WorldWideScience

Sample records for high temperature sulfur

  1. High-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines

    International Nuclear Information System (INIS)

    Gladyhev, V.P.; Andreeva, N.N.; Kim, E.M.; Kovaleva, S.V.

    1985-01-01

    This paper attempts to determine the possibility of conducting high-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines (TAA) using higher hydrocarbon-paraffin mixtures as the diluent of the extraction system. Substitution of kerosene by paraffin in the extraction system would permit decreasing the danger of fire and explosions during he extraction process. In extracting rhenium from industrial solutions with a melt of higher paraffins containing TAA and alcohols, the extraction system can be continously heated in heat exchangers through which washing sulfuric acid passes and then goes to the extractor. This permits utilizing the heat and decreases the temperature of the solutions for extraction to the optimum temperatures. Extraction of rhenium with a melt of trioctylamine in paraffin obeys the same mechanisms as high-temperature extraction of ruthenium (IV) by amines in kerosene and aromatic hydrocarbons

  2. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Ye, Huan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-01

    Highlights: • A cost-effective chemical activation method to prepare porous carbon nanospheres. • Carbon nanospheres with bimodal microporous structure show high specific area and large micropore volume. • The S/C composite cathodes with in-situformed S−C bond exhibit high sulfur activity with a reversible capacity of 1000 mA h g −1 . • S−C bond enables well confinement on sulfur and polysulfides. - Abstract: Lithium–sulfur batteries are highly desired because of their characteristics such as high energy density. However, the applications of Li-S batteries are limited because they exist dissolution of polysulfides into electrolytes. This study reports the preparation of sulfur cathodes by using bimodal microporous (0.5 nm and 0.8 nm to 2.0 nm) carbon spheres with high specific area (1992 m 2 g −1 ) and large micropore volume (1.2 g cm −1 ), as well as the encapsulation of polysulfides via formation of carbon–sulfur bonds in a sealed vacuum glass tube at high temperature. Given that sulfur and polysulfides are well confined by the S−C bond, the shuttle effect is effectively suppressed. The prepared S/C cathodes with a sulfur loading of up to 75% demonstrate high sulfur activity with reversible capacity of 1000 mA h g −1 at the current density of 0.1 A g −1 and good cycling stability (667 mA h g −1 after 100 cycles).

  3. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  4. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  5. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  6. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  7. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  8. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  9. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  10. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  11. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  12. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  13. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  14. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  15. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  16. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  17. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  18. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  19. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  20. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  1. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  2. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  3. Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations

    Science.gov (United States)

    Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico

    2018-03-01

    We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.

  4. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  5. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  6. Iron and zinc partitioning between coexisting stannite and sphalerite: a possible indicator of temperature and sulfur fugacity

    Science.gov (United States)

    Shimizu, M.; Shikazono, N.

    1985-10-01

    Stannite and sphalerite coexisting with iron sulfides (pyrite and/or pyrrhotite) from Japanese ore deposits associated with tin mineralization were analyzed. Based on the iron and zinc partitioning between stannite and sphalerite, the formation temperature and sulfur fugacity for this mineral assemblage were estimated. A good correlation between stannite-sphalerite temperatures and filling temperatures of fluid inclusions and sulfur isotope temperatures was obtained. This good correlation suggests that the stannite-sphalerite pair is a useful indicator of temperature and sulfur fugacity. It is deduced that the formation temperatures are not different for skarn-type, polymetallic vein-type and Sn-W vein-type deposits, whereas the sulfur fugacities are different; sulfur fugacities increase from the skarn-type through the Sn-W vein-type to the polymetallic vein-type deposits.

  7. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  8. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  9. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  10. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  11. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  12. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  13. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  14. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  15. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  16. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  17. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  18. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  19. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  20. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Science.gov (United States)

    Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine

    2015-01-01

    Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems. PMID:25977873

  1. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  2. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    Science.gov (United States)

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  3. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaopei; Zhang, Yanxing [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province (China)

    2017-02-12

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field. - Highlights: • The electric field and Cu dopant effects on S poisoning feature of Ni are analyzed. • The present of large electric field can enhance S tolerance. • Cu dopant concentration affect the surface electronic structure of Ni. • 100% Cu doping on surface Ni layer can mostly decrease the sulfur poison.

  4. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g(-1) at 1 C after 100 cycles, and 791 mA h g(-1) at 0.5 C and 551 mA h g(-1) at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g(-1) at 5 C.

  5. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  6. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  7. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    Science.gov (United States)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  8. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  9. A genetic electrophoretic variant of high-sulfur hair proteins for forensic hair comparisons. I. Characterization of variant high-sulfur proteins of human hair.

    Science.gov (United States)

    Miyake, B

    1989-02-01

    In a survey of the proteins from human hair, a genetic electrophoretic variant has been observed in the high-sulfur protein region. S-carboxymethylated proteins were examined by 15% polyacrylamide gel electrophoresis at pH 8.9. Out of 150 unrelated samples of Japanese head hairs analyzed, 107 showed 6 major high-sulfur protein bands (normal) and the remaining 43 samples showed an additional high-sulfur protein band (variant). Of 21 Caucasian samples analyzed only one variant sample was found. Characterization of the proteins by two-dimensional electrophoresis evidenced a variant protein spot which showed an apparent molecular weight of 30 k Da. Isoelectric points of the high-sulfur proteins ranged from 3.25-3.55 and that of variant protein band from 3.3-3.4. Family studies of 21 matings resulting in 49 children indicated that this variant was inherited in an autosomal fashion.

  10. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  11. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  12. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  13. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  14. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    W.-C. Xu; M. Kumagai

    2003-02-01

    The behavior of sulfur transformation during rapid hydropyrolysis of coal was investigated using a pressurized, continuous free fall pyrolyzer under the conditions of temperature ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa. The yields of sulfur converted to gas, tar and char were determined, together with the analyses of sulfur form distributions in coals and chars. The results showed that the decomposition of inorganic sulfur species was affected only by the temperature, while the increases in temperature and hydrogen pressure obviously enhanced the removal of organic sulfur from coal. The extent of organic sulfur removal was proportional to the coal conversion, depending on coal type. A significant retention of gaseous sulfur products by the organic matrix of the char was observed during hydropyrolysis of a Chinese coal above 1023 K, even under the pressurized hydrogen atmosphere. The kinetic analysis indicates that the rate of organic sulfur removal from coal was 0.2th-order with respect to the hydrogen pressure, and the activation energy for total sulfur removal and organic sulfur removal is 17 26 and 13 55 kJ/mol, respectively. The low activation energies suggest that the transformation and removal of sulfur from coal might be controlled by the diffusion and/or thermodynamic equilibrium during hydropyrolysis under the pressurized conditions. 29 refs., 10 figs., 3 tabs.

  15. Gaseous byproducts from high-temperature thermal conversion elemental analysis of nitrogen- and sulfur-bearing compounds with considerations for δ2H and δ18O analyses.

    Science.gov (United States)

    Hunsinger, Glendon B; Tipple, Christopher A; Stern, Libby A

    2013-07-30

    High-temperature, conversion-reduction (HTC) systems convert hydrogen and oxygen in materials into H2 and CO for δ(2)H and δ(18)O measurements by isotope ratio mass spectrometry. HTC of nitrogen- and sulfur-bearing materials produces unintended byproduct gases that could affect isotope analyses by: (1) allowing isotope exchange reactions downstream of the HTC reactor, (2) creating isobaric or co-elution interferences, and (3) causing deterioration of the chromatography. This study characterizes these HTC byproducts. A HTC system (ThermoFinnigan TC/EA) was directly connected to a gas chromatograph/quadrupole mass spectrometer in scan mode (m/z 8 to 88) to identify the volatile products generated by HTC at conversion temperatures of 1350 °C and 1450 °C for a range of nitrogen- and sulfur-bearing solids [keratin powder, horse hair, caffeine, ammonium nitrate, potassium nitrate, ammonium sulfate, urea, and three nitrated organic explosives (PETN, RDX, and TNT)]. The prominent HTC byproduct gases include carbon dioxide, hydrogen cyanide, methane, acetylene, and water for all nitrogen-bearing compounds, as well as carbon disulfide, carbonyl sulfide, and hydrogen sulfide for sulfur-bearing compounds. The 1450 °C reactor temperature reduced the abundance of most byproduct gases, but increased the significant byproduct, hydrogen cyanide. Inclusion of a post-reactor chemical trap containing Ascarite II and Sicapent, in series, eliminated the majority of byproducts. This study identified numerous gaseous HTC byproducts. The potential adverse effects of these gases on isotope ratio analyses are unknown but may be mitigated by higher HTC reactor temperatures and purifying the products with a purge-and-trap system or with chemical traps. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. An effective 2-band eg model of sulfur hydride H3S for high-Tc superconductivity

    Science.gov (United States)

    Nishiguchi, Kazutaka; Teranishi, Shingo; Miyao, Satoaki; Matsushita, Goh; Kusakabe, Koichi

    To understand high transition temperature (Tc) superconductivity in sulfur hydride H3S, we propose an effective 2-band model having the eg symmetry as the minimal model for H3S. Two eg orbitals centered on a sulfur S atom are chosen for the smallest representation of relevant bands with the van-Hove singularity around the Fermi levels except for the Γ-centered small hole pockets by the sulfur 3 p orbitals. By using the maximally localized Wannier functions, we derive the minimal effective model preserving the body-centered cubic (bcc) crystal symmetry of the H3S phase having the highest Tc ( 203 K under pressures) among the other polymorphs of H3S.

  18. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu; Hu, Pengfei; Zhao, Bing

    2015-01-01

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g −1 after 50 cycles at 100 mA g −1 . • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g −1 after 50 cycles at a current density of 100 mA g −1 and reversible capacity of 517.9 mA h g −1 at 1 A g −1 . The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems

  19. Yolk-Shelled C@Fe3 O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam

    2017-09-01

    Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  1. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  2. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Hu, Pengfei [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Zhao, Bing, E-mail: bzhao@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2015-10-05

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g{sup −1} after 50 cycles at 100 mA g{sup −1}. • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g{sup −1} after 50 cycles at a current density of 100 mA g{sup −1} and reversible capacity of 517.9 mA h g{sup −1} at 1 A g{sup −1}. The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems.

  3. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    Science.gov (United States)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  4. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  5. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  6. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  7. Design and cost of the sulfuric acid decomposition reactor for the sulfur based hydrogen processes - HTR2008-58009

    International Nuclear Information System (INIS)

    Hu, T. Y.; Connolly, S. M.; Lahoda, E. J.; Kriel, W.

    2008-01-01

    The key interface component between the reactor and chemical systems for the sulfuric acid based processes to make hydrogen is the sulfuric acid decomposition reactor. The materials issues for the decomposition reactor are severe since sulfuric acid must be heated, vaporized and decomposed. SiC has been identified and proven by others to be an acceptable material. However, SiC has a significant design issue when it must be interfaced with metals for connection to the remainder of the process. Westinghouse has developed a design utilizing SiC for the high temperature portions of the reactor that are in contact with the sulfuric acid and polymeric coated steel for low temperature portions. This design is expected to have a reasonable cost for an operating lifetime of 20 years. It can be readily maintained in the field, and is transportable by truck (maximum OD is 4.5 meters). This paper summarizes the detailed engineering design of the Westinghouse Decomposition Reactor and the decomposition reactor's capital cost. (authors)

  8. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  9. An Experimental Study of Low-Temperature Sulfurization of Carbohydrates Using Various Sulfides Reveals Insights into Structural Characteristics and Sulfur Isotope Compositions of Macromolecular Organic Matter in the Environment

    Science.gov (United States)

    OBeirne, M. D.; Werne, J. P.; Van Dongen, B.; Gilhooly, W., III

    2017-12-01

    Sulfurization of carbohydrates has been suggested as an important mechanism for the preservation of organic matter in anoxic/euxinic depositional environments. In this study, glucose was sulfurized under laboratory conditions at room temperature (24°C) using three commercially available sulfides - ammonium sulfide ([NH4]2S), sodium sulfide (Na2S), and sodium hydrosulfide (NaHS), each mixed with elemental sulfur to produce polysulfide solutions. The reaction products were analyzed using Fourier transform infrared spectroscopy (FTIR), which revealed structural differences among the products formed via the three sulfide reactants. Additionally, analysis of the bulk sulfur isotope compositions of reactants and products was used to determine the fractionation(s) associated with abiotic sulfur incorporation into organic matter. Samples from both modern (Mahoney Lake, British Colombia, Canada) and ancient (Jurassic aged Blackstone Band from the Kimmeridge Clay Formation, Dorset, United Kingdom) euxinic systems were also analyzed for comparison to laboratory samples. Results from this study provide experimental evidence for the structural and sulfur isotopic relationships of sulfurized organic matter in the geosphere.

  10. Effect of sulfurization temperature on the property of Cu2ZnSnS4 thin film by eco-friendly nanoparticle ink method

    Science.gov (United States)

    Wang, Wei; Shen, Honglie; Yao, Hanyu; Shang, Huirong; Tang, ZhengXia; Li, Yufang

    2017-09-01

    Cu2ZnSnS4 (CZTS) thin films were fabricated by a low-cost nanoparticle ink method. The eco-friendly hydrophilic CZTS nanoparticles were mixed with low-cost n-propanol to form nanoparticle ink. To improve crystallinity and remove oxygen element, the CZTS thin films were sulfurized further. The effects of sulfurization temperature on the structure, morphologies, and photovoltaic performances of CZTS thin films were investigated. The results showed that the crystallinity of CZTS thin film was improved with increasing sulfurization temperature. The surface morphology studies demonstrated the formation of compact and homogenous CZTS thin film at a sulfurization temperature of 600 °C. By optimizing thickness of CZTS thin film, the CZTS thin-film solar cell with an optimal efficiency of 2.1% was obtained.

  11. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  12. Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution

    International Nuclear Information System (INIS)

    Wang, Sha; Zhao, Zhenxia; Xu, Hui; Deng, Yuanfu; Li, Zhong; Chen, Guohua

    2015-01-01

    Highlights: •Effects of pore size were investigated on electrochemistry for S cathode. •Activation energy of sulfur desorption from the PDA-C was estimated. •Strong interaction was formed between sulfur and porous N-doped carbon. •PDA-C@S showed good cycling performance of 608 mA h g −1 at 2 C over 300 cycles. •PDA-C@S showed good rate stability and high rate capacity. -- Abstract: A novel porous N-doped carbon microsphere (polymer-dopamine derived carbon, PDA-C) with high specific surface area was synthesized as sulfur host for high performance of lithium-sulfur batteries. We used KOH to adjust the pore size and surface area of the PDA-C materials, and then impregnated sulfur into the PDA-C samples by vapor-melting diffusion method. Effects of pore size of the PDA-C samples on the electrochemical performance of the PDA-C@sulfur cathodes were systematically investigated. Raman spectra indicated an enhanced trend of the degree of graphitization of the PDA-C samples with increasing calcination temperature. The surface area of the PDA-C samples increases with amount of the KOH in the pore-creating process. The graphitized porous N-doped carbon provides the high electronic conductive network. Meanwhile, the PDA-C with high surface area and uniform micropores ensures a high interaction toward sulfur as well as the high dispersion of nanoscale sulfur layer on it. The microporous PDA-C@S cathode material exhibits the excellent high rate discharge capability (636 mA h g −1 at 2.0 C) and good low/high-rate cycling stability (893 mA h g −1 (0.5 C) and 608 mA h g −1 (2.0 C) over 100 and 300 cycles). Cyclic voltammogram curves and electrochemical impedance plots show that both the impedance and polarization of the cells increase with decreasing pore size

  13. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  14. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  15. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  16. A Nacre-Like Carbon Nanotube Sheet for High Performance Li-Polysulfide Batteries with High Sulfur Loading.

    Science.gov (United States)

    Pan, Zheng-Ze; Lv, Wei; He, Yan-Bing; Zhao, Yan; Zhou, Guangmin; Dong, Liubing; Niu, Shuzhang; Zhang, Chen; Lyu, Ruiyang; Wang, Cong; Shi, Huifa; Zhang, Wenjie; Kang, Feiyu; Nishihara, Hirotomo; Yang, Quan-Hong

    2018-06-01

    Lithium-sulfur (Li-S) batteries are considered as one of the most promising energy storage systems for next-generation electric vehicles because of their high-energy density. However, the poor cyclic stability, especially at a high sulfur loading, is the major obstacles retarding their practical use. Inspired by the nacre structure of an abalone, a similar configuration consisting of layered carbon nanotube (CNT) matrix and compactly embedded sulfur is designed as the cathode for Li-S batteries, which are realized by a well-designed unidirectional freeze-drying approach. The compact and lamellar configuration with closely contacted neighboring CNT layers and the strong interaction between the highly conductive network and polysulfides have realized a high sulfur loading with significantly restrained polysulfide shuttling, resulting in a superior cyclic stability and an excellent rate performance for the produced Li-S batteries. Typically, with a sulfur loading of 5 mg cm -2 , the assembled batteries demonstrate discharge capacities of 1236 mAh g -1 at 0.1 C, 498 mAh g -1 at 2 C and moreover, when the sulfur loading is further increased to 10 mg cm -2 coupling with a carbon-coated separator, a superhigh areal capacity of 11.0 mAh cm -2 is achieved.

  17. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  18. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  19. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  20. Catalytic processing of high-sulfur fuels for distributed hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Ramasamy, Karthik; Huang, Cunping; T-Raissi, Ali [Central Florida Univ., FL (United States)

    2010-07-01

    In this work, the development of a new on-demand hydrogen production technology is reported. In this process, a liquid hydrocarbon fuel (e.g., high-S diesel) is first catalytically pre-reformed to shorter chain gaseous hydrocarbons (predominantly, C{sub 1}-C{sub 3}) before being directed to the steam reformer, where it is converted to syngas and then to high-purity hydrogen. In the pre-reformer, most sulfurous species present in the fuel are catalytically converted to H{sub 2}S. In the desulfurization unit, H{sub 2}S is scrubbed and converted to H{sub 2} and elemental sulfur. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes Fe(II)/Fe(III)-containing aqueous phase scrubber coupled with an electrolyzer. The integrated pre-reformer/scrubber/electrolyzer unit operated successfully on high-S diesel fuel for more than 100 hours meeting the required desulfurization target of >95 % sulfur removal. (orig.)

  1. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Ji-Yoon Song

    2018-02-01

    Full Text Available For practical application of lithium–sulfur batteries (LSBs, it is crucial to develop sulfur cathodes with high areal capacity and cycle stability in a simple and inexpensive manner. In this study, a carbon cloth infiltrated with a sulfur-containing electrolyte solution (CC-S was utilized as an additive-free, flexible, high-sulfur-loading cathode. A freestanding carbon cloth performed double duty as a current collector and a sulfur-supporting/trapping material. The active material in the form of Li2S6 dissolved in a 1 M LiTFSI-DOL/DME solution was simply infiltrated into the carbon cloth (CC during cell fabrication, and its optimal loading amount was found to be in a range between 2 and 10 mg/cm2 via electrochemical characterization. It was found that the interwoven carbon microfibers retained structural integrity against volume expansion/contraction and that the embedded uniform micropores enabled a high loading and an efficient trapping of sulfur species during cycling. The LSB coin cell employing the CC-S electrode with an areal sulfur loading of 6 mg/cm2 exhibited a high areal capacity of 4.3 and 3.2 mAh/cm2 at C/10 for 145 cycles and C/3 for 200 cycles, respectively, with minor capacity loss (<0.03%/cycle. More importantly, such high performance could also be realized in flexible pouch cells with dimensions of 2 cm × 6 cm before and after 300 bending cycles. Simple and inexpensive preparation of sulfur cathodes using CC-S electrodes, therefore, has great potential for the manufacture of high-performance flexible LSBs.

  2. Morphological study of silver corrosion in highly aggressive sulfur environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2011-01-01

    A silicone coated power module, having silver conducting lines, showed severe corrosion, after prolonged use as part of an electronic device in a pig farm environment, where sulfur containing corrosive gasses are known to exist in high amounts. Permeation of sulfur gasses and humidity through...... the silicone coating to the interface has resulted in three corrosion types namely: uniform corrosion, conductive anodic filament type of Ag2S growth, and silver migration with subsequent formation of sulfur compounds. Detailed morphological investigation of new and corroded power modules was carried out...

  3. One-Step Extraction of Antimony in Low Temperature from Stibnite Concentrate Using Iron Oxide as Sulfur-Fixing Agent

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-07-01

    Full Text Available A new process for one-step extraction of antimony in low temperature from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt, using iron oxide as sulfur-fixing agent, was presented. The influences of molten salt addition and composition, ferric oxide dosage, smelting temperature and duration on extraction efficiency of antimony were investigated in details, respectively. The optimum conditions were determined as follows: 1.0 time stoichiometric requirement (α of mixed sodium salt (αsalt = 1.0, WNaCl:Wsalt = 40%, αFe2O3 = 1.0, Wcoke:Wstibnite = 40%, where W represents weight, smelting at 850 °C (1123 K for 60 min. Under the optimum conditions, the direct recovery rate of antimony can reach 91.48%, and crude antimony with a purity of 96.00% has been achieved. 95.31% of sulfur is fixed in form of FeS in the presence of iron oxide. Meanwhile, precious metals contained in stibnite concentrate are enriched and recovered comprehensively in crude antimony. In comparison to traditional antimony pyrometallurgical process, the smelting temperature of present process is reduced from 1150–1200 °C (1423–1473 K to 850–900 °C (1123–1173 K. Sulfur obtained in stibnite is fixed in FeS which avoids SO2 emission owing to the sulfur-fixing agent. Sodium salt can be regenerated and recycled in smelting system when the molten slag is operated to filter solid residue. The solid residue is subjected to mineral dressing operation to obtain iron sulfide concentrate which can be sold directly or roasted to regenerate into iron oxide.

  4. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  5. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-11-01

    Full Text Available In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC composite materials reveal a high initial capacity of 1150 mAh·g−1 as well as a reversible capacity of 613 mAh·g−1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g−1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  6. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    Castebrunet, H.

    2007-09-01

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  7. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Feng; Ma, Lulu; Ren, Jiangang; Luo, Xinyu; Liu, Bibo; Zhou, Xiangyang

    2018-03-26

    Lithium-sulfur (Li-S) batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg -1 . However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC) to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m² g -1 ), high pore volume (1.78 cm³ g -1 ), good conductivity, and in situ nitrogen (1.86 at %) and sulfur (5.26 at %) co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li⁺ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g -1 at 0.2 C), excellent rate capability (596.6 mAh g -1 at 5 C), and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle). Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm -2 (70 wt. % sulfur), the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g -1 , which is quite beneficial to commercialized applications.

