process. In extracting rhenium from industrial solutions with a melt of higher paraffins containing TAA and alcohols, the extraction system can be continously heated in heat exchangers through which washing sulfuric acid passes and then goes to the extractor. This permits utilizing the heat and decreases the temperature of the solutions for extraction to the optimum temperatures. Extraction of rhenium with a melt of trioctylamine in paraffin obeys the same mechanisms as high-temperature extraction of ruthenium (IV) by amines in kerosene and aromatic hydrocarbons

  4. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  5. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  6. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  7. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  8. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  9. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  10. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  11. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  12. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Ye, Huan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-01

    Highlights: • A cost-effective chemical activation method to prepare porous carbon nanospheres. • Carbon nanospheres with bimodal microporous structure show high specific area and large micropore volume. • The S/C composite cathodes with in-situformed S−C bond exhibit high sulfur activity with a reversible capacity of 1000 mA h g −1 . • S−C bond enables well confinement on sulfur and polysulfides. - Abstract: Lithium–sulfur batteries are highly desired because of their characteristics such as high energy density. However, the applications of Li-S batteries are limited because they exist dissolution of polysulfides into electrolytes. This study reports the preparation of sulfur cathodes by using bimodal microporous (0.5 nm and 0.8 nm to 2.0 nm) carbon spheres with high specific area (1992 m 2 g −1 ) and large micropore volume (1.2 g cm −1 ), as well as the encapsulation of polysulfides via formation of carbon–sulfur bonds in a sealed vacuum glass tube at high temperature. Given that sulfur and polysulfides are well confined by the S−C bond, the shuttle effect is effectively suppressed. The prepared S/C cathodes with a sulfur loading of up to 75% demonstrate high sulfur activity with reversible capacity of 1000 mA h g −1 at the current density of 0.1 A g −1 and good cycling stability (667 mA h g −1 after 100 cycles).

  13. Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations

    Science.gov (United States)

    Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico

    2018-03-01

    We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.

  14. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  15. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  16. Gaseous byproducts from high-temperature thermal conversion elemental analysis of nitrogen- and sulfur-bearing compounds with considerations for δ2H and δ18O analyses.

    Science.gov (United States)

    Hunsinger, Glendon B; Tipple, Christopher A; Stern, Libby A

    2013-07-30

    High-temperature, conversion-reduction (HTC) systems convert hydrogen and oxygen in materials into H2 and CO for δ(2)H and δ(18)O measurements by isotope ratio mass spectrometry. HTC of nitrogen- and sulfur-bearing materials produces unintended byproduct gases that could affect isotope analyses by: (1) allowing isotope exchange reactions downstream of the HTC reactor, (2) creating isobaric or co-elution interferences, and (3) causing deterioration of the chromatography. This study characterizes these HTC byproducts. A HTC system (ThermoFinnigan TC/EA) was directly connected to a gas chromatograph/quadrupole mass spectrometer in scan mode (m/z 8 to 88) to identify the volatile products generated by HTC at conversion temperatures of 1350 °C and 1450 °C for a range of nitrogen- and sulfur-bearing solids [keratin powder, horse hair, caffeine, ammonium nitrate, potassium nitrate, ammonium sulfate, urea, and three nitrated organic explosives (PETN, RDX, and TNT)]. The prominent HTC byproduct gases include carbon dioxide, hydrogen cyanide, methane, acetylene, and water for all nitrogen-bearing compounds, as well as carbon disulfide, carbonyl sulfide, and hydrogen sulfide for sulfur-bearing compounds. The 1450 °C reactor temperature reduced the abundance of most byproduct gases, but increased the significant byproduct, hydrogen cyanide. Inclusion of a post-reactor chemical trap containing Ascarite II and Sicapent, in series, eliminated the majority of byproducts. This study identified numerous gaseous HTC byproducts. The potential adverse effects of these gases on isotope ratio analyses are unknown but may be mitigated by higher HTC reactor temperatures and purifying the products with a purge-and-trap system or with chemical traps. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  17. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  18. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  19. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  20. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  1. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  2. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  3. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  4. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  5. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  6. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  7. Segregated Planktonic and Bottom-Dwelling Archaeal Communities in High-Temperature Acidic/Sulfuric Ponds of the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ting-Wen Cheng

    2013-01-01

    Full Text Available Geothermal environments are characterized by dynamic redox and temperature fluctuations inherited from the exposure of deeply-sourced, hot, reducing fluids to low-temperature, oxidizing ambient environments. To investigate whether microbial assemblages shifted in response to the changes of a redox state within acidic hot ponds, we collected three paired water and sediment samples from the Tatun Volcano Group, assessed metabolic roles of community members, and correlated their functional capabilities with geochemical factors along depth. Molecular analyses revealed that Sulfolobus spp., Acidianus spp. and Vulcanisaeta spp. capable of respiring elemental sulfur under oxic and/or low-oxygen conditions were the major archaeal members in planktonic communities. In contrast, obligate anaerobic Caldisphaera spp. dominated over others in bottom-dwelling communities. Bacteria were only detected in one locality wherein the majority was affiliated with microaerophilic Hydrogenobaculum spp. Cluster analyses indicated that archaeal communities associated with sediments tended to cluster together and branch off those with water. In addition, the quantities of dissolved oxygen within the water column were substantially less than those in equilibrium with atmospheric oxygen, indicating a net oxygen consumption most likely catalyzed by microbial processes. These lines of evidence suggest that the segregation of planktonic from bottom-dwelling archaeal assemblages could be accounted for by the oxygen affinities inherited in individual archaeal members. Community assemblages in geothermal ecosystems would be often underrepresented without cautious sampling of both water and sediments.

  8. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  9. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  10. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-A review

    International Nuclear Information System (INIS)

    Welz, Bernhard; Lepri, Fabio G.; Araujo, Rennan G.O.; Ferreira, Sergio L.C.; Huang Maodong; Okruss, Michael; Becker-Ross, Helmut

    2009-01-01

    The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.

  11. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong; Lee, Hongkyung; Kim, Hee-Tak

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2S particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.

  12. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  13. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  14. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  15. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  16. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  17. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  18. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  19. Morphological study of silver corrosion in highly aggressive sulfur environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2011-01-01

    A silicone coated power module, having silver conducting lines, showed severe corrosion, after prolonged use as part of an electronic device in a pig farm environment, where sulfur containing corrosive gasses are known to exist in high amounts. Permeation of sulfur gasses and humidity through...... the silicone coating to the interface has resulted in three corrosion types namely: uniform corrosion, conductive anodic filament type of Ag2S growth, and silver migration with subsequent formation of sulfur compounds. Detailed morphological investigation of new and corroded power modules was carried out...

  20. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g(-1) at 1 C after 100 cycles, and 791 mA h g(-1) at 0.5 C and 551 mA h g(-1) at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g(-1) at 5 C.

  1. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  2. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaopei; Zhang, Yanxing [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province (China)

    2017-02-12

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field. - Highlights: • The electric field and Cu dopant effects on S poisoning feature of Ni are analyzed. • The present of large electric field can enhance S tolerance. • Cu dopant concentration affect the surface electronic structure of Ni. • 100% Cu doping on surface Ni layer can mostly decrease the sulfur poison.

  3. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  4. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  5. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  6. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  7. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  8. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  9. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    Science.gov (United States)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  10. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  11. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  12. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  13. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  14. Iron and zinc partitioning between coexisting stannite and sphalerite: a possible indicator of temperature and sulfur fugacity

    Science.gov (United States)

    Shimizu, M.; Shikazono, N.

    1985-10-01

    Stannite and sphalerite coexisting with iron sulfides (pyrite and/or pyrrhotite) from Japanese ore deposits associated with tin mineralization were analyzed. Based on the iron and zinc partitioning between stannite and sphalerite, the formation temperature and sulfur fugacity for this mineral assemblage were estimated. A good correlation between stannite-sphalerite temperatures and filling temperatures of fluid inclusions and sulfur isotope temperatures was obtained. This good correlation suggests that the stannite-sphalerite pair is a useful indicator of temperature and sulfur fugacity. It is deduced that the formation temperatures are not different for skarn-type, polymetallic vein-type and Sn-W vein-type deposits, whereas the sulfur fugacities are different; sulfur fugacities increase from the skarn-type through the Sn-W vein-type to the polymetallic vein-type deposits.

  15. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  16. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  17. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  18. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    Castebrunet, H.