  8. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    Science.gov (United States)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  9. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  10. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  11. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  12. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  13. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  14. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L.

    2009-10-01

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  15. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries

    Science.gov (United States)

    Chen, Feng; Ma, Lulu; Ren, Jiangang; Luo, Xinyu; Liu, Bibo; Zhou, Xiangyang

    2018-01-01

    Lithium-sulfur (Li-S) batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg−1. However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC) to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m2 g−1), high pore volume (1.78 cm3 g−1), good conductivity, and in situ nitrogen (1.86 at %) and sulfur (5.26 at %) co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li+ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g−1 at 0.2 C), excellent rate capability (596.6 mAh g−1 at 5 C), and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle). Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm−2 (70 wt. % sulfur), the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g−1, which is quite beneficial to commercialized applications. PMID:29587467

  16. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2018-03-01

    Full Text Available Lithium-sulfur (Li-S batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg−1. However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m2 g−1, high pore volume (1.78 cm3 g−1, good conductivity, and in situ nitrogen (1.86 at % and sulfur (5.26 at % co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li+ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g−1 at 0.2 C, excellent rate capability (596.6 mAh g−1 at 5 C, and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle. Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm−2 (70 wt. % sulfur, the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g−1, which is quite beneficial to commercialized applications.

  17. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interface polymerization synthesis of conductive polymer/graphite oxide@sulfur composites for high-rate lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Wang, Xiwen; Zhang, Zhian; Yan, Xiaolin; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2015-01-01

    Highlights: • A hybrid nanostructure that incorporate the merits of conductive polymer nanorods and graphite oxide sheets. • A novel approach based on interface polymerization for synthesizing CP/GO@S ternary composite. • CP/GO@S ternary composite cathode shows enhanced electrochemical properties compared with CP@S binary composite cathode. • PEDOT/GO@S composite is the material system that have best electrochemical performance in all CP/GO@S ternary composites. - Abstract: The novel ternary composites, conductive polymers (CPs)/graphene oxide (GO)@sulfur composites were successfully synthesized via a facile one-pot route and used as cathode materials for Li-S batteries The poly(3,4-ethylenedioxythiophene) (PEDOT)/GO and polyaniline (PANI)/GO composites were prepared by interface polymerization of monomers on the surface of GO sheets. Then sulfur was in-situ deposited on the CPs/GO composites in same solution. The component and structure of the composites were characterized by XPS, TGA, FTIR, SEM, TEM and electrochemical measurements. In this structure, the CPs nanostructures are believed to serve as a conductive matrix and an adsorbing agent, while the highly conductive GO will physically and chemically confine the sulfur and polysulfide within cathode. The PEDOT/GO@S composites with the sulfur content of 66.2 wt% exhibit a reversible discharge capacity of 800.2 mAh g −1 after 200 cycles at 0.5 C, which is much higher than that of PANI/GO@S composites (599.1 mAh g −1 ) and PANI@S (407.2 mAh g −1 ). Even at a high rate of 4 C, the PEDOT/GO@S composites still retain a high specific capacity of 632.4 mAh g −1

  19. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  20. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds

    Science.gov (United States)

    Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.

    1997-11-01

    Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.

  1. Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Mingbo Zheng

    2017-10-01

    Full Text Available Lithium–sulfur batteries have drawn considerable attention because of their extremely high energy density. Activated carbon (AC is an ideal matrix for sulfur because of its high specific surface area, large pore volume, small-size nanopores, and simple preparation. In this work, through KOH activation, AC materials with different porous structure parameters were prepared using waste rapeseed shells as precursors. Effects of KOH amount, activated temperature, and activated time on pore structure parameters of ACs were studied. AC sample with optimal pore structure parameters was investigated as sulfur host materials. Applied in lithium–sulfur batteries, the AC/S composite (60 wt % sulfur exhibited a high specific capacity of 1065 mAh g−1 at 200 mA g−1 and a good capacity retention of 49% after 1000 cycles at 1600 mA g−1. The key factor for good cycling stability involves the restraining effect of small-sized nanopores of the AC framework on the diffusion of polysulfides to bulk electrolyte and the loss of the active material sulfur. Results demonstrated that AC materials derived from rapeseed shells are promising materials for sulfur loading.

  2. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  3. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  4. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  5. High-sensitive portable ASE-2 X-ray analyzer of sulfur in mineral oil

    International Nuclear Information System (INIS)

    Anchugov, I.S.; Goganov, A.D.; Plotnikov, R.I.

    2007-01-01

    The high-sensitivity ASE-2 analyzer of sulfur on the basis of existing ASE-I device is designed. ASE-2 analyzer realizes a standard method of energy dispersion X-ray fluorescent determinations of a sulfur mass fraction in mineral oil and allows to carry out the quantitative determination of sulfur in hydrocarbonic raw material and fuel in a 0.002-5 mass.% range [ru

  6. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  7. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  8. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  9. Transient simulation of an endothermic chemical process facility coupled to a high temperature reactor: Model development and validation

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► Models for PBMR and thermochemical sulfur cycle based hydrogen plant are developed. ► Models are validated against available data in literature. ► Transient in coupled reactor and hydrogen plant system is studied. ► For loss-of-heat sink accident, temperature feedback within the reactor core enables shut down of the reactor. - Abstract: A high temperature reactor (HTR) is a candidate to drive high temperature water-splitting using process heat. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Three thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. The models and coupling scheme are presented here, as well as a transient test case initiated within the chemical plant. The 50% feed flow failure within the chemical plant results in a slow loss-of-heat sink (LOHS) accident in the nuclear reactor. Due to the temperature feedback within the reactor core the nuclear reactor partially shuts down over 1500 s. Two distinct regions are identified within the coupled plant response: (1) immediate LOHS due to the loss of the sulfuric

  10. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  11. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  12. Research and development on process components for hydrogen production. (1) Test-fabrication of sulfuric acid transfer pump

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Terada, Atsuhiko; Hino, Ryutaro; Kubo, Shinji; Onuki, Kaoru; Watanabe, Yutaka

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments to the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solutions of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components have been the crucial subjects of process development. This paper concerns the sulfuric acid transfer pump. The development has been implemented of a pump for transporting concentrated sulfuric acid at temperatures of higher than 300degC and at elevated pressure. Recent progress of these activities will be reported. (author)

  13. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  14. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  15. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  16. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  17. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  19. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Iurii S. Bodachivskyi

    2016-12-01

    Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.

  20. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  1. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2003-01-01

    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  3. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  4. Preliminary estimations on the heat recovery method for hydrogen production by the high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Koh, Jae Hwa; Yoon, Duck Joo

    2009-01-01

    As a part of the project 'development of hydrogen production technologies by high temperature electrolysis using very high temperature reactor', we have developed an electrolyzer model for high temperature steam electrolysis (HTSE) system and carried out some preliminary estimations on the effects of heat recovery on the HTSE hydrogen production system. To produce massive hydrogen by using nuclear energy, the HTSE process is one of the promising technologies with sulfur-iodine and hybrid sulfur process. The HTSE produces hydrogen through electrochemical reaction within the solid oxide electrolysis cell (SOEC), which is a reverse reaction of solid oxide fuel cell (SOFC). The HTSE system generally operates in the temperature range of 700∼900 .deg. C. Advantages of HTSE hydrogen production are (a) clean hydrogen production from water without carbon oxide emission, (b) synergy effect due to using the current SOFC technology and (c) higher thermal efficiency of system when it is coupled nuclear reactor. Since the HTSE system operates over 700 .deg. C, the use of heat recovery is an important consideration for higher efficiency. In this paper, four different heat recovery configurations for the HTSE system have been investigated and estimated

  5. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe......Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  6. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  7. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  8. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  9. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors

    Science.gov (United States)

    Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui

    2018-04-01

    In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

  10. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  11. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  12. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500°C

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    The temperature dependence of the ultraviolet absorption cross-sections of three different sulfur containing compounds, hydrogen sulfide (H2S), carbon disulfide (CS2) and carbonyl sulfide (OCS), are presented between 200nm and 360nm at a resolution of 0.018nm. The absorption cross-sections for each...... compound are initially compared with those available in the literature, followed by the discussion of the measurements and their spectral features at three temperatures up to 500°C/773K. Uncertainties in the measured absorption cross-sections are also addressed....

  13. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  14. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  15. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  16. Sulfur in zircons: A new window into melt chemistry

    Science.gov (United States)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  17. Speciation of Raney Copper Oxide during High-Temperature Desulfurization

    International Nuclear Information System (INIS)

    Wang, T. C.; Chen, C. Y.; Huang, H.-L.; Wang, H. Paul; Wei Yuling

    2007-01-01

    Speciation of copper in the Raney copper oxides (R-CuO) during high-temperature desulfurization has been studied by X-ray absorption spectroscopy. The preedge XANES spectra (8975-8979 eV) of R-CuO exhibit a very weak 1s-to-3d transition forbidden by the selection rule in the case of the perfect octahedral symmetry. A shoulder at 8985-8988 eV and an intense band at 8994-9002 eV can be attributed to the 1s-to-4p transition that indicates the existence of the Cu(II) species. The preedge band at 8981-8984 eV can be attributed to the dipole-allowed 1s-to-4p transition of Cu(I), suggesting an existence of Cu2S during sulfurization. An enhanced absorbance at 9003 eV shows that Cu(0) species may be formed in the sulfurized R-CuO. The main copper species in regenerated R-CuO are CuO (96%) and Cu2S (4%)

  18. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  19. Structural flexibility of the sulfur mustard molecule at finite temperature from Car-Parrinello molecular dynamics simulations.

    Science.gov (United States)

    Lach, Joanna; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-05

    Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Results of Study of Sulfur Oxide Reduction During Combustion of Coal-Water Slurry Fuel Through use of Sulfur Capturing Agents

    Directory of Open Access Journals (Sweden)

    Murko Vasiliy I.

    2016-01-01

    Full Text Available It is shown that an effective way of burning high sulfur coal is to burn coal-water slurry fuel (CWF prepared on its basis containing a sulfur capture agent (SCA entered in the slurry at the stage of preparation. The technique of thermodynamic analysis of chemical reactions during CWF burning has been developed including burning in the presence of SCA. Using the developed calculation program, the optimal temperature conditions have been determined as required for the effective reduction of sulfur oxides in flue gases when using different types of SCA. According to the results of calculating the composition of CWF combustion products when entering various substances in the burner space as SCA it has been determined that magnesite, calcite, and dolomite are the most effective natural minerals. The analysis of calculated and experimental data proves the efficiency of SCA addition as well as validity of the obtained results.

  1. Sulfur-Iodine Integrated Lab Scale Experiment Development

    Energy Technology Data Exchange (ETDEWEB)

    Russ, Ben

    2011-05-27

    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  2. Sulfur-Iodine Integrated Lab Scale Experiment Development

    International Nuclear Information System (INIS)

    Russ, Ben

    2011-01-01

    The sulfur-iodine (SI) cycle was determined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  3. In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content

    Science.gov (United States)

    Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong

    2018-02-01

    SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.

  4. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  5. Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications

    Science.gov (United States)

    Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.

    2018-06-01

    Lithium-Sulfur (Li-S) cells are emerging as the next generation energy storage devices owing to their impressive electrochemical properties with high theoretical specific capacity of 1675 mAh/g. Lack of electronic conductivity of sulfur, its volume expansion during high lithium intake and the shuttling effect due to the formation of soluble polysulfides are the main limitations, delaying the commercialization of this technology. To address these challenges, in the present work, the conducting polymer PEDOT:PSS is used as the covering matrix over the sulfur particles to improve their Li storage properties. The sulfur/PEDOT:PSS nanocomposite is synthesised using the hydrothermal process and its formation with the polymer coating over sulfur nanoparticles is established from the XRD, Raman spectroscopy, FE-SEM and TEM studies. The electrochemical studies show that the cells assembled using the sulfur/PEDOT:PSS nanocomposite as the cathode, with the components taken in the weight ratio of 9:1, offer a reversible capacity of 1191 mAh g-1 at 0.1C rate. These cells display stable electrochemical capacities over 200 cycles at gradually increasing current rates. The polymer layer facilitates electronic conduction and suppresses the polysulfide formation and the volume expansion of sulfur. A reversible capacity of 664 mAh g-1 is observed after 200 cycles at 1C rate with the capacity retention of 75 % of the initial stable capacity. The highlight of the present work is the possibility to achieve high discharge capacities at high C rates and the retention of a good percentage of the initial capacity over 200 cycles, for these Li-S cells.

  6. New sulfur hydride H{sub 3}S and excellent superconductivity at high

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Tian [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun (China)

    2016-07-01

    It is predicted theoretically that molecular hydrogen would dissociate into an atomic phase with metallic properties at high pressures. Metallic hydrogen is believed to be a room-temperature superconductor. However, metallization of hydrogen is still debates in laboratory. As an alternative, hydrogen-rich compounds are extensively explored since their metallization can happen at relatively lower pressures by means of chemical pre-compressions. Here, a new sulfur hydride H{sub 3}S that hardly occur at atmospheric pressure was predicted to be formed at high pressure by two main ways. We also found two intriguing metallic structures with R3m and Im-3m symmetries above 111 GPa and 180 GPa, respectively. Remarkably, the estimated T{sub c} of Im-3m phase at 200 GPa achieves a very high value of 191-204 K, reaching an order of 200 K. Further calculation shown that the H atoms play a significant role in superconductivity. The experimental discovery of superconductivity with a high T{sub c} = 203 K in H-S system at high pressure has verified our theoretically predicted results. Furthermore, the predicted R3m and Im-3m structures have been recently confirmed experimentally by synchrotron XRD.

  7. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  9. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  10. Reconstructions of the sulfur-passivated InSb (100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Ciochoń, Piotr, E-mail: piotr.ciochon@doctoral.uj.edu.pl; Olszowska, Natalia; Wróbel, Sonia; Kołodziej, Jacek

    2017-04-01

    Highlights: • Two new surface reconstructions of a S-passivated InSb (001) surface are reported. • The reconstructions are obtained through partial loss of surface sulfur. • They are characterized by the thickness of ∼4 Å and good crystallographic ordering. • The reconstructions provide adequate electronic passivation of the surface. - Abstract: We have studied the properties of the InSb (100) surface passivated with sulfur dimers emitted by the solid-state electrochemical cell in ultra-high vacuum. Annealing the passivated surface in the temperature equal to T = 326 °C led to the formation of the c(4 × 8) surface reconstruction, while increasing the temperature to T = 348 °C resulted in the transition to c(4 × 12) reconstruction. To the best of our knowledge these reconstructions have not been reported to date and are characterized by the exceptionally good crystallographic order. XPS studies revealed that there are at least 4 different chemical species of sulfur present on the surface and the estimated thickness of the sulfur layers is equal to around 4 Å. The surface reconstructions are characterized by the lowered intensity of the surface electronic states and resonances near the Fermi level, compared to the clean InSb surface, making them potentially very useful for the fabrication of InSb-based electronic and optoelectronic devices.

  11. The determination of sulfur and some heavy elements in the coke

    International Nuclear Information System (INIS)

    Ma'rouf, M.

    2003-01-01

    The content of free sulfur and some heavy elements in the coke resulting from the residua of oil industry was determined bu using various technical analytical methods. The flame technique of atomic absorption FAAS was used to identify lead, copper, zinc, chromium, VGA-AAS and determine arsenic and selenium, CV-AAS to the determination of mercury. As for sulfur, it was determined by using the total oxidation method at high temperatures (1100 C 0 ). The IR indicator was used for further determination. The relative standard deviation in the determination of sulfur did not exceed the limits of 0.01 and 0.02, compared to the determination of other elements by using the atomic absorption method. (Author)

  12. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  13. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  14. Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate

    Science.gov (United States)

    Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli

    2017-10-01

    Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.

  15. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  16. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these

  17. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

    Science.gov (United States)

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

    2014-05-21

    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    Science.gov (United States)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  19. Effect of Prussian blue on organic sulfur of coal in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. of Chemical Engineering

    2007-01-15

    This study is an attempt to desulfurize organic sulfur from coal samples with ferric hexacyanoferrate (II), Fe{sub 4} (Fe(CN){sub 6}), as the desulfurization agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the coal samples has been investigated. The temperature and stirring time are the most important parameters for the level of desulfurization of organic sulfur. Removal of organic sulfur content increased continuously with increasing temperature from 298 to 368 K. The organic sulfur removal rate sharply increases from 10 min to 30 min stirring time. After 30 min, it reaches a value of plateau. Particle size between -100 mesh and -200 mesh slightly affects the amount of organic sulfur removal. Gradual increase in the concentration of ferric hexacyanoferrate (II) raised the magnitude of desulfurization, but at higher concentration, the variation is not significant.

  20. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  1. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  2. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic.

    Science.gov (United States)

    Gleeson, D F; Williamson, C; Grasby, S E; Pappalardo, R T; Spear, J R; Templeton, A S

    2011-07-01

    Elemental sulfur (S(0) ) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H(2) S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by β-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and ε-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S(0) in opposing gradients of Na(2) S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S(0) alone when reintroduced to Na(2) S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars. © 2011

  3. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  4. Bacterial sulfur cycle shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field

    DEFF Research Database (Denmark)

    Schauer, Regina; Røy, Hans; Augustin, Nico

    2011-01-01

    RNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat......, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper...

  5. Standard values of fugacity for sulfur which are self-consistent with the low-pressure phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Robert A., E-mail: rob.marriott@ucalgary.ca [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada); Wan, Herman H. [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada)

    2011-08-15

    Highlights: > We have provided a method for calculating the fugacity for elemental sulfur. > Calculated sulfur fugacities can be used in sulfur equilibrium models. > The sulfur fugacities also can be used to locate the phase changes in the low-pressure phase diagram. > We have measured the 'natural' melting point of sulfur, and found it to be T = 388.5 {+-} 0.2 K. - Abstract: A method for calculating the fugacity of pure sulfur in the {alpha}-solid, {beta}-solid and liquid phase regions has been reported for application to industrial equilibrium conditions, e.g., high-pressure solubility of sulfur in sour gas. The fugacity calculations are self-consistent with the low-pressure phase diagram. As recently discussed by Ferreira and Lobo , empirical fitting of the experimental data does not yield consistent behaviour for the low-pressure phase diagram of elemental sulfur. In particular, there is a discrepancy between the vapour pressure of {beta}-solid (monoclinic) and liquid sulfur at the fusion temperature. We have provided an alternative semi-empirical approach which allows one to calculate values of the fugacity at conditions removed from the conditions of the pure sulfur phase transitions. For our approach, we have forced the liquid vapour pressure to equal the {beta}-solid vapour pressure at the {beta}-l-g triple point corresponding to the 'natural' fusion temperature for {beta}-solid. Many studies show a higher 'observed' fusion temperature for elemental sulfur. The non-reversible conditions for 'observed' fusion conditions for elemental sulfur result from a kinetically hindered melt which causes some thermodynamic measurements to be related to a metastable S{sub 8} liquid. We have measured the 'natural' fusion temperature, T{sub fus}{sup {beta}}(exp.)=(388.5{+-}0.2)K at p = 89.9 kPa, which is consistent with literature fusion data at higher-pressures. Using our semi-empirical approach, we have used or found the

  6. Release of sulfur- and oxygen-bound components from a sulfur-rich kerogen during simulated maturation by hydrous pyrolysis

    Science.gov (United States)

    Putschew, A.; Schaeffer-Reiss, C.; Schaeffer, P.; Koopmans, M.P.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.; Maxwell, J.R.

    1998-01-01

    An immature sulfur-rich marl from the Gessosso-solfifera Formation of the Vena del Gesso Basin (Messinian, Italy) has been subjected to hydrous pyrolysis (160 to 330??C) to simulate maturation under natural conditions. The kerogen of the unheated and heated samples was isolated and the hydrocarbons released by selective chemical degradation (Li/EtNH2 and HI/LiAIH4) were analysed to allow a study of the fate of sulfur- and oxygen-bound species with increasing temperature. The residues from the chemical treatments were also subjected to pyrolysis-GC to follow structural changes in the kerogens. In general, with increasing hydrous pyrolysis temperature, the amounts of sulfide- and ether-bound components in the kerogen decreased significantly. At the temperature at which the generation of expelled oil began (260??C), almost all of the bound components initially present in the unheated sample were released from the kerogen. Comparison with an earlier study of the extractable organic matter using a similar approach and the same samples provides molecular evidence that, with increasing maturation, solvent-soluble macromolecular material was initially released from the kerogen, notably as a result of thermal cleavage of weak Carbon-heteroatom bonds (sulfide, ester, ether) even at temperatures as low as 220??C. This solvent-soluble macromolecular material then underwent thermal cleavage to generate hydrocarbons at higher temperatures. This early generation of bitumen may explain the presence of unusually high amounts of extractable organic matter of macromolecular nature in very immature S-rich sediments.

  7. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Zhang, Wenjun; Wang, Lei; Hu, Yi; Zhu, Guoyin; Wang, Yanrong; Chen, Renpeng; Chen, Tao; Tie, Zuoxiu; Liu, Jie; Jin, Zhong

    2018-05-22

    The development of flexible lithium-sulfur (Li-S) batteries with high energy density and long cycling life are very appealing for the emerging flexible, portable, and wearable electronics. However, the progress on flexible Li-S batteries was limited by the poor flexibility and serious performance decay of existing sulfur composite cathodes. Herein, we report a freestanding and highly flexible sulfur host that can simultaneously meet the flexibility, stability, and capacity requirements of flexible Li-S batteries. The host consists of a crisscrossed network of carbon nanotubes reinforced CoS nanostraws (CNTs/CoS-NSs). The CNTs/CoS-NSs with large inner space and high conductivity enable high loading and efficient utilization of sulfur. The strong capillarity effect and chemisorption of CNTs/CoS-NSs to sulfur species were verified, which can efficiently suppress the shuttle effect and promote the redox kinetics of polysulfides. The sulfur-encapsulated CNTs/CoS-NSs (S@CNTs/CoS-NSs) cathode in Li-S batteries exhibits superior performance, including high discharge capacity, rate capability (1045 mAh g -1 at 0.5 C and 573 mAh g -1 at 5.0 C), and cycling stability. Intriguingly, the soft-packed Li-S batteries based on S@CNTs/CoS-NSs cathode show good flexibility and stability upon bending.