    2007-09-01

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  19. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  20. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  1. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  2. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  3. A genetic electrophoretic variant of high-sulfur hair proteins for forensic hair comparisons. I. Characterization of variant high-sulfur proteins of human hair.

    Science.gov (United States)

    Miyake, B

    1989-02-01

    In a survey of the proteins from human hair, a genetic electrophoretic variant has been observed in the high-sulfur protein region. S-carboxymethylated proteins were examined by 15% polyacrylamide gel electrophoresis at pH 8.9. Out of 150 unrelated samples of Japanese head hairs analyzed, 107 showed 6 major high-sulfur protein bands (normal) and the remaining 43 samples showed an additional high-sulfur protein band (variant). Of 21 Caucasian samples analyzed only one variant sample was found. Characterization of the proteins by two-dimensional electrophoresis evidenced a variant protein spot which showed an apparent molecular weight of 30 k Da. Isoelectric points of the high-sulfur proteins ranged from 3.25-3.55 and that of variant protein band from 3.3-3.4. Family studies of 21 matings resulting in 49 children indicated that this variant was inherited in an autosomal fashion.

  4. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    Science.gov (United States)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will

  5. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  6. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  7. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  8. High-sensitive portable ASE-2 X-ray analyzer of sulfur in mineral oil

    International Nuclear Information System (INIS)

    Anchugov, I.S.; Goganov, A.D.; Plotnikov, R.I.

    2007-01-01

    The high-sensitivity ASE-2 analyzer of sulfur on the basis of existing ASE-I device is designed. ASE-2 analyzer realizes a standard method of energy dispersion X-ray fluorescent determinations of a sulfur mass fraction in mineral oil and allows to carry out the quantitative determination of sulfur in hydrocarbonic raw material and fuel in a 0.002-5 mass.% range [ru

  9. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Science.gov (United States)

    Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine

    2015-01-01

    Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems. PMID:25977873

  10. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  11. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  12. Pressure and high-Tc superconductivity in sulfur hydrides.

    Science.gov (United States)

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  13. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  14. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  15. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  16. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  17. An effective 2-band eg model of sulfur hydride H3S for high-Tc superconductivity

    Science.gov (United States)

    Nishiguchi, Kazutaka; Teranishi, Shingo; Miyao, Satoaki; Matsushita, Goh; Kusakabe, Koichi

    To understand high transition temperature (Tc) superconductivity in sulfur hydride H3S, we propose an effective 2-band model having the eg symmetry as the minimal model for H3S. Two eg orbitals centered on a sulfur S atom are chosen for the smallest representation of relevant bands with the van-Hove singularity around the Fermi levels except for the Γ-centered small hole pockets by the sulfur 3 p orbitals. By using the maximally localized Wannier functions, we derive the minimal effective model preserving the body-centered cubic (bcc) crystal symmetry of the H3S phase having the highest Tc ( 203 K under pressures) among the other polymorphs of H3S.

  18. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  19. Interface polymerization synthesis of conductive polymer/graphite oxide@sulfur composites for high-rate lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Wang, Xiwen; Zhang, Zhian; Yan, Xiaolin; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2015-01-01

    Highlights: • A hybrid nanostructure that incorporate the merits of conductive polymer nanorods and graphite oxide sheets. • A novel approach based on interface polymerization for synthesizing CP/GO@S ternary composite. • CP/GO@S ternary composite cathode shows enhanced electrochemical properties compared with CP@S binary composite cathode. • PEDOT/GO@S composite is the material system that have best electrochemical performance in all CP/GO@S ternary composites. - Abstract: The novel ternary composites, conductive polymers (CPs)/graphene oxide (GO)@sulfur composites were successfully synthesized via a facile one-pot route and used as cathode materials for Li-S batteries The poly(3,4-ethylenedioxythiophene) (PEDOT)/GO and polyaniline (PANI)/GO composites were prepared by interface polymerization of monomers on the surface of GO sheets. Then sulfur was in-situ deposited on the CPs/GO composites in same solution. The component and structure of the composites were characterized by XPS, TGA, FTIR, SEM, TEM and electrochemical measurements. In this structure, the CPs nanostructures are believed to serve as a conductive matrix and an adsorbing agent, while the highly conductive GO will physically and chemically confine the sulfur and polysulfide within cathode. The PEDOT/GO@S composites with the sulfur content of 66.2 wt% exhibit a reversible discharge capacity of 800.2 mAh g −1 after 200 cycles at 0.5 C, which is much higher than that of PANI/GO@S composites (599.1 mAh g −1 ) and PANI@S (407.2 mAh g −1 ). Even at a high rate of 4 C, the PEDOT/GO@S composites still retain a high specific capacity of 632.4 mAh g −1

  20. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  1. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  2. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  3. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  4. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  5. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  6. Fixation à haute et moyenne température de l'hydrogène sulfuré par des masses de captation régénérables Hydrogen-Sulfide Fixation At High and Medium Temperature by Regenerable Capture Masses

    Directory of Open Access Journals (Sweden)

    Hotier G.

    2006-11-01

    Full Text Available L'intérêt de la désulfuration haute température comparée à la même opération conduite à basse température est renforcé quand la désulfuration a lieu entre deux opérations de niveau thermique élevé comme la gazéification du charbon et la production d'électricité par cycles combinés turbine à gaz-turbine à vapeur. Les masses absorbantes à base d'oxyde de fer peuvent réaliser une bonne désulfuration mais résistent mal aux chocs thermiques. Un agent de régénération particulièrement efficace est le dioxyde de soufre qui peut réoxyder le sulfure de fer par une réaction légèrement endothermique. Un des principaux avantages de cette réaction est la production directe de soufre élémentaire. Ses désavantages sont une faible conversion par passe et la sulfatation de l'oxyde de calcium (une des nombreuses impuretés des boues rouges qui composent la masse. Lorsque l'on emploie de la vapeur pour diluer le SO2 deux autres réactions ont lieu. La production de soufre est augmentée et la sulfatation disparaît. Les productions principales du procédé sont du soufre élémentaire et de la vapeur haute pression. On rencontre deux zones de réactions (l'une de captation, l'autre de régénération séparées par un tampon de gaz inerte et une circulation de la masse. Aucune autre unité de traitement de soufre n'est requise sur le site. Une évaluation économique préliminaire montre que ce procédé est compétitif lorsqu'on le compare à un lavage des gaz par solvant, à froid. The interest of a high temperature unit compared to a low temperature one is enhanced when desulphurization takes place between two hotoperations like coal gasification and power generation by combined cycles. Iron oxide based sorbents such as redmuds can achieve good desulphurization but cannot withstand high temperature gradients. An efficient regenerating agent is sulphur dioxide. SO2 can regenerate iron sulphide with a slightly endothermic

  7. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  8. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  9. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    Science.gov (United States)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  10. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

    Science.gov (United States)

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

    2014-05-21

    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    Science.gov (United States)

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  12. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  13. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  14. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    W.-C. Xu; M. Kumagai

    2003-02-01

    The behavior of sulfur transformation during rapid hydropyrolysis of coal was investigated using a pressurized, continuous free fall pyrolyzer under the conditions of temperature ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa. The yields of sulfur converted to gas, tar and char were determined, together with the analyses of sulfur form distributions in coals and chars. The results showed that the decomposition of inorganic sulfur species was affected only by the temperature, while the increases in temperature and hydrogen pressure obviously enhanced the removal of organic sulfur from coal. The extent of organic sulfur removal was proportional to the coal conversion, depending on coal type. A significant retention of gaseous sulfur products by the organic matrix of the char was observed during hydropyrolysis of a Chinese coal above 1023 K, even under the pressurized hydrogen atmosphere. The kinetic analysis indicates that the rate of organic sulfur removal from coal was 0.2th-order with respect to the hydrogen pressure, and the activation energy for total sulfur removal and organic sulfur removal is 17 26 and 13 55 kJ/mol, respectively. The low activation energies suggest that the transformation and removal of sulfur from coal might be controlled by the diffusion and/or thermodynamic equilibrium during hydropyrolysis under the pressurized conditions. 29 refs., 10 figs., 3 tabs.

  15. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  17. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  18. A highly efficient polysulfide mediator for lithium-sulfur batteries

    Science.gov (United States)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  19. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Ji-Yoon Song

    2018-02-01

    Full Text Available For practical application of lithium–sulfur batteries (LSBs, it is crucial to develop sulfur cathodes with high areal capacity and cycle stability in a simple and inexpensive manner. In this study, a carbon cloth infiltrated with a sulfur-containing electrolyte solution (CC-S was utilized as an additive-free, flexible, high-sulfur-loading cathode. A freestanding carbon cloth performed double duty as a current collector and a sulfur-supporting/trapping material. The active material in the form of Li2S6 dissolved in a 1 M LiTFSI-DOL/DME solution was simply infiltrated into the carbon cloth (CC during cell fabrication, and its optimal loading amount was found to be in a range between 2 and 10 mg/cm2 via electrochemical characterization. It was found that the interwoven carbon microfibers retained structural integrity against volume expansion/contraction and that the embedded uniform micropores enabled a high loading and an efficient trapping of sulfur species during cycling. The LSB coin cell employing the CC-S electrode with an areal sulfur loading of 6 mg/cm2 exhibited a high areal capacity of 4.3 and 3.2 mAh/cm2 at C/10 for 145 cycles and C/3 for 200 cycles, respectively, with minor capacity loss (<0.03%/cycle. More importantly, such high performance could also be realized in flexible pouch cells with dimensions of 2 cm × 6 cm before and after 300 bending cycles. Simple and inexpensive preparation of sulfur cathodes using CC-S electrodes, therefore, has great potential for the manufacture of high-performance flexible LSBs.

  20. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  1. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  2. Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate

    Science.gov (United States)

    Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli

    2017-10-01

    Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.

  3. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  4. FY15 GRC CIF -Sulfur Cathode for High-Energy Li-Sulfur Battery

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the Power Energy and Conversion Roadmap TA03 future NASA missions will require high specific energy battery technologies, > 400 Wh/kg. NASA's current...

  5. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  6. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  7. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  8. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  9. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  10. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  11. New sulfur hydride H{sub 3}S and excellent superconductivity at high

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Tian [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun (China)

    2016-07-01

    It is predicted theoretically that molecular hydrogen would dissociate into an atomic phase with metallic properties at high pressures. Metallic hydrogen is believed to be a room-temperature superconductor. However, metallization of hydrogen is still debates in laboratory. As an alternative, hydrogen-rich compounds are extensively explored since their metallization can happen at relatively lower pressures by means of chemical pre-compressions. Here, a new sulfur hydride H{sub 3}S that hardly occur at atmospheric pressure was predicted to be formed at high pressure by two main ways. We also found two intriguing metallic structures with R3m and Im-3m symmetries above 111 GPa and 180 GPa, respectively. Remarkably, the estimated T{sub c} of Im-3m phase at 200 GPa achieves a very high value of 191-204 K, reaching an order of 200 K. Further calculation shown that the H atoms play a significant role in superconductivity. The experimental discovery of superconductivity with a high T{sub c} = 203 K in H-S system at high pressure has verified our theoretically predicted results. Furthermore, the predicted R3m and Im-3m structures have been recently confirmed experimentally by synchrotron XRD.

  12. Development of an Analytic Method for Sulfur Compounds in Aged Garlic Extract with the Use of a Postcolumn High Performance Liquid Chromatography Method with Sulfur-Specific Detection.

    Science.gov (United States)

    Matsutomo, Toshiaki; Kodera, Yukihiro

    2016-02-01

    Garlic and its processed preparations contain numerous sulfur compounds that are difficult to analyze in a single run using HPLC. The aim of this study was to develop a rapid and convenient sulfur-specific HPLC method to analyze sulfur compounds in aged garlic extract (AGE). We modified a conventional postcolumn HPLC method by employing a hexaiodoplatinate reagent. Identification and structural analysis of sulfur compounds were conducted by LC-mass spectrometry (LC-MS) and nuclear magnetic resonance. The production mechanisms of cis-S-1-propenylcysteine (cis-S1PC) and S-allylmercaptocysteine (SAMC) were examined by model reactions. Our method has the following advantages: less interference from nonsulfur compounds, high sensitivity, good correlation coefficients (r > 0.98), and high resolution that can separate >20 sulfur compounds, including several isomers, in garlic preparations in a single run. This method was adapted for LC-MS analysis. We identified cis-S1PC and γ-glutamyl-S-allyl-mercaptocysteine in AGE. The results of model reactions suggest that cis-S1PC is produced from trans-S1PC through an isomerization reaction and that SAMC is produced by a reaction involving S-allylcysteine/S1PC and diallyldisulfide during the aging period. We developed a rapid postcolumn HPLC method for both qualitative and quantitative analyses of sulfur compounds, and this method helped elucidate a potential mechanism of cis-S1PC and SAMC action in AGE. © 2016 American Society for Nutrition.

  13. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  14. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  15. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  16. A Nacre-Like Carbon Nanotube Sheet for High Performance Li-Polysulfide Batteries with High Sulfur Loading.

    Science.gov (United States)

    Pan, Zheng-Ze; Lv, Wei; He, Yan-Bing; Zhao, Yan; Zhou, Guangmin; Dong, Liubing; Niu, Shuzhang; Zhang, Chen; Lyu, Ruiyang; Wang, Cong; Shi, Huifa; Zhang, Wenjie; Kang, Feiyu; Nishihara, Hirotomo; Yang, Quan-Hong

    2018-06-01

    Lithium-sulfur (Li-S) batteries are considered as one of the most promising energy storage systems for next-generation electric vehicles because of their high-energy density. However, the poor cyclic stability, especially at a high sulfur loading, is the major obstacles retarding their practical use. Inspired by the nacre structure of an abalone, a similar configuration consisting of layered carbon nanotube (CNT) matrix and compactly embedded sulfur is designed as the cathode for Li-S batteries, which are realized by a well-designed unidirectional freeze-drying approach. The compact and lamellar configuration with closely contacted neighboring CNT layers and the strong interaction between the highly conductive network and polysulfides have realized a high sulfur loading with significantly restrained polysulfide shuttling, resulting in a superior cyclic stability and an excellent rate performance for the produced Li-S batteries. Typically, with a sulfur loading of 5 mg cm -2 , the assembled batteries demonstrate discharge capacities of 1236 mAh g -1 at 0.1 C, 498 mAh g -1 at 2 C and moreover, when the sulfur loading is further increased to 10 mg cm -2 coupling with a carbon-coated separator, a superhigh areal capacity of 11.0 mAh cm -2 is achieved.

  17. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  18. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    Science.gov (United States)

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  19. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  20. Yolk-Shelled C@Fe3 O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam

    2017-09-01

    Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  2. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  3. One-Step Extraction of Antimony in Low Temperature from Stibnite Concentrate Using Iron Oxide as Sulfur-Fixing Agent

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-07-01

    Full Text Available A new process for one-step extraction of antimony in low temperature from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt, using iron oxide as sulfur-fixing agent, was presented. The influences of molten salt addition and composition, ferric oxide dosage, smelting temperature and duration on extraction efficiency of antimony were investigated in details, respectively. The optimum conditions were determined as follows: 1.0 time stoichiometric requirement (α of mixed sodium salt (αsalt = 1.0, WNaCl:Wsalt = 40%, αFe2O3 = 1.0, Wcoke:Wstibnite = 40%, where W represents weight, smelting at 850 °C (1123 K for 60 min. Under the optimum conditions, the direct recovery rate of antimony can reach 91.48%, and crude antimony with a purity of 96.00% has been achieved. 95.31% of sulfur is fixed in form of FeS in the presence of iron oxide. Meanwhile, precious metals contained in stibnite concentrate are enriched and recovered comprehensively in crude antimony. In comparison to traditional antimony pyrometallurgical process, the smelting temperature of present process is reduced from 1150–1200 °C (1423–1473 K to 850–900 °C (1123–1173 K. Sulfur obtained in stibnite is fixed in FeS which avoids SO2 emission owing to the sulfur-fixing agent. Sodium salt can be regenerated and recycled in smelting system when the molten slag is operated to filter solid residue. The solid residue is subjected to mineral dressing operation to obtain iron sulfide concentrate which can be sold directly or roasted to regenerate into iron oxide.