  8. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  9. Development of an Analytic Method for Sulfur Compounds in Aged Garlic Extract with the Use of a Postcolumn High Performance Liquid Chromatography Method with Sulfur-Specific Detection.

    Science.gov (United States)

    Matsutomo, Toshiaki; Kodera, Yukihiro

    2016-02-01

    Garlic and its processed preparations contain numerous sulfur compounds that are difficult to analyze in a single run using HPLC. The aim of this study was to develop a rapid and convenient sulfur-specific HPLC method to analyze sulfur compounds in aged garlic extract (AGE). We modified a conventional postcolumn HPLC method by employing a hexaiodoplatinate reagent. Identification and structural analysis of sulfur compounds were conducted by LC-mass spectrometry (LC-MS) and nuclear magnetic resonance. The production mechanisms of cis-S-1-propenylcysteine (cis-S1PC) and S-allylmercaptocysteine (SAMC) were examined by model reactions. Our method has the following advantages: less interference from nonsulfur compounds, high sensitivity, good correlation coefficients (r > 0.98), and high resolution that can separate >20 sulfur compounds, including several isomers, in garlic preparations in a single run. This method was adapted for LC-MS analysis. We identified cis-S1PC and γ-glutamyl-S-allyl-mercaptocysteine in AGE. The results of model reactions suggest that cis-S1PC is produced from trans-S1PC through an isomerization reaction and that SAMC is produced by a reaction involving S-allylcysteine/S1PC and diallyldisulfide during the aging period. We developed a rapid postcolumn HPLC method for both qualitative and quantitative analyses of sulfur compounds, and this method helped elucidate a potential mechanism of cis-S1PC and SAMC action in AGE. © 2016 American Society for Nutrition.

  10. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  11. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    Schmidt, Roland; Tsang, Albert; Cross, Joe; Summers, Clinton; Kornosky, Bob

    2008-01-01

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO 2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO 2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  12. Quantitative analysis of sulfur forms of coal and the pyrolysis behavior of sulfur compounds; Sekitanchu no io kagobutsu no keitaibetsu gan`yuryo no teiryo to sono netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Mae, K.; Miura, K.; Shimada, M. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-28

    As part of the studies on coal utilization basics, considerations were given on quantification of sulfur forms of coal and the pyrolysis behavior of sulfur compounds. With the temperature raising oxidation method, a thermo-balance was connected directly to a mass analyzer, and the coal temperature was raised at a rate of 5{degree}C per minute and gasified. Peak division was performed on SO2 and COS production to derive sulfur forms of coal. Using the slow-speed pyrolysis method, production rates of H2S, COS, SO2 and mercaptans were measured at a temperature raising rate of 20{degree}C per minute. Sulfur content in char was also measured. With the quick pyrolysis method, a Curie point pyrolyzer was connected directly to a gas chromatograph, by which secondary reaction is suppressed, and initial pyrolytic behavior can be tracked. All kinds of coals produce a considerable amount of SO2 in the slow-speed pyrolysis, but very little in the quick pyrolysis. Instead, H2S and mercaptans are produced. Sulfur compound producing mechanisms vary depending on the temperature raising rates. By using a parallel primary reaction model, analysis was made on reactions of H2S production based on different activation energies, such as those generated from pyrite decomposition and organic sulfur decomposition. The analytic result agreed also with that from the temperature raising oxidation method. 4 refs., 6 figs., 1 tab.

  13. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  14. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  15. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamics of a Novel Class of Polymers: Polymerized Sulfur

    Science.gov (United States)

    Masser, Kevin; Kim, Jenny; Oleshko, Vladimir; Griebel, Jared; Chung, Woo; Simmons, Adam; Pyun, Jeff; Soles, Christopher

    2013-03-01

    In this study we investigate the dynamics of a new type of polymer, consisting mainly of sulfur. Room-temperature stable polymerized sulfur samples were prepared by crosslinking the well-known living sulfur polymers formed at elevated temperatures by the addition of a crosslinking agent. This reverse vulcanization process was used to create a series of samples with different amounts of crosslinking agent. These polymers show great promise for use in advanced batteries as cathode materials. Each system exhibits a glassy-state beta relaxation, with the intensity of this relaxation proportional to the crosslinking content. A dynamic glass transition is also observed for each system, and the glass transition temperature/segmental relaxation moves to higher temperatures with increased crosslink content as is typically observed in crosslinked systems. As is typical of polymers, ion motion in these systems is closely coupled to the backbone motion of the host polymer. National Research Council Postdoctoral Fellowship

  17. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  18. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  19. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    Science.gov (United States)

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  20. The effect of the sulfur concentration on the phase transformation from the mixed CuO-Bi{sub 2}O{sub 3} system to Cu{sub 3}BiS{sub 3} during the sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijian; Jin, Xin; Yuan, Chenchen; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2016-12-15

    Highlights: • Cu{sub 3}BiS{sub 3} thin films were creatively fabricated by sulfurizing metal oxide precursor. • The phase transformation mechanism during the sulfurization process was studied. • The reason why the excess S restrained the formation of Cu{sub 3}BiS{sub 3} was discussed. • The effect of temperature on film morphology and bandgap was studied. - Abstract: The ternary semiconductor Cu{sub 3}BiS{sub 3}, as a promising light-absorber material for thin film solar cells, was creatively synthesized by sulfurizing the mixed metal oxides precursor film deposited by spin-coating chemical solution method. Two kinds of sulfurization techniques were introduced to study the effect of the sulfur concentration on the phase formation for the pure Cu{sub 3}BiS{sub 3}. It was found that Cu-poor S-rich phases such as Cu{sub 3}Bi{sub 3}S{sub 7} and Cu{sub 4}Bi{sub 4}S{sub 9} were easily generated at high S concentration and then can transform to Cu{sub 3}BiS{sub 3} phase by a simple desulphurization process, which means the sulfur concentration had a significant influence on the formation of Cu{sub 3}BiS{sub 3} during the sulfurization process. The probable transformation mechanism from the mixed metal oxides to the pure Cu{sub 3}BiS{sub 3} phase during the sulfurization process was studied in detail through the XRD analysis and thermodynamic calculation. In addition, the electrical properties were characterized by Hall measurement and the effects of sulfurization temperature on the phase transformation, morphology and optical band gap of the absorber layer were also studied in detail.

  1. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    Science.gov (United States)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  2. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2013-03-15

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed.

  3. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    International Nuclear Information System (INIS)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Park, Young-Kwon

    2013-01-01

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed

  4. Sulfur based electrode materials for secondary batteries

    Science.gov (United States)

    Hao, Yong

    Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes

  5. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  6. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  7. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  8. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  9. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    Science.gov (United States)

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  10. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  11. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    Science.gov (United States)

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  12. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  13. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    Science.gov (United States)

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  14. Self-assembled peptides for coating of active sulfur nanoparticles in lithium–sulfur battery

    International Nuclear Information System (INIS)

    Jewel, Yead; Yoo, Kisoo; Liu, Jin; Dutta, Prashanta

    2016-01-01

    Development of lithium–sulfur (Li–S) battery is hindered by poor cyclability due to the loss of sulfur, although Li–S battery can provide high energy density. Coating of sulfur nanoparticles can help maintain active sulfur in the cathode of Li–S battery, and hence increase the cyclability. Among myriad of coating materials, synthetic peptides are very attractive because of their spontaneous self-assembly as well as electrical conductive characteristics. In this study, we explored the use of various synthetic peptides as a coating material for sulfur nanoparticles. Atomistic simulations were carried out to identify optimal peptide structure and density for coating sulfur nanoparticles. Three different peptide models, poly-proline, poly(leucine–lysine) and poly-histidine, are selected for this study based on their peptide–peptide and peptide-sulfur interactions. Simulation results show that both poly-proline and poly(leucine–lysine) can form self-assembled coating on sulfur nanoparticles (2–20 nm) in pyrrolidinone, a commonly used solvent for cathode slurry. We also studied the structural integrity of these synthetic peptides in organic [dioxolane (DOL) and dimethoxyethane (DME)] electrolyte used in Li–S battery. Both peptides show stable structures in organic electrolyte (DOL/DME) used in Li–S battery. Furthermore, the dissolution of sulfur molecules in organic electrolyte is investigated in the absence and presence of these peptide coatings. It was found that only poly(leucine–lysine)-based peptide can most effectively suppress the sulfur loss in electrolyte, suggesting its potential applications in Li–S battery as a coating material.Graphical abstract

  15. Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Noelia; Caballero, Alvaro [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Morales, Julián, E-mail: iq1mopaj@uco.es [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Agostini, Marco [Department of Chemistry, SapienzaUniversity, P.zzale Aldo Moro 5, 00185, Rome (Italy); Hassoun, Jusef, E-mail: jusef.hassoun@unife.it [Università di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Fossato di Mortara 17, Ferrara (Italy)

    2016-09-01

    Three dimensional, flower-like hierarchical porous carbon (FPC) and its CO{sub 2}-activation (AFPC) are reported as sulfur-hosting matrixes in Li/S battery. The composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms as well as by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) in lithium-cell. Both samples show well defined micrometric morphology and a sulfur content as high as 66% expected to reflect into rather high practical energy density of the electrode in lithium-sulfur battery. The lithium sulfur cell using the FPC-S composite exhibits at 25 °C a moderate cycling stability with delivered capacity ranging from 1000 to about 610 mAh g{sup −1} upon 50 cycles at 100 mA g{sup −1}. The AFPC-S composite reveals increased cycling stability and delivers a capacity ranging from 1000 to 680 mAh g{sup −1}. Improved capacity is achieved by slightly increasing the temperature, as demonstrated by cycling the FPC-S at 35 °C using a current as high as 500 mA g{sup −1}. The excellent rate capability of the electrode is associated to the carbon texture and morphology that significantly lower the cell resistance, as indeed demonstrated by EIS measurement upon cycling. - Highlights: • Sulfur electrode basing on activated, flower-like hierarchical porous carbon is reported. • Defined micrometric morphology and a sulfur content as high as 66% are obtained. • Lithium sulfur cell using the composite exhibits remarkable performances. • A specific capacity of about 1000 mAh g{sup −1} is obtained at high current rate. • The resulting Li/S battery has relevant energy content.

  16. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  17. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  18. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  19. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  20. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  1. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    Science.gov (United States)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  2. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  3. Segregated Planktonic and Bottom-Dwelling Archaeal Communities in High-Temperature Acidic/Sulfuric Ponds of the Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ting-Wen Cheng

    2013-01-01

    Full Text Available Geothermal environments are characterized by dynamic redox and temperature fluctuations inherited from the exposure of deeply-sourced, hot, reducing fluids to low-temperature, oxidizing ambient environments. To investigate whether microbial assemblages shifted in response to the changes of a redox state within acidic hot ponds, we collected three paired water and sediment samples from the Tatun Volcano Group, assessed metabolic roles of community members, and correlated their functional capabilities with geochemical factors along depth. Molecular analyses revealed that Sulfolobus spp., Acidianus spp. and Vulcanisaeta spp. capable of respiring elemental sulfur under oxic and/or low-oxygen conditions were the major archaeal members in planktonic communities. In contrast, obligate anaerobic Caldisphaera spp. dominated over others in bottom-dwelling communities. Bacteria were only detected in one locality wherein the majority was affiliated with microaerophilic Hydrogenobaculum spp. Cluster analyses indicated that archaeal communities associated with sediments tended to cluster together and branch off those with water. In addition, the quantities of dissolved oxygen within the water column were substantially less than those in equilibrium with atmospheric oxygen, indicating a net oxygen consumption most likely catalyzed by microbial processes. These lines of evidence suggest that the segregation of planktonic from bottom-dwelling archaeal assemblages could be accounted for by the oxygen affinities inherited in individual archaeal members. Community assemblages in geothermal ecosystems would be often underrepresented without cautious sampling of both water and sediments.

  4. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lacey, Matthew J; Österlund, Viking; Bergfelt, Andreas; Jeschull, Fabian; Bowden, Tim; Brandell, Daniel

    2017-07-10

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm -2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. The Effect of Fuel Mass Fraction on the Combustion and Fluid Flow in a Sulfur Recovery Unit Thermal Reactor

    Directory of Open Access Journals (Sweden)

    Chun-Lang Yeh

    2016-11-01

    Full Text Available Sulfur recovery unit (SRU thermal reactors are negatively affected by high temperature operation. In this paper, the effect of the fuel mass fraction on the combustion and fluid flow in a SRU thermal reactor is investigated numerically. Practical operating conditions for a petrochemical corporation in Taiwan are used as the design conditions for the discussion. The simulation results show that the present design condition is a fuel-rich (or air-lean condition and gives acceptable sulfur recovery, hydrogen sulfide (H2S destruction, sulfur dioxide (SO2 emissions and thermal reactor temperature for an oxygen-normal operation. However, for an oxygen-rich operation, the local maximum temperature exceeds the suggested maximum service temperature, although the average temperature is acceptable. The high temperature region must be inspected very carefully during the annual maintenance period if there are oxygen-rich operations. If the fuel mass fraction to the zone ahead of the choke ring (zone 1 is 0.0625 or 0.125, the average temperature in the zone behind the choke ring (zone 2 is higher than the zone 1 average temperature, which can damage the downstream heat exchanger tubes. If the zone 1 fuel mass fraction is reduced to ensure a lower zone 1 temperature, the temperature in zone 2 and the heat exchanger section must be monitored closely and the zone 2 wall and heat exchanger tubes must be inspected very carefully during the annual maintenance period. To determine a suitable fuel mass fraction for operation, a detailed numerical simulation should be performed first to find the stoichiometric fuel mass fraction which produces the most complete combustion and the highest temperature. This stoichiometric fuel mass fraction should be avoided because the high temperature could damage the zone 1 corner or the choke ring. A higher fuel mass fraction (i.e., fuel-rich or air-lean condition is more suitable because it can avoid deteriorations of both zone 1

  7. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  8. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  9. Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries

    Science.gov (United States)

    Yan, Jianhua; Liu, Xingbo

    2016-01-01

    Rechargeable lithium–sulfur (Li–S) batteries are receiving ever‐increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S‐cathodes include low electrical conductivity of S and sulfides, precipitation of nonconductive Li2S2 and Li2S, and poly‐shuttle effects. To determine these degradation factors, a comprehensive study of sulfur cathodes with different amounts of electrolytes is presented here. A survey of the fundamentals of Li–S chemistry with respect to capacity fade is first conducted; then, the parameters obtained through electrochemical performance and characterization are used to determine the key causes of capacity fade in Li–S batteries. It is confirmed that the formation and accumulation of nonconductive Li2S2/Li2S films on sulfur cathode surfaces are the major parameters contributing to the rapid capacity fade of Li–S batteries. PMID:27981001

  10. Rubberlike Dynamics in Sulphur above the λ-Transition Temperature

    International Nuclear Information System (INIS)

    Monaco, G.; Crapanzano, L.; Crichton, W.; Mezouar, M.; Verbeni, R.; Bellissent, R.; Fioretto, D.; Scarponi, F.

    2005-01-01

    The high-frequency acoustic dynamics of sulfur across the liquid-liquid, λ transition has been studied using inelastic x-ray scattering. The combination of these high-frequency data with lower frequency, literature data indicates that liquid sulfur develops, in the high-temperature, polymeric solution phase, some characteristic features of a rubber. In particular, entanglement coupling among polymeric chains plays a relevant role in the dynamics of this liquid phase

  11. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    Science.gov (United States)

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  12. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  13. Development of viable solutions for the synthesis of sulfur bearing single crystals

    Science.gov (United States)

    Lin, Xiao; Bud'ko, Sergey L.; Canfield, Paul C.

    2012-07-01

    The discovery of high temperature superconductivity in FeAs and FeSe based compounds has once again focused the condensed matter community on the need to systematically explore compounds containing chalcogens and pnictogens. Whereas some solution growth techniques have been developed to handle P and As, and Sb and Bi are versatile solvents in their own right, S has remained a problematic element to incorporate into conventional solution growth. To a large extent its low boiling point, combined with its polymeric nature in a molten state have made S an uninviting solvent. In this paper we present our development of a range of binary sulfur bearing solutions (some even sulfur rich) and demonstrate how we have been able to use these as useful starting points for the growth of a wide range of transition metal-sulfur-X ternary compounds. We present growth details and basic characterization data for Ni3Bi2S2, Co3Sn2S2, Fe2GeS4, CoSSb, and CePd3S4. In addition we present a remarkably simple method for the growth of single crystalline Co with crystallization taking place below the Curie temperature.

  14. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  15. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60°C to 60°C, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  16. Study by neutron diffusion of local order liquid sulfur around the polymerization transition

    International Nuclear Information System (INIS)

    Descotes, L.

    1994-05-01

    We studied the liquid sulfur according to the temperature. The sulfur is one of the most complicated elementary liquid. We experimented the neutron diffusion by the powder orthorhombic sulfur. The complexity at the polymerization transition are only accompanied by weak local structural transfer. 231 refs., 48 figs., 8 tabs., 3 annexes

  17. Study on the surface sulfidization behavior of smithsonite at high temperature

    Science.gov (United States)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  18. Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  19. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    International Nuclear Information System (INIS)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans; Hernández, Mayra P.

    2014-01-01

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO 2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage

  20. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  1. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  2. Study on Self-discharge Behavior of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    Lithium-Sulfur (Li-S) batteries are a promising energy storage technology, which draws interest due to their high theoretical limits in terms of specific capacity, specific energy and energy density. However as a drawback, they suffer from a high self-discharge rate, which is mainly caused...... by ongoing polysulfide shuttle. In this paper, the self-discharge behavior of Li-S batteries is experimentally investigated, considering various conditions as depth-of-discharge, temperature and idling time. The self-discharge rate under different conditions is identified and quantified. Moreover...

  3. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian

    2014-03-21

    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  5. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  7. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Science.gov (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  8. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  9. A highly efficient polysulfide mediator for lithium-sulfur batteries

    Science.gov (United States)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  10. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    Science.gov (United States)

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at

  11. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  12. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renjie, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Zhao, Teng [Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tian, Tian; Fairen-Jimenez, David [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Cao, Shuai; Coxon, Paul R.; Xi, Kai, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  13. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  14. Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Qu, Yaohui; Zhou, Chengkun; Wang, Xiwen; Li, Jie

    2014-01-01

    Highlights: • Metal organic framework @ reduced graphene oxide was applied for sulfur cathode. • MIL-101(Cr)@rGO/S composites are synthesized by a facile two-step liquid method. • Cycling stability of MIL-101(Cr)@rGO/S sulfur cathode was improved. -- Abstract: Mesoporous metal organic framework @ reduced graphene oxide (MIL-101(Cr)@rGO) materials have been used as a host material to prepare the multi-composite sulfur cathode through a facile and effective two-step liquid phase method successfully, which is different from the simple MIL-101(Cr)/S mixed preparation method. The successful reduced graphene oxide coating in the MIL-101(Cr)@rGO improve the electronic conductivity of meso-MOFs effectively. The discharge capacity and capacity retention rate of MIL-101(Cr)@rGO/S composite sulfur cathode are as high as 650 mAh g −1 and 66.6% at the 50th cycle at the current density of 335 mA g −1 . While the discharge capacity and capacity retention rate of MIL-101(Cr)/S mixed sulfur cathode is 458 mAh g −1 and 37.3%. Test results indicate that the MIL-101(Cr)@rGO is a promising host material for the sulfur cathode in the lithium–sulfur battery applications

  15. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

    Science.gov (United States)

    Kargel, J.S.; Delmelle, P.; Nash, D.B.

    1999-01-01

    The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found

  16. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  17. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  18. Global warming potential of the sulfur-iodine process using life cycle assessment methodology

    International Nuclear Information System (INIS)

    Lattin, William C.; Utgikar, Vivek P.

    2009-01-01

    A life cycle assessment (LCA) of one proposed method of hydrogen production - thermochemical water-splitting using the sulfur-iodine cycle couple with a very high-temperature nuclear reactor - is presented in this paper. Thermochemical water-splitting theoretically offers a higher overall efficiency than high-temperature electrolysis of water because heat from the nuclear reactor is provided directly to the hydrogen generation process, instead of using the intermediate step of generating electricity. The primary heat source for the S-I cycle is an advanced nuclear reactor operating at temperatures corresponding to those required by the sulfur-iodine process. This LCA examines the environmental impact of the combined advanced nuclear and hydrogen generation plants and focuses on quantifying the emissions of carbon dioxide per kilogram of hydrogen produced. The results are presented in terms of global warming potential (GWP). The GWP of the system is 2500 g carbon dioxide-equivalent (CO 2 -eq) per kilogram of hydrogen produced. The GWP of this process is approximately one-sixth of that for hydrogen production by steam reforming of natural gas, and is comparable to producing hydrogen from wind- or hydro-electric conventional electrolysis. (author)

  19. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.

    Science.gov (United States)

    Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    OpenAIRE

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most...

  1. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  2. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  3. A dynamic study on the sulfuric acid distillation column for VHTR-assisted hydrogen production systems

    International Nuclear Information System (INIS)

    Youngjoon, Shin; Heesung, Shin; Jiwoon, Jang; Kiyoung, Lee; Jonghwa, Chang

    2007-01-01

    The sulfur-iodine (SI) cycle and the Westinghouse sulfur hybrid cycle coupled to a very high temperature gas-cooled reactor (VHTR) are well known as a feasible technology to produce hydrogen. The concentration of the sulfuric acid solution and its decomposition are essential parts in both cycles. In this paper, the thermophysical properties which are the boiling point, latent heat, and the partial pressures of water, sulfuric acid, and sulfur trioxide have been correlated as a function of the sulfuric acid concentration for the H 2 SO 4 and H 2 O binary chemical system, based on the data in Perry's chemical engineers' hand-book and other experimental data. By using these thermophysical correlations, a dynamic analysis of a sulfuric acid distillation column has been performed to establish the column design requirements and its optimum operation condition. From the results of the dynamic analysis, an optimized column system is anticipated for a distillation column equipped with 2 ideal plates and a second plate feeding system from the bottom plate. The effects of the hold-up of the re-boiler and the reflux ratio from the top product stream on the elapsing time when the system progresses toward a steady state have been analyzed. (authors)

  4. Desulfurization of organic sulfur from lignite by an electron transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. for Chemical Engineering

    2006-10-15

    This study is an attempt to desulfurize organic sulfur from lignite samples with ferrocyanide ion as the electron transferring agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the lignite samples has been investigated. The desulfurization process has been found to be continuous and gradually increases with increase of temperature from 298 to 368 K. The particle size has no significant impact on sulfur removal from the lignite samples. Particle size has no profound impact on the amount of sulfur removal. The desulfurization reaction has been found to be dependent on the concentration of potassium ferrocyanide. Gradual increase in the concentration of potassium ferrocyanide raised the magnitude of desulfurization, but at a higher concentration, the variation is not significant.