  4. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  6. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Science.gov (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  7. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  8. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  9. An Experimental Study of Low-Temperature Sulfurization of Carbohydrates Using Various Sulfides Reveals Insights into Structural Characteristics and Sulfur Isotope Compositions of Macromolecular Organic Matter in the Environment

    Science.gov (United States)

    OBeirne, M. D.; Werne, J. P.; Van Dongen, B.; Gilhooly, W., III

    2017-12-01

    Sulfurization of carbohydrates has been suggested as an important mechanism for the preservation of organic matter in anoxic/euxinic depositional environments. In this study, glucose was sulfurized under laboratory conditions at room temperature (24°C) using three commercially available sulfides - ammonium sulfide ([NH4]2S), sodium sulfide (Na2S), and sodium hydrosulfide (NaHS), each mixed with elemental sulfur to produce polysulfide solutions. The reaction products were analyzed using Fourier transform infrared spectroscopy (FTIR), which revealed structural differences among the products formed via the three sulfide reactants. Additionally, analysis of the bulk sulfur isotope compositions of reactants and products was used to determine the fractionation(s) associated with abiotic sulfur incorporation into organic matter. Samples from both modern (Mahoney Lake, British Colombia, Canada) and ancient (Jurassic aged Blackstone Band from the Kimmeridge Clay Formation, Dorset, United Kingdom) euxinic systems were also analyzed for comparison to laboratory samples. Results from this study provide experimental evidence for the structural and sulfur isotopic relationships of sulfurized organic matter in the geosphere.

  10. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  11. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  12. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  13. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500°C

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    The temperature dependence of the ultraviolet absorption cross-sections of three different sulfur containing compounds, hydrogen sulfide (H2S), carbon disulfide (CS2) and carbonyl sulfide (OCS), are presented between 200nm and 360nm at a resolution of 0.018nm. The absorption cross-sections for each...... compound are initially compared with those available in the literature, followed by the discussion of the measurements and their spectral features at three temperatures up to 500°C/773K. Uncertainties in the measured absorption cross-sections are also addressed....

  14. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  15. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-11-01

    Full Text Available In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC composite materials reveal a high initial capacity of 1150 mAh·g−1 as well as a reversible capacity of 613 mAh·g−1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g−1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  16. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  17. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  18. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  19. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  20. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors

    Science.gov (United States)

    Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui

    2018-04-01

    In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

  1. Catalytic processing of high-sulfur fuels for distributed hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Ramasamy, Karthik; Huang, Cunping; T-Raissi, Ali [Central Florida Univ., FL (United States)

    2010-07-01

    In this work, the development of a new on-demand hydrogen production technology is reported. In this process, a liquid hydrocarbon fuel (e.g., high-S diesel) is first catalytically pre-reformed to shorter chain gaseous hydrocarbons (predominantly, C{sub 1}-C{sub 3}) before being directed to the steam reformer, where it is converted to syngas and then to high-purity hydrogen. In the pre-reformer, most sulfurous species present in the fuel are catalytically converted to H{sub 2}S. In the desulfurization unit, H{sub 2}S is scrubbed and converted to H{sub 2} and elemental sulfur. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes Fe(II)/Fe(III)-containing aqueous phase scrubber coupled with an electrolyzer. The integrated pre-reformer/scrubber/electrolyzer unit operated successfully on high-S diesel fuel for more than 100 hours meeting the required desulfurization target of >95 % sulfur removal. (orig.)

  2. Effect of sulfurization temperature on the property of Cu2ZnSnS4 thin film by eco-friendly nanoparticle ink method

    Science.gov (United States)

    Wang, Wei; Shen, Honglie; Yao, Hanyu; Shang, Huirong; Tang, ZhengXia; Li, Yufang

    2017-09-01

    Cu2ZnSnS4 (CZTS) thin films were fabricated by a low-cost nanoparticle ink method. The eco-friendly hydrophilic CZTS nanoparticles were mixed with low-cost n-propanol to form nanoparticle ink. To improve crystallinity and remove oxygen element, the CZTS thin films were sulfurized further. The effects of sulfurization temperature on the structure, morphologies, and photovoltaic performances of CZTS thin films were investigated. The results showed that the crystallinity of CZTS thin film was improved with increasing sulfurization temperature. The surface morphology studies demonstrated the formation of compact and homogenous CZTS thin film at a sulfurization temperature of 600 °C. By optimizing thickness of CZTS thin film, the CZTS thin-film solar cell with an optimal efficiency of 2.1% was obtained.

  3. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  4. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries

    Science.gov (United States)

    Chen, Feng; Ma, Lulu; Ren, Jiangang; Luo, Xinyu; Liu, Bibo; Zhou, Xiangyang

    2018-01-01

    Lithium-sulfur (Li-S) batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg−1. However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC) to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m2 g−1), high pore volume (1.78 cm3 g−1), good conductivity, and in situ nitrogen (1.86 at %) and sulfur (5.26 at %) co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li+ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g−1 at 0.2 C), excellent rate capability (596.6 mAh g−1 at 5 C), and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle). Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm−2 (70 wt. % sulfur), the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g−1, which is quite beneficial to commercialized applications. PMID:29587467

  5. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2018-03-01

    Full Text Available Lithium-sulfur (Li-S batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg−1. However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m2 g−1, high pore volume (1.78 cm3 g−1, good conductivity, and in situ nitrogen (1.86 at % and sulfur (5.26 at % co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li+ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g−1 at 0.2 C, excellent rate capability (596.6 mAh g−1 at 5 C, and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle. Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm−2 (70 wt. % sulfur, the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g−1, which is quite beneficial to commercialized applications.

  6. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Feng; Ma, Lulu; Ren, Jiangang; Luo, Xinyu; Liu, Bibo; Zhou, Xiangyang

    2018-03-26

    Lithium-sulfur (Li-S) batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg -1 . However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC) to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m² g -1 ), high pore volume (1.78 cm³ g -1 ), good conductivity, and in situ nitrogen (1.86 at %) and sulfur (5.26 at %) co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li⁺ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g -1 at 0.2 C), excellent rate capability (596.6 mAh g -1 at 5 C), and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle). Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm -2 (70 wt. % sulfur), the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g -1 , which is quite beneficial to commercialized applications.

  7. High-sulfur coal: tonnage and money at risk

    International Nuclear Information System (INIS)

    McMahan, R.L.; Knutson, K.S.

    1991-01-01

    More than 286 million tons of coal exceeds the Phase I standard i.e. 2.5 lb SO 2 per mmBtu, of the US Clean Air Act (1990). 85 mmtpy goes to currently scrubbed or unaffected (i.e. small) units. This leaves 201 mmtpy of high-sulphur coal at risk. 129 mmtpy of this is moving on a spot basis or is shipped under contracts that expire by 1995. This leaves about 72 mmtpy of captive and longterm contracts which many utility fuel buyers assume will be cancelled or renegotiated at a lower price. The legal position remains uncertain. However, the massive cancellation and/or renegotiation of existing contracts will have a tremendous economic impact on the coal industry. The resultant price change will in turn influence decisions to scrub or switch to low sulphur coals. 2 figs., 2 tabs

  8. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  9. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  10. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  11. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  12. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    OpenAIRE

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most...

  13. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  14. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  15. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  16. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  17. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  18. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  19. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lacey, Matthew J; Österlund, Viking; Bergfelt, Andreas; Jeschull, Fabian; Bowden, Tim; Brandell, Daniel

    2017-07-10

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm -2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    Science.gov (United States)

    Liu, Gao; Wang, Dongdong

    2018-03-27

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  1. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  2. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  3. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  5. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  6. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  7. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  8. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  9. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  10. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  11. High-temperature geothermal cableheads

    Science.gov (United States)

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  12. Structural flexibility of the sulfur mustard molecule at finite temperature from Car-Parrinello molecular dynamics simulations.

    Science.gov (United States)

    Lach, Joanna; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-05

    Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic.

    Science.gov (United States)

    Gleeson, D F; Williamson, C; Grasby, S E; Pappalardo, R T; Spear, J R; Templeton, A S

    2011-07-01

    Elemental sulfur (S(0) ) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H(2) S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by β-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and ε-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S(0) in opposing gradients of Na(2) S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S(0) alone when reintroduced to Na(2) S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars. © 2011

  14. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  15. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  16. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  17. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  19. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  20. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian

    2014-03-21

    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  2. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  3. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  4. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  5. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  6. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  7. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  8. Container floor at high temperatures

    International Nuclear Information System (INIS)

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  9. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  10. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  11. Washability and Distribution Behaviors of Trace Elements of a High-Sulfur Coal, SW Guizhou, China

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2018-02-01

    Full Text Available The float-sink test is a commonly used technology for the study of coal washability, which determines optimal separation density for coal washing based on the desired sulfur and ash yield of the cleaned coal. In this study, the float-sink test is adopted for a high-sulfur Late Permian coal from Hongfa coalmine (No.26, southwestern Guizhou, China, to investigate its washability, and to analyze the organic affinities and distribution behaviors of some toxic and valuable trace elements. Results show that the coal is difficult to separate in terms of desulfurization. A cleaned coal could theoretically be obtained with a yield of 75.50%, sulfur 2.50%, and ash yield 11.33% when the separation density is 1.57 g/cm3. Trace elements’ distribution behaviors during the gravity separation were evaluated by correlation analysis and calculation. It was found that Cs, Ga, Ta, Th, Rb, Sb, Nb, Hf, Ba, Pb, In, Cu, and Zr are of significant inorganic affinity; while Sn, Co, Re, U, Mo, V, Cr, Ni, and Be are of relatively strong organic affinity. LREE (Light rare earth elements, however, seem to have weaker organic affinity than HREE (Heavy rare earth elements, which can probably be attributed to lanthanide contraction. When the separation density is 1.60 g/cm3, a large proportion of Sn, Be, Cr, U, V, Mo, Ni, Cd, Pb, and Cu migrate to the cleaned coal, but most of Mn, Sb and Th stay in the gangue. Coal preparation provides alternativity for either toxic elements removal or valuable elements preconcentration in addition to desulfurization and deashing. The enrichment of trace elements in the cleaned coal depends on the predetermined separation density which will influence the yields and ash yields of the cleaned coal.

  12. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  13. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  14. Influence of the temperature of superheating surfaces in a gas flow on the formation of sulfur trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vnukov, A K; Taran, O E

    1977-05-01

    In supercritical steam generators fired with sulfur-rich heating fuel oil, catalytic after-oxidation of SO/sub 2/ takes place in amounts which correspond to the formation of SO/sub 3/ in the furnaces. The amount of SO/sub 3/ produced depends directly on the dirt accumulation in the convection stack. Corrosion-free operation of heating surfaces and flue gas stacks cannot be achieved by a mere reduction of the excess pressure; this is proved by operational experience for this type of steam generator. An investigation of the mechanism of catalytic SO/sub 3/ formation will help to find further measures to be taken, e.g., cleaning of the convection heating surfaces, introduction of additives to poison the catalysts, etc. It should thus be possible, in the long run, to reduce the low-temperature corrosion of heating surfaces and gas stacks and to improve the operational performance of the boilers.

  15. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  16. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    Science.gov (United States)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  17. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    Science.gov (United States)

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  18. The high-temperature reactor

    International Nuclear Information System (INIS)

    Kirchner, U.

    1991-01-01

    The book deals with the development of the German high-temperature reactor (pebble-bed), the design of a prototype plant and its (at least provisional) shut-down in 1989. While there is a lot of material on the HTR's competitor, the fast breeder, literature is very incomplete on HTRs. The author describes HTR's history as a development which was characterised by structural divergencies but not effectively steered and monitored. There was no project-oriented 'community' such as there was for the fast breeder. Also, the new technology was difficult to control there were situations where no one quite knew what was going on. The technical conditions however were not taken as facts but as a basis for interpretation, wishes and reservations. The HTR gives an opportunity to consider the conditions under which large technical projects can be carried out today. (orig.) [de

  19. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  20. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  1. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  2. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  3. Transients observed in the low temperature photolysis of alkyl radicals and divalent sulfur substrates

    International Nuclear Information System (INIS)

    Adam, F.C.

    1976-01-01

    The 253.7 nm photolysis of the isometric butyl radicals is described. These radicals are produced by electron capture during the γ-radiolysis of the corresponding butyl chlorides diluted in a rigid glass of 3-methylpentane-d14 at 77K. Thus t-butyl gives an equilibrium mixture of i-butyl and methyl radicals. Solvent radicals, M, are also produced and these obscure the former species in 3-MP-h14. Likewise sec-butyl radicals give rise to the ethyl, n-butyl, methyl and small amounts of the i-butyl radicals. Solvent radicals also rearrange and degrade in the photolytic beam, and the mechanism by which these processes occur is discussed. The procedure has also been used to study the formation and photolability of the alkyl thinyl and perthyl radicals occuring in the photolysis of RSH, RSR and RSSR. The thinyl radical is found to be unstable and gives the alkyl radical and atomic sulfur while the perthiyl radical is stable to radiation > 240 nm. (author)

  4. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  5. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  6. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Zhang, Linlin; Wan, Fang; Wang, Xinyu; Cao, Hongmei; Dai, Xi; Niu, Zhiqiang; Wang, Yijing; Chen, Jun

    2018-02-14

    The lithium sulfur (Li-S) battery has attracted much attention due to its high theoretical capacity and energy density. However, its cycling stability and rate performance urgently need to improve because of its shuttle effect. Herein, oxygen-doped carbon on the surface of reduced graphene oxide (labeled as ODC/rGO) was fabricated to modify the separators of Li-S batteries to limit the dissolution of the lithium polysulfides. The mesoporous structure in ODC/rGO can not only serve as the physical trapper, but also provide abundant channels for fast ion transfer, which is beneficial for effective confinement of the dissoluble intermediates and superior rate performance. Moreover, the oxygen-containing groups in ODC/rGO are able to act as chemical adsorption sites to immobilize the lithium polysulfides, suppressing their dissolution in electrolyte to enhance the utilization of sulfur cathode in Li-S batteries. As a result, because of the synergetic effects of physical adsorption and chemical interaction to immobilize the soluble polysulfides, the Li-S batteries with the ODC/rGO-coated separator exhibit excellent rate performance and good long-term cycling stability with 0.057% capacity decay per cycle at 1.0 C after 600 cycles.

  7. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  8. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    Science.gov (United States)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  9. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  10. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  11. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  12. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  13. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  14. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  15. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  16. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  17. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  18. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  19. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  20. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  1. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  2. Fixation à haute et moyenne température de l'hydrogène sulfuré par des masses de captation régénérables Hydrogen-Sulfide Fixation At High and Medium Temperature by Regenerable Capture Masses

    OpenAIRE

    Hotier G.

    2006-01-01

    L'intérêt de la désulfuration haute température comparée à la même opération conduite à basse température est renforcé quand la désulfuration a lieu entre deux opérations de niveau thermique élevé comme la gazéification du charbon et la production d'électricité par cycles combinés turbine à gaz-turbine à vapeur. Les masses absorbantes à base d'oxyde de fer peuvent réaliser une bonne désulfuration mais résistent mal aux chocs thermiques. Un agent de régénération particulièrement efficace est l...

  3. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  4. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  5. Speciation of Raney Copper Oxide during High-Temperature Desulfurization

    International Nuclear Information System (INIS)

    Wang, T. C.; Chen, C. Y.; Huang, H.-L.; Wang, H. Paul; Wei Yuling

    2007-01-01

    Speciation of copper in the Raney copper oxides (R-CuO) during high-temperature desulfurization has been studied by X-ray absorption spectroscopy. The preedge XANES spectra (8975-8979 eV) of R-CuO exhibit a very weak 1s-to-3d transition forbidden by the selection rule in the case of the perfect octahedral symmetry. A shoulder at 8985-8988 eV and an intense band at 8994-9002 eV can be attributed to the 1s-to-4p transition that indicates the existence of the Cu(II) species. The preedge band at 8981-8984 eV can be attributed to the dipole-allowed 1s-to-4p transition of Cu(I), suggesting an existence of Cu2S during sulfurization. An enhanced absorbance at 9003 eV shows that Cu(0) species may be formed in the sulfurized R-CuO. The main copper species in regenerated R-CuO are CuO (96%) and Cu2S (4%)

  6. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  7. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  8. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  9. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  10. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  11. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  12. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li 2 S 2 and Li 2 S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn 3 O 4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g -1 is achieved against lithium after 200 cycles at a current rate of 2 A g -1 with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g -1 , the composite electrode exhibited an initial capacity of 1015 mA h g -1 and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn 3 O 4 . This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  13. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  15. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  16. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  17. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  18. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  19. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards

    OpenAIRE

    Hinckley, Eve-Lyn S.; Matson, Pamela A.

    2011-01-01

    Unintended anthropogenic deposition of sulfur (S) to forest ecosystems has a range of negative consequences, identified through decades of research. There has been far less study of purposeful S use in agricultural systems around the world, including the application of elemental sulfur (S0) as a quick-reacting fungicide to prevent damage to crops. Here we report results from a three-year study of the transformations and flows of applied S0 in soils, vegetation, and hydrologic export pathways ...

  20. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  1. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  2. Development of High Temperature Solid Lubricant Coatings

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  3. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  4. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  5. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  6. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  7. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  8. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  9. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  10. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  11. Aspects of high temperature superconductivity

    International Nuclear Information System (INIS)

    Deutscher, G.