  5. Nitrogen-doped graphene nanosheets/sulfur composite as lithium–sulfur batteries cathode

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yong [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Li, Xifei; Sun, Xueliang [Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Chunlei, E-mail: wangc@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States)

    2016-11-15

    Highlights: • NGNSs are synthesized with amino-N and pyridine-N-oxide groups. • NGNSs provide a matrix with high surface area and conductivity. • N groups facilitate immobilization of polysulfides for Li–S batteries. - Abstract: Lithium–sulfur batteries have been receiving unprecedented attentions in recent years due to their exceptional high theoretical capacity and energy density, low cost and environmental friendliness. Yet their practical applications are still hindered by short cycle life, low efficiency and poor conductivity which are mainly caused by the insulating nature of sulfur and dissolution of polysulfides. Here, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs was employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g{sup −1} and a reversible capacity of 319.3 mAh g{sup −1} at 0.1 C with good recoverable rate capability.

  6. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  7. Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview

    International Nuclear Information System (INIS)

    Vitart, X.; Le Duigou, A.; Carles, P.

    2006-01-01

    The sulfur-iodine thermo-chemical cycle is considered to be one of the most promising routes for massive hydrogen production, using high temperature heat from a Generation IV VHTR. We propose here a brief overview of the main questions raised by this cycle, along with the general lines of French CEA's program

  8. Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs

    Science.gov (United States)

    Mahjoub, Ahmed; Poston, Michael J.; Blacksberg, Jordana; Eiler, John M.; Brown, Michael E.; Ehlmann, Bethany L.; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert; Choukroun, Mathieu

    2017-09-01

    In this paper, we investigate sulfur chemistry in laboratory analogs of Jupiter Trojans and Kuiper Belt Objects (KBOs). Electron irradiation experiments of CH3OH-NH3-H2O and H2S-CH3OH-NH3-H2O ices were conducted to better understand the chemical differences between primordial planetesimals inside and outside the sublimation line of H2S. The main goal of this work is to test the chemical plausibility of the hypothesis correlating the color bimodality in Jupiter Trojans with sulfur chemistry in the incipient solar system. Temperature programmed desorption (TPD) of the irradiated mixtures allows the detection of small sulfur allotropes (S3 and S4) after the irradiation of H2S containing ice mixtures. These small, red polymers are metastable and could polymerize further under thermal processing and irradiation, producing larger sulfur polymers (mainly S8) that are spectroscopically neutral at wavelengths above 500 nm. This transformation may affect the spectral reflectance of Jupiter Trojans in a different way compared to KBOs, thereby providing a useful framework for possibly differentiating and determining the formation and history of small bodies. Along with allotropes, we report the production of organo-sulfur molecules. Sulfur molecules produced in our experiment have been recently detected by Rosetta in the coma of 67P/Churyumov-Gerasimenko. The very weak absorption of sulfur polymers in the infrared range hampers their identification on Trojans and KBOs, but these allotropes strongly absorb light at UV and Visible wavelengths. This suggests that high signal-to-noise ratio UV-Vis spectra of these objects could provide new constraints on their presence.

  9. Effects of mineral matter on products and sulfur distributions in hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1999-05-01

    The effects of the mineral matter on the product yield and sulfur distribution in hydropyrolysis and pyrolysis of Chinese Hongmiao lignite were investigated using a fixed-bed reactor. The volatile sulfur-containing gases (H{sub 2}S, COS, CH{sub 3}SH) were also analyzed as a function of pyrolysis temperature. Coal samples were treated with HCl/HF or HCl/HF and CrCl{sub 2} solution to eliminate minerals and pyrite respectively. In hydropyrolysis, demineralized Hongmiao lignite showed lower yields of tar and water than the raw coal. Demineralization cannot only minimize the fixation effect of basic mineral matter on sulfur-containing gases, but also increase the sulfur distribution of the tar. Further, from the evolution profiles of sulfur-containing gases, it is possible to elucidate the contribution of minerals, pyrite and organic sulfur to the sulfur evolution. Pyrite may not be the only source of COS formation. 32 refs., 14 figs., 3 tabs.

  10. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  11. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  12. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.

    Science.gov (United States)

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W

    2018-02-28

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  13. Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln.

    Science.gov (United States)

    Huang, Yuyan; Li, Haoxin; Jiang, Zhengwu; Yang, Xiaojie; Chen, Qing

    2018-05-07

    microstructures left by the gas release are also observed in the mixtures sintered at 1450 °C, however sulfate still exists even at 1450 °C. The BSE and EDS results show that the melt phase is the important contribution to the appearance of sulfate at the high temperature. These results will sever as a theoretically reference for the pollution control of the sulfur related pollutants in the disposal process of the municipal sewage sludge in cement kiln. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A XANES and Raman investigation of sulfur speciation and structural order in Murchison and Allende meteorites

    Science.gov (United States)

    Bose, M.; Root, R. A.; Pizzarello, S.

    2017-03-01

    Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K-edge XANES (X-ray absorption near edge structure) and μ-Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur-functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S-2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro-Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro-Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ-Raman D band parameters. The

  15. Sulfur-Kβ /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Phillips, D.R.; Andermann, G.G.; Fujiwara, F.

    1986-01-01

    Sulfur-K/β /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/β /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  16. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  17. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  18. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  19. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris

  20. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  1. Fixation à haute et moyenne température de l'hydrogène sulfuré par des masses de captation régénérables Hydrogen-Sulfide Fixation At High and Medium Temperature by Regenerable Capture Masses

    Directory of Open Access Journals (Sweden)

    Hotier G.

    2006-11-01

    Full Text Available L'intérêt de la désulfuration haute température comparée à la même opération conduite à basse température est renforcé quand la désulfuration a lieu entre deux opérations de niveau thermique élevé comme la gazéification du charbon et la production d'électricité par cycles combinés turbine à gaz-turbine à vapeur. Les masses absorbantes à base d'oxyde de fer peuvent réaliser une bonne désulfuration mais résistent mal aux chocs thermiques. Un agent de régénération particulièrement efficace est le dioxyde de soufre qui peut réoxyder le sulfure de fer par une réaction légèrement endothermique. Un des principaux avantages de cette réaction est la production directe de soufre élémentaire. Ses désavantages sont une faible conversion par passe et la sulfatation de l'oxyde de calcium (une des nombreuses impuretés des boues rouges qui composent la masse. Lorsque l'on emploie de la vapeur pour diluer le SO2 deux autres réactions ont lieu. La production de soufre est augmentée et la sulfatation disparaît. Les productions principales du procédé sont du soufre élémentaire et de la vapeur haute pression. On rencontre deux zones de réactions (l'une de captation, l'autre de régénération séparées par un tampon de gaz inerte et une circulation de la masse. Aucune autre unité de traitement de soufre n'est requise sur le site. Une évaluation économique préliminaire montre que ce procédé est compétitif lorsqu'on le compare à un lavage des gaz par solvant, à froid. The interest of a high temperature unit compared to a low temperature one is enhanced when desulphurization takes place between two hotoperations like coal gasification and power generation by combined cycles. Iron oxide based sorbents such as redmuds can achieve good desulphurization but cannot withstand high temperature gradients. An efficient regenerating agent is sulphur dioxide. SO2 can regenerate iron sulphide with a slightly endothermic

  2. Surface reaction modification: The effect of structured overlayers of sulfur on the kinetics and mechanism of the decomposition of formic acid on Pt(111)

    Science.gov (United States)

    Abbas, N.; Madix, R. J.

    The reaction of formic acid (DCOOH) on Pt(111), Pt(111)-(2×2)S and Pt(111)-(√3×√3)R30°S surfaces was examined by temperature programmed reaction spectroscopy. On the clean surface formic acid decomposed to yield primarily carbon dioxide and the hydrogenic species (H 2, HD and D 2) at low coverages. Although the formation of water and carbon monoxide via a dehydration reaction was observed at these coverages, the yield of these products was small when compared to the other products of reaction. The evolution of CO 2 at low temperature was ascribed to the decomposition of the formate intermediate. In the presence of sulfur the amount of molecularly adsorbed formic acid decreased up to a factor of three on the (√3×√3)R30°S surface, and a decline in the reactivity of over an order of magnitude was also observed. The only products formed were the hydrogenic species and carbon dioxide. The absence of carbon monoxide indicated that the dehydration pathway was blocked by sulfur. In addition to the low temperature CO 2 peak a high temperature CO 2-producing path was also evident. It was inferred from both the stoichiometry and the coincident evolution of D 2 and CO 2 in the high temperature states that these products also evolved due to the decomposition of the formate intermediate. On increasing the sulfur coverage to one-third monolayer this intermediate was further stabilized, and a predominance of the decomposition via the high temperature path was observed. Stability of the formate intermediate was attributed to inhibition of the decomposition reaction by sulfur atoms. The activation energy for formate decomposition increased from 15 kcal/gmole on the clean surface to 24.3 kcal/gmol on the (√3×√3)R30°S overlayer.

  3. Epitaxial growth of ReS2(001) thin film via deposited-Re sulfurization

    Science.gov (United States)

    Urakami, Noriyuki; Okuda, Tetsuya; Hashimoto, Yoshio

    2018-02-01

    In this paper, we present the formation of large-size rhenium disulfide (ReS2) films via the sulfurization of Re films deposited on sapphire substrates. The effects of sulfurization temperature and pressure on the crystal quality were investigated. A [001]-oriented single crystal of ReS2 films with 6 × 10 mm2 area was realized. By sulfurizing Re films at 1100 °C, ReS2 films with well-defined sharp interfaces to c-plane sapphire substrates could be formed. Below and above the sulfurization temperature of 1100 °C, incomplete sulfurization and film degradation were observed. The twofold symmetry of the monocrystalline in-plane structure composed of Re-Re bonds along with Re-S bonds pointed to a distorted 1T structure, indicating that this structure is the most stable atomic arrangement for ReS2. For a S/Re compositional ratio equal to or slightly lower than 2.0, characteristic Raman vibrational modes with the narrowest line widths were observed. The typical absorption peak of ReS2 can be detected at 1.5 eV.

  4. Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Ahmed; Poston, Michael J.; Blacksberg, Jordana; Ehlmann, Bethany L.; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert; Choukroun, Mathieu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eiler, John M.; Brown, Michael E., E-mail: Mahjoub.Ahmed@jpl.nasa.gov [California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States)

    2017-09-10

    In this paper, we investigate sulfur chemistry in laboratory analogs of Jupiter Trojans and Kuiper Belt Objects (KBOs). Electron irradiation experiments of CH{sub 3}OH–NH{sub 3}–H{sub 2}O and H{sub 2}S–CH{sub 3}OH–NH{sub 3}–H{sub 2}O ices were conducted to better understand the chemical differences between primordial planetesimals inside and outside the sublimation line of H{sub 2}S. The main goal of this work is to test the chemical plausibility of the hypothesis correlating the color bimodality in Jupiter Trojans with sulfur chemistry in the incipient solar system. Temperature programmed desorption (TPD) of the irradiated mixtures allows the detection of small sulfur allotropes (S{sub 3} and S{sub 4}) after the irradiation of H{sub 2}S containing ice mixtures. These small, red polymers are metastable and could polymerize further under thermal processing and irradiation, producing larger sulfur polymers (mainly S{sub 8}) that are spectroscopically neutral at wavelengths above 500 nm. This transformation may affect the spectral reflectance of Jupiter Trojans in a different way compared to KBOs, thereby providing a useful framework for possibly differentiating and determining the formation and history of small bodies. Along with allotropes, we report the production of organo-sulfur molecules. Sulfur molecules produced in our experiment have been recently detected by Rosetta in the coma of 67P/Churyumov–Gerasimenko. The very weak absorption of sulfur polymers in the infrared range hampers their identification on Trojans and KBOs, but these allotropes strongly absorb light at UV and Visible wavelengths. This suggests that high signal-to-noise ratio UV–Vis spectra of these objects could provide new constraints on their presence.

  5. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  6. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  7. Investigations of the high-temperature corrosion of cobalt and cobalt alloys using radioactive isotopes

    International Nuclear Information System (INIS)

    Winterhager, H.; Krug, H.P.; Widmayer, H.

    1977-01-01

    High-temperature oxidation tests with Co, Co-Fe and Co-Fe-Cr alloys have been made by means of the S 35 method and by measuring the thickness of the oxidation coating. In any case, several different coatings formed by oxidation were found and described generally. The compact surface consists of sulfides of the pentlandite-type; indirection to the metal sore there follow several heterogeneous layers. The measured activity-distribution excludes any lattice-diffusion sulfur defects in the scale-coating enable the oxidation to permeate to the metal core. (orig./IHOE) [de

  8. Initial fate of fine ash and sulfur from large volcanic eruptions

    Directory of Open Access Journals (Sweden)

    S. Self

    2009-11-01

    Full Text Available Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  9. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  10. Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries.

    Science.gov (United States)

    Hoffmann, Claudia; Thieme, Sören; Brückner, Jan; Oschatz, Martin; Biemelt, Tim; Mondin, Giovanni; Althues, Holger; Kaskel, Stefan

    2014-12-23

    Silica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1). Morphology replication allows these nanopores to be arranged in a nanostructured inverse opal-like structure. Specific surface areas are very high (2450 m2 g(-1)) due to the simultaneous presence of micropores. Testing DUT-86 samples as cathode materials in Li-S batteries reveals excellent performance, and tailoring of the pore size allows optimization of cell performance, especially the active center accessibility and sulfur utilization. The outstanding pore volumes allow sulfur loadings of 80 wt %, a value seldom achieved in composite cathodes, and initial capacities of 1165 mAh gsulfur(-1) are reached. After 100 cycle capacities of 860 mAh gsulfur(-1) are retained, rendering DUT-86 a high-performance sulfur host material.

  11. AOI [3] High-Temperature Nano-Derived Micro-H2 and - H2S Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sabolsky, Edward M. [West Virginia Univ., Morgantown, WV (United States)

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO2) and hydrogen sulfide (H2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring of H2, H2S and SO22 levels during coal gasification is strongly desired. The selective detection of SO2/H2S in the presence of H2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H2 and -H2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H2, SO2, and H2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). Nex

  12. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  13. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  14. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  15. Evaluation of the security of a hydrogen producing plant by means of the S I cycle coupled to a nuclear reactor of high temperature

    International Nuclear Information System (INIS)

    Ruiz S, T.; Francois, J. L.; Nelson, P. F.; Cruz G, M. J.

    2011-11-01

    At the present one of the processes that demonstrates, theoretically, to be one of the most efficient for the hydrogen production is the thermal-chemistry cycle Sulfur-Iodine. One way of obtaining the temperature ranges required by the process is through the helium coming from a very high temperature reactor. The coupling of the chemical plant with the nuclear plant presents aspects of security that should be analyzed; among them the analysis of the danger of the process materials is, with the purpose of implementing security measures to protect the facilities and equipment s, the environment and the population. These measures can be: emergency answer plans of the stations, definition of the minimum distance required among facilities, determination of the exclusion area, etc. In this study simulations were made with the computer code Phast in order to knowing the possible affectation areas due to the liberation of a great quantity of energy due to a helium leak to very high temperature, of toxic materials or by a possible hydrogen combustion. The results for the liberations of sulfuric acid, hydrogen, iodine, helium and sulfur dioxide are shown, specially. The operation conditions were taken of a combination of the preliminary design proposed by General Atomics and the optimized conditions by the Korea Advanced Institute of Science and Technology, considering a production of 1 kg-mol/s of hydrogen. The iodine was the material that presented a major affectation area. (Author)

  16. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  17. Carbon/Sulfur Composite Cathodes for Flexible Lithium/Sulfur Batteries: Status and Prospects

    International Nuclear Information System (INIS)

    Zhao, Yan; Zhang, Yongguang; Bakenova, Zagipa; Bakenov, Zhumabay

    2015-01-01

    High specific energy and low cost flexible lithium/sulfur batteries have attracted significant attention as a promising power source to enable future flexible and wearable electronic devices. Here, we review recent progress in the development of free-standing sulfur composite cathodes, with special emphasis on electrode material selectivity and battery structural design. The mini-review is organized based on the dimensionality of different scaffold materials, namely one-dimensional carbon nanotube (CNT), two-dimensional graphene, and three-dimensional CNT/graphene composite, respectively. Finally, the opportunities and perspectives of the future research directions are discussed.

  18. 3.6. The kinetics of sulfuric acid decomposition of calcined concentrate of borosilicate ore

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of sulfuric acid decomposition of calcined concentrate of borosilicate ore. The experimental data of kinetics of extraction of boron oxide from danburite at sulfuric acid decomposition were obtained at 20-90 deg C temperature range and process duration 15-90 minutes. The flowsheet of obtaining of boric acid from borosilicate ores of Ak-Arkhar Deposit by sulfuric acid method was proposed.

  19. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    Science.gov (United States)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  20. Decomposition of silica-alumina ores of Afghanistan by sulfuric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2016-01-01

    Present article is devoted to decomposition of silica-alumina ores of Afghanistan by sulfuric acid. Physicochemical properties of initial silica-alumina ores were studied by means of X-ray phase, differential thermal and silicate analysis. The influence of temperature, process duration and acid concentration on extraction rate of valuable components was considered. The optimal conditions of decomposition of silica-alumina ores of Afghanistan by sulfuric acid were proposed.

  1. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition; Uso de analisis probabilistico de seguridad para el diseno de sistemas de mitigacion de emergencia en planta productora de hidrogeno con tecnologia azufre-iodo, Seccion II: descomposicion de acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L. [Facultad de Ingenieria, Departamento de Sistemas Energeticos, UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)], e-mail: iqalexmdz@yahoo.com.mx

    2009-10-15

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  2. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  3. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2002-10-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. The PFS product was used in pilot-scale tests at a municipal water treatment facility and gave good results in removal of turbidity and superior results in removal of disinfection byproduct precursors (TOC, DOC, UV-254) when compared with equal doses of ferric chloride.

  4. Toward High-Performance Lithium-Sulfur Batteries: Upcycling of LDPE Plastic into Sulfonated Carbon Scaffold via Microwave-Promoted Sulfonation.

    Science.gov (United States)

    Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G

    2018-05-02

    Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.

  5. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    Directory of Open Access Journals (Sweden)

    Harle Arti

    2008-01-01

    Full Text Available AbstractSulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD, transmission electron microscope (TEM, energy dispersive spectroscopy (EDS, diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm and narrow particle size distribution (in range of 5–15 nm as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%. Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi than that of colloidal sulfur.

  6. Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles

    Directory of Open Access Journals (Sweden)

    E. P. Shevko

    2018-01-01

    Full Text Available Native sulfur deposits on fumarolic fields at Ebeko volcano (Northern Kuriles, Russia are enriched in chalcophile elements (As-Sb-Se-Te-Hg-Cu and contain rare heavy metal sulfides (Ag2S, HgS, and CuS, native metal alloys (Au2Pd, and some other low-solubility minerals (CaWO4, BaSO4. Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. The comparison of elemental abundances in sulfur and unaltered rocks (andesite demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te, halogens (Br and I, and Hg are likely transported as volatile species, even at temperatures slightly above 100°C. The presence of rare sulfides (Ag2S, CuS, and HgS together with abundant FeS2 in low-temperature fumarolic environments can be explained by the hydrochloric leaching of rock particles followed by the precipitation of low-solubility sulfides induced by the reaction of acid solutions with H2S at ambient temperatures. The elemental composition of native sulfur can be used to qualitatively estimate elemental abundances in low-temperature fumarolic gases.

  7. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  8. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  9. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  10. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    Science.gov (United States)

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  11. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  12. Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Changtao; Li, Shuyuan [China Univ. of Petroleum, Beijing (China); Song, He [Research Institute of Petroleum Engineering of CNPC, Tianjin (China)

    2014-07-15

    Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and MgSO{sub 4} at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, S{sub 1}, N{sub 1}S{sub 1}, O{sub 1}S{sub 1} and O{sub 2}S{sub 1}, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the S{sub 1} class species was dominant. The most abundant S{sub 1} class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without MgSO{sub 4}. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and MgSO{sub 4} are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

  13. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  14. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  15. Novel separation process of gaseous mixture of SO2 and O2 with ionic liquid for hydrogen production in thermochemical sulfur-iodine water splitting cycle

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Gong, Gyeong Taek; Yoo, Kye Sang; Kim, Honggon; Lee, Byoung Gwon; Ahn, Byoung Sung; Jung, Kwang Deog; Lee, Ki Yong; Song, Kwang Ho

    2007-01-01

    Sulfur-Iodine cycle is the most promising thermochemical cycle for water splitting to produce hydrogen which can replace the fossil fuels in the future. As a sub-cycle in the thermochemical Sulfur-Iodine water splitting cycle, sulfuric acid (H 2 SO 4 ) decomposes into oxygen (O 2 ) and sulfur dioxide (SO 2 ) which should be separated for the recycle of SO 2 into the sulfuric acid generation reaction (Bunsen Reaction). In this study, absorption and desorption process of SO 2 by ionic liquid which is useful for the recycle of SO 2 into sulfuric acid generation reaction after sulfuric acid decomposition in the thermochemical Sulfur-Iodine cycle is investigated. At first, the operability as an absorbent for the SO 2 absorption and desorption at high temperature without the volatilization of absorbents which is not suitable for the recycle of absorbent-free SO 2 after the absorption process. The temperature range of operability is determined by TGA and DTA analysis. Most of ionic liquids investigated are applicable at high temperature desorption without volatility around 300 deg. C except [BMIm] Cl, and [BMIm] OAc which show the decomposition of ionic liquids. To evaluate the capability of SO 2 absorption, each ionic liquid is located in the absorption tube and gaseous SO 2 is bubbled into the ionic liquid. During the bubbling, the weight of the system is measured and converted into the absorbed SO 2 amount at each temperature controlled by the heater. Saturated amounts of absorbed SO 2 by ionic liquids at 50 deg. C are presented. The effect of anions for the SO 2 absorption capability is shown in the order of Cl, OAc, MeSO 3 , BF 4 , MeSO 4 , PF 6 , and HSO 4 when they are combined with [BMIm] cation. [BMIm]Cl has the largest amount of SO 2 absorbed which can be the most promising absorbent; however, from the point of operability at high temperature which includes desorption process, [BMIm]Cl is vulnerable to high temperature around 250 deg. C based on the TGA

  16. The impact of freeze-thawing on the friability of formed elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Almond, P.

    1995-10-01

    Winter weather fluctuation tests were performed in a laboratory to determine the freeze-thaw effect on the particle size distribution and friability of sulfur samples of Polish Air Prills, Procor GX Granules, Petrosul, Sandvik Rotoform, and slate. Formed elemental sulfur is often stored outdoors and is subjected to temperature fluctuations which could potentially result in structural stress, particularly if the sulfur contained any moisture from rainwater or melting snow. Concern was expressed that sulfur stored under these conditions might have increased friability during shipping and handling. Results of stress level tests indicated that winter weather fluctuations did not effect the particle size distribution or friability of the samples. When sulfur samples were in contact with water for one month, there were was no significant change in overall friability. It was concluded that all premium product forms of solid elemental sulfur could be stored outdoors, even if subjected to freeze-thaw cycles. 4 tabs., 5 figs.

  17. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  18. Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates.

    Science.gov (United States)

    Ruiz-Guerrero, Rosario; Vendeuvre, Colombe; Thiébaut, Didier; Bertoncini, Fabrice; Espinat, Didier

    2006-10-01

    The monitoring of total sulfur content and speciation of individual sulfur-containing compounds in middle distillates is required for efficient catalyst selection and for a better understanding of the kinetics of the reactions involved in hydrotreament processes. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GCxGC) hyphenated to sulfur chemiluminescence detection (SCD) has recently evolved as a powerful tool for improving characterization and identification of sulfur compounds. The aim of this paper is to compare quantitatively GCxGC-SCD and various other methods commonly employed in the petroleum industry, such as X-ray fluorescence, conventional GC-SCD, and high-resolution mass spectrometry, for total sulfur content determination and speciation analysis. Different samples of middle distillates have been analyzed to demonstrate the high potential and important advantages of GCxGC-SCD for innovative and quantitative analysis of sulfur-containing compounds. More accurate and detailed results for benzothiophenes and dibenzothiophenes are presented, showing that GCxGC-SCD should become, in the future, an essential tool for sulfur speciation analysis.

  19. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  20. Experimental study for the use of sulfur hexafluoride as dielectric gas in particle accelerators

    International Nuclear Information System (INIS)

    Candanedo y Bernabe, C.

    1993-01-01

    The sulfur hexafluoride is the better dielectric gas in the world. It is used in particle accelerator, power stations and high voltage transformators. This is a high stable gas, but when is used as dielectric is degraded in toxic and corrosive fluorides this degradation of sulfur hexafluoride is a function of the voltaic arc, crown effect, pressure, temperature and radiation. The purification of the sulfur fluoride permitted to work in safe form and without the risks as contaminant. The objective of the work is the development of a process for the separation of the wastes from the fabrication of sulphur fluoride and the products of degradation. This process used adsorbents when this gas is used as dielectric. The methodology employed was bibliography research, experimental design of the equipment, construction of the experimental equipment, selection and use of adsorbents, installation of the adsorption columns for the experimentation, flow of the sulfur hexafluoride through the adsorbents, searching of the fluoride hexafluoride before and after of the step through the adsorption columns and writing of the results. In base to the results we conclude that the process is good. The work could be advantage using chromatographic techniques with adequate standards. Is possible to extend the study using an additional number of adsorbents. (Author). 34 refs, 7 graphs, 3 tabs

  1. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  2. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  4. Modeling the condensation of sulfuric acid and water on the cylinder liner of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov; Mayer, Stefan; Eskildsen, Svend S.

    2018-01-01

    Corrosive wear of cylinder liners in large two-stroke marine diesel engines that burn heavy fuel oil containing sulfur is coupled to the formation of gaseous sulfur trioxide (SO3) and subsequent combined condensation of sulfuric acid (H2SO4) and water (H2O) vapor. The present work seeks to address...... vapor liquid equilibrium. By assuming homogenous cylinder gas mixtures condensation is modeled using a convective heat and mass transfer analogy combined with realistic liner temperature profiles. Condensation of water is significantly altered by the liner temperature and charge air humidity while...... how fuel sulfur content, charge air humidity and liner temperature variations affects the deposition of water and sulfuric acid at low load operation. A phenomenological engine model is applied to simulate the formation of cylinder/bulk gas combustion products and dew points comply with H2O–H2SO4...

  5. The production of sulfur targets for gamma-ray spectroscopy

    CERN Document Server

    Greene, J P

    2002-01-01

    The production of thin sulfur targets for nuclear physics, either in elemental or in compound form, is problematic, due to low melting points, high vapor pressures and high dissociation rates. Many sulfur compounds have been tried in the past without great success. In this paper, we report the use of spray coating molybdenum disulfide onto a thin carbon backing. The targets were of thickness 750 mu g/cm sup 2 (approx 300 mu g/cm sup 2 of sulfur) on 15 mu g/cm sup 2 carbon backings, and withstood 4 pnA (approx 10 mW/cm sup 2) of deposited beam power for several days without apparent loss of sulfur content.

  6. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  7. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  8. Sub-aqueous sulfur volcanos at Waiotapu, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, S.; Rickard, D. [University of Wales, Cardiff (United Kingdom). Dept. of Earth Sciences; Browne, P.; Simmons, S. [University of Auckland (New Zealand). Geothermal Institute and Geology Dept.; Jull, T. [University of Arizona, Tucson (United States). AMS Facility

    1999-12-01

    Exhumed, sub-aqueous sulfur mounds occur in the Waiotapu geothermal area, New Zealand. The extinct mounds are < 2 m high and composed of small (< 0.5 cm) hollow spheres, and occasional teardrop-shaped globules. They are located within a drained valley that until recently was connected to Lake Whangioterangi. They were formed a maximum of 820 {+-} 80 years BP as a result of the rapid sub-aqueous deposition of sulfur globules, formed when fumarolic gases discharged through molten sulfur pools. Similar globules are now being formed by the discharge of fumarolic gases through a sub-aqueous molten sulfur pool in Lake Whangioterangi. (author)

  9. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  10. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  11. Influence of sulfur on the passivity of inconel 600 in aqueous environment at 3000C. Relationship with stress corrosion

    International Nuclear Information System (INIS)

    Vancon, D.

    1989-11-01

    Dissolution kinetics and repassivation of inconel 600 in simulated primary coolant circuits of PWR is studied by fast traction experiment under potentiostatic control. The notion of elementary electrochemical transient is introduced. The model of anodic dissolution - film rupture allows the calculation of crack growth in constant deformation rate tests. When sulfur concentration is smaller than 100 micrograms/g the current is low, above the current is high. Calculation of crack growth from high level current are consistent with experimental data. Influence of pH, temperature, solution composition are determined. A Comparative study with nickel, incoloy 690 and a 19% chromium alloy was carried out to understand fast traction phenomena. Chromium plays an important part without pollution a protecting chromium oxide is formed. In polluted environment sulfur prevent nucleation of this compound and chromium hydroxides are precipitated on the surface. With pure nickel there is no passivity in presence of sulfur [fr

  12. Effects of sulfur nutrition on phytotoxicity and growth responses of bean plants to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Adedipe, N O; Hofstra, G; Ormrod, D P

    1972-01-01

    Phaseolus vulgaris L. cv. Blue Lake plants were grown in sand culture at three temperatures, and fed with nutrient solution containing 1.3 or 32 mg/liter sulfur (S). Plants were fumigated twice with ozone at 50 parts per hundred million (pphm) for 2 h. Intensity of phytotoxicity was markedly lower in plants grown at the high S rate. Ozone reduced chlorophyll content of plants grown in low S at 25/20 and 30/25/sup 0/. With the high S treatment, however, ozone had no significant effect on chlorophyll content particularly at the lower temperatures. Irrespective of S nutrition, ozone had no effect on total soluble carbohydrate content. Ozone effects on plant growth depended on plant part, growth temperature, and S nutrition.

  13. Pressure and high-Tc superconductivity in sulfur hydrides.

    Science.gov (United States)

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  14. Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Pâmela Andréa Mantey dos [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil); Gallas, Marcia Russman [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Física (Brazil); Radtke, Cláudio; Benvenutti, Edilson Valmir [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Química (Brazil); Elias, Ana Laura [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Rajukumar, Lakshmy Pulickal [The Pennsylvania State University, Department of Materials Science and Engineering (United States); Terrones, Humberto [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy (United States); Endo, Morinobu [Shinshu University, Carbon Institute of Science and Technology (Japan); Terrones, Mauricio [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Costa, Tania Maria Haas, E-mail: taniaha@iq.ufrgs.br, E-mail: taniahac@gmail.com [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil)

    2015-06-15

    High pressure/temperature was applied on samples of pristine multi-walled carbon nanotubes (MWCNT), functionalized nanotubes (f-MWCNT), and nanotubes doped with nitrogen (CN{sub x}MWNT). Cylindrical compact pellets of f-MWCNT with diameters of about 6 mm were obtained under pressure of 4.0 GPa at room temperature and at 400 °C, using graphite as pressure transmitting medium. The best pellet samples were produced using nitric and sulfuric acids for the functionalization of MWCNT. The effect of high pressure/temperature on CNT was investigated by several spectroscopy and characterization techniques, such as Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, N{sub 2} adsorption/desorption isotherms, and transmission electron microscopy. It was found that MWCNT maintain their main features in the compacted pellets, such as integrity, original morphology, and structure, demonstrating that high-pressure/temperature compaction can indeed be used to fabricate novel CNT self-supported materials. Additionally, the specific surface area and porosity are unchanged, which is important when using bulk CNT in adsorption processes. Raman analysis of the G’-band showed a shift to lower wavenumbers when f-MWCNT were processed under high pressure, suggesting that CNT are under tensile stress.

  15. Fabrication and Characterization of CZTS Thin Films Prepared by the Sulfurization of RF-Sputtered Stacked Metal Precursors

    Science.gov (United States)

    Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed

    2014-09-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.

  16. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  17. Process for recovery of sulfur from acid gases

    Science.gov (United States)

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  18. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li 2 S 2 and Li 2 S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn 3 O 4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g -1 is achieved against lithium after 200 cycles at a current rate of 2 A g -1 with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g -1 , the composite electrode exhibited an initial capacity of 1015 mA h g -1 and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn 3 O 4 . This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  19. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Thermochemical Study on the Sulfurization of Fission Products in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Park, G. I.; Kim, W. K.; Lee, J. W.

    2005-11-01

    The thermodynamic behavior of the sulfurization of Nd, and Eu element, which are contained in spent nuclear fuel as fission products was investigated through collection and properties analysis of thermodynamic data in sulfurization of uranium oxides, thermodynamic properties analysis for the oxidation and reduction of fission products, and test and analysis for sulfurization characteristics of Nd and Eu oxide. And also, analysis on thermodynamic data, such as M-O-S phase stability diagram and changes of Gibbs free energy for sulfurization of uranium and Nd 2 O 3 and Eu 2 O 3 were carried out. Nd 2 O 3 and Eu 2 O 3 are sulfurized into Nd 2 O 2 S and Eu 2 O 2 S or NdySx and EuySx at a range of 400 to 450 .deg. C, while uranium oxides, such as UO 2 and U 3 O 8 remain unreacted up to 450 .deg. C Formation of UOS at 500 .deg. C is initiated by sulfurization of uranium oxides. Hence, reaction temperature for the sulfurization of the Nd 2 O 3 and Eu 2 O 3 was selected as a 450 .deg. C

  1. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-A review

    International Nuclear Information System (INIS)

    Welz, Bernhard; Lepri, Fabio G.; Araujo, Rennan G.O.; Ferreira, Sergio L.C.; Huang Maodong; Okruss, Michael; Becker-Ross, Helmut

    2009-01-01

    The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.

  2. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  3. Joint project final report, Task II: Sulfur chemistry, Task III: Nitrogen Chemistry[Straw fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Weigang, L.; Arendt Jensen, P.; Degn Jensen, A.; Dam-Johansen, K.

    2001-09-01

    It is the aim of the project to promote the use of biomass in the production of power and heat in Denmark as well as enhancing the technology base of the Danish industry within this area. The project involves, the following task areas: 1) Deposit Build-up; 2) Sulfur Chemistry; 3) Nitrogen Chemistry; and 4) Furnace Modeling. The present report covers the activities in task 2 and 3, which are carried out at Department of Chemical Engineering, DTU. Task 2: Sulfur chemistry: The lab-scale results show that the amount of sulfur released into the gas-phase increases at high temperatures. Other process parameters such as oxygen concentration have less impact. Little sulfur is apparently released during char oxidation. The experiments show that about 40% of the sulfur is released during pyrolysis at 400 {sup d}eg{sup .}C. At combustion conditions it was found that about 50% of the sulfur is released at 500{sup d}eg.{sup C}; above this temperature an almost linear correlation is found beteen sulfur release and combustion temperature up to 80-85% release at 950{sup d}eg.{sup C}. The experiments are in agreement with results from full scale straw fired grate boilers, indicating that only a small amount of fuel-sulfur is fixed in the bottom ash under typical operating conditions. The results are important in order to understand the varying emission levels observed in full-scala systems and provide guidelines for low SO{sub 2} operation. Task 3: Nitrogen chemistry: In the nitgrogen chemistry submodel volatile-N is released as NH{sub 3} and N{sub 2}. The ammonia can react further to N{sub 2} or NO. Char nitrogen is oxidized to NO, and the char bed acts as a catalyst for the reduction of NO to N{sub 2}. Predictions with the bed-model including the NO submodel indicate that when all volatile nitrogen is converted to NH{sub 3}, the concentrations og NH{sub 3} are significantly overpredicted. This means that either the NH{sub 3} reaction rates are underpredicted or that a smaller

  4. Determining total sulfur content in coal by MSC radiometric sulfur meter

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T; Golebiowski, W

    1976-01-01

    The MSC radiometric sulfur meter is used to determine total sulfur content in brown and black coals. Sulfur content is determined by measuring intensity of radiation beam which has travelled through a coal sample with the optimum constant surface mass. Construction of the MSC, consisting of a measuring head and the electronic measuring system, is shown in a scheme. AM-241 (with activity of 50 mCi) is the source of radiation. Energy of 25.3 keV (tin disc) is selected as the optimum. The SSU-70 probe with NaJ/Tl crystal is the radiation detector. The black coal sample weighs 10 g and the brown coal sample weighs 18 g. Duration of sulfur determination is 10 min. Error of sulfur determination ranges from plus or minus 0.2% to 0.3%. The results of operational tests of MSC radiometric sulfur meters in black and brown coal mines are discussed. Accuracy of measurement is shown in 5 tables. (8 refs.)

  5. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    Science.gov (United States)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  6. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  7. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  8. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  9. Numerical simulations of helium flow through prismatic fuel elements of very high temperature reactors

    International Nuclear Information System (INIS)

    Ribeiro, Felipe Lopes; Pinto, Joao Pedro C.T.A.

    2013-01-01

    The 4 th generation Very High Temperature Reactor (VHTR) most popular concept uses a graphite-moderated and helium cooled core with an outlet gas temperature of approximately 1000 deg C. The high output temperature allows the use of the process heat and the production of hydrogen through the thermochemical iodine-sulfur process as well as highly efficient electricity generation. There are two concepts of VHTR core: the prismatic block and the pebble bed core. The prismatic block core has two popular concepts for the fuel element: multihole and annular. In the multi-hole fuel element, prismatic graphite blocks contain cylindrical flow channels where the helium coolant flows removing heat from cylindrical fuel rods positioned in the graphite. In the other hand, the annular type fuel element has annular channels around the fuel. This paper shows the numerical evaluations of prismatic multi-hole and annular VHTR fuel elements and does a comparison between the results of these assembly reactors. In this study the analysis were performed using the CFD code ANSYS CFX 14.0. The simulations were made in 1/12 fuel element models. A numerical validation was performed through the energy balance, where the theoretical and the numerical generated heat were compared for each model. (author)

  10. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  11. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  12. Numerical analysis of steady state and transient analysis of high temperature ceramic plate-fin heat exchanger

    International Nuclear Information System (INIS)

    Nagarajan, Vijaisri; Chen, Yitung; Wang, Qiuwang; Ma, Ting

    2014-01-01

    Highlights: • Rip saw fin design is considered to be the best because it has thin fins and has higher heat transfer coefficient. • Minimum principal stress and maximum safety factor are obtained for the inverted bolt fin design. • Maximum principal stress and minimum safety factor are obtained for triangular fin design. • Thermal stress has significant impact than mechanical stress. • High principal stress is found at the startup and shutdown stage. - Abstract: In this study three-dimensional model of ceramic plate-fin high temperature heat exchanger with different fin designs and arrangements is analyzed numerically using ANSYS FLUENT and ANSYS structural module. The ability of ceramics to withstand high temperature and corrosion makes silicon carbide (SiC) suitable candidate material to be used in high temperature heat exchanger. The operating temperature of heat exchanger is 950 °C and the operating pressure is 1.5 MPa. The working fluids are helium, sulfur trioxide, sulfur dioxide, oxygen and the water vapor. Fluid flow and heat transfer analysis are carried out for steady and transient state in FLUENT. The obtained thermal and pressure load for the steady and transient state from ANSYS FLUENT are imported to ANSYS structural module to obtain the principal stress and the factor of safety. Different arrangements of rectangular fins, triangular fins, inverted bolt fins and ripsaw fins are studied. From the results it is found that the minimum stress and the maximum safety factor are obtained for inverted bolt fins. The triangular fins have the maximum principal stress and minimum factor of safety. However, the fluid flow and heat transfer analysis show inverted bolt fins and triangular fins produce higher pressure drop and friction factor. The steady state maximum principal stress is 10.08 MPa, 9.90 MPa and 11.43 MPa for straight, staggered and top and bottom ripsaw fin arrangement. The corresponding safety factors are 21.80, 21.95 and 19

  13. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  15. Biological removal of sulfur from coal flotation concentrate by culture isolated from coal washery plant tailing dump

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E. [Azad University, Tehran (Iran). Mining Engineering Dept.

    2005-10-15

    A combination of flotation and microbial leaching processes was used to achieve acceptable level of sulfur and ash in Tabas coal sample of Iran. Representative sample of the minus 500 micron size fraction was subjected to flotation separation for the removal of ash and sulfur. The final concentrate with recovery, combustion value and sulfur content of 86.03, 86.45 and 1.35% respectively was achieved at pH 8 and following reagent dosage and operating conditions: collector: diesel oil (1200 g/ton), frother: MIBC (5%) + pine oil (95%) with concentration of 120 (g/ton), depressant: sodium silicate (1000 g/ton), particle size: {lt} 500 {mu} m and pulp density: 7%. Because of fine distribution of sulfur on Tabas coal macerals and lithotypes, high percentage of total sulfur (79.9%) is distributed in flotation concentrate and only 20.1% is yielded in the tails. So microbial leaching using a species isolated from coal washery plant tailing dump was used in batch system to remove sulfur from flotation concentrate. The conditions were optimized for the maximum removal of sulfur. These conditions were found to be pH of 2, particle size less than 0.18 mm; pulp density: 8%, temperature: 30 {sup o}C, shaking rate: 150 rpm conditions. Total sulfur and ash content was reduced by bioleaching from 13.55 and 1.35 in flotation concentrate to 9.47 and 0.55 in the final leached concentrate, a reduction of 35 and 61.9% respectively. Sterilization of coal adversely affects the sulfur reduction. The results suggest that the isolated culture is sufficiently effective for depyritization of Tabas coal flotation concentrate in stirred system.

  16. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    Science.gov (United States)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  17. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) utilize various combinations of sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for anaerobic photoautotrophic growth. Genome sequence data is currently available for 12 strains of GSB. We present here a genome-based survey of the distribution...... and phylogenies of genes involved in oxidation of sulfur compounds in these strains. Sulfide:quinone reductase, encoded by sqr, is the only known sulfur-oxidizing enzyme found in all strains. All sulfide-utilizing strains contain the dissimilatory sulfite reductase dsrABCEFHLNMKJOPT genes, which appear...... to be involved in elemental sulfur utilization. All thiosulfate-utilizing strains have an identical sox gene cluster (soxJXYZAKBW). The soxCD genes found in certain other thiosulfate-utilizing organisms like Paracoccus pantotrophus are absent from GSB. Genes encoding flavocytochrome c (fccAB), adenosine-5...

  18. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  19. The suppression of dissolution for alloy 690 in high temperature and high pressure water with chromium ion implantation

    International Nuclear Information System (INIS)

    Shibata, Toshio; Fujimoto, Shinji; Ohtani, Saburou; Watanabe, Masanori; Hirao, Kyozo; Okumoto, Masaru; Shibaike, Hiroyuki.

    1994-01-01

    As the material of heat exchanger tubes for PWRs, the nickel alloys such as alloy 690 and alloy 600 have been used, but 58 Ni and 60 Co contained as an impurity elute in primary cooling water, and are radioactivated, in this way, they become the cause of radiation exposure. By increasing chromium concentration, the corrosion resistance of nickel alloys is improved, and for modern heat exchangers, the alloy 690, of which the chromium content is increased up to 30%, has been adopted, and excellent results have been obtained. In this research, aiming at the further reduction of radiation exposure, by increasing the chromium concentration in surface layer using ion implantation technology, the change of the corrosion behavior of alloy 690 in high temperature, high pressure water was investigated. The chemical composition of the alloy 690 used, and the making of plate specimens are shown. The polarization behavior of alloy 690 in 0.1 mol/l sulfuric acid deaerated at normal temperature is reported, and the effect of suppressing dissolution was remarkable in the specimens with much implantation. The electrochemical behavior of alloy 690 in simulated cooling water was investigated. Immobile case has high chromium content and is thin. (K.I.)