    1989-01-01

    We present some remarks on special features that distinguish the phenomenology of the new high T c oxides from that of the conventional superconductors. They include a measurable width of the critical region and a high sensitivity to crystallographic defects. A consistent Landau Ginsburg interpretation is possible, with a short coherence length <15 A and a penetration depth <900 A. The latter is somewhat smaller than the currently accepted value, and implies a broad band scheme

  12. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  13. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  14. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  15. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  16. Bronchiolitis obliterans following exposure to sulfur mustard: chest high resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei, Mostafa E-mail: m.ghanei@bmsu.ac.ir; Mokhtari, Majid; Mohammad, Mehdi Mir; Aslani, Jafar

    2004-11-01

    Background: Pulmonary complications are known to occur in over half of the patients exposed to sulfur mustard (SM). Chemical weapons of mass destruction (WMD) including SM were used by Iraq during Iran-Iraq war between 1983 and 1989. We undertook this study to evaluate the chest high resolution computerized tomography (HRCT) as a diagnostic tool in patients with documented exposure to SM and chronic respiratory symptoms. Method: The medical records of 155 patients exposed to SM during Iran-Iraq war and suffered respiratory complications were reviewed. Chest HRCTs of these patients were examined. Ten healthy controls with no history of exposure to HD were matched for age, gender, and chest HRCT protocol applied. Results: Fifty chest HRCTs of these patients were randomly selected for this study. The most frequent findings were; air trapping 38 (76%), bronchiectasis 37 (74%), mosaic parenchymal attenuation (MPA) 36 (72%), irregular and dilated major airways 33 (66%) bronchial wall thickening (BWT) 45 (90%), and interlobular septal wall thickening (SWT) 13 (26%), respectively. Air trapping in one patient (10%) was the only positive finding in the control group. Conclusions: Chest HRCT findings of bronchiectasis, air trapping, MPA, SWT, and BWT were seen in our patients 15 years after exposure to HD. These findings suggest the diagnosis of bronchiolitis obliterans (BO). We did not encounter chest HRCT features consistent with pulmonary fibrosis.

  17. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  18. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  19. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  20. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Theory of high temperature superconductivity

    International Nuclear Information System (INIS)

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  2. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  3. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  4. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  5. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  6. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60°C to 60°C, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  7. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  8. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  9. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  10. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  11. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  12. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  13. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  14. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  15. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  18. Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries.

    Science.gov (United States)

    Hoffmann, Claudia; Thieme, Sören; Brückner, Jan; Oschatz, Martin; Biemelt, Tim; Mondin, Giovanni; Althues, Holger; Kaskel, Stefan

    2014-12-23

    Silica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1). Morphology replication allows these nanopores to be arranged in a nanostructured inverse opal-like structure. Specific surface areas are very high (2450 m2 g(-1)) due to the simultaneous presence of micropores. Testing DUT-86 samples as cathode materials in Li-S batteries reveals excellent performance, and tailoring of the pore size allows optimization of cell performance, especially the active center accessibility and sulfur utilization. The outstanding pore volumes allow sulfur loadings of 80 wt %, a value seldom achieved in composite cathodes, and initial capacities of 1165 mAh gsulfur(-1) are reached. After 100 cycle capacities of 860 mAh gsulfur(-1) are retained, rendering DUT-86 a high-performance sulfur host material.

  19. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  20. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  1. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  2. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  3. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  4. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  5. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  6. Pathway for high-quality reclaim by thermal treatment of sulfur-vulcanized SBR

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2011-01-01

    De-vulcanization of SBR (Styrene Butadiene Rubber) is a challenge, as the broken polymer chains tend to re-arrange. This influences the properties of the reclaimed and re-vulcanized rubber, and reduces the quality of the recycled material. Within this study, the breakdown of sulfur-cured SBR in a

  7. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  8. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  9. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  10. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  11. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  12. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  13. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  14. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  15. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  16. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  17. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  18. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  19. High temperature microscope (1961); Microscopie a haute temperature (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-06-15

    The purpose of this work is the realization of an apparatus for observation of radioactive metallic samples at high temperature and low pressure. The operating conditions are as follows: to limit oxidation of the metal, pressure of about 10{sup -6} mm of Hg is maintained in the furnace. In case the oxidation of the sample would be too important, on ultra vacuum. device could be used; working temperatures range between room temperature and 1200 deg. C; furnace temperature is regulated; observation is done ever in polarized light or interference contrast; to insure protection of the operator, the apparatus is placed in a glove-box. With that apparatus, we have observed the {alpha}{yields}{beta}, {beta}{yields}{gamma} transformations of uranium. A movie has been done. (author) [French] Le but de ce travail est la realisation d'une appareillage permettant l'observation a chaud et sous vide d'echantillons metalliques radioactifs. Cet appareillage fonctionne dans les conditions suivantes: l'echantillon est chauffe sous une pression de l'ordre de 10{sup -6} mm de mercure afin de limiter l'oxydation du materiau examine. L'utilisation eventuelle d'un groupe de pompage pour ultra vide est prevue; l'echantillon peut etre porte a une temperature comprise entre quelques degres et 1200 deg. C; la temperature du four est regulee; l'observation s'effectue soit en lumiere polarisee soit en contraste interferentiel; l'appareil est dipose dans une boite a gants afin d'assurer la protection de l'operateur contre les poussieres radioactives; Les transformations {alpha}{yields}{beta}, {beta}{yields}{gamma} de l'uranium ont ete observees. Un film a ete realise. (auteur)

  20. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  1. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  2. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    Science.gov (United States)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  3. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  4. Sulfur and Nitrogen Co-Doped Graphene Electrodes for High-Performance Ionic Artificial Muscles.

    Science.gov (United States)

    Kotal, Moumita; Kim, Jaehwan; Kim, Kwang J; Oh, Il-Kwon

    2016-02-24

    Sulfur and nitrogen co-doped graphene electrodes for bioinspired ionic artificial muscles, which exhibit outstanding actuation performances (bending strain of 0.36%, 4.5 times higher than PSS electrodes, and 96% of initial strain after demonstration over 18 000 cycles), provide remarkable electro-chemo-mech anical properties: specific capacitance, electrical conductivity, and large surface area with mesoporosity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Science.gov (United States)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  6. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  8. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  9. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  10. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  11. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Zhang, Wenjun; Wang, Lei; Hu, Yi; Zhu, Guoyin; Wang, Yanrong; Chen, Renpeng; Chen, Tao; Tie, Zuoxiu; Liu, Jie; Jin, Zhong

    2018-05-22

    The development of flexible lithium-sulfur (Li-S) batteries with high energy density and long cycling life are very appealing for the emerging flexible, portable, and wearable electronics. However, the progress on flexible Li-S batteries was limited by the poor flexibility and serious performance decay of existing sulfur composite cathodes. Herein, we report a freestanding and highly flexible sulfur host that can simultaneously meet the flexibility, stability, and capacity requirements of flexible Li-S batteries. The host consists of a crisscrossed network of carbon nanotubes reinforced CoS nanostraws (CNTs/CoS-NSs). The CNTs/CoS-NSs with large inner space and high conductivity enable high loading and efficient utilization of sulfur. The strong capillarity effect and chemisorption of CNTs/CoS-NSs to sulfur species were verified, which can efficiently suppress the shuttle effect and promote the redox kinetics of polysulfides. The sulfur-encapsulated CNTs/CoS-NSs (S@CNTs/CoS-NSs) cathode in Li-S batteries exhibits superior performance, including high discharge capacity, rate capability (1045 mAh g -1 at 0.5 C and 573 mAh g -1 at 5.0 C), and cycling stability. Intriguingly, the soft-packed Li-S batteries based on S@CNTs/CoS-NSs cathode show good flexibility and stability upon bending.

  12. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  13. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  14. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  15. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  16. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  17. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  18. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  19. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  20. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  1. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  2. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  3. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  5. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  6. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  7. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  8. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  9. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  10. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  11. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  12. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  13. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  14. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  15. Isolation, Characterization, and Functional Role of the High-Potential Iron-Sulfur Protein (HiPIP) from Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Hochkoeppler, A.; Kofod, P.; Ferro, G.