  20. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    Science.gov (United States)

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  1. Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1988-01-01

    Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es

  2. Cu{sub 2}ZnSnS{sub 4} solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Shan; Wang, Shu-Rong, E-mail: shrw88@aliyun.com; Jiang, Zhi; Yang, Min; Lu, Yi-Lei; Liu, Si-Jia; Zhao, Qi-Chen; Hao, Rui-Ting

    2016-12-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by sulfurization of sputtered ZnS/Sn/CuS precursors at different temperatures i.e. 560 °C, 580 °C and 600 °C. The effects of sulfurization temperature on the quality of CZTS thin films and solar cells were investigated. The crystal structure, surface morphology, chemical composition, phase purity and surface roughness of CZTS thin films fabricated at different sulfurization temperatures were characterized by X Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS), Raman spectroscopy and atomic force microscope (AFM), respectively. The results show that all CZTS thin films exhibit a polycrystalline kesterite structure and preferred (112) orientation. For the sulfurization temperature of 580 °C, the obtained CZTS thin films are dense and flat with larger grain size. Meanwhile composition studying indicates that the fabricated CZTS with single phase is copper poor and zinc rich. Furthermore, the surface roughness of CZTS film is the lowest. Finally, the CZTS solar cells with the structure of SLG/Mo/CZTS/CdS/i-ZnO/ITO/Al were fabricated and demonstrated the best power conversion efficiency of 3.59% when used sulfurization temperature was 580 °C.

  3. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  4. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  5. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  6. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  7. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  8. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  9. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  10. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  11. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation

    Science.gov (United States)

    Shin, Haebin; Baek, Minsung; Ro, Youngsoo; Song, Changyeol; Lee, Kwan-Young; Song, In Kyu

    2018-01-01

    Two kinds of mesoporous ceria-zirconia-alumina supports were prepared by a single-step epoxide-driven sol-gel method (SGCZA) and by a co-precipitation method (PCZA). Palladium catalysts supported on these materials were then prepared by a wet impregnation method (Pd/SGCZA and Pd/PCZA). The prepared catalysts were applied to the CO oxidation reaction before and after sulfur aging. XRD and N2 adsorption-desorption analyses revealed that these two catalysts retained different physicochemical properties. Pd/SGCZA had higher surface area and larger pore volume than Pd/PCZA before and after sulfur aging. TPR (Temperature-programmed reduction), CO chemisorption, FT-IR, and XPS analyses showed that the catalysts were differently influenced by sulfur species. Pd/SGCZA formed less sulfate and retained higher palladium dispersion than Pd/PCZA after sulfur aging. In the CO oxidation, Pd/PCZA showed better activity than Pd/SGCZA before sulfur aging. However, Pd/SGCZA showed higher CO conversion than Pd/PCZA after sulfur aging. We concluded that Pd/SGCZA was less poisoned by sulfur species than Pd/PCZA.

  12. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries

    International Nuclear Information System (INIS)

    Zhang, Wenhua; Qiao, Dan; Pan, Jiaxin; Cao, Yuliang; Yang, Hanxi; Ai, Xinping

    2013-01-01

    Highlights: ► A carbon–sulfur composite was prepared by vaporizing sulfur into the nanopores of Li + -conductive carbon microspheres. ► The redox reaction of S 8 molecules embedded in the nanopores of carbon microspheres proceeds through a solid–solid mechanism at the S/C interfaces. ► The carbon–sulfur composite exhibits a stable cycling performance and a superior high coulombic efficiency of 100%. - Abstract: In this paper, we propose a new strategy to develop high performance sulfur electrode by impregnating sulfur into the micropores of a Li + -insertable carbon matrix with the simultaneous use of a carbonate electrolyte, which does not dissolve polysulfides, to restrain the solution of the reaction intermediates of sulfur. To proof this concept, we prepared a Li + -insertable microporous carbon–sulfur composite by vaporizing sulfur into the micropores of the nanofiber-wired carbon microspheres. The experimental results demonstrate that, in the carbonate electrolyte of 1 M LiPF 6 /PC-EC-DEC, such S/C composite electrode exhibits not only stable cycling performance with a reversible capacity of 720 mAh g −1 after 100 cycles, but also superior high coulombic efficiency of ∼100% upon extended cycling (except the first three cycles). The structural and electrochemical analysis indicates that the improved electrochemical behaviors of the S/C composite arise from a new reaction mechanism, in which Li + ions and electrons transport through the carbon matrix into the interior of the cathode and then react with the embedded sulfur in the S/C solid–solid interfaces, avoiding the solution of the intermediates into the bulk electrolyte. More significantly, the structural design and working mechanism of such a sulfur cathode could be extended to a variety of poorly conductive and easily soluble redox-active materials for battery applications.

  14. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  15. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  16. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  17. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  18. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  19. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes; Soufre atmospherique et changements climatiques: une etude de modelisation pour les moyennes et hautes latitudes Sud

    Energy Technology Data Exchange (ETDEWEB)

    Castebrunet, H

    2007-09-15

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  20. Corrosion evaluation of materials in sulfur compound environments

    International Nuclear Information System (INIS)

    Maoying Teng; Iuanjou Yang

    1993-01-01

    The para-toluene sulfonic acid (PTSA) serves as a catalyst in producing diethylene glycol dibenzoate (DEGDB) and decomposes with increasing time at elevated temperature. Due to the presence of bisulfite ion, it is important to evaluate the corrosion properties of materials in this metastable environments. A potentiodynamic method was used to screen materials' properties in a PTSA solution. A surface analysis technique was also performed to investigate the oxide films. The critical current density and passive current density were substantially reduced when Fe alloyed with Cr and/or Ni. With the addition of Mo in Fe-Ni-Cr alloys, the critical current density was lowered further to show the beneficial effect of alloyed Mo. A plot of the corrosion rate of materials in DEGDB as a function of Ni/Cr ratio shows the linearity with increasing Ni/Cr ratio, disregard the type of materials. The corrosion rate of pure chromium can be estimated as ∼ 2.0 mpy by extrapolation of the linearity to Ni/Cr = 0. This is also the minimum corrosion rate that even Fe-Ni-Cr alloys were alloyed with Mo. Surface analysis results showed that the dissolution of Fe and/or Ni leads to a higher surface chromium content and results in the formation of chromium oxide on metal surface. This chromium oxide then prevents metal from corrosion. It is concluded that the higher the nickel content the higher the corrosion rate of materials. The composition potential-pH diagrams for Fe-S-H 2 O and Ni-S-H 2 O show that the stability fields of FeS and NiS cover a wide range of pH. The effect of sulfur or sulfide ions in promoting dissolution of Fe and/or Ni are highly possible. The activating influence of sulfur compounds on Ni is stronger than that of Fe, although the highly electronic conductivity of iron sulfides can catalyze the cathodic reaction. Undoubtedly, sulfur compound strongly depassivates high Ni contents materials

  1. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  2. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  3. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  4. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  5. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo12O40-An organic polyoxometalate.

    Science.gov (United States)

    Ma, Yunqian; Liu, Xinpeng; Wang, Rui

    2017-06-05

    An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrical properties of a new sulfur-containing polymer for optoelectronic application

    Science.gov (United States)

    ElAkemi, ElMehdi; Jaballah, Nejmeddine; Ouada, Hafedh Ben; Majdoub, Mustapha

    2015-06-01

    An original polythiophene derivative was characterized to develop the optoelectronic properties of sulfur-containing π-conjugated polymer. The optical properties of the polymer were investigated by UV-visible absorption spectroscopy and atomic force microscopy. Investigations of the electrical characteristics of polymer diodes are reported. We present current-voltage characteristics and impedance spectroscopy measurements performed on partially sulfur-containing thin films in sandwich structure ITO/sulfur-containing polymer/Al. The conduction mechanisms in these layers are identified to be a space-charge-limited current. The AC electrical transport of the sulfur-containing polymer is studied as a function of frequency (100 Hz-10 MHz) and temperature in impedance spectroscopy analyses. We interpreted Cole-Cole plots in terms of the equivalent circuit model as a single parallel resistance and a capacitance network in series with a relatively small resistance. The evolution of the electrical parameters deduced from fitting of the experimental data is discussed.

  7. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  8. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Chen, Wei; Zhou, Chengkun; Lai, Yanqing; Li, Jie

    2014-01-01

    Graphical abstract: - Highlights: • A novel design and synthesis of GO@Meso-C using GO@MOF-5 as precursor. • GO@Meso-C hybrid material as a host material was applied for sulfur cathode. • Electrochemical performances were improved in sulfur cathode using Go@Meso-C. - Abstract: We present a design and synthesis of a hierarchical architecture of graphene oxide @ mesoporous carbon (GO@Meso-C) using graphene oxide @ metal-organic framework hybrid materials (GO@MOF-5) as both the template and precursor. Active sulfur is encapsulated into the GO@Meso-C matrix prepared via carbonize GO@MOF-5 polyhedrons for high performance lithium sulfur battery. The initial and 100th cycle discharge capacity of GO@Meso-C/S sulfur cathode are as high as 1122 mAh g −1 and 820 mAh g −1 at a current rate of 0.2 C. The remarkably high special capacity and capacity retention rate indicate that the GO@Meso-C is a promising host material for the sulfur cathode in the lithium sulfur battery applications

  9. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  10. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  11. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Science.gov (United States)

    Li, Haipeng; Sun, Liancheng; Wang, Zhuo; Zhang, Yongguang; Tan, Taizhe; Wang, Gongkai

    2018-01-01

    A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V. PMID:29373525

  12. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2018-01-01

    Full Text Available A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide aerogel (S/AC/GA cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V.

  13. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  14. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  15. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  16. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods

    Directory of Open Access Journals (Sweden)

    Min Hye Yang

    2017-01-01

    Full Text Available Despite the nutritional and medicinal values of Allium hookeri, its unique flavor (onion or garlic taste and smell coming from sulfur containing compounds limits its usage as functional food. For comparative study, A. hookeri roots were prepared under two different drying conditions, namely, low-temperature drying that minimizes the volatilization of sulfur components and hot-air drying that minimizes the garlic odor and spicy taste of A. hookeri. In GC/MS olfactory system, the odorous chemicals and organosulfur compounds such as diallyl trisulfide, dimethyl trisulfide, and dipropyl trisulfide were significantly decreased in hot-air drying compared to low-temperature drying. The spiciness and saltiness taste were noticeably reduced, while sourness, sweetness, and umami taste were significantly increased in hot-air dried A. hookeri according to electronic tongue. Although the content of volatile sulfur components was present at lower level, the administration of hot-air dried A. hookeri extract (100 mg/kg p.o. apparently prevented the body weight gain and improved insulin resistance in C57BL/6J obese mice receiving high fat diet. Results suggested that the hot-air dried A. hookeri possessing better taste and odor might be available as functional crop and bioactive diet supplement for the prevention and/or treatment of obesity.

  17. Comparative studies on sulfur, peroxide, and radiation vulcanization of EFDM rubber

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.M.; Basfar, A.A.; Mofti, S.

    2000-01-01

    The temperature and concentration dependence of the vulcanization characteristics and mechanical properties of epdm rubber containing various concentrations of peroxide compounds was studied. The peroxides used are Luperox Di, Luperox 500-40 Ke, peroximon Dc Sc and peroximon Dc 40 Ke. The optimum cure parameters for the different types of peroxides indicated that Luperox Di, relatively, Give the best properties among the studied peroxides. The mechanical properties of EPDM containing different concentrations of Luperox Di and vulcanized at different temperatures were compared with those of either radiation or sulfur-cured EPDM. The modulus stress and tensile strength of the Luperox Di-cured EPDM were found to increase with either increasing the temperature of vulcanization and/ or concentration of the peroxide. Moreover, the tensile strength values are much higher than those of the sulfur-cured samples, except for those with low concentration of peroxide and vulcanized at relatively low temperature. A comparable result to those of the chemically vulcanized samples was attained by the radiation- vulcanized samples containing 1 phr of crosslinking agent and irradiated to 150 KGy

  18. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  19. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2010-02-15

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H{sub 2}O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I{sub 2}/H{sub 2}SO{sub 4} in the feed increased from 2 to 4, the molar ratio of HI/(HI+H{sub 2}O) in the HI{sub x} phase improved from 0.157 to 0.22, which

  20. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2010-02-01

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H 2 O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I 2 /H 2 SO 4 in the feed increased from 2 to 4, the molar ratio of HI/(HI+H 2 O) in the HI x phase improved from 0.157 to 0.22, which is high enough to generate

  1. Sodium lauryl sulfate - a biocide for controlling acidity development in bulk commercially formed solid elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hyne, J. B. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1996-04-01

    Acidification of bulk elemental sulfur caused by Thiobacillus species which consume elemental sulfur by converting it into oxidized sulfur forms, was studied. Contributory factors, such as length of time in transit or in storage, warm temperatures, the presence of air and moisture, particle size and form of sulfur, and the presence of sources of carbon, nitrogen and phosphorus nutrients, were reviewed. Laboratory experiments with adding sodium lauryl sulfate (SLS), a known biocide, to sulfur inoculated with Thiobacillus, proved to be an efficient method for controlling acidity development. At the concentration required for effectiveness SLS did not interfere with purity specifications, had negligible effect on moisture, and appeared to be compatible with current dust suppression application practices. 2 tabs., 3 figs.

  2. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  3. Gas chromatographic studies of the relative retention of the sulfur isotopes in carbonyl sulfide, carbon disulfide, and sulfur dioxide

    International Nuclear Information System (INIS)

    Fetzer, J.C.; Rogers, L.B.

    1980-01-01

    A precision gas chromatograph, coupled to a quadrupole mass spectrometer and an on-line computer, was used to study the fractionation on Porasil A of the 32 S/ 34 S isotopic pair in a variety of sulfur-containing molecules. Carbonyl sulfide (COS) yielded an average α value of 1.00074 +- 0.00017 (standard deviation) for the temperature range 25 0 C to 75 0 C. The carbon disulfide (CS 2 ) value was 1.00069 +- 0.00023 for the range 53 0 C to 103 0 C, and that for sulfur dioxide (SO 2 ) was 1.00090 +- 0.00018 for the range 62 0 C to 112 0 C. Differential thermodynamic data have been reported. A Porapak Q column showed no fractionation of this isotopic pair in these three molecules

  4. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  5. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  6. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  7. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    , the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

  8. Research on the Composition and Distribution of Organic Sulfur in Coal.

    Science.gov (United States)

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  9. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    Science.gov (United States)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  10. A MnO2/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Yong; Ye, Daixin; Liu, Wen; Shi, Bin; Guo, Rui; Zhao, Hongbin; Pei, Haijuan; Xu, Jiaqiang; Xie, Jingying

    2016-10-26

    Lithium-sulfur batteries can potentially be used as a chemical power source because of their high energy density. However, the sulfur cathode has several shortcomings, including fast capacity attenuation, poor electrochemical activity, and low Coulombic efficiency. Herein, multi-walled carbon nanotubes (CNTs), graphene oxide (GO), and manganese dioxide are introduced to the sulfur cathode. A MnO 2 /GO/CNTs-S composite with a unique three-dimensional (3D) architecture was synthesized by a one-pot chemical method and heat treatment approach. In this structure, the innermost CNTs work as a conducting additive and backbone to form a conducting network. The MnO 2 /GO nanosheets anchored on the sidewalls of CNTs have a dual-efficient absorption capability for polysulfide intermediates as well as afford adequate space for sulfur loading. The outmost nanosized sulfur particles are well-distributed on the surface of the MnO 2 /GO nanosheets and provide a short transmission path for Li + and the electrons. The sulfur content in the MnO 2 /GO/CNTs-S composite is as high as 80 wt %, and the as-designed MnO 2 /GO/CNTs-S cathode displays excellent comprehensive performance. The initial specific capacities are up to 1500, 1300, 1150, 1048, and 960 mAh g -1 at discharging rates of 0.05, 0.1, 0.2, 0.5, and 1 C, respectively. Moreover, the composite cathode shows a good cycle performance: the specific capacity remains at 963.5 mAh g -1 at 0.2 C after 100 cycles when the area density of sulfur is 2.8 mg cm -2 .

  11. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  12. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  13. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong; Lee, Hongkyung; Kim, Hee-Tak

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2S particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.

  14. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Zhang, Linlin; Wan, Fang; Wang, Xinyu; Cao, Hongmei; Dai, Xi; Niu, Zhiqiang; Wang, Yijing; Chen, Jun

    2018-02-14

    The lithium sulfur (Li-S) battery has attracted much attention due to its high theoretical capacity and energy density. However, its cycling stability and rate performance urgently need to improve because of its shuttle effect. Herein, oxygen-doped carbon on the surface of reduced graphene oxide (labeled as ODC/rGO) was fabricated to modify the separators of Li-S batteries to limit the dissolution of the lithium polysulfides. The mesoporous structure in ODC/rGO can not only serve as the physical trapper, but also provide abundant channels for fast ion transfer, which is beneficial for effective confinement of the dissoluble intermediates and superior rate performance. Moreover, the oxygen-containing groups in ODC/rGO are able to act as chemical adsorption sites to immobilize the lithium polysulfides, suppressing their dissolution in electrolyte to enhance the utilization of sulfur cathode in Li-S batteries. As a result, because of the synergetic effects of physical adsorption and chemical interaction to immobilize the soluble polysulfides, the Li-S batteries with the ODC/rGO-coated separator exhibit excellent rate performance and good long-term cycling stability with 0.057% capacity decay per cycle at 1.0 C after 600 cycles.

  15. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance Lithiumsbnd Sulfur batteries

    Science.gov (United States)

    Wang, Zhenhua; Zhang, Jing; Yang, Yuxiang; Yue, Xinyang; Hao, Xiaoming; Sun, Wang; Rooney, David; Sun, Kening

    2016-10-01

    Traditionally polyvinylidene fluoride membranes have been used in applications such as membrane distillation, wastewater treatment, desalination and separator fabrication. Within this work we demonstrate that a novel carbon nanofiber/polyvinylidene fluoride (CNF/PVDF) composite membrane can be used as an interlayer for Lithiumsbnd Sulfur (Lisbnd S) batteries yielding both high capacity and long cycling life. This PVDF membrane is shown to effectively separate dissolved lithium polysulfide with the high electronic conductivity CNF not only reducing the internal resistance in the sulfur cathode but also helping immobilize the polysulfide through its abundant nanospaces. The resulting Lisbnd S battery assembled with the CNF/PVDF composite membrane effectively solves the polysulfide permeation problem and exhibits excellent electrochemical performance. It is further shown that the CNF/PVDF electrode has an excellent cycling stability and retains a capacity of 768.6 mAh g-1 with a coulombic efficiency above 99% over 200 cycles at 0.5C, which is more than twice that of a cell without CNF/PVDF (374 mAh g-1). In addition, the low-cost raw materials and the simple preparation process of CNF/PVDF composite membrane is also amenable for industrial production.

  16. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2014-01-01

    Full Text Available The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S codoped diamond films grown on high-temperature and high-pressure (HTHP diamond and Si substrates were investigated using atom force microscopy (AFM, scanning tunneling microscopy (STM, secondary ion mass spectroscopy (SIMS, and current imaging tunneling spectroscopy (CITS measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on HTHP diamond are composed of well-developed polycrystalline facets with an average size of 10–50 nm. SIMS analyses confirmed that sulfur was successfully introduced into diamond films, and a small amount of boron facilitated sulfur incorporation into diamond. Large tunneling currents were observed at some grain boundaries, and the emission character was better at the grain boundaries than that at the center of the crystal. The films grown on HTHP diamond substrates were much more perfect with higher quality than the films deposited on Si substrates. The local I-V characteristics for films deposited on Si or HTHP diamond substrates indicate n-type conduction.

  17. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  18. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    Science.gov (United States)

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  19. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  20. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  1. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  2. Sulfur impacts on forest health in west-central Alberta

    International Nuclear Information System (INIS)

    Maynard, D.G.; Stadt, J.J.; Mallett, K.I.; Volney, W.J.A.

    1994-01-01

    A study was conducted to evaluate forest health and tree growth in relation to sulfur deposition in mature and immature lodgepole pine and mature trembling aspen. Soil samples were taken in forests near two sour gas processing plants in west-central Alberta. The soil sample sites were classified into high, medium and low deposition classes. The impact of sulfur deposition on soil and foliar chemistry, tree growth, and forest health was evaluated. The analysis of tree growth, using radial increments, revealed no impact associated with the sulfur deposition class. The only indicators of extensive sulfur impacts on major forest communities detected to date are elevated sulfur concentrations in the surface organic horizon and foliage, the proportion of healthy lodgepole pines, and a depression in the annual specific volume increment. No evidence of widespread forest decline has been found. 42 refs., 35 tabs., 29 figs

  3. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  5. High temperature blankets for non-electrical/electrical applications of fusion reactors: Progress report, July 15, 1983--November 30, 1984

    International Nuclear Information System (INIS)

    Ribe, F.L.; Woodruff, G.L.

    1988-01-01

    We report a continuation of work done in collaboration with the Lawrence Livermore National Laboratory (LLNL) on design studies of the tandem-mirror fusion reactor (TMR) coupled to the General Atomic (GA) sulfur-iodine thermochemical process for producing hydrogen. During this report period the emphasis was on a solid-breeder gas cooled ''cannister'' blanket for TMR-based hydrogen production. This work was integrated with the Department of Energy (DOE), Office of Fusion Energy (OFE) Blanket Comparison and Selection Study, coordinated by the Argonne National Laboratory (ANL). The areas investigated by the two principal investigators and their students were the following: Plasma engineering of the TMR, including the magnets. Neutronics transport support for the synfuel blanket and shield. Completion of studies of the GA sulfur-iodine process. Under subcontract D.S. Rowe of Rowe and Associates worked with both UW and LLNL personnel on Mechanical design and thermal hydraulics of a high temperature, solid breeder blanket. 2 refs., 3 figs

  6. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    model experiment. Exposure of evaporite deposits having a high δ 34S may account for the source change, with a possible role for the Siberian Traps volcanism by magmatic remobilization of Cambrian rock salt. A high sulfur cycle turnover rate would have left the ocean system vulnerable to development......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... fractionation and point to a more universal control, i.e., contemporaneous seawater sulfate concentration.The MSR-trend transfer function yielded estimates of seawater sulfate of 0.6-2.8mM for the latest Permian to earliest Triassic, suggesting a balanced oceanic S-cycle with equal S inputs and outputs...