    1995-01-01

    A new high-potential iron-sulfur protein (HiPIP) has been isolated and purified to homogeneity from the soluble fraction obtained from light-grown cells of the facultative photoheterotrophic bacterium Rhodoferax fermentans. The new protein was identified as a HiPIP by virtue of its molecular...... other sources and, in particular, the iron content is consistent with the presence of one [Fe4S4] cubane cluster per molecule. The isoelectric pH values of the two redox forms are consistent with a basic protein. Kinetic studies of HiPIP oxidation, performed by monitoring the absorbance changes induced...

  16. Unprecedented Oxidative Addition of Highly Active Manganese into the Oxygen-Sulfur Bond of Coumarin and Pyrone 4-Tosylates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ueon Sang; Joo, Seong-Ryu; Kim, Seung-Hoi [Dankook University , Cheonan (Korea, Republic of)

    2016-06-15

    Novel organomanganese reagents, 2-oxo-2H-chromen-4-yloxy tosylmanganese (A1), and 6-methyl-2-oxo-2H-pyran-4-yloxy tosylmanganese (A2), were obtained by the reaction of highly active Mn with 2-oxo-2H-chromen-4-yl 4-methylbenzenesulfonate (I) and 6-methyl-2-oxo-2H-pyran-4-yl-4-methylbenzenesulfonate (II), respectively. This was accomplished by the insertion of Mn into the oxygen-sulfur bond. Of interest, subsequent cross-coupling reactions of the thus-obtained organomanganese reagents afforded two different products, esters and sulfones, depending on the electrophile used under mild conditions.

  17. Preliminary estimations on the heat recovery method for hydrogen production by the high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Koh, Jae Hwa; Yoon, Duck Joo

    2009-01-01

    As a part of the project 'development of hydrogen production technologies by high temperature electrolysis using very high temperature reactor', we have developed an electrolyzer model for high temperature steam electrolysis (HTSE) system and carried out some preliminary estimations on the effects of heat recovery on the HTSE hydrogen production system. To produce massive hydrogen by using nuclear energy, the HTSE process is one of the promising technologies with sulfur-iodine and hybrid sulfur process. The HTSE produces hydrogen through electrochemical reaction within the solid oxide electrolysis cell (SOEC), which is a reverse reaction of solid oxide fuel cell (SOFC). The HTSE system generally operates in the temperature range of 700∼900 .deg. C. Advantages of HTSE hydrogen production are (a) clean hydrogen production from water without carbon oxide emission, (b) synergy effect due to using the current SOFC technology and (c) higher thermal efficiency of system when it is coupled nuclear reactor. Since the HTSE system operates over 700 .deg. C, the use of heat recovery is an important consideration for higher efficiency. In this paper, four different heat recovery configurations for the HTSE system have been investigated and estimated

  18. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  19. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  20. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  1. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  2. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  3. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  4. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  5. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  6. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  7. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  8. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  9. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  11. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  12. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  13. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as ...

  14. Theory of high temperature plasmas. Final report

    International Nuclear Information System (INIS)

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  15. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  16. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  17. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  18. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  19. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  20. High Capacitive Storage Performance of Sulfur and Nitrogen Codoped Mesoporous Graphene.

    Science.gov (United States)

    Ma, Xinlong; Gao, Daowei

    2018-03-22

    Mesoporous graphene is synthesized based on the chemical vapor deposition methodology by using heavy MgO flakes as substrates in a fluidized-bed reactor. Subsequently, sulfur and nitrogen coincorporation into graphene frameworks is realized by the reaction between carbon atoms and thiourea molecules. The as-obtained sulfur and nitrogen codoped mesoporous graphene (SNMG) exhibits remarkable capacitive energy-storage behavior, as a result of well-developed pore channels, in terms of that in a symmetric supercapacitor and lithium-ion hybrid capacitor (LIHC). The ultrahigh durability of the SNMG/SNMG symmetric supercapacitor is demonstrated by long-term cycling, for which no capacitance decay is found after 20 000 cycles. A LIHC constructed from commercial Li 4 Ti 5 O 12 (LTO) as the anode and SNMG as the cathode is capable of delivering much enhanced lithium-storage ability and better rate capability than that of activated carbon (AC)/LTO LIHC. Moreover, SNMG/LTO LIHC exhibits maximum energy and power densities of 86.2 Wh kg -1 and 7443 W kg -1 and maintains 87 % capacitance retention after 2000 cycles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  2. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  3. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes; Soufre atmospherique et changements climatiques: une etude de modelisation pour les moyennes et hautes latitudes Sud

    Energy Technology Data Exchange (ETDEWEB)

    Castebrunet, H

    2007-09-15

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  4. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  5. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  6. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  7. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  8. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  9. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  10. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance Lithiumsbnd Sulfur batteries

    Science.gov (United States)

    Wang, Zhenhua; Zhang, Jing; Yang, Yuxiang; Yue, Xinyang; Hao, Xiaoming; Sun, Wang; Rooney, David; Sun, Kening

    2016-10-01

    Traditionally polyvinylidene fluoride membranes have been used in applications such as membrane distillation, wastewater treatment, desalination and separator fabrication. Within this work we demonstrate that a novel carbon nanofiber/polyvinylidene fluoride (CNF/PVDF) composite membrane can be used as an interlayer for Lithiumsbnd Sulfur (Lisbnd S) batteries yielding both high capacity and long cycling life. This PVDF membrane is shown to effectively separate dissolved lithium polysulfide with the high electronic conductivity CNF not only reducing the internal resistance in the sulfur cathode but also helping immobilize the polysulfide through its abundant nanospaces. The resulting Lisbnd S battery assembled with the CNF/PVDF composite membrane effectively solves the polysulfide permeation problem and exhibits excellent electrochemical performance. It is further shown that the CNF/PVDF electrode has an excellent cycling stability and retains a capacity of 768.6 mAh g-1 with a coulombic efficiency above 99% over 200 cycles at 0.5C, which is more than twice that of a cell without CNF/PVDF (374 mAh g-1). In addition, the low-cost raw materials and the simple preparation process of CNF/PVDF composite membrane is also amenable for industrial production.

  11. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    Science.gov (United States)

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  12. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  13. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  14. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  15. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  16. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  17. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  18. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  19. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  20. High temperature deformation of silicon steel

    International Nuclear Information System (INIS)

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  1. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  2. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  3. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  4. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  5. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  6. Sulfur in zircons: A new window into melt chemistry

    Science.gov (United States)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  7. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  8. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  9. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  10. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  11. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  12. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  13. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards.

    Science.gov (United States)

    Hinckley, Eve-Lyn S; Matson, Pamela A

    2011-08-23

    Unintended anthropogenic deposition of sulfur (S) to forest ecosystems has a range of negative consequences, identified through decades of research. There has been far less study of purposeful S use in agricultural systems around the world, including the application of elemental sulfur (S(0)) as a quick-reacting fungicide to prevent damage to crops. Here we report results from a three-year study of the transformations and flows of applied S(0) in soils, vegetation, and hydrologic export pathways of Napa Valley, CA vineyards, documenting that all applied S is lost from the vineyard ecosystem on an annual basis. We found that S(0) oxidizes rapidly to sulfate ( ) on the soil surface where it then accumulates over the course of the growing season. Leaf and grape tissues accounted for only 7-13% of applied S whereas dormant season cover crops accounted for 4-10% of applications. Soil S inventories were largely and ester-bonded sulfates; they decreased from 1,623 ± 354 kg ha(-1) during the dry growing season to 981 ± 526 kg ha(-1) (0-0.5 m) during the dormant wet season. Nearly all S applied to the vineyard soils is transported offsite in dissolved oxidized forms during dormant season rainstorms. Thus, the residence time of reactive S is brief in these systems, and largely driven by hydrology. Our results provide new insight into how S use in vineyards constitutes a substantial perturbation of the S cycle in Northern California winegrowing regions and points to the unintended consequences that agricultural S use may have at larger scales.

  14. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  15. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  16. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  17. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  18. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  19. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  20. Preparation of silver doped high temperature superconductors

    International Nuclear Information System (INIS)

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  1. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  2. High Temperature Studies of La-Monazite

    Science.gov (United States)

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  3. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  4. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  5. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  6. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  7. Establishment of Harrop, High-Temperature Viscometer

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  8. Apparatus for distilling dry solids. [high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Constant, M

    1873-09-09

    In the proposed system under the action of high temperature, the vapors commence to form, and on account of their density go toward the lower part of the retort, where they take the place of air; then they find the exit prepared for them and run out literally by their weight as they are formed and enter the coil where all that can are completely condensed into oil.

  9. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  10. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  11. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  12. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  13. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  14. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  15. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  16. Investigations of the high-temperature corrosion of cobalt and cobalt alloys using radioactive isotopes

    International Nuclear Information System (INIS)

    Winterhager, H.; Krug, H.P.; Widmayer, H.

    1977-01-01

    High-temperature oxidation tests with Co, Co-Fe and Co-Fe-Cr alloys have been made by means of the S 35 method and by measuring the thickness of the oxidation coating. In any case, several different coatings formed by oxidation were found and described generally. The compact surface consists of sulfides of the pentlandite-type; indirection to the metal sore there follow several heterogeneous layers. The measured activity-distribution excludes any lattice-diffusion sulfur defects in the scale-coating enable the oxidation to permeate to the metal core. (orig./IHOE) [de

  17. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  18. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  19. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  20. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  2. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  3. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  4. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  5. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.

    Science.gov (United States)

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W

    2018-02-28

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  6. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  7. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  8. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  9. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  10. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  11. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  12. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  13. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  14. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1976-01-01

    The results recently obtained from the Dragon program are presented to illustrate materials behavior: (a) effect of temperature on oxidation and carburisation in HTR helium (variation in oxide depth and in C content of AISI 321 after 5000 hours in HTR helium; effect of temperature on surface scale formation in the γ' strengthened alloys Nimonic 80A and 713LC); (b) effect of alloy composition on oxidation and carburisation behavior (influence of Nb and Ti on the corrosion of austenitic steels; influence of Ti and Al in IN-102; weight gain of cast high Ni alloys); (c) effect of environment on creep strength (results of tests for hastelloy X, grade I inconel 625, grade II inconel 625 and inconel 617 in He and air between 750 and 800 0 C)

  15. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  16. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  17. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  18. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  19. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  20. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  1. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  2. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  3. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  4. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  5. Investigation of gadolinium monophosphide at high temperatures

    International Nuclear Information System (INIS)

    Gordienko, S.P.; Gol'nik, V.F.; Mironov, K.E.

    1982-01-01

    Gadolinium monophosphide has been studied in vacuum at high temperatures using mass-spectrometric, chemical, X-ray phase and derivatographical analyses. It is established that gadolinium monophosphide at 2080-2465 K dissociates into atomic gadolinium, phosphorus and, P 2 molecules. According to Vant-Hoff and Gibbs-Helmholtz equations standard enthalpy of atomization ΔHsub(at) deg (298)=1027.3 kJ/mol and of formation ΔHsub(f) deg (298)=313.8 kJ/mol of gadolinium monophosphide are determined

  6. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  7. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  8. Experimental needs of high temperature concrete

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  9. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  10. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  11. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  12. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  13. Spiral chain structure of high pressure selenium-II' and sulfur-II from powder x-ray diffraction

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami; Yamada, Takahiro; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Le Bihan, Tristan

    2004-01-01

    The structure of high pressure phases, selenium-II ' (Se-II ' ) and sulfur-II (S-II), for α-Se 8 (monoclinic Se-I) and α-S 8 (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II ' and S-II were found to be isostructural and to belong to the tetragonal space group I4 1 /acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4 1 and 4 3 screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemical bonds of the phases are also discussed from the interatomic distances that were obtained

  14. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  15. Thermal conductivity in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  16. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Iurii S. Bodachivskyi

    2016-12-01

    Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.

  17. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  18. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  19. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  20. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  1. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling

    Science.gov (United States)

    Realmuto, Vincent J.; Berk, Alexander

    2016-11-01

    We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300 × improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin of ± 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within ± 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012.

  2. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  3. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  4. Archaeal Viruses from High-Temperature Environments.

    Science.gov (United States)

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  5. Archaeal Viruses from High-Temperature Environments

    Directory of Open Access Journals (Sweden)

    Jacob H. Munson-McGee

    2018-02-01

    Full Text Available Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  6. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  7. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  8. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  9. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  10. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  11. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  12. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  13. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  14. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  15. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  16. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  17. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  18. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  19. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  2. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  3. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  4. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  5. In situ sulfur isotopes (δ{sup 34}S and δ{sup 33}S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiali [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Hu, Zhaochu, E-mail: zchu@vip.sina.com [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); The Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 102206 (China); Zhang, Wen [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Yang, Lu [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); National Research Council Canada, 1200 Montreal Rd., Ottawa, Ontario K1A 0R6 (Canada); Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China)

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N{sub 2} on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4–8 ml min{sup −1} nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N{sub 2} = 4 ml min{sup −1}). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d{sub 90} values of the particles in pressed powder pellets for accurate

  6. High temperature mechanical forming of Mg alloys

    International Nuclear Information System (INIS)

    Mwembela, A.; McQueen, H.J.; Myshlyaev, M.

    2002-01-01

    Mg alloys are hot worked in the range 180-450 o C and 0.0-10 s -1 ; the present project data are compared with a wide selection of published results. The flow stresses and their dependence on temperature and strain rate are fairly similar to simple Al alloys: however, the hot ductility is much lower (≤3 in torsion). Twinning plays a significant role in Mg alloys almost independently of temperature; the twins initiate at low strains in grains poorly oriented for basal slip and in consequence become well disposed for such slip. As T rises, there is increasing formation of subgrains that spread toward the grain centers from grain and twin boundaries: this is indicative of stress concentrations inducing non-basal sup which helps provide the geometrically necessary dislocations. Above about 240 o C, dynamic (DRX) nucleates at grain and twin boundaries, preferentially at intersections; this again is evidence of non-basal slip that provides the highly misoriented cells. The boundaries in which further strain concentrates producing further DRX. The microstructure remains very heterogeneous compared to the uniform dynamically recovered substructure in Al alloys, thus giving rise to the reduced ductility. These results are employed to interpret the mechanical and microstructural behavior of Mg alloys in extrusion, rolling and forging. (author)

  7. Methods for very high temperature design

    International Nuclear Information System (INIS)

    Blass, J.J.; Corum, J.M.; Chang, S.J.

    1989-01-01

    Design rules and procedures for high-temperature, gas-cooled reactor components are being formulated as an ASME Boiler and Pressure Vessel Code Case. A draft of the Case, patterned after Code Case N-47, and limited to Inconel 617 and temperatures of 982/degree/C (1800/degree/F) or less, will be completed in 1989 for consideration by relevant Code committees. The purpose of this paper is to provide a synopsis of the significant differences between the draft Case and N-47, and to provide more complete accounts of the development of allowable stress and stress rupture values and the development of isochronous stress vs strain curves, in both of which Oak Ridge National Laboratory (ORNL) played a principal role. The isochronous curves, which represent average behavior for many heats of Inconel 617, were based in part on a unified constitutive model developed at ORNL. Details are also provided of this model of inelastic deformation behavior, which does not distinguish between rate-dependent plasticity and time-dependent creep, along with comparisons between calculated and observed results of tests conducted on a typical heat of Inconel 617 by the General Electric Company for the Department of Energy. 4 refs., 15 figs., 1 tab

  8. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)

  9. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  10. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  11. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  12. High temperature superconductivity space experiment (HTSSE)

    International Nuclear Information System (INIS)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  13. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... to investigate the effects of operating parameters and biomass types on yields of char and soot, their chemistry and morphology as well as their reactivity using thermogravimetric analysis. The experimental study was focused on the influence of a wide range of operating parameters including heat treatment...... alkali metals. In this study, potassium lean pinewood (0.06 wt. %) produced the highest soot yield (9 and 7 wt. %) at 1250 and 1400°C, whereas leached wheat straw with the higher potassium content (0.3 wt. %) generated the lowest soot yield (2 and 1 wt. %). Soot yields of wheat and alfalfa straw at both...

  14. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  15. High temperature superconducting Maglev equipment on vehicle

    Science.gov (United States)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  16. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  17. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  18. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  19. Materials for high temperature reactor vessels

    International Nuclear Information System (INIS)

    Buenaventura Pouyfaucon, A.

    2004-01-01

    Within the 5th Euraton Framework Programme, a big effort is being made to promote and consolidate the development of the High Temperature Reactor (HTR). Empresarios Agrupados is participating in this project and among others, also forms part of the HTR-M project Materials for HTRs. This paper summarises the work carried out by Empresarios Agrupados regarding the material selection of the HTR Reactor Pressure Vessel (RPV). The possible candidate materials and the most promising ones are discussed. Design aspects such as the RPV sensitive zones and material damage mechanisms are considered. Finally, the applicability of the existing design Codes and Standards for the design of the HTR RPV is also discussed. (Author)

  20. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...