  7. Effect of Sowing Date and Sulfur on Yield, Oil Content and Grain Nitrogen of Safflower (Carthamus tinctorius L. in Autumn Cultivation

    Directory of Open Access Journals (Sweden)

    N Safara

    2016-12-01

    Full Text Available Introduction Nowadays oilseed crops are considered as the second most important sources of energy in the diet. In this regard, cultivation of oilseed crops such as safflower (Carthamus tinctorius L. is important due to quality of oil seed and medicinal properties. Different planting dates leads to adaptation of vegetative and reproductive growth of plant to temperature, day-length and various solar radiations and as a result affects plant’s development phase and yield. With delayed planting date , temperature and day length increases and development phase will accelerate. In this condition the crop yield will reduce due to crop growth and developmental period will shorten. Sulfur is an essential element for plant nutrition and its role is greater than Phosphorus. Using sulfur increases the heads per plant and grain yield. In order to investigate the effect of sulfur fertilizer under heat stress condition at the terminal growth stages and its role in reducing the negative effects of high temperature stress on safflower, this research was performed. Materials and Methods In order to study effect of planting date and sulfur manure on yield components, nitrogen and oil percent in safflower, a field experiment was carried out in a randomized complete blocks design with three replications in as split plot arrangement at Ramin Agriculture and Natural Resources University of Khuzestan during 2013-2014. The experimental treatments consisted of four planting dates of 30 November, 21 December, 22 January and 1st February were randomly placed in main plots and four levels of sulfur of 0, 200, 400 and 600 kg ha-1 performed randomly in subplots, Sulfur fertilizer was corporated to soil one week before each planting date. Harvest was performed from the mid-May to early-June, during physiological maturity. To measure the yield on maturity time after the removal of margins, Safflower plants were harvested from one m2 unit area. Nitrogen percent was determined

  8. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    Science.gov (United States)

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

  9. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    Science.gov (United States)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  10. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  11. Sulfur induced selectivity changes for methanol decomposition on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.; Madix, R.J.

    1979-01-01

    The effects of structured overlayers as selective poisons were demonstrated by the adsorption of methanol on Ni(100), Ni(100)p(2 x 2)S, Ni(100)c(2 x 2)S at a crystal temperature of 137/sup 0/K and temperature programed reaction in an ultra-high vacuum. On the clean surface, mixed isotopes of dihydrogen and carbon monoxide were formed in desorption-limited processes above 300/sup 0/K. Evidence for the existence of an absorbed (COD) intermediate was obtained. The p(2 x 2)S surface gave similar results. The sulfur decreased the amount of absorbed methanol which reacted and interacted significantly with the (COD) intermediate. On the c(2 x 2)S structure, the primary reaction intermediate was methoxy. Formaldehyde was formed with an activation energy of 26 kcal/g-mole. No desorption-limited carbon monoxide was observed.

  12. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  13. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  14. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  15. A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries

    Directory of Open Access Journals (Sweden)

    Takuya Takahashi

    2015-12-01

    Full Text Available Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 mA h g−1 although its discharge potential is somewhat modest: ca. 2 V vs Li/Li+. However, a sulfur positive electrode has some crucial problems for practical use, which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes. In order to resolve the dissolution problem of lithium polysulfide, we attempted to synthesize a sulfur–microporous activated carbon (AC composite positive electrode. Moreover, we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes, and found its promising positive electrode performance for a next-generation rechargeable battery.

  16. A Universal Strategy To Prepare Sulfur-Containing Polymer Composites with Desired Morphologies for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zeng, Shao-Zhong; Zeng, Xierong; Tu, Wenxuan; Huang, Haitao; Yu, Liang; Yao, Yuechao; Jin, Nengzhi; Zhang, Qi; Zou, Jizhao

    2018-06-19

    Lithium-sulfur (Li-S) batteries are probably the most promising candidates for the next-generation batteries owing to their high energy density. However, Li-S batteries face severe technical problems where the dissolution of intermediate polysulfides is the biggest problem because it leads to the degradation of the cathode and the lithium anode, and finally the fast capacity decay. Compared with the composites of elemental sulfur and other matrices, sulfur-containing polymers (SCPs) have strong chemical bonds to sulfur and therefore show low dissolution of polysulfides. Unfortunately, most SCPs have very low electron conductivity and their morphologies can hardly be controlled, which undoubtedly depress the battery performances of SCPs. To overcome these two weaknesses of SCPs, a new strategy was developed for preparing SCP composites with enhanced conductivity and desired morphologies. With this strategy, macroporous SCP composites were successfully prepared from hierarchical porous carbon. The composites displayed discharge/charge capacities up to 1218/1139, 949/922, and 796/785 mA h g -1 at the current rates of 5, 10, and 15 C, respectively. Considering the universality of this strategy and the numerous morphologies of carbon materials, this strategy opens many opportunities for making carbon/SCP composites with novel morphologies.

  17. Pyrobaculum Yellowstonensis Strain WP30 Respires On Elemental Sulfur And/or Arsenate in Circumneutral Sulfidic Sediments of Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Z.; Beam, Jake; Dohnalkova, Alice; Lohmayer, R.; Bodle, B.; Planer-Friedrich, B.; Romine, Margaret F.; Inskeep, William

    2015-09-15

    Thermoproteales populations (phylum Crenarchaeota) are abundant in high-25 temperature (>70° C) environments of Yellowstone National Park (YNP) and are important in mediating biogeochemical cycles of sulfur, arsenic and carbon. The objectives of this study were to determine specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph’s Coat Hot Spring [JCHS]; 80 °C; pH 6.1), and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoheterotroph that utilizes organic carbon as a source of carbon and electrons and requires elemental sulfur and/or arsenic as electron acceptors. Growth in the presence of elemental sulfur and arsenate resulted in the production of thioarsenates and polysulfides relative to sterile controls. The complete genome of this organism was sequenced (1.99 Mb, 58 % G+C) and revealed numerous metabolic pathways for the degradation of carbohydrates, amino acids and lipids, multiple dimethylsulfoxide molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, and pathways for the de novo synthesis of nearly all required cofactors and metabolites. Comparative genomics of P. yellowstonensis versus assembled metagenome sequence from JCHS showed that this organisms is highly-related (~95% average nucleotide identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide importanat information towards understanding the distribution and function of these populations in YNP.

  18. Improved analytical techniques of sulfur isotopic composition in nanomole quantities by MC-ICP-MS.

    Science.gov (United States)

    Yu, Tsai-Luen; Wang, Bo-Shian; Shen, Chuan-Chou; Wang, Pei-Ling; Yang, Tsanyao Frank; Burr, George S; Chen, Yue-Gau

    2017-10-02

    We propose an improved method for precise sulfur isotopic measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in conjunction with a membrane desolvation nebulization system. The problems of sulfur loss through the membrane desolvation apparatus are carefully quantified and resolved. The method overcomes low intrinsic sulfur transmission through the instrument, which was initially 1% when operating at a desolvation temperature of 160 °C. Sulfur loss through the membrane desolvation apparatus was resolved by doping with sodium. A Na/S ratio of 2 mol mol -1 produced sulfur transmissions with 98% recovery. Samples of 3 nmol (100 ng) sulfur achieved an external precision of ±0.18‰ (2 SD) for δ 34 S and ±0.10‰ (2 SD) for Δ 33 S (uppercase delta expresses the extent of mass-independent isotopic fractionation). Measurements made on certified reference materials and in-house standards demonstrate analytical accuracy and reproducibility. We applied the method to examine microbial-induced sulfur transformation in marine sediment pore waters from the sulfate-methane transition zone. The technique is quite versatile, and can be applied to a range of materials, including natural waters and minerals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  20. Sulfurization of sputtered Ag–In precursors for AgInS{sub 2} solar cell absorber layers

    Energy Technology Data Exchange (ETDEWEB)

    Anantha Sunil, M. [Energy and Health Monitoring Instrumentation Laboratory, Department of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Thota, Narayana [Advanced Materials Research Laboratory, Department of Physics, Yogi Vemana University, Kadapa 516003 (India); Deepa, K.G. [Energy and Health Monitoring Instrumentation Laboratory, Department of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Jampana, Nagaraju, E-mail: solarjnr@gmail.com [Energy and Health Monitoring Instrumentation Laboratory, Department of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-11-30

    Silver indium sulfide (AgInS{sub 2}) thin films are deposited by sequential sputtering of metallic precursor [Ag/In] followed by sulfurization. Effect of substrate temperature (T{sub sub}) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 °C. Films prepared above 350 °C showed a mixture of orthorhombic and tetragonal phases of AgInS{sub 2} with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 °C. The characteristic A{sub 1} mode of AgInS{sub 2} chalcopyrite structure is observed in the Raman spectra at 274 cm{sup −1} for the films prepared above 350 °C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS{sub 2} films is in the range of 1.64–1.92 eV and the absorption coefficient is found to be > 10{sup 4} cm{sup −1}. Preliminary studies on the AgInS{sub 2}/ZnS solar cell showed an efficiency of 0.3%. - Highlights: • AgInS{sub 2} films are grown by sulfurization of sputtered metal precursors. • Effect of substrate temperature on the growth of AgInS{sub 2} films is studied. • Films sulfurized at 500 °C have the best structural and opto-electrical properties. • AgInS{sub 2}/ZnS solar cell has been fabricated with an efficiency of ~ 0.3%.

  1. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  2. Temperature and environmentally assisted cracking in low alloy steel

    International Nuclear Information System (INIS)

    Auten, T.A.; Monter, J.V.

    1995-04-01

    Environmental assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates from 3 to over 40 times the growth rates in air. For low alloy steels with sulfur contents > 0.0125% by weight, EAC is normal behavior in the 240 to 290C range. However, literature yields mixed results for low alloy steels with compositions just below this sulfur level; some reports indicate EAC while others do not. Also, several authors have reported an increased tendency toward EAC when the water temperatures were lowered. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260C. At 260C these forgings did not exhibit EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates strong resistance to EAC for this class of forging at 260C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204C, provided the test conditions (loading frequency, ΔK, and R) were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than ∼2E-6 mm/s. At 204, 121, and 93C, this critical crack growth rate appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260C by raising the dissolved oxygen content of the water from 15 ppb

  3. Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles

    Science.gov (United States)

    Yu, Huan; Dai, Liang; Zhao, Yi; Kanawade, Vijay P.; Tripathi, Sachchida N.; Ge, Xinlei; Chen, Mindong; Lee, Shan-Hu

    2017-02-01

    Temperature and relative humidity (RH) are the most important thermodynamic parameters in aerosol formation, yet laboratory studies of nucleation and growth dependencies on temperature and RH are lacking. Here we report the experimentally observed temperature and RH dependences of sulfuric acid aerosol nucleation and growth. Experiments were performed in a flow tube in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and relative acidity (RA) of sulfuric acid from 6 × 10-5 to 0.38 (2 × 107-109 cm-3). The impurity levels of base compounds were determined to be NH3 nucleation at fixed sulfuric acid concentration but impede nucleation when RA is fixed. It is also shown that binary nucleation of sulfuric acid and water is negligible in planetary boundary layer temperature and sulfuric acid ranges. An empirical algorithm was derived to correlate the nucleation rate with RA, RH, and temperature together. Collision-limited condensation of free-sulfuric acid molecules fails to predict the observed growth rate in the sub-3 nm size range, as well as its dependence on temperature and RH. This suggests that evaporation, sulfuric acid hydration, and possible involvement of other ternary molecules should be considered for the sub-3 nm particle growth.

  4. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    Science.gov (United States)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  5. Continuos extraction of uranium and molibdenum by lixiviation with sulfuric acid

    International Nuclear Information System (INIS)

    Cripiani, M.

    1980-01-01

    A methodology for collecting data of uranium and molibdenum extraction by lixiviation with sulfuric acid is showed. Discontinuous tests of lixiviation, time influence, temperature, granulation, acid/ore relation, oxidant/ore relation and solid percentage are studied. (C.G.C.) [pt

  6. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  7. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  8. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  9. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures aragonite veins in metabasalt and siltstone clasts within the serpentinite flows have ??18O = 16.7-24.5???, consistent with the serpentinizing fluids at temperatures <250 ??C. ??13C values of 0.1-2.5??? suggest a source in subducting carbonate sediments. The ??34S values of sulfide in serpentinites on Conical Seamount (-6.7??? to 9.8???) result from metasomatism through variable reduction of aqueous sulfate (??34S = 14???) derived from slab sediments. Despite sulfur metasomatism, serpentinites have low sulfur contents (generally < 164 ppm) that reflect the highly depleted nature of the mantle wedge. The serpentinites are mostly enriched in 34S (median ??34Ssulfide = 4.5???), consistent with a 34S

  10. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  11. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  12. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  13. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  14. Influence of fluorozirconic acid on sulfuric acid anodizing of aluminum

    OpenAIRE

    Elaish, R.; Curioni, M.; Gowers, K.; Kasuga, A.; Habazaki, H.; Hashimoto, T.; Skeldon, P.

    2017-01-01

    The effects of additions of fluorozirconic acid to sulfuric acid on the anodizing behavior of aluminum have been investigated under a constant voltage at temperatures of 0 and 20◦C. The fluoroacid increased the rate of film growth, with a dependence on the fluoroacid concentration, the electrolyte temperature and the anodizing time. Compositional analyses showed that fluorine species were present in the films. However, zirconium species were absent. The fluoroacid generally enhanced film diss...

  15. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  16. Influence of the temperature of superheating surfaces in a gas flow on the formation of sulfur trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vnukov, A K; Taran, O E

    1977-05-01

    In supercritical steam generators fired with sulfur-rich heating fuel oil, catalytic after-oxidation of SO/sub 2/ takes place in amounts which correspond to the formation of SO/sub 3/ in the furnaces. The amount of SO/sub 3/ produced depends directly on the dirt accumulation in the convection stack. Corrosion-free operation of heating surfaces and flue gas stacks cannot be achieved by a mere reduction of the excess pressure; this is proved by operational experience for this type of steam generator. An investigation of the mechanism of catalytic SO/sub 3/ formation will help to find further measures to be taken, e.g., cleaning of the convection heating surfaces, introduction of additives to poison the catalysts, etc. It should thus be possible, in the long run, to reduce the low-temperature corrosion of heating surfaces and gas stacks and to improve the operational performance of the boilers.

  17. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    Science.gov (United States)

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  18. Evaluation of two processes of hydrogen production starting from energy generated by high temperature nuclear reactors; Evaluacion de dos procesos de produccion de hidrogeno a partir de energia generada por reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J., E-mail: jvalle@upmh.edu.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard Acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2013-10-15

    In this work an evaluation to two processes of hydrogen production using energy generated starting from high temperature nuclear reactors (HTGR's) was realized. The evaluated processes are the electrolysis of high temperature and the thermo-chemistry cycle Iodine-Sulfur. The electrolysis of high temperature, contrary to the conventional electrolysis, allows reaching efficiencies of up to 60% because when increasing the temperature of the water, giving thermal energy, diminishes the electric power demand required to separate the molecule of the water. However, to obtain these efficiencies is necessary to have water vapor overheated to more than 850 grades C, temperatures that can be reached by the HTGR. On the other hand the thermo-chemistry cycle Iodine-Sulfur, developed by General Atomics in the 1970 decade, requires two thermal levels basically, the great of them to 850 grades C for decomposition of H{sub 2}SO{sub 4} and another minor to 360 grades C approximately for decomposition of H I, a high temperature nuclear reactor can give the thermal energy required for the process whose products would be only hydrogen and oxygen. In this work these two processes are described, complete models are developed and analyzed thermodynamically that allow to couple each hydrogen generation process to a reactor HTGR that will be implemented later on for their dynamic simulation. The obtained results are presented in form of comparative data table of each process, and with them the obtained net efficiencies. (author)

  19. Charged and Neutral Binary Nucleation of Sulfuric Acid in Free Troposphere Conditions

    OpenAIRE

    Duplissy, Jonathan; Merikanto, Joonas; Sellegri, Karine; Rose, Clemence; Asmi, Eija; Freney, Evelyn; Juninen, Heikki; Sipilä, Mikko; Vehkamaki, Hanna; Kulmala, Markku

    2013-01-01

    We present a data set of binary nucleation of sulfuric acid and water, measured in the CLOUD chamber at CERN during the CLOUD3 and CLOUD5 campaigns. Four parameters have been varied to cover neutral and ion-induced binary nucleation processes: Sulfuric acid concentration (1e5 to 1e8 molecules per cm^(−3)), relative humidity (10% to 80%), temperature (208-293K) and ion concentration (0-4000 ions per cm^(−3)). In addition, classical nucleation theory implemented with hydrates and ion induced nu...

  20. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  1. Sulfur poisoning of a Ni(111) crystal with small angle boundaries (SAB) and its effect on CO adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, G A; Lih-Ren Chao, J; Freeman, G B

    1981-01-01

    The sulfur poisoning of a Ni(111) crystal with small angle boundaries (SAB) and its effect on CO adsorption were studied using the techniques of low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The sulfur poisoned Ni(111)-SAB surface was prepared by heating the crystal to 850/sup 0/C for 20 min. The bulk sulfur impurity was diffused to the surface. The sulfur Auger peak intensities taken at and between boundary lines, show that sulfur distribution is uniform on the Ni(111)-SAB surface. No LEED pattern due to sulfur presence was observed. Sulfur atoms do not form an ordered structure in the Ni(111)-SAB surface. The Auger spectra showed that the boundary lines at the sulfur-free crystal surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25/sup 0/C. After sulfur is diffused to the surface, it blocks the active sites as well as the boundary sites. The boundary line enhanced dissociation of CO is no longer seen. Sulfur and nickel Auger intensities were taken during the CO adsorption. From the change of the intensities, sulfur only interacts with nickel and physically inhibits the CO adsorption and, thereby, further CO dissociation.

  2. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  3. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Science.gov (United States)

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  4. Sulfur dioxide initiates global climate change in four ways

    International Nuclear Information System (INIS)

    Ward, Peter L.

    2009-01-01

    Global climate change, prior to the 20th century, appears to have been initiated primarily by major changes in volcanic activity. Sulfur dioxide (SO 2 ) is the most voluminous chemically active gas emitted by volcanoes and is readily oxidized to sulfuric acid normally within weeks. But trace amounts of SO 2 exert significant influence on climate. All major historic volcanic eruptions have formed sulfuric acid aerosols in the lower stratosphere that cooled the earth's surface ∼ 0.5 o C for typically three years. While such events are currently happening once every 80 years, there are times in geologic history when they occurred every few to a dozen years. These were times when the earth was cooled incrementally into major ice ages. There have also been two dozen times during the past 46,000 years when major volcanic eruptions occurred every year or two or even several times per year for decades. Each of these times was contemporaneous with very rapid global warming. Large volumes of SO 2 erupted frequently appear to overdrive the oxidizing capacity of the atmosphere resulting in very rapid warming. Such warming and associated acid rain becomes extreme when millions of cubic kilometers of basalt are erupted in much less than one million years. These are the times of the greatest mass extinctions. When major volcanic eruptions do not occur for decades to hundreds of years, the atmosphere can oxidize all pollutants, leading to a very thin atmosphere, global cooling and decadal drought. Prior to the 20th century, increases in atmospheric carbon dioxide (CO 2 ) followed increases in temperature initiated by changes in SO 2 . By 1962, man burning fossil fuels was adding SO 2 to the atmosphere at a rate equivalent to one 'large' volcanic eruption each 1.7 years. Global temperatures increased slowly from 1890 to 1950 as anthropogenic sulfur increased slowly. Global temperatures increased more rapidly after 1950 as the rate of anthropogenic sulfur emissions increased. By

  5. An Electrochemical Impedance Spectroscopy Study on a Lithium Sulfur Pouch Cell

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2016-01-01

    The impedance behavior of a 3.4 Ah pouch Lithium-Sulfur cell was extensively characterized using the electrochemical impedance spectroscopy (EIS) technique. EIS measurements were performed at various temperatures and over the entire state-of-charge (SOC) interval without applying a superimposed DC...

  6. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  7. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  8. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes.

    Science.gov (United States)

    Poser, Alexander; Lohmayer, Regina; Vogt, Carsten; Knoeller, Kay; Planer-Friedrich, Britta; Sorokin, Dimitry; Richnow, Hans-H; Finster, Kai

    2013-11-01

    Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.

  9. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  11. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W. (Eastern Illinois University, Charleston, IL (USA). Chemistry Dept.)

    1990-01-01

    Hot tetrachloroethene (perchloroethylen PCE) extracts significant amounts of elemental sulfur (S{sup o}) from weathered coals but not from pristine coals. The objective of this study was to determine whether S{sup o} extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted S{sup o} was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The S{sup o} was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, S{sup o} and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. 21 refs., 2 tabs.

  12. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  13. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  14. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Z. [Lab. de Chimie Physique, UMR, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS{sup .}, RSS{sup .}, RS{sup .+}, (RSSR){sup .+}] and their implications for biological systems. (author)

  15. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.

    2001-01-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS . , RSS . , RS .+ , (RSSR) .+ ] and their implications for biological systems. (author)

  16. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    Science.gov (United States)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  17. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  18. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  19. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  20. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents

    International Nuclear Information System (INIS)

    Lin, Ligang; Wang, Andong; Dong, Meimei; Zhang, Yuzhong; He, Benqiao; Li, Hong

    2012-01-01

    Graphical abstract: Membrane adsorption process is proposed for sulfur removal. Three-dimensional network structure is key to fulfill adsorption function of MMMs, which adsorption/desorption behavior is markedly related with binding force with sulfur molecules. Highlights: ► Membrane adsorption process is proposed for sulfur removal. ► Three-dimensional network structure of MMMs is key to fulfill adsorption function. ► Adsorption/desorption behavior is markedly related with binding force. - Abstract: A novel membrane adsorption process was proposed for the sulfur removal from fuels. The mixed matrix membranes (MMMs) adsorbents composed of polyimide (PI) and various Y zeolites were prepared. By the detailed characterization of FT-IR, morphology, thermal and mechanical properties of MMMs adsorbents, combining the adsorption and desorption behavior research, the process–structure–function relationship was discussed. Field-emission scanning electron microscope (FESEM) images show that the functional particles are incorporated into the three-dimensional network structure. MMMs adsorbents with 40% of zeolites content possess better physical properties, which was confirmed by mechanical strength and thermo stability analysis. Influence factors including post-treatment, content of incorporated zeolites, adsorption time, temperature, initial sulfur concentration as well as sulfur species on the adsorption performance of MMMs adsorbents have been evaluated. At 4 wt.% zeolites content, adsorption capacity for NaY/PI, AgY/PI and CeY/PI MMMs adsorbents come to 2.0, 7.5 and 7.9 mg S/g, respectively. And the regeneration results suggest that the corresponding spent membranes can recover about 98%, 90% and 70% of the desulfurization capacity, respectively. The distinct adsorption and desorption behavior of MMMs adsorbents with various functional zeolites was markedly related with their various binding force and binding mode with sulfur compounds.

  1. Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus

    International Nuclear Information System (INIS)

    Ludwig, F.L.

    1976-01-01

    Marine aerosols often have sulfur-to-chloride ratios greater than that found in seawater. Sulfur isotope ratios ( 34 S/ 32 S) were measured in aerosol and cloud droplet samples collected in the San Francisco Bay Area in an attempt to understand the processes that produce the observed sulfur-to-chloride ratios. Seawater sulfur usually has very high sulfur isotope ratios: fossil fuel sulfur tends to have smaller isotope ratios and sulfur of bacteriogenic origin still smaller. Samples collected in unpolluted marine air over the hills south of San Francisco had sulfur ratios that were significantly lower than the values for samples collected in nearby areas that were subject to urban pollution. The highest sulfur isotope ratios were found in the offshore seawater. The results suggest bacteriogenic origins, of the marine air sulfur aerosol material. The low isotope ratios in the marine air cannot be explained as a mixture of seawater sulfur and pollutant sulfur, because both tend to have higher isotope ratios. (Auth.)

  2. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  3. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  4. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  5. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  6. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS

    KAUST Repository

    Sanguineti, Michael Mario

    2015-05-01

    Concentrated Nannochloropsis salina paste was reconstituted in distilled water and synthetic saltwater and processed at 250°C and 300°C via hydrothermal liquefaction. The resulting bio-oils yielded a diverse distribution of product classes, as analyzed by ultra high resolution APCI FT-ICR MS. The organic fractions were analyzed and both higher temperatures and distilled water significantly increase the number of total compounds present and the number of product classes. Major bio-oil products consisted of N1O1, hydrocarbon, and O2 classes, while O1, O4, S1, N1O2, and N2O2 classes represented the more significant minor classes. Both chlorine and sulfur containing compounds were detected in both distilled and saltwater reactions, while fewer numbers of chlorine and sulfur containing products were present in the organic fraction of the saltwater reactions. Further refinement to remove the chlorine and sulfur contents appears necessary with marine microalgal bio-oils produced via hydrothermal liquefaction. The higher heating value (MJ/kg) as calculated by the Boie equation of classes of interest in the bio-oil reveals a significant potential of algal hydrothermal liquefaction products as a sustainable and renewable fuel feedstock. © 2015.

  7. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    Science.gov (United States)

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards

    OpenAIRE

    Hinckley, Eve-Lyn S.; Matson, Pamela A.

    2011-01-01

    Unintended anthropogenic deposition of sulfur (S) to forest ecosystems has a range of negative consequences, identified through decades of research. There has been far less study of purposeful S use in agricultural systems around the world, including the application of elemental sulfur (S0) as a quick-reacting fungicide to prevent damage to crops. Here we report results from a three-year study of the transformations and flows of applied S0 in soils, vegetation, and hydrologic export pathways ...

  9. Sulfur solubility of liquid and solid Fe-Cr alloys. A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, Peter [Leoben Univ. (Austria). Dept. of General, Analytical and Physical Chemistry

    2015-04-15

    Gibbs energy modeling for sulfur solving liquid and solid iron-chromium phases with body- and face-centered cubic structure has been carried out using a substitutional approach. Experimental data available from the literature on sulfur potentials in the temperature range 1 525 to 1 755 C for the liquid metallic phase and 1 000 to 1 300 C for the solid alloys have been taken into consideration. Recent thermodynamic evaluations of the Fe-S and Cr-S binary subsystems served as basis for the presented work. The obtained models allow a satisfactory reproduction of the majority of the sulfur potential data as well as the prediction of an isothermal partial section at 1 300 C. Consistent embedding of the optimized Gibbs energies within a recent thermodynamic modeling of the complete Cr-Fe-S system is achieved.

  10. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  11. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  12. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  13. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Icpyo [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo; Ahn, Jou-Hyeon [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Ryu, Ho-Suk [Department of Material and Energy Engineering, Gyeongwoon University, 730, Gangdong-ro, Sandong-myeon, Gumi, Gyeongbuk, 39160 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-10-15

    Highlights: • The sulfur/activated carbon composite is fabricated using commercial activated carbons. • The sulfur/activated carbon composite with coal shows the best performance. • The Li/S battery has capacities of 1240 mAh g{sup −1} at 1 C and 567 mAh g{sup −1} at 10 C. - Abstract: We prepared sulfur/active carbon composites via a simple solution-based process using the following commercial activated carbon-based materials: coal, coconut shells, and sawdust. Although elemental sulfur was not detected in any of the sulfur/activated carbon composites based on Thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy, Energy-dispersive X-ray spectroscopy results confirmed its presence in the activated carbon. These results indicate that sulfur was successfully impregnated in the activated carbon and that all of the activated carbons acted as sulfur reservoirs. The sulfur/activated carbon composite cathode using coal exhibited the highest discharge capacity and best rate capability. The first discharge capacity at 1 C (1.672 A g{sup −1}) was 1240 mAh g{sup −1}, and a large reversible capacity of 567 mAh g{sup −1} was observed at 10 C (16.72 A g{sup −1}).

  14. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  15. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  16. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    Science.gov (United States)

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  18. Lower detectable limit of sulfur by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1976-07-01

    For the purpose of air pollution research, the possibility of fast neutron activation analysis of sulfur was investigated. The only reaction that can be used for this purpose is S/sup 34/(n, p)P/sup 34/. A rabbit system was installed, synchronized with a 150 kV D-T neutron generator and an electronic analysing system. The whole system was operated so that the sample was irradiated for 10 sec and the 2.13 MeV ..gamma..-ray was counted for 10 sec. 5 samples were prepared containing sulfur from 0.5 to 0.1 g. Each measurement lasted 30 min and the activity was plotted as a function of sulfur weight. The relative error is increased very much when the amount of sulfur is below 0.1 g. This is what sets the lower detectable limit. Collection of more than 0.1 g of sulfur even during a long collection time means a very high SO/sub 2/ concentration in the air.

  19. Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria.

    Science.gov (United States)

    Jagannathan, Bharat; Golbeck, John H

    2008-12-01

    The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. Mössbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.

  20. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  1. Oceanic emissions of sulfur: Application of new techniques

    Science.gov (United States)

    Jodwalis, Clara Mary

    Sulfur gases and aerosols are important in the atmosphere because they play major roles in acid rain, arctic haze, air pollution, and climate. Globally, man-made and natural sulfur emissions are comparable in magnitude. The major natural source is dimethyl sulfide (DMS) from the oceans, where it originates from the degradation of dimethysulfonioproprionate (DMSP), a compound produced by marine phytoplankton. Global budgets of natural sulfur emissions are uncertain because of (1) the uncertainty in the traditional method used to estimate DMS sea-to-air flux, and (2) the spatial and temporal variability of DMS sea-to-air flux. We have worked to lessen the uncertainty on both fronts. The commonly used method for estimating DMS sea-to-air flux is certain to a factor of two, at best. We used a novel instrumental technique to measure, for the first time, sulfur gas concentration fluctuations in the marine boundary layer. The measured concentration fluctuations were then used with two established micrometeorological techniques to estimate sea-to-air flux of sulfur. Both methods appear to be more accurate than the commonly used one. The analytical instrument we used in our studies shows potential as a direct flux measurement device. High primary productivity in high-latitude oceans suggests a potentially large DMS source from northern oceans. To begin to investigate this hypothesis, we have measured DMS in the air over northern oceans around Alaska. For integrating and extrapolating field measurements over larger areas and longer time periods, we have developed a model of DMS ocean mixing, biological production, and sea-to-air flux of DMS. The model's main utility is in gaining intuition on which parameters are most important to DMS sea-to-air flux. This information, along with a direct flux measurement capability, are crucial steps toward the long-term goal of remotely sensing DMS flux. A remote sensing approach will mitigate the problems of spatial and temporal

  2. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  3. Coupled thermo-fluid stress analysis of Kambara Reactor with various anchors in the stirring of molten iron at extremely high temperatures

    International Nuclear Information System (INIS)

    Huang, De-Shau; Huang, Feng-Chi

    2014-01-01

    Kambara Reactors (KR) are commonly used to reduce sulfur content in steel making, achieving efficiency levels exceeding 85% at 1300 °C. Unfortunately, the operational lifespan of the KR impeller is somewhat limited due to fracturing of the refractory material via thermal shock, resulting in the penetration of molten iron into the inner core. Few studies have investigated the coupled thermo-fluid stress of KR impellers at extremely high temperatures. This study employed CFX and FEM to simulate and analyze the molten iron and the resulting thermal stress imposed on the KR impeller. Simulation results including flow field, temperature, and thermal stress under extremely high temperatures are in strong agreement with empirical data. V-type anchors for the KR impeller outperformed Y-type anchors. - Highlights: • A thermo-fluid coupling approach is proposed to analyze the thermal stress. • The temperature and stress of the impeller are 790 °C and 744 MPa at the final stage. • The highest temperatures occur at the tip of anchors, which causes material crack. • The thermal stress in impellers with Y-type anchors is greater than V-type anchors

  4. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  5. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  6. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  7. Sulfur Concentration at Sulfide Saturation in Anhydrous Silicate Melts at Crustal Conditions

    Science.gov (United States)

    Liu, Y.; Samaha, N.; Baker, D. R.

    2006-05-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1250°C to 1450°C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic. All experiments were saturated with a FeS melt. Temperature was confirmed to have a positive effect on the SCSS and no measurable pressure effect was observed. Oxygen fugacity was controlled to be either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. A series of models were constructed to predict the SCSS as a function of temperature, pressure, melt composition, oxygen fugacity and sulfur fugacity of the system. The coefficients were obtained by the regression of experimental data from this study and from data in the literature. The best model found for the prediction of the SCSS is: ln S (ppm) = 996/T + 9.875 + 0.997 ln MFM + 0.1901 ln fO2 - 0.0722 (P/T) -0.115 ln f S2, where P is in bar, T is in K, and MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM = [Na + K + 2 (Ca + Mg+ Fe2+)]/[Si × (Al + Fe3+)]. This model predicts the SCSS in anhydrous silicate melts from rhyolitic to basaltic compositions at crustal conditions from 1 bar to 1.25 GPa, temperatures from ~1200 to 1400 C, and oxygen fugacities between approximately two log units below the fayalite-quartz-magnetite buffer and one log unit above the nickel-nickel oxide buffer. For cases where the oxygen and sulfur fugacities can not be adequately estimated a simpler model also works acceptably: ln S (ppm) = -5328/T + 8.431 + 1.244 ln MFM - 0.01704(P/T) + ln aFeS, where aFeS is the activity of FeS in the sulfide melt and is well approximated by a value of 1. Additional experiments were performed on other basalts in a temperature range from 1250 C to 1450 C at 1 GPa to test the models. The model

  8. Sulfur impact on NO{sub x} storage, oxygen storage, and ammonia breakthrough during cyclic lean/rich operation of a commercial lean NO{sub x} trap

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Soon; Partridge, William P.; Daw, C. Stuart [Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory, P.O. Box 2008, MS-6472, Oak Ridge, TN 37831-6472 (United States)

    2007-11-30

    The objective of the present study was to develop an improved understanding of how sulfur affects the spatiotemporal distribution of reactions and temperature inside a monolithic lean NO{sub x} trap (LNT). These spatiotemporal distributions are believed to be major factors in LNT function, and thus, we expect that a better understanding of these phenomena can benefit the design and operation of commercial LNTs. In our study, we experimentally evaluated a commercial LNT monolith installed in a bench-flow reactor with simulated engine exhaust. The reactor feed gas composition was cycled to simulate fast lean/rich LNT operation at 325 C, and spatiotemporal species and temperature profiles were monitored along the LNT axis at different sulfur loadings. Reactor outlet NO{sub x}, NO, N{sub 2}O, and NH{sub 3} were also measured. Sulfur tended to accumulate in a plug-like fashion in the reactor and progressively inhibited NO{sub x} storage capacity along the axis. The NO{sub x} storage/reduction (NSR) reactions occurred over a relatively short portion of the reactor (NSR zone) under the conditions used in this study, and thus, net NO{sub x} conversion was only significantly reduced at high sulfur loading. Oxygen storage capacity (OSC) was poisoned by sulfur also in a progressive manner but to a lesser extent than the NO{sub x} storage capacity. Global selectivity for N{sub 2}O remained low at all sulfur loadings, but NH{sub 3} selectivity increased significantly with sulfur loading. We conjecture that NH{sub 3} breakthrough increased because of decreasing oxidation of NH{sub 3}, slipping from the NSR zone, by downstream stored oxygen. The NSR and oxygen storage/reduction (OSR) generated distinctive exotherms during the rich phase and at the rich/lean transition. Exotherm locations shifted downstream with sulfur accumulation in a manner that was consistent with the progressive poisoning of NSR and OSR sites. (author)

  9. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  10. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  11. Status of the INERI sulfur-iodine integrated-loop experiment

    International Nuclear Information System (INIS)

    Pickard, P.; Carles, Ph.; Buckingham, R.; Russ, B.; Besenbruch, G.

    2007-01-01

    The Sulfur-Iodine (S-I) thermochemical water-splitting cycle has been studied as a potential source of hydrogen on a large scale. Coupled to a nuclear reactor, an S-I hydrogen plant could efficiently produce hydrogen without greenhouse gas emissions. In the S-I cycle, iodine and sulfur dioxide are combined with water to create two immiscible acid phases - a light sulfuric acid phase, and a heavy hydriodic acid phase. The sulfuric acid phase is decomposed at temperatures near 850 C degrees, and the resulting sulfur dioxide is recycled back into the process. The hydriodic acid in the lower phase is separated from excess water and iodine, and is then decomposed into the product hydrogen and iodine. The water and iodine from these steps are also recycled. In an International Nuclear Energy Research Initiative (INERI) project supported by the US DOE Office of Nuclear Energy, Sandia National Labs (SNL) has teamed with Cea in France, and industrial partner General Atomics (GA) to construct and operate a closed-loop device for demonstration of hydrogen production by the S-I process. Previous work in Japan has demonstrated continuous closed-loop operation of the S-I cycle for up to one week using glass components at atmospheric pressure. This work will aim for operation under process conditions expected at the pilot plant-level and beyond pressures up to 20 bar using engineering materials of construction. Staff at Cea is responsible for the acid-generation step, known as the Bunsen reaction. SNL is handling the sulfuric acid decomposition step, and GA is providing equipment for decomposing hydriodic acid into the product hydrogen. All parties are assembling equipment at the GA site in San Diego, California. Operation of the closed-loop device is expected to commence in the second half of calendar year 2007. This paper will summarize project goals, work done to date, current status, and scheduled future work on the INERI S-I Integrated-Loop Experiment. (authors)

  12. Hydroxymethane sulfonate as a possible explanation for observed high levels of particulate sulfur during severe winter haze episodes in Beijing, China.

    Science.gov (United States)

    Moch, J.; Jacob, D.; Mickley, L. J.; Cheng, Y.; Li, M.; Munger, J. W.; Wang, Y.

    2017-12-01

    Observed PM2.5 during severe winter haze in Beijing, China, may reach levels as high as 880 μg m-3, with sulfur compounds contributing significantly to PM2.5 composition. Such sulfur has been traditionally assumed to be sulfate, even though models fail to generate such large sulfate enhancements under cold and hazy conditions. We show that particulate sulfur in wintertime Beijing possibly occurs as an S(IV)-HCHO adduct, hydroxymethane sulfonate (HMS), formed by reaction of aqueous-phase HCHO and S(IV) in cloud droplets. We use a 1-D chemistry model extending from the surface through the boundary layer to examine the potential role of HMS during the Beijing haze events of December 2011 and January 2013. Observed and assimilated meteorological fields including cloud liquid water were applied to the model, and we test the sensitivity of HMS formation to cloud pH and ambient SO2 and HCHO. Surface observations from the two haze events show excess ammonium in the aerosol, indicating cloud pH may be relatively high. Model results show that once cloud pH exceeds 4.5, HMS can accumulate rapidly, reaching a few hundred μg m-3 in a few hours. The timing of HMS formation is controlled by the presence of cloud liquid water, with eddy driven diffusion bringing HMS to the surface. The magnitude of HMS peaks is limited by the supply of HCHO. HMS episodes in the model end gradually over 1-3 days as fresh air is entrained into the boundary layer; in observations these episodes typically end when increasing wind speeds destabilize the boundary layer and disperses pollution. We find that consideration of HMS as a source of particulate sulfur significantly improves model match with observations. For example, assuming cloud pH of 5 and average surface SO2 and HCHO levels of 50 ppb and 5.5 ppb, we calculate mean HMS as 43.8 μg m-3 in January 2013, within 7 μg m-3 of observed particulate sulfur. Our 1-D model also captures the timing and magnitude of peak particulate sulfur in January

  13. Vulcanization Kinetics of Natural Rubber Based On Free Sulfur Determination

    Directory of Open Access Journals (Sweden)

    Abu Hasan

    2013-05-01

    Full Text Available The determination of free sulfur in the rubber vulcanizates provided significant representation of vulcanization reaction. In this research, the effects of vulcanization temperature, the mixing method of carbon black into rubber, the ingredients mixing sequence and the type of carbon black were studied on masticated and milled natural rubber in which the reaction was observed by un-reacted sulfur determination. The results showed that higher vulcanization temperature provided faster vulcanization reaction and greater reaction rate constant. Similarly, the mixing sequence of ingredient and carbon black into rubber influenced the rate of vulcanization reaction. The subsequent ingredients mixing sequence, in this case, resulted in higher vulcanization rate compared to that of the simultaneous one. However, the mixing method of carbon black into rubber brought small effect on the rate of vulcanization reaction. The type of carbon black applied was observed to influence the reaction rate of vulcanization. Smaller particle sizes of carbon black gave larger reaction rate constant. In this case, the type of carbon black N 330 gave faster vulcanization rate than that of N 660.

  14. Diesel with low sulfur content and high cetane number produced by two stages hydrotreating procedures; Diesel com baixos teores de enxofre e alto numero de cetano a partir de hidrotratamento em dois estagios

    Energy Technology Data Exchange (ETDEWEB)

    Zotin, J L; Pacheco, M E; Souza, V P; Belato, D; Silva, R M.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    According to the Brazilian specifications for diesel, lower sulfur content and higher cetane number can be expected in the near future, leading to an increased capacity of hydrotreating processes. PETROBRAS has proved technology for hydrotreating processes with 8 high pressure single stage units in operation. However, the production of ultra low sulfur diesel with high cetane number may require two stages processes, with conventional hydrotreating in the first step and deep aromatic saturation (HDA), with increase in the cetane number, in the second one. In this approach, noble metal catalysts, which are more active for hydrogenation but more sensitive to sulfur and nitrogen poisoning, can be used in the second stage. In the present work, the 2 stages approach was studied for maximizing cetane number of Brazilian gasoils. The influence of operating variables and the inhibition effect by sulfur and nitrogen were analyzed. Diesel with sulfur content below 10 ppm and high aromatic conversions at relatively mild conditions were obtained with noble metal catalysts, with a cetane number increase up to 6 points in the second stage. Sulfur compounds have a stronger inhibition effect than basic nitrogen compounds on hydrogenation reaction rates, but a synergetic effect was observed when both contaminants were present in high concentrations. (author)

  15. Effect of sulfur addition and heat treatment on electrical conductivity of barium vanadate glasses containing iron

    Energy Technology Data Exchange (ETDEWEB)

    Hassaan, M.Y., E-mail: myhassaan@yahoo.com [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); Ebrahim, F.M.; Mostafa, A.G. [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Suez Canal University, Faculty of Science, Physics Department, Suez (Egypt)

    2011-09-15

    Highlights: {yields} Selected glasses of V{sub 2}O{sub 5}-BaO-5Fe{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. {yields} Glass ceramic nanocrystals are important because of their physical properties which are not obtainable in other classes of materials. {yields} Crystal and grain sizes are the most significant structural parameters in electronic nanocrystalline glassy phases. {yields} These phases have very high electrical conductivity, hence glass-ceramic nanocrystals are expected to be used, for example, as a gas sensor. - Abstract: Six glass samples with a composition of 75V{sub 2}O{sub 5} + 10BaO + 15Fe{sub 2}O{sub 3} mol%, with 0, 10, 15, 20, and 25 wt% of sulfur were prepared by using a quenching method. The samples were measured by XRD, DSC, TEM, Moessbauer spectrometry and D.C. conductivity. The prepared samples were heat treated at temperature close to their crystallization temperatures for 1 h, and then the previous measurements were repeated. The results showed that the treatment process caused the formation of V{sub 2}O{sub 5} and FeVO{sub 4} nanocrystals with size of 17-25 nm dispersed in the glass matrix. The addition of sulfur reduced only the vanadium ions to V{sup 4+}, while it was found that iron ions were Fe{sup 3+} only. D.C. conduction enhanced due to the small polaron or electron hopping from V{sup 4+} to V{sup 5+} ions. The heat treated samples exhibit much higher conductivity and much lower activation energy than the as-prepared glasses. The heat treated samples showed decreased thermal stability with the addition of sulfur. This considerable enhancement of electrical conductivity after nanocrystallization referred to the formation of extensive and dense network of electronic conduction paths which are situated between V{sub 2}O{sub 5} nanocrystals and their surfaces.

  16. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  17. Idiosyncrasies of volcanic sulfur viscosity and the triggering of unheralded volcanic eruptions

    Directory of Open Access Journals (Sweden)

    Teresa eScolamacchia

    2016-03-01

    Full Text Available Unheralded blue-sky eruptions from dormant volcanoes cause serious fatalities, such as at Mt. Ontake (Japan on 27 September 2014. Could these events result from magmatic gas being trapped within hydrothermal system aquifers by elemental sulfur (Se clogging pores, due to sharp increases in its viscosity when heated above 159oC? This mechanism was thought to prime unheralded eruptions at Mt. Ruapehu in New Zealand. Impurities in sulfur (As, Te, Se are known to modify S-viscosity and industry experiments showed that organic compounds, H2S, and halogens dramatically influence Se viscosity under typical hydrothermal heating/cooling rates and temperature thresholds. However, the effects of complex sulfur compositions are currently ignored at volcanoes, despite its near ubiquity in long-lived volcano-hydrothermal systems. Models of impure S behavior must be urgently formulated to detect pre-eruptive warning signs before the next blue-sky eruption

  18. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  19. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    Science.gov (United States)

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  20. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp