WorldWideScience

Sample records for high temperature stresses

  1. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  2. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  3. Proteomics of Rice Grain under High Temperature Stress

    Directory of Open Access Journals (Sweden)

    Toshiaki eMitsui

    2013-03-01

    Full Text Available Recent proteomic analyses revealed dynamic changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature stress in rice ripening period causes damaged (chalky grains which have loosely packed round shape starch granules. The high temperature stress response on protein expression is complicated, and the molecular mechanism of the chalking of grain is obscure yet. Here, the current state on the proteomics research of rice grain grown under high temperature stress is briefly overviewed.

  4. TENSILE STRESS RELAXATION OF TURBINE BOLT STEELS AT HIGH TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    G.Q. Jia; H.W. Shen; Y.M. Zhu

    2004-01-01

    Stress relaxation behavior of two turbine bolt steels was evaluated by the manualcontrolled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manualcontrolled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.

  5. Antioxidation of Anthocyanins in Photosynthesis Under High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Ling Shao; Zhan Shu; Shu-Lan Sun; Chang-Lian Peng; Xiao-Jing Wang; Zhi-Fang Lin

    2007-01-01

    Chlorophyll fluorescence and antioxidative capability in detached leaves of the wild type Arabidopsis thaliana L. ecotype Landsberg erecta (Ler) and three mutants deficient in anthocyanins biosynthesis (tt3, tt4, and tt3tt4) were investigated during treatment with temperatures ranging 25-45 ℃. In comparison with the wild type, chlorophyll fluorescence parameters Fv/Fm, ΦPSⅡ, electron transport rate (ETR), Fv/Fo and qP in three anthocyanin-deficient mutants showed a more rapidly decreasing rate when the temperature was over 35 ℃. Non-photochemical quenching (NPQ) in these mutants was almost completely lost at 44 ℃, whereas the content of heat stable protein dropped and the rate of the membrane leakage increased.Fo-temperature curves were obtained by monitoring Fo levels with gradually elevated temperatures from 22 ℃ to 72 ℃ at 0.5℃/min. The inflexion temperatures of Fo were 45.8 ℃ in Ler, 45.1 ℃ in tt3, 44.1 ℃ in tt4 and 42.3 ℃ in tt3tt4, respectively.The temperatures of maximal Fo in three mutants were 1.9-3.8 ℃ lower than the wild type plants. Meanwhile, three mutants had lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and an inferior scavenging capability to DPPH (1.1-diphenyl-2-picrylhy.drazyl) radical under heat stress, and in particular tt3tt4 had the lowest antioxidative potential. The results of the diaminobenzidine-H2O2 histochemical staining showed that H2O2 was accumulated in the leaf vein and mesophyll cells of mutants under treatment at 40 ℃, and it was significantly presented in leaf cells of tt3tt4.The sensitivity of Arabidopsis anthocyanins-deficient mutants to high temperatures has revealed that anthocyanins in normal plants might provide protection from high temperature injury, by enhancing its antioxidative capability under high temperature stress.

  6. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  7. Stress relaxation behavior of dental porcelains at high temperatures.

    Science.gov (United States)

    DeHoff, P H; Vontivillu, S B; Wang, Z; Anusavice, K J

    1994-05-01

    The purpose of this study was to measure the stress relaxation behavior at elevated temperatures of three experimental opaque porcelains and three experimental body porcelains. Feldspathic porcelain formulations covering a range of thermal contraction coefficients were supplied by a dental ceramics manufacturer. Six specimens, 11 mm in diameter by 22 mm long, were fabricated for each porcelain. The specimens were tested in compression at five temperatures controlled to +/- 1 degree C in a hot stage furnace attached to a screw-type uni-axial testing machine. Mean values of relaxation time, tau u, and the b function were determined by a regression fit to the relation: psi (t) = exp [-(t/tau u)b]. Values of b ranged from 0.23 to 0.53 for opaque porcelain and 0.47 to 0.64 for body porcelain. Relaxation times ranged from 2.6 s to 4 x 10(4) s for the opaque porcelains and 1.5 s to 5.5 x 10(2) s for the body porcelains. A statistically significant variation of b with temperature for three of the experimental porcelains is an indication that these porcelains do not satisfy the theoretical requirements for the porcelains to be classified as thermorheologically simple. A knowledge of the relaxation behavior of dental porcelains is necessary so that dental researchers can identify metal/porcelain combinations that will result in low stress values and, therefore, reduce the potential for failure from thermally induced stresses. These properties can be used in the optimization of prosthesis design to reduce the destruction of healthy tissue to accommodate the placement of the dental prosthesis.

  8. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    Science.gov (United States)

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

  9. Crop physiological responses to high temperature stress. II. Tolerance and agronomic treatment.

    Directory of Open Access Journals (Sweden)

    Néstor Felipe Chaves-Barrantes

    2016-12-01

    Full Text Available The objective of this review was to describe plant responses and tolerance mechanisms to thermal stress, as well as the use of agronomic practices to mitigate the effects of high temperature stress on crops. The energy balance of leaves and canopies is presented as a link between plant and air temperature. The effects of high temperatures on water relations, photosynthesis and assimilate partitioning, and the morphological and phenological responses of some crops are described. Response agronomy is presented as a means for the prevention and remediation of thermal stress, which is approached form the perspective of plant breeding, agronomic management, and several pharmaceutical and horticultural practices. Some agronomic practices utilized to reduce the negative effects of high temperature stress on crops are described, such as the use of ground covers, natural or arti cial shade, and the application of growth regulators, plant protectants and other products of the modern pharmaceutical industry.

  10. Interaction of fatigue and creep of GH33 under multi-axial stress at high temperature

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Low-cycle fatigue experiments of tension-compression, torsion and tension-torsion with holding time were performed.The interaction law of creep and fatigue under multiaxial stress at high temperature was investigated, and the micro-mechanism ofequilibrium diagrams was analyzed. A united equation of fatigue life under multiaxial stress was proposed.

  11. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K. [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    1995-06-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress.

  12. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  13. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    Science.gov (United States)

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production. PMID:27148324

  14. Polyamine Accumulation in Transgenic Tomato Enhances the Tolerance to High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Lin Cheng; Yijing Zou; Shuli Ding; Jiajing Zhang; Xiaolin Yu; Jiashu Cao; Gang Lu

    2009-01-01

    Polyamines play an important role in plant response to abiotic stress. S-adenosyl-I-methionine decarboxylase (SAMDC) is one of the key regulatory enzymes in the biosynthesis of polyamines. In order to better understand the effect of regulation of polyamine biosynthesis on the tolerance of high-temperature stress in tomato, SAMDC Cdna isolated from Saccharomyces cerevisiae was introduced into tomato genome by means of Agrobacterium tumefaciens through leaf disc transformation. Transgene and expression was confirmed by Southern and Northern blot analyses, respectively. Transgenic plants expressing yeast SAMDC produced 1.7- to 2.4-fold higher levels of spermidine and spermine than wild-type plants under high temperature stress, and enhanced antioxidant enzyme activity and the protection of membrane lipid peroxidation was also observed. This subsequently improved the efficiency of CO2 assimilation and protected the plants from high temperature stress, which indicated that the transgenic tomato presented an enhanced tolerance to high temperature stress (38℃) compared with wild-type plants, Our results demonstrated clearly that increasing polyamine biosynthesis in plants may be a means of creating high temperature-tolerant germplasm.

  15. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  16. Modeling of high homologous temperature deformation behavior for stress and life-time analyses

    Energy Technology Data Exchange (ETDEWEB)

    Krempl, E. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-12-31

    Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.

  17. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  18. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Anjali, E-mail: anjalisinghal2007@u.northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Deymier-Black, Alix C., E-mail: alixdeymier2010@u.northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Dunand, David C., E-mail: dunand@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2013-04-01

    Synchrotron X-ray diffraction is used to study in situ the evolution of phase strains during compressive creep deformation in bovine bone and dentin for a range of compressive stresses and irradiation rates, at ambient and body temperatures. In all cases, compressive strains in the collagen phase increase with increasing creep time (and concomitant irradiation), reflecting macroscopic deformation of the sample. By contrast, compressive elastic strains in the hydroxyapatite (HAP) phase, created upon initial application of compressive load on the sample, decrease with increasing time (and irradiation) for all conditions; this load shedding behavior is consistent with damage at the HAP–collagen interface due to the high irradiation doses (from ∼ 100 to ∼ 9,000 kGy). Both the HAP and fibril strain rates increase with applied compressive stress, temperature and irradiation rate, which is indicative of greater collagen molecular sliding at the HAP–collagen interface and greater intermolecular sliding (i.e., plastic deformation) within the collagen network. The temperature sensitivity confirms that testing at body temperature, rather than ambient temperature, is necessary to assess the in vivo behavior of bone and teeth. The characteristic pattern of HAP strain evolution with time differs quantitatively between bone and dentin, and may reflect their different structural organization. Highlights: ► First systematic study of varying creep stresses on bone and dentin at nanoscale. ► HAP in highly irradiated bone and dentin sheds load during creep at all stresses. ► This suggests HAP–collagen interfacial damage due to irradiation and applied stress. ► HAP and fibril strain rates increase with stress, temperature and irradiation. ► Temporal evolution of strains different in bone and dentin.

  19. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  20. Relaxation of residual stresses in 20%SiCw/6061Al composite as-extruded at high temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The residual stress in a 20%SiCw/6061Al composite as-extruded was investigated by using X-ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.

  1. Optimization of Residual Stress of High Temperature Treatment Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    M. Susmikanti

    2015-12-01

    Full Text Available In a nuclear industry area, high temperature treatment of materials is a factor which requires special attention. Assessment needs to be conducted on the properties of the materials used, including the strength of the materials. The measurement of material properties under thermal processes may reflect residual stresses. The use of Genetic Algorithm (GA to determine the optimal residual stress is one way to determine the strength of a material. In residual stress modeling with several parameters, it is sometimes difficult to solve for the optimal value through analytical or numerical calculations. Here, GA is an efficient algorithm which can generate the optimal values, both minima and maxima. The purposes of this research are to obtain the optimization of variable in residual stress models using GA and to predict the center of residual stress distribution, using fuzzy neural network (FNN while the artificial neural network (ANN used for modeling. In this work a single-material 316/316L stainless steel bar is modeled. The minimal residual stresses of the material at high temperatures were obtained with GA and analytical calculations. At a temperature of 6500C, the GA optimal residual stress estimation converged at –711.3689 MPa at adistance of 0.002934 mm from center point, whereas the analytical calculation result at that temperature and position is -975.556 MPa . At a temperature of 8500C, the GA result was -969.868 MPa at 0.002757 mm from the center point, while with analytical result was -1061.13 MPa. The difference in residual stress between GA and analytical results at a temperatureof6500C is about 27 %, while at 8500C it is 8.67 %. The distribution of residual stress showed a grouping concentrated around a coordinate of (-76; 76 MPa. The residuals stress model is a degree-two polynomial with coefficients of 50.33, -76.54, and -55.2, respectively, with a standard deviation of 7.874.

  2. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  3. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  4. Protective Roles of Brassinolide on Rice Seedlings under High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    CAO Yun-ying; ZHAO Hua

    2008-01-01

    Two indica rice(Oryza sativa L.)materials,Xieqingzao B(sensitive to heat stress)and 082(tolerant to heat stress),were used to study the role of brassinolide(BR)in protection of rice seedlings from heat stress.Young seedlings were subjected to high temperature(38℃/30℃)and sprayed with 0.005 mg/L of BR.Analysis was conducted on the contents of chlorophyll,protein and malondialdehyde(MDA),the leakage of electrolyte,the activities of peroxidase(POD)and superoxide dismutase(SOD)and their isozymes expression levels in leaves.Under the high temperature treatment,application of BR significantly increased the contents of chlorophyll and protein,and the activities of POD and SOD,and reduced the content of MDA and the leakage of electrolyte in the leaves of the heat-sensitive material Xieqingzao B,whereas BR had less effect on those of the heal-tolerant material 082 relatively.The BR treatment enhanced the expression of POD isozymes in the Ieaves of both materials.Under the high temperature stress and BR treatment.the expression of four SOD isozymes reduced in 082,but the expression of two SOD isozymes increased in Xieqingzao B.This suggests that BR plays an important role in protection of rice seedlings from heat stress by enhancing the activities or expression level of protective enzymes in the leaves.The materials with various heat-tolerance might differ in the mechanism of response to heat stress with BR application.

  5. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  6. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  7. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Science.gov (United States)

    Lyman, Nathaniel B; Jagadish, Krishna S V; Nalley, L Lanier; Dixon, Bruce L; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  8. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress.

    Science.gov (United States)

    Zhang, Shize; Fu, Wenyan; Li, Ning; Zhang, Fan; Liu, Tong-Xian

    2015-02-01

    Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  10. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Kolby J. Jardine

    2015-09-01

    Full Text Available Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  11. [Recovery growth of Microcystis aeruginosa after the sub-high temperature stress].

    Science.gov (United States)

    Li, Ting; Jing, Yuan-Shu; Han, Wei; Zhang, Xiao-Yi

    2014-11-01

    Recovery growth of Microcystis aeruginosa after sub-high temperature stress was investiga- ted in this paper. The treated groups under 35 °C were cultured for 3, 6, and 12 days before being transferred to normal conditions, and the algae under 25 °C all the time was set as the control. Cell density, chlorophyll a, carotenoid, malondialdehyde and antioxidant enzymes activities were measured. The results showed that the growth of M. aeruginosa was inhibited significantly under the sub-high temperature stress. The cell density and chlorophyll a content were 14.5% and 22.3% lower than the control respectively on the 12th day, but carotenoid synthesis was not inhibited obviously. The longer the stress was, the higher the malondialdehyde content and SOD, CAT activities became. After the relief of stress, algal cells got recovered with the decreasing malondialdehyde content and antioxidase activities. The 3-, 6- and 12-day stress treatments at 35 °C showed under-compensation, over-compensation and exact-compensation, respectively, indicating that the com- pensatory degree was decided by the time under stress. As the recovery time proceeded, the differ- ence between treated groups and the control reduced gradually. The growth parameters tended to be stable. Regression equations of cell density and chlorophyll a changing with the stress time and recovery time were revealed. The compensation effect of M. aeruginosa was similar to the process of algal bloom. According to this endogenous biological characteristic, this study provided a theoretical support for prediction system of algal bloom.

  12. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    OpenAIRE

    JARDINE, KOLBY J.; CHAMBERS, JEFFREY Q.; Jennifer Holm; Angela B. Jardine; Clarissa G. Fontes; Zorzanelli, Raquel F.; Kimberly T. Meyers; Vinicius Fernadez de Souza; Sabrina Garcia; Gimenez,Bruno O.; Luani R. de O. Piva; Niro Higuchi; Paulo Artaxo; Scot Martin; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxid...

  13. Prediction of flow stresses at high temperatures with artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    汪凌云; 郑廷顺; 刘雪峰; 黄光杰

    2001-01-01

    On the basis of the data obtained on Gleeble-1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al-Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%.

  14. Intergranular stress corrosion cracking of welded ferritic stainless steels in high temperature aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzuka, Toshio; Shimogori, Kazutoshi; Fujiwara, Kazuo; Tomari, Haruo (Kobe Steel Ltd. (Japan). Central Research and Development Lab.); Kanda, Masao

    1982-07-01

    In considering the application of ferritic stainless steels to heat exchanger tubing materials for moisture separator-reheaters in LWRs, the effects of environmental conditions (temperature, chloride, dissolved oxygen, pH), thermal history, and steel composition (content of C, N, Cr and Ti) on the Inter-Granular Stress Corrosion Cracking (IGSCC) in high temperature aqueous environments, were studied. The IGSCC was proved to depend on steel composition and thermal history rather than environment. From these results, a steel was designed to prevent IGSCC of the welding HAZ for 18Cr and 13Cr steels.

  15. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

    Science.gov (United States)

    Giorno, Filomena; Wolters-Arts, Mieke; Mariani, Celestina; Rieu, Ivo

    2013-01-01

    Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants. PMID:27137389

  16. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

    Directory of Open Access Journals (Sweden)

    Filomena Giorno

    2013-07-01

    Full Text Available Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.

  17. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit

    Institute of Scientific and Technical Information of China (English)

    Lin CHENG; Rong-rong SUN; Fei-yan WANG; Zhen PENG; Fu-ling KONG; Jian WU; Jia-shu CAO; Gang LU

    2012-01-01

    Objective:High temperature adversely affects quality and yield of tomato fruit.Polyamine can alleviate heat injury in plants.This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit.Methods:An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd,1 mmol/L) and high temperature (33/27 ℃) treatments in tomato fruits at mature green stage.Results:Of the 10101 tomato probe sets represented on the array,127 loci were differentially expressed in high temperature-treated fruits,compared with those under normal conditions,functionally characterized by their involvement in signal transduction,defense responses,oxidation reduction,and hormone responses.However,only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits,which were involved in primary metabolism,signal transduction,hormone responses,transcription factors,and stress responses.Meanwhile,55 genes involved in energy metabolism,cell wall metabolism,and photosynthesis were down-regulated in Spd-treated fruits.Conclusions:Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.

  18. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.

    Science.gov (United States)

    Singhal, Anjali; Deymier-Black, Alix C; Almer, Jonathan D; Dunand, David C

    2013-04-01

    Synchrotron X-ray diffraction is used to study in situ the evolution of phase strains during compressive creep deformation in bovine bone and dentin for a range of compressive stresses and irradiation rates, at ambient and body temperatures. In all cases, compressive strains in the collagen phase increase with increasing creep time (and concomitant irradiation), reflecting macroscopic deformation of the sample. By contrast, compressive elastic strains in the hydroxyapatite (HAP) phase, created upon initial application of compressive load on the sample, decrease with increasing time (and irradiation) for all conditions; this load shedding behavior is consistent with damage at the HAP-collagen interface due to the high irradiation doses (from ~100 to ~9,000 kGy). Both the HAP and fibril strain rates increase with applied compressive stress, temperature and irradiation rate, which is indicative of greater collagen molecular sliding at the HAP-collagen interface and greater intermolecular sliding (i.e., plastic deformation) within the collagen network. The temperature sensitivity confirms that testing at body temperature, rather than ambient temperature, is necessary to assess the in vivo behavior of bone and teeth. The characteristic pattern of HAP strain evolution with time differs quantitatively between bone and dentin, and may reflect their different structural organization.

  19. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane.

    Science.gov (United States)

    Srivastava, Sangeeta; Pathak, Ashwini Dutt; Gupta, Prashant Shekhar; Shrivastava, Ashok Kumar; Srivastava, Arun Kumar

    2012-05-01

    Seventy-one genotypes of sugarcane from diverse agro-climatic zones of India viz. peninsular, northwest, north-central and eastern zones, were screened for their tolerance to high temperature stress based on the damage to leaf biomass i.e. necrosis of leaf-tips and margins, and rolling of leaves. Nine selected genotypes showing variable response to heat injury were tested for activity pattern of isoforms of two H2O2-scavenging enzymes; ascorbate peroxidase (APX) and catalase (CAT), under high temperature induced oxidative stress. Changes in the activity of APX and CAT isozymes in leaves corresponded to the level of tolerance of genotypes towards heat injury which was substantiated by the highly negative correlation coefficients of heat injury levels of leaves vs. integrated density of APX and CAT isozyme bands. This indicated that the criteria of higher expression of CATs' andAPXs', the two major reactive oxygen species scavenging proteins in leaves may be used to screen large seedling populations and germplasm for high temperature tolerance.

  20. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    Science.gov (United States)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  1. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures.

    Science.gov (United States)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T C; Tyagi, A K

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n=63, ambient temp. at HA: -6 degree to +10degreeC; SOJ 2, n=81, ambient temp. at HA: 3degree-22degreeC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  2. Growth strains and stress relaxation in alumina scales during high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2004-03-23

    A novel X-ray technique was used, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory, to investigate the growth stresses in {alpha}-Al{sub 2}O{sub 3}. In-situ measurements of Debye-Scherrer diffraction patterns from the scale were recorded during oxidation and cooling, and the elliptical distortion of the diffraction rings was analyzed to yield the in-plane strain. Fe-28Al, Fe-40Al, Fe-40Al-0.2Hf, Fe-20Cr-10Al and Ni-50Al (at. %) were studied. Data were acquired in air at temperatures between 950-1100 C and during cool down. In all cases, the steady stage growth strain was relatively low (<0.1%) and was either tensile or compressive depending on the alloy. A higher tensile strain often existed during the initial oxidation period when transition alumina was present. Thermal stresses imposed on NiAl by reducing the sample temperature to 950 C for a period of time showed noticeable stress relaxation by creep. Different degrees of relaxation were also found during cooling depending on alloy composition and scale microstructure. On all Fe-based alloys, the first formed {alpha}-Al{sub 2}O{sub 3} was highly textured with the degree of texture decreasing with further oxidation. The relationships between stress development, scale wrinkling, oxide phase changes, and the effect of reactive element addition on growth stresses are discussed. Results are compared with other reports of growth stresses in Al{sub 2}O{sub 3} scales.

  3. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower

    Science.gov (United States)

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  4. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower.

    Science.gov (United States)

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15-30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20-60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.

  5. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    In order to satisfy the growing need in high quality aluminum cast parts of the automobile industries, in the last decades the foundries have been showing an increasing interest in the implementation of numerical simulations as part of their process design. As a consequence, it is possible to find...... the analysis of the next phases, such as heat treatment and life prediction of the cast parts. Because of the lack of numerical program tools capable of predicting the stress-strain behavior of aluminum parts subjected to high temperature, it is indeed normally assumed that at the end of the thermal treatment...... in literature several programs capable of simulating the entire casting process, i.e. filling, solidification, as well as developed thermomechanical stresses. However, it is common practice in the foundry industry that the results obtained by the simulation of the cast process are "forgotten" during...

  6. A model for steady state stage III creep regime at low-high stress/temperature range

    Directory of Open Access Journals (Sweden)

    Nicola Bonora

    2008-07-01

    Full Text Available Although diffusional flow creep is often considered out of practical engineering applications, the need for a model capable to account for the resulting action of both diffusional and dislocation type creep is justified by the increasing demands of reliable creep design for very long lives (exceeding 100.000h, high stress-low temperatures and high temperature-low stress regimes. In this paper, a creep model formulation, in which the change of the creep mechanism has been accounted for through an explicit dependence of the creep exponent n on stress and temperature, has been proposed. An application example of the proposed approach to high purity aluminum is given.

  7. Alleviation of High Temperature Stress in Wax Begonia (Begonia × semperflorens?cultorum Hort.) by Salicylic Acid

    OpenAIRE

    Lin, Ling-Na; Huang, Kuang Liang; Okuibo, Hiroshi

    2011-01-01

    Wax begonia (Begonia × semperflorens?cultorum Hort.) plants often suffer from high temperature stress during hot seasons in Taiwan. Since salicylic acid (SA) has proved to enhance heat tolerance in many plants, this study evaluates whether exogenous SA applications could alleviate high temperature stress of wax begonias. Plug seedlings of wax begonia ‘Super Olympia’ were treated with 25, 100, 400, 800, with 1600 μM SA before 55 °C, for 2 h of high temperature stress. Results indicated that 25...

  8. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  9. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  10. On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states

    Science.gov (United States)

    Sanders, John W.; Dadfarnia, Mohsen; Stubbins, James F.; Sofronis, Petros

    2017-01-01

    It is well known that creep rupture in high temperature alloys is caused by grain boundary cavitation: the nucleation, growth, and coalescence of voids along grain boundaries. However, it has been observed recently that the multiaxial rupture behavior of a promising class of high temperature alloys (Tung et al., 2014) cannot be captured by a well-known empirical creep rupture model due to Hayhurst. In an effort to gain a better understanding of rupture in these materials, we depart from empirical models and simulate the underlying rupture mechanisms directly, employing two related models of void growth from the literature: one due to Sham and Needleman (1983), and an extension of Sham and Needleman's model due to Van der Giessen et al. (1995). Our results suggest that the experimental observations might be explained in terms of the interplay between bulk creep and gain boundary diffusion processes. Furthermore, we find that Sham and Needleman's original void growth model, combined with our rupture model, is well suited to capture the experimental data considered here. Such a mechanism-based understanding of the influence of multiaxial stress states on the creep rupture behavior of high temperature alloys promises to be of value and to provide a basis for the qualification of these alloys for extended service in a variety of elevated temperature applications.

  11. The effect of residual stress on performance of high temperature coatings

    Science.gov (United States)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  12. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis.

    Science.gov (United States)

    Delatorre, Jose; Pinto, Manuel; Cardemil, Liliana

    2008-08-21

    The main aim of this research was to compare the photosynthetic responses of two species of Prosopis, Prosopis chilensis (algarrobo) and Prosopis tamarugo (tamarugo) subjected to heat and water stress, to determine how heat shock or water deficit, either individually or combined, affect the photosynthesis of these two species. The photosynthetic rates expressed as a function of photon flow density (PFD) were determined by the O(2) liberated, in seedlings of tamarugo and algarrobo subjected to two water potentials: -0.3 MPa and -2.5 MPa and to three temperatures: 25 degrees C, 35 degrees C and 40 degrees C. Light response curves were constructed to obtain light compensation and light saturation points, maximum photosynthetic rates, quantum yields and dark respiration rates. The photochemical efficiency as the F(v)/F(m) ratio and the amount of RUBISCO were also determined under heat shock, water deficit, and under the combined action of both stress. Photosynthetic rates at a light intensity higher than 500 micromole photons m(-2)s(-1) were not significantly different (P>0.05) between species when measured at 25 degrees C under the same water potential. The maximum photosynthetic rates decreased with temperature in both species and with water deficit in algarrobo. At 40 degrees C and -2.5 MPa, the photosynthetic rate of algarrobo fell to 72% of that of tamarugo. The quantum yield decreased in algarrobo with temperature and water deficit and it was reduced by 50% when the conditions were 40 degrees C and -2.5 MPa. Dark respiration increased by 62% respect to the control at 40 degrees C in tamarugo while remained unchanged in algarrobo. The photochemical efficiency decreased with both, high temperature and water deficit, without differences between species. RUBISCO content increased in algarrobo 35 degrees C. Water deficit reduced the amount of RUBISCO in both species. The results of this work support the conclusion that in both Prosopis species, the interaction between

  13. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Institute of Scientific and Technical Information of China (English)

    Zhi-yang L; Ao-shuang Wan; Jun-jiang Xiong; Kuang Li; Jian-zhong Liu

    2016-01-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  14. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Science.gov (United States)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  15. Breakdown and space charge formation in polyimide film under DC high stress at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Y; Hashimoto, T; Miyake, H; Tanaka, Y; Takada, T, E-mail: ytanaka@tcu.ac.j [Tokyo City University, 1-28-1, Tamatsutsumi, Setagaya-ku, Tokyo (Japan)

    2009-08-01

    Relationship between breakdown strength and space charge formation in polyimide film under dc high stress at various temperatures is investigated using pulsed electro-acoustic (PEA) method. Some typical results of the space charge observations show that hetero space charges are always found before breakdown. The amount of the hetero charges increase with increase of temperature or increase of applied electric field. Since the enhancement of the internal electric field in the sample by the accumulation of the hetero charges is not so large, the accumulation doesn't seem to be an immediate cause of breakdown. However since it is always observed before breakdown, it may be predictive information for breakdown. In a certain case, the breakdown occurs after voltage application for few hours. However, while we give an interval of short circuit condition after observing the hetero space charge under dc stress, the total voltage application time to breakdown is almost the same to the case without the interval. It means that the hetero space charge generation may show a kind of degradation of the material.

  16. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

    Science.gov (United States)

    Benjaphokee, Suthee; Hasegawa, Daisuke; Yokota, Daiki; Asvarak, Thipa; Auesukaree, Choowong; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-02-15

    Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Taking the hafnium diboride ceramic as an example, the effects of heating rate, cooling rate, thermal shock initial temperature, and external constraint on the thermal shock resistance (TSR of ultra-high temperature ceramics (UHTCs were studied through numerical simulation in this paper. The results show that the external constraint has an approximately linear influence on the critical rupture temperature difference of UHTCs. The external constraint prepares a compressive stress field in the structure because of the predefined temperature field, and this compressive stress field relieves the tension stress in the structure when it is cooled down and then it improves the TSR of UHTCs. As the thermal shock initial temperature, a danger heating rate (or cooling rate exists where the critical temperature difference is the lowest.

  18. Research of stress corrosion cracking of T225NG titanium alloy in loop water of high temperature and high pressure

    Institute of Scientific and Technical Information of China (English)

    Xu Jijin; Yan Keng; Chen Ligong; Jiang Chengyu

    2006-01-01

    Double cantilever beam (DCB) specimens were used to research the stress corrosion cracking of T225NG titanium alloy in loop water of high temperature and high pressure. DCB specimens were forced pre-stress, put into high pressure autoclave, and the stress corrosion and crack expansion of specimens were observed and measured in 500 h, 1 000 h and 2 000h respectively. The results show that small expansion occurred along the direction of pre-cracking. According to calculation,the speed of cracking expansion is lower than 10 -9 m/s in 500 h and the value of KIscc/KI is higher than 0. 75, which proves that T225NG has an excellent corrosion resistance in loop water. The main reason is that there is an oxide film on the surface of specimens. According to the analysis of energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the oxide film consists of TiO2. Therefore, the oxide film at the crack tip impedes the hydrogen separating out from the cathode to penetrate into titanium alloy and resists hydrogen embrittlement.

  19. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    Science.gov (United States)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  20. Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress.

    Science.gov (United States)

    Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  1. Stresses evolution at high temperature (200°C on the interface of thin films in magnetic components

    Directory of Open Access Journals (Sweden)

    Doumit Nicole

    2014-07-01

    Full Text Available In the field of electronics, the increase of operating temperatures is a major industrial and scientific challenge because it allows reducing mass and volume of components especially in the aeronautic domain. So minimizing our components reduce masses and the use of cooling systems. For that, the behaviours and interface stresses of our components (in particular magnetic inductors and transformers that are constituted of one magnetic layer (YIG or an alumina substrate (Al2O3 representing the substrate and a thin copper film are studied at high temperature (200°C. COMSOL Multiphysics is used to simulate our work and to validate our measurements results. In this paper, we will present stresses results according to the geometrical copper parameters necessary for the component fabrication. Results show that stresses increase with temperature and copper’s thickness while remaining always lower than 200MPa which is the rupture stress value.

  2. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress

    Science.gov (United States)

    Shi, Jianzhi; Chen, Yuting; Xu, Yan; Ji, Dehua; Chen, Changsheng; Xie, Chaotian

    2017-01-01

    Global warming increases sea temperature and leads to high temperature stress, which affects the yield and quality of Pyropia haitanensis. To understand the molecular mechanisms underlying high temperature stress in a high temperature tolerance strain Z-61, the iTRAQ technique was employed to reveal the global proteomic response of Z-61 under different durations of high temperature stress. We identified 151 differentially expressed proteins and classified them into 11 functional categories. The 4 major categories of these are protein synthesis and degradation, photosynthesis, defense response, and energy and carbohydrate metabolism. These findings indicated that photosynthesis, protein synthesis, and secondary metabolism are inhibited by heat to limit damage to a repairable level. As time progresses, misfolded proteins and ROS accumulate and lead to the up-regulation of molecular chaperones, proteases, and antioxidant systems. Furthermore, to cope with cells injured by heat, PCD works to remove them. Additionally, sulfur assimilation and cytoskeletons play essential roles in maintaining cellular and redox homeostasis. These processes are based on signal transduction in the phosphoinositide pathway and multiple ways to supply energy. Conclusively, Z-61 establishes a new steady-state balance of metabolic processes and survives under higher temperature stress. PMID:28303955

  3. High-Temperature Deformation Constitutive Law for Dissimilar Weld Residual Stress Modeling: Effect of Thermal Load on Strain Hardening

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xinghua [ORNL; Wang, Yanli [ORNL; Crooker, Paul [Electric Power Research Institute (EPRI); Feng, Zhili [ORNL

    2015-01-01

    Weld residual stress is one of the primary driving forces for primary water stress corrosion cracking in dissimilar metal welds (DMWs). To mitigate tensile residual stress in DMWs, it is critical to understand residual stress distribution by modeling techniques. Recent studies have shown that weld residual stress prediction using today s DMW residual stress models strongly depends on the strain-hardening constitutive model chosen. The commonly used strain-hardening models (isotropic, kinematic, and mixed) are all time-independent and inadequate to account for the time-dependent (viscous) plastic deformation at the elevated temperatures experienced during welding. For materials with profound strain-hardening, such as stainless steels and nickel-based alloys that are widely used in nuclear reactor and piping systems, the equivalent plastic strain the determinate factor of the flow stress can be highly dependent on the recovery and recrystallization processes. These processes are in turn a strong function of temperature, time, and deformation rate. Recently, the authors proposed a new temperature- and time-dependent strain-hardening constitutive model: the dynamic strain-hardening constitutive model. The application of such a model has resulted in improved weld residual stress prediction compared to the residual stress measurement results from the contour and deep-hole drilling methods. In this study, the dynamic strain-hardening behavior of Type 304 stainless steel and Alloy 82 used in pressure vessel nozzle DMWs is experimentally determined. The kinetics of the recovery and recrystallization of flow stress are derived from experiments, resulting in a semi-empirical equation as a function of pre-strain, time, and temperature that can be used for weld residual stress modeling. The method used in this work also provides an approach to study the kinetics of recovery and recrystallization of other materials with significant strain-hardening.

  4. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; CHEN Li-yun; ZHANG Shun-tang; ZHENG Hua; LIU Guo-hua

    2009-01-01

    The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermo- sensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37°C during 8:00-17:00 and 30°C during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.

  5. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    Science.gov (United States)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  6. Effect of Heat Treatment on High Temperature Stress Rupture Strength of Brazing Seam for Nickel-base Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to enhance the high-temperature stress rupture strength of brazing seam by heat treatment, it was diffusion treated, then solution heat treated, and finally aging treated. The microstructure of brazing seam especially morphology of phase and boride was observed and the strength of brazing seam was measured in this process. The results show that heat treatment can enhance high-temperature stress rupture strength by improving the microstructure of brazing seam. The strength of brazing seam after solution heat treatment decreases in comparison with that only after diffusion treatment while aging treatment after solution heat treatment increases the strength of brazing seam.

  7. Respiratory Response of Dormant Nectarine Vegetative Buds to High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    TAN Yue; LI Ling; LENG Chuan-yuan; LI Dong-mei; CHEN Xiu-de; GAO Dong-sheng

    2013-01-01

    High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetative buds were evaluated in the research. We found that bud respiration was transiently inhibited by HT and the pentose phosphate pathway (PPP) and the cytochrome C pathway (CYT) were significantly affected. On the substrate level, PPP was activated in the HT-treated buds compared with the control group. However, the activation did mot occur until hours after HT treatment. The tricarboxylic acid cycle (TCA) in both the HT-treated buds and in the control group proceeded at a low level most of the time compared with total respiration. On the electron transfer level, CYT was transiently inhibited by HT but became significantly active in the later stage. CYT operation in the control group exhibited an attenuation process. The alternative pathway (ALT) fluctuated both in the HT-treated samples and in the control. The results suggest that the temporary CYT inhibition and the following PPP activation may be involved in HT-induced bud dormancy release and budburst mechanisms.

  8. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Shen, Jing; Solem, Christian; Jensen, Peter Ruhdal;

    2013-01-01

    . These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C...

  9. Analysis on flow stress of magnesium alloys during high temperature deformation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The flow stress of magnesium alloys during hot compression at different temperatures and strain rates was studied by experiments. Materials used were AZ91D alloys in as-cast, homogeneous treatment states, AZ31 and ZK60 alloys in as-cast state.The results show that the thermal simulation curves of different alloys differ from one another at the same deforming condition. The general curves of AZ31 and AZ91D alloys have the character of dynamic recrystallization. There are increase of true stress, drastic falling of true stress and increase of true stress in most curves of ZK60 alloy, while the other curves have the characteristics of dynamic recrystallization. From the analysis the reasonable deforming temperature should be selected from 523 to 673 K for AZ31 and the unhomogenized AZ91D alloy, from 473 to 673 K for the homogenized AZ91D alloy, and it was concluded to be 473 K or 673 K for ZK60 alloy.

  10. Differential effects of high-temperature stress on nuclear topology and transcription of repetitive noncoding and coding rye sequences.

    Science.gov (United States)

    Tomás, D; Brazão, J; Viegas, W; Silva, M

    2013-01-01

    The plant stress response has been extensively characterized at the biochemical and physiological levels. However, knowledge concerning repetitive sequence genome fraction modulation during extreme temperature conditions is scarce. We studied high-temperature effects on subtelomeric repetitive sequences (pSc200) and 45S rDNA in rye seedlings submitted to 40°C during 4 h. Chromatin organization patterns were evaluated through fluorescent in situ hybridization and transcription levels were assessed using quantitative real-time PCR. Additionally, the nucleolar dynamics were evaluated through fibrillarin immunodetection in interphase nuclei. The results obtained clearly demonstrated that the pSc200 sequence organization is not affected by high-temperature stress (HTS) and proved for the first time that this noncoding subtelomeric sequence is stably transcribed. Conversely, it was demonstrated that HTS treatment induces marked rDNA chromatin decondensation along with nucleolar enlargement and a significant increase in ribosomal gene transcription. The role of noncoding and coding repetitive rye sequences in the plant stress response that are suggested by their clearly distinct behaviors is discussed. While the heterochromatic conformation of pSc200 sequences seems to be involved in the stabilization of the interphase chromatin architecture under stress conditions, the dynamic modulation of nucleolar and rDNA topology and transcription suggest their role in plant stress response pathways.

  11. Stress corrosion cracking behavior of Alloy 600 in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.L.; Burke, M.G.

    1995-07-01

    SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.

  12. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    In order to satisfy the growing need in high quality aluminum cast parts of the automobile industries, in the last decades the foundries have been showing an increasing interest in the implementation of numerical simulations as part of their process design. As a consequence, it is possible to find...... the residual stresses are negligible. Nevertheless, in order to account for eventually "forgotten" thermal stresses, the automobile parts are usually over-designed. It is the objective of this work, that is part of the IDEAL (Integrated Development Routes for Optimized Cast Aluminium Components) project......, financed by the EU in frame work 6 and born in collaboration with the automobile and foundry industries, to fill the mentioned gap. Through a systematic analysis of experimental tests, this study aims to develop a powerful predicting tool capable of capturing stress relaxation effects through an adequate...

  13. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops

    Directory of Open Access Journals (Sweden)

    Craita eBita

    2013-07-01

    Full Text Available Global warming is predicted to have a general negative effect on plant growth due to the negative effect of high temperatures on plant development. The increasing threat of climatological extremes, including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review we assess the impact of global climate change on the production of agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that have will be likely to show the most extreme reductions in yield as a result of warming in general and the expected fluctuations in temperature. High temperature stress has a wide range of effects on plants both in terms of physiology, biochemistry and gene regulation pathways. In this review we present the recent advances of research on all these level of investigation focusing on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally we review possible mechanisms and methods which can lead to the generation of new varieties that will allow sustainable yield production in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

  14. High environmental temperature around farrowing induced heat stress in crated sows.

    Science.gov (United States)

    Muns, R; Malmkvist, J; Larsen, M L V; Sørensen, D; Pedersen, L J

    2016-01-01

    The aim of the experiment was to study the impact of high ambient temperature (25°C) around farrowing on crated sows unable to perform thermoregulatory behavior. Twenty sows were housed in 2 farrowing rooms in conventional farrowing crates. In 1 room (CONTROL) temperature was kept at 20°C. In the other room (HEAT) temperature was initially kept at 20°C and gradually raised until it reached 25°C from d 112 to 115 of gestation. Then the temperature was gradually lowered to 20°C. Sows were continuously video recorded for behavior recording. Sows' respiration rates were recorded from d 3 before farrowing to d 5 after farrowing. Sows' rectal temperatures were recorded from d 1 before farrowing to d 8 after farrowing, and sows' udder surface temperatures were recorded from the day of farrowing to d 3 after farrowing. All measures were recorded daily. Sows' BW were recorded at d 108 of gestation and at weaning. Sows' back fat was recorded on farrowing day, when room temperature was set again at 20°C, and at weaning. Piglets were weighed at d 1, 14, and 21. The HEAT sows spent a higher proportion of time lying in the lateral position than CONTROL sows, both during the 16 h before farrowing and the 24 h after the start of farrowing ( 0.10). The HEAT sows had higher rectal temperature on d 1 after farrowing ( sows during the recording period ( sows also tended to have longer farrowing duration ( sows on d 1 before farrowing and on the day of farrowing. On d 7, 8, and 9, CONTROL sows had higher feed intake ( sows were heavier at d 21 after farrowing ( sows' postural behavior. Sows reacted to the thermal challenge with higher respiration rate around farrowing, but both their rectal and udder temperatures were elevated, indicating that they were not able to compensate for the higher ambient temperature. High ambient temperature negatively influenced sows' feed intake, with negative impact on piglets' weaning weight. High temperatures around farrowing (25°C) compromise

  15. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Ryu, Woo Seog [KAERI, Taejon (Korea, Republic of); Lee, Kyung Yong [Chungang Univ., Seoul (Korea, Republic of)

    2003-05-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W{sub c}t{sup p} = B (where W{sub c} = {sigma} {epsilon} is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W{sub c} - log t showed a good linear relation up to 10{sup 5} hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials.

  16. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  17. High Temperature Properties and Aging-Stress Related Changes of FeCo Materials

    Science.gov (United States)

    2006-07-01

    NOTES PAO case number: AFRL/WS 06-1683; Date cleared: 07 Jul 2006. 14. ABSTRACT This publication focuses on high temperature magnetic, mechanical...Testing and Materials, Philadelphia (1991) [3.12] M. R. Pinnel and J. E. Bennett, Metallurgical Trans., 5, 1273 (1974) [3.13] S. Mahajan, M. R. Pinnel and

  18. High Temperature Flow Stress Prediction of Nano-Al2O3/Cu Composite Using an Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-xin; XU Xiao-feng; SONG Ke-xing; LI Pei-quan; GUO Xiu-hua; LIU Rui-hua

    2006-01-01

    Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500 ℃ to 850 ℃. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.

  19. Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction.

    Science.gov (United States)

    Hong, Min-Eui; Hwang, Sung Kwan; Chang, Won Seok; Kim, Byung Woo; Lee, Jeewon; Sim, Sang Jun

    2015-06-01

    High temperatures (30-36 °C) inhibited astaxanthin accumulation in Haematococcus pluvialis under photoautotrophic conditions. The depression of carotenogenesis was primarily attributed to excess intracellular less reactive oxygen species (LROS; O2 (-) and H2O2) levels generated under high temperature conditions. Here, we show that the heat stress-driven inefficient astaxanthin production was improved by accelerating the iron-catalyzed Haber-Weiss reaction to convert LROS into more reactive oxygen species (MROS; O2 and OH·), thereby facilitating lipid peroxidation. As a result, during 18 days of photoautotrophic induction, the astaxanthin concentration of cells cultured in high temperatures in the presence of iron (450 μM) was dramatically increased by 75 % (30 °C) and 133 % (36 °C) compared to that of cells exposed to heat stress alone. The heat stress-driven Haber-Weiss reaction will be useful for economically producing astaxanthin by reducing energy cost and enhancing photoautotrophic astaxanthin production, particularly outdoors utilizing natural solar radiation including heat and light for photo-induction of H. pluvialis.

  20. Hydrogen embrittlement, grain boundary segregation, and stress corrosion cracking of alloy X-750 in low- and high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W. J.; Lebo, M. R.; Kearns, J. J. [Bettis Atomic Power Lab., West Mifflin, PA (United States)

    1997-04-01

    The nature of intergranular stress corrosion cracking (SCC) of alloy X-750 was characterized in low- and high-temperature water by testing as-notched and precracked fracture mechanics specimens. Materials given the AH, BH, and HTH heat treatments were studied. While all heat treatments were susceptible to rapid low-temperature crack propagation (LTCP) below 150 C, conditions AH and BH were particularly susceptible. Low-temperature tests under various loading conditions (e.g., constant displacement, constant load, and increasing load) revealed that the maximum stress intensity factors (K{sub P{sub max}}) from conventional rising load tests provide conservative estimates of the critical loading conditions in highly susceptible heats, regardless of the load path history. For resistant heats, K{sub P{sub max}} provides a reasonable, but not necessarily conservative, estimate of the critical stress intensity factor for LTCP. Testing of as-notched specimens showed that LTCP will not initiate at a smooth surface or notch, but will readily occur if a cracklike defect is present. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that LTCP is associated with hydrogen embrittlement of grain boundaries. The stress corrosion crack initiation and growth does occur in high-temperature water (>250 C), but crack growth rates are orders of magnitude lower than LTCP rates. The SCC resistance of HTH heats is far superior to that of AH heats as crack initiation times are two to three orders of magnitude greater and growth rates are one to two orders of magnitude lower.

  1. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    Science.gov (United States)

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation.

  2. High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes.

  3. Effects of External Chemical Regulation on Bt Transgenic Cotton Plants under Combined Stress of High Temperature and Water Deficit

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gui-sheng; ZHANG Wang-ding; TONG Chen; LIN Yan; AN Lin-lin; LIU Gui-juan

    2011-01-01

    [Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.

  4. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb. in response to high-temperature stress

    Directory of Open Access Journals (Sweden)

    Tao eHu

    2015-06-01

    Full Text Available When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as ‘stress memory’. However, there is insufficient information about is known about plants’ stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4 relative to the first stress (S1, and basal transcript levels during the recovery states (R1, R2 and R3. Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid, sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose, amino acids (serine, proline, pyroglutamic acid, glycine, alanine and one fatty acid (butanoic acid in pre-acclimated plants. These discoveries involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process.

  5. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    OpenAIRE

    L.P. Khokhlova

    2016-01-01

    Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C) and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2), serine-threonine kinase (W55a), dehydrin (DHN14), and lipocalin (TaTIL)) and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on th...

  6. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  7. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2014-01-01

    Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However...... an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD......, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level....

  8. Mitigation technologies to control high-temperature stress in crop plants

    Science.gov (United States)

    The book entitled “Crop Responses to Global Warming” describes the traditional historical shifts within the earth’s atmospheric temperature and weighs the evidence regarding anthropogenetic elicited changes within the level of temperature. There is not an abundant study to elucidate the shift in te...

  9. Research progress on high temperature stress response in fruit trees%果树高温逆境应答反应的研究进展

    Institute of Scientific and Technical Information of China (English)

    查倩; 蒋爱丽; 王世平; 奚晓军; 田益华

    2015-01-01

    This article summarized the response of fruit trees to high temperature stress,such as:high tem-perature stress damaged leaf tissue structure of fruit tree and affected the physiological and biochemical changes of photosynthetic efficiency,cell membrane function,antioxidant system balance and soluble sugar content of fruit trees;Hormone,signal material and phosphorylation signal pathway also responded to high temperature stress;Genes and proteins associated with high temperature stress response expressed in high temperature stress.In ad-dition,there was a close relationship among light stress,salt stress,oxidative stress,drought stress and high tem-perature stress.%综述了高温逆境下果树的应答反应,具体表现在:高温逆境伤害果树叶片组织结构;影响果树的光合效率、细胞膜功能、抗氧化系统平衡和可溶性糖含量等生理生化变化;激素、信号物质和磷酸化信号通路也会应答高温逆境;与高温逆境相关的基因和蛋白在高温逆境下应答表达。此外,高温逆境与光胁迫、盐胁迫、氧化胁迫和干旱胁迫也存在密切关系。

  10. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea.

    Science.gov (United States)

    Bhardwaj, Ankur R; Joshi, Gopal; Kukreja, Bharti; Malik, Vidhi; Arora, Priyanka; Pandey, Ritu; Shukla, Rohit N; Bankar, Kiran G; Katiyar-Agarwal, Surekha; Goel, Shailendra; Jagannath, Arun; Kumar, Amar; Agarwal, Manu

    2015-01-21

    Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. Our study provides first comprehensive discovery of B. juncea

  11. Identification and Analysis of C. annuum microRNAs by High-throughput Sequencing and Their Association with High Temperature and High Air Humidity Stress

    Directory of Open Access Journals (Sweden)

    Xiao-wan Xu

    2015-12-01

    Full Text Available MicroRNAs (miRNAs play an important role in many developmental processes and stress responses in plants. In this study, tolerant hot pepper cultivar 'R597' (CaR and sensitive cultivar 'S590' (CaS were used to detected differentially expressed miRNAs under high temperatures and high air humidity. The length distribution of obtained small RNAs was significantly different between libraries. There were a total of 71 miRNA families identified in two genotypes, and 24 conserved miRNA families were detected in all four sRNA libraries. MIR166, MIR156/157, MIR167, MIR168, MIR2118, and MIR5301 were highly expressed in four libraries, and 93 miRNAs had a species-specific expression. Among them, 60 miRNAs were preferentially expressed in S590 leaves and 33 miRNAs were preferentially expressed in R597 leaves. Mostly miRNAs were less-conserved miRNAs. The most abundant miRNAs with different expressions between two pepper species was miR6149b, which exhibited a high level (read count 42,443 in CaSCK but no expressed in CaRCK. We found 650 (CaRCK, 1054 (CaRHH, 914 (CaSCK, 1045 (CaSHH potential targets for 92 (CaRCK, 124 (CaRHH, 128 (CaSCK, 117 (CaSHH hot pepper miRNAs, respectively. These findings facilitate in better understanding of the molecular mechanism underlying high temperature and high air humidity condition in different pepper genotypes.

  12. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  13. Effect of high temperature treatment of Vicia faba roots on the oxidative stress enzymes in leaves.

    Science.gov (United States)

    Filek, M; Baczek, R; Niewiadomska, E; Pilipowicz, M; Kościelniak, J

    1997-01-01

    The following types of superoxide dismutase (SOD) have been found in the leaves of Vicia faba: one isoenzyme of Mn-SOD and four isoenzymes of Cu/Zn-SOD. The treatments of roots with boiling water caused an increase of SOD activity in the leaves. The highest increase was measured after 5 s of the treatment. It was accompanied by a significant increase in catalase activity. Analysis of cell fractions' revealed an increase of SOD activity in the plastids and mitochondria isolated from the leaves of those plants whose roots were heat-treated. However, there was no distinct change of SOD activity in the cytosolic fraction. The possibility of an electric wave intervention inducing oxidative stress in the leaves is discussed.

  14. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings.

    Science.gov (United States)

    Wang, Xiao; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Wollenweber, Bernd; Jiang, Dong

    2014-01-01

    Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However, plants experienced priming (PH) up-regulated the Rubisco activase B encoding gene RcaB, which was in accordance with the higher photosynthesis rate in relation to the non-primed plants (NH) under the later high temperature stress. In relation to NH, the major chlorophyll a/b-binding protein gene Cab was down-regulated in PH plants, implying a reduction of the light absorption to protect the photosystem II from excitation energy under high temperature stress. At the same time, under the later high temperature stress PH plants showed significantly higher actual photochemical efficiency, indicating an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD) in mitochondria, which contributed to the lower superoxide radical production rate and malondialdehyde concentration in both chloroplasts and mitochondria. The improved antioxidant capacity in chloroplasts and mitochondria was related to the up-regulated expressions of Cu/Zn-SOD, Mn-SOD and GR in PH. Collectively, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level.

  15. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  16. On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy

    Science.gov (United States)

    Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.

    2015-01-01

    Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress

  17. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components

    Science.gov (United States)

    2011-01-01

    The present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions. The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation. Moreover, the data also highlighted the cross-talk of signaling pathways. Some of the detected signaling proteins, e.g., Hik14, Hik26 and Hik28, have potential interactions with differentially expressed proteins identified in both temperature stress conditions. Some differentially expressed proteins found in the Spirulina protein-protein interaction network were also examined for their physical interactions by a yeast two hybrid system (Y2H). The Y2H results obtained in this study suggests that the potential PPI network gives quite reliable potential interactions for Spirulina. Therefore, the bioinformatics approach employed in this study helps in the analysis of phenomena where proteome analyses of knockout mutants have not been carried out to directly examine for specificity or cross-talk of signaling components. PMID:21756373

  18. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components

    Directory of Open Access Journals (Sweden)

    Roytrakul Sittiruk

    2011-07-01

    Full Text Available Abstract The present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions. The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation. Moreover, the data also highlighted the cross-talk of signaling pathways. Some of the detected signaling proteins, e.g., Hik14, Hik26 and Hik28, have potential interactions with differentially expressed proteins identified in both temperature stress conditions. Some differentially expressed proteins found in the Spirulina protein-protein interaction network were also examined for their physical interactions by a yeast two hybrid system (Y2H. The Y2H results obtained in this study suggests that the potential PPI network gives quite reliable potential interactions for Spirulina. Therefore, the bioinformatics approach employed in this study helps in the analysis of phenomena where proteome analyses of knockout mutants have not been carried out to directly examine for specificity or cross-talk of signaling components.

  19. Prediction of flow stress of 7017 aluminium alloy under high strain ratecompression at elevated temperatures

    National Research Council Canada - National Science Library

    Ravindranadh BOBBILI B. RAMAKRISHNA V. MADHU A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and Johnson-Cook (J-C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB...

  20. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    National Research Council Canada - National Science Library

    Bobbili, Ravindranadh; Ramakrishna, B; Madhu, V; Gogia, A.K

    2015-01-01

    An artificial neural network (ANN) constitutive model and Johnson–Cook (J–C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB...

  1. Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages

    Institute of Scientific and Technical Information of China (English)

    L Guo-hua; WU Yong-feng; BAI Wen-bo; MA Bao; WANG Chun-yan; SONG Ji-qing

    2013-01-01

    Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain-filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34%from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk.

  2. Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate.

    Science.gov (United States)

    Wilczek, Grazyna

    2005-06-01

    The aim of this study was to evaluate the relations between apoptosis and the activity of antioxidant enzymes (superoxide dismutase; catalase) and quantitative changes in stress protein positive cells (Hsp70; metallothionein) in midgut glands of funnel web spiders Agelena labyrinthica (Agelenidae) and wolf spiders Pardosa lugubris (Lycosidae) exposed to high temperature and pesticide under laboratory conditions. The spiders were collected from two meadow ecosystems differently polluted with metals (Olkusz and Pilica, southern Poland). Under stress conditions, P. lugubris had fewer apoptotic cells in the midgut glands than A. labyrinthica. In P. lugubris from both sites, the observed increase in the percentage of metallothionein and Hsp70-positive cells, simultaneous with intensification of superoxide dismutase and catalase activity, suggests an anti-apoptotic function of those proteins in representatives of wandering spiders. In the midgut glands of A. labyrinthica, heat shock and dimethoate increased the number of Annexin V-positive cells as well as the amounts of mitochondria with low transmembrane potential (DeltaPsi(m)) versus the control. The changes in the percentage of MT- and Hsp70-positive cells in funnel web spiders were less than in wolf spiders. The absence of change in SOD and CAT activity in A. labyrinthica shows that the participation of those enzymes in antioxidant reactions is minimal in this species.

  3. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    Science.gov (United States)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  4. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre......-anthesis only (HC), heat at post-anthesis only (CH), and heat stress at both stages (HH). Post-anthesis heat stress decreased grain starch content, reduced the content of fructans and depressed activities of related synthesis enzymes of sucrose:sucrose fructosyltransferase and fructan......:fructan fructosyltransferase. Interestingly, HH plants had significantly higher grain yield than the CH plants. In addition, post-anthesis high temperature lowered grain starch content and increased percentages of volume, number and surface area of B-type starch granules in CH and HH than in CC treatment. However, HH plants...

  5. Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield.

    Science.gov (United States)

    Xu, Guangli; Singh, Shardendu K; Reddy, Vangimalla R; Barnaby, Jinyoung Y; Sicher, Richard C; Li, Tian

    2016-10-20

    To evaluate the combined effect of temperature and CO2 on photosynthetic processes, leaf metabolites and growth, soybean was grown under a controlled environment at low (22/18°C, LT), optimum (28/24°C, OT) and high (36/32°C HT) temperatures under ambient (400μmolmol(-1); aCO2) or elevated (800μmolmol(-1); eCO2) CO2 concentrations during the reproductive stage. In general, the rate of photosynthesis (A), stomatal (gs) and mesophyll (gm) conductance, quantum yield of photosystem II, rates of maximum carboxylation (VCmax), and electron transport (J) increased with temperature across CO2 levels. However, compared with OT, the percentage increases in these parameters at HT were lower than the observed decline at LT. The photosynthetic limitation at LT and OT was primarily caused by photo-biochemical processes (49-58%, Lb) followed by stomatal (27-32%, Ls) and mesophyll (15-19%, Lm) limitations. However, at HT, it was primarily caused by Ls (41%) followed by Lb (33%) and Lm (26%). The dominance of Lb at LT and OT was associated with the accumulation of non-structural carbohydrates (e.g., starch) and several organic acids, whereas this accumulation did not occur at HT, indicating increased metabolic activities. Compared with OT, biomass and seed yield declined more at HT than at LT. The eCO2 treatment compensated for the temperature-stress effects on biomass but only partially compensated for the effects on seed yield, especially at HT. Photosynthetic downregulation at eCO2 was possibly due to the accumulation of non-structural carbohydrates and the decrease in gs and Astd (standard A measured at 400μmolmol(-1) sub-stomatal CO2 concentration), as well as the lack of CO2 effect on gm, VCmax, and J, and photosynthetic limitation. Thus, the photosynthetic limitation was temperature-dependent and was primarily influenced by the alteration in photo-biochemical processes and metabolic activities. Despite the inconsistent response of photosynthesis (or biomass accumulation

  6. Effect of high-temperature/current stress on the forward tunneling current of InGaN/GaN high-power blue-light-emitting diodes

    Science.gov (United States)

    Liu, Sheng; Zheng, Chenju; Lv, Jiajiang; Liu, Mengling; Zhou, Shengjun

    2017-08-01

    Through the analysis of the temperature-dependent current-voltage (I-V) characteristics of the fabricated InGaN/GaN high-power blue-light-emitting diodes (LEDs), the low-bias region was confirmed to be dominated by tunneling current, while the medium-bias region was dominated by diffusion-recombination current. Electrons and heavy holes appeared to play similar roles in the tunneling current of the fabricated LEDs, with no apparent dominant tunneling entity determined by characteristic energy as previous works suggested. After 1000 h of high-temperature/current stress, the medium-bias regions of the I-V curves of LEDs remained almost unchanged, while the current in the low-bias region was greatly enhanced by the stress, which confirmed the different carrier transport mechanism behaviors in the low- and medium-bias regions. Further comparison between the I-V characteristics of the unstressed and stressed LEDs suggested that the change in I-V curve was associated with the increase in defect density and the apparent doping concentration in the InGaN/GaN multiple-quantum-well (MQW) active region.

  7. Prediction of Single-Peak Flow Stress Curves at High Temperatures Using a New Logarithmic-Power Function

    Science.gov (United States)

    Shafiei, Ehsan; Dehghani, Kamran

    2016-09-01

    In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.

  8. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    Science.gov (United States)

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  9. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    Directory of Open Access Journals (Sweden)

    L.P. Khokhlova

    2016-06-01

    Full Text Available Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2, serine-threonine kinase (W55a, dehydrin (DHN14, and lipocalin (TaTIL and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on the content of transcripts on electrophoregrams. The absence of species-specific responses of two genes, TaNADP-ME2 and W55a, the gene activity of which did not depend on the resistance of cultivars to heat shock and water deficit, has been shown. However, gene expression of two other genes, DHN14 and TaTIL, was genotypically determined and positively correlated with the high resistance of particular cultivars. It has been concluded that the activities of DHN14 and TaTIL are potential molecular markers of heat and drought resistance in spring wheat and, therefore, can be used in transgenic selection technologies to create new phenotypes of agricultural crops that would be better adapted to the environmental conditions.

  10. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  11. [Study on the Color Determination of Tomato Leaves Stressed by the High Temperature Based on Hyperspectral Imaging].

    Science.gov (United States)

    Xie, Chuan-qi; Saho, Yong-ni; Gao, Jun-feng; He, Yong

    2015-12-01

    Determination of color values on tomato leaves stressed by the high temperature using hyperspectral imaging technique was studied in this paper. Hyperspectral images of sixty healthy and sixty unhealthy tomato leaves in the wavelengths of 380-1023 nm were acquired by the hyperspectral imaging system. Simultaneously, three color parameters (L*, a* and b*) were measured by a colorimeter. Reflectance of all pixels in the region of interest (ROI) was extracted from the corrected hyperspectral image. Partial Least Squares (PLS) models were established based on different preprocessing methods. Successive Projections Algorithm (SPA) was identified to select effective wavelengths. Finally, Partial Least Squares-Discriminant Analysis (PLS-DA) models were built to classify different types of samples. The results showed that the determination coefficient (R²) were 0. 818, 0. 109 and 0. 896 in the prediction sets of PLS modes; 0.591, 0.244 and 0.673 in the prediction sets of SPA-PLS models. The overall classification accuracy in the prediction sets of PLS-DA models were over 77.50%. It demonstrated that it is feasible to measure color values on tomato leaves and identify different types of samples using hyperspectral imaging technique.

  12. Quantitative Trait Loci Associated with Pollen Fertility under High Temperature Stress at Flowering Stage in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    XIAO Ying-hui; PAN Yi; Luo Li-hua; DENG Hua-bing; ZHANG Gui-lian; TANG Wen-bang; CHEN Li-yun

    2011-01-01

    High temperature stress (HTS),an increasingly important problem in rice production,significantly reduces rice yield by reducing pollen fertility and seed setting rate.Breeding rice varieties with tolerance to HTS at the flowering stage is therefore essential for maintaining rice production as the climate continues to become warm.In this study,two quantitative trait loci (QTLs) underlying tolerance to HTS were identified using recombinant inbred lines derived from a cross between an HTS-tolerant rice cultivar 996 and a sensitive cultivar 4628.Pollen fertility was used as a heat-toleranca indicator for the lines subjected to HTS at the flowering stage in field experiments.Two QTLs that affected pollen fertility,qPF4 and qPF6,were detected between RM5687 and RM471 on chromosome 4,and between RM190 and RM225 on chromosome 6,by using the composite interval mapping (CIM) analysis.The two QTLs explained 15.1% and 9.31% of the total phenotypic variation in pollen fertility,and increased the pollen fertility of the plants subjected to HTS by 7.15% and 5.25%,respectively.The positive additive effects of the two QTLs were derived from the 996 alleles.The two major QTLs identified would be useful for further fine mapping and cloning of these genes and for molecular marker-assistant breeding of heat-tolerant rice varieties.

  13. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin [Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  14. Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    TAO Zhi-qiang; SUI Peng; CHEN Yuan-quan; LI Chao; NIE Zi-jin; YUAN Shu-fen; SHI Jiang-tao; GAO Wang-sheng

    2013-01-01

    High temperature stress (HTS) on spring maize (Zea mays L.) during the iflling stage is the key factor that limits the yield increase in the North China Plain (NCP). Subsoiling (SS) and ridge tillage (R) were introduced to enhance the ability of spring maize to resist HTS during the iflling stage. The ifeld experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County, Hebei Province, China. Compared with rotary tillage (RT), the net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll relative content (SPAD) of maize leaves was increased by 40.0, 42.6, 12.8, and 29.7% under SS, and increased by 20.4, 20.0, 5.4, and 14.2% under R, repectively. However, the treatments reduce the intercellular CO2 concentration under HTS. The SS and R treatments increased the relative water content (RWC) by 11.9 and 6.2%, and the water use efifciency (WUE) by 24.3 and 14.3%, respectively, compared with RT. The SS treatment increased the root length density and soil moisture in the 0-80 cm soil proifle, whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil proifle compared with the RT treatment. Compared with 2011, the number of days with temperatures33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012, whereas the plant yield decreased by 2.5, 8.5 and 10.9%, the net photosynthetic rate reduced by 7.5, 10.5 and 18.0%, the RWC reduced by 3.9, 5.6 and 6.2%, and the WUE at leaf level reduced by 1.8, 5.2 and 13.1% in the SS, R and RT treatments, respectively. Both the root length density and the soil moisture also decreased at different levels. The yield, photosynthetic rate, plant water status, root length density, and soil moisture under the SS and R treatments declined less than that under the RT treatment. The results indicated that SS and R can enhance the HTS resistance of spring maize during the iflling stage, and led to higher yield by directly improving

  15. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    Science.gov (United States)

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  16. Purification, characterization and partial cDNA cloning of high-temperature stress-induced protein from French bean (Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Nagesh Babu, R.

    2013-02-01

    Full Text Available In order to identify the components of high temperature response in French bean, three heat shock proteins induced under high temperature were purified to homogeneity by Carboxy methyl cellulose and sephadex G-100 chromatography followed by preparative SDS-PAGE. Two of these, Hsp1 and Hsp3 were further characterized by immuno-detection with polyclonal antibodies. Hsp3 exhibited ATPase and chaperone activity with malate dehydrogenase and citrate synthase. Partial cDNA for Hsp3 synthesized using the primer derived from amino-terminal sequence was cloned and expressed in Escherichia coli. The recombinant protein possesses ATPase activity, and showed thermal protection at 50°C in Escherichia coli. The translated partial cDNA showed homology with stress induced proteins including ATPases from higher plants. These results supported the fact that French bean response to high temperature stress involves Hsps as one of the principal components.

  17. [Effects of high temperature and humidity stress at the physiological maturity stage on seed vigor, main nutrients and coat structure of spring soybean].

    Science.gov (United States)

    Shu, Ying-Jie; Wang, Shuang; Tao, Yuan; Song, Li-Run; Huang, Li-Yan; Zhou, Yu-Li; Ma, Hao

    2014-05-01

    A pot experiment was conducted to investigate the effects of high temperature and humidity stress [(40 +/- 2) degrees C/(30 +/- 2) degrees C, RH (95 +/- 5)%/(70 +/- 5)%, 10 h/14 h (day/night)] at the physiological maturity stage of two spring soybean cultivars (Xiangdou No. 3 and Ningzhen No. 1) on seed vigor indices, main nutritional components and coat anatomical structure. High temperature and humidity stress were found to cause the decrease of seed viability, germination potential, and germination percentage as well as the dehydrogenase and acid phosphatase activities, but increased the seed cell membrane permeability as well as H+, soluble sugar and leucine levels in the seed soaking liquid of each cultivar. Moreover, the stress led to irregular changes of seed oil and protein contents and alteration of anatomical structure of episperm and hilum in the two cultivars. A shortterm stress (less than 5 h) had no significant impact on seed vigor, but a long-term one (more than 48 h) caused rapid decrease of seed vigor indices. Xiangdou No. 3 showed less decreases in seed germination potential and enzyme activities, and less increase in extravasation content in the seed soaking liquid, had compact seed coat and intact hilum, suggesting it was more resistant to high temperature and humidity stress.

  18. Finite element based stress analysis of graphite component in high temperature gas cooled reactor core using linear and nonlinear irradiation creep models

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurindranath

    2015-10-15

    Highlights: • High temperature gas cooled reactor. • Finite element based stress analysis. • H-451 graphite. • Irradiation creep model. • Graphite reflector stress analysis. - Abstract: Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  19. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2013-01-01

    (PSII) and stomatal conductance (gs). A combination of chlorophyll a fluorescence, gas exchange measurements and infrared thermography was applied using Chrysanthemum (Dendranthema grandiflora Tzvelev) cultivar ‘Coral Charm’ as a model species. Increasing temperature had a highly significant effect...

  20. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops

    OpenAIRE

    Craita eBita; Tom eGerats

    2013-01-01

    Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic loca...

  1. Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors

    Science.gov (United States)

    Mills, S. C.; Beldade, R.; Chabanet, P.; Bigot, L.; O'Donnell, J. L.; Bernardi, G.

    2015-12-01

    Individual exposure to stressors can induce changes in physiological stress responses through modulation of the hypothalamic-pituitary-interrenal (HPI) axis. Despite theoretical predictions, little is known about how individuals will respond to unpredictable short-lived stressors, such as thermal events. We examine the primary neuroendocrine response of coral reef fish populations from the Îles Eparses rarely exposed to anthropogenic stress, but that experienced different thermal histories. Skunk anemonefish, Amphiprion akallopisos, showed different cortisol responses to a generic stressor between islands, but not along a latitudinal gradient. Those populations previously exposed to higher maximum temperatures showed greater responses of their HPI axis. Archive data reveal thermal stressor events occur every 1.92-6 yr, suggesting that modifications to the HPI axis could be adaptive. Our results highlight the potential for adaptation of the HPI axis in coral reef fish in response to a climate-induced thermal stressor.

  2. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva;

    2014-01-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat...... of the cultivar response in intact plants versus detached leaves was low (r=0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response...... treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants...

  3. High temperature (900-1300 C) mechanical behaviour of dendritic web grown silicon ribbons - Strain rate and temperature dependence of the yield stress

    Science.gov (United States)

    Mathews, V. K.; Gross, T. S.

    1987-01-01

    The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.

  4. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests

    Directory of Open Access Journals (Sweden)

    XU Jun

    2017-08-01

    Full Text Available Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT. Good agreement is observed for predicting results performed by current method and traditional method.

  5. [Effects of exogenous Ca2+ on morphological and photosynthetic characteristics and chlorophyll fluorescent parameters of squash seedlings under high temperature and strong light stress].

    Science.gov (United States)

    Qin, Shu-hao; Li, Ling-ling; Chen, Na-na

    2010-11-01

    Taking squash (Cucurbita pepo L.) variety Alan as test object, this paper studied the effects of exogenous Ca2+ on the morphological and photosynthetic characteristics and chlorophyll fluorescent parameters of squash seedlings under the cross-stress of high temperature and strong light. Under the stress, applying 5-20 mmol x L(-1) of Ca2+ increased the plant height, leaf area, chlorophyll and carotenoid contents, photosynthetic rate (Pn), stoma conductance (Gs), transpiration rate (Tr), maximal PS II efficiency (Fv/Fm), actual PS II efficiency (phi(PS II)), and photochemical queching coefficient (q(P)), and decreased the intercellular CO2 concentration (Ci) and non-photochemical fluorescence quenching coefficient (NPQ), suggesting that this application of exogenous Ca2+ could effectively mitigate the damage of high temperature and strong light stress on the squash seedlings leaf, and make it keep more rapid photosynthetic electron transfer rate and higher PS II electron transfer activity. Among the treatments of applying Ca2+, 10 mmol Ca2+ x L(-1) had the best effect. When the Ca2+ application rate exceeded 40 mmol x L(1), no mitigation effect was observed on the high temperature and strong light stress.

  6. Effect of high-temperature stress on microalgae at the end of the logarithmic phase for the efficient production of lipid.

    Science.gov (United States)

    Han, Fei; Pei, Haiyan; Hu, Wenrong; Han, Lin; Zhang, Shuo; Ma, Guixia

    2016-10-01

    Efficient production of microalgae lipid is significant for the production of renewable biodiesel. In the present study, the high temperature of 40°C as stress environment was tested for stimulating lipid accumulation after the microalgae (Scenedesmus quadricauda) cells in suitable conditions grew to the end of the logarithmic phase. Different stress cultivation times of 1, 2, 3, 4, 5 and 6 days were studied. Interestingly, the lipid content and productivity reached 33.5% and 23.2 mg/L d after one day stress cultivation, showing substantial improvements of 39.6% and 33.3% compared with that in the untreated (day 0) microalgae cells, respectively. Longer stress time led to the decrease of biomass and lipid content compared with the untreated microalgae. However, a maximum protein content of 58.7% was obtained after six days. The stress cultivation at the end of the microalgae exponential phase for one day at a high temperature of 40°C could be a very useful industrial approach for efficiently promoting lipid content and biodiesel production.

  7. Standard Test Method for Testing Polymeric Seal Materials for Geothermal and/or High Temperature Service Under Sealing Stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers the initial evaluation of (screening) polymeric materials for seals under static sealing stress and at elevated temperatures. 1.2 This test method applies to geothermal service only if used in conjunction with Test Method E 1068. 1.3 The test fluid is distilled water. 1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  8. HIGH TEMPERATURE DISPLACEMENT SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard

    2005-01-01

    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  9. Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (Paralichthys olivaceus) at high water temperatures.

    Science.gov (United States)

    Kim, Bong-Seok; Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Cheol Young; Kim, Jae-Woo

    2016-08-01

    We investigated how different light spectra affect thermal stress in olive flounder (Paralichthys olivaceus), using light emitting diodes (LEDs; blue, 450 nm; green, 530 nm; red, 630 nm) at two intensities (0.3 and 0.5 W/m(2)) at relatively high water temperatures (25 and 30 °C, compared to a control condition of 20 °C). We measured the expression and activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and the levels of plasma hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, the levels and mRNA expression of caspase-3 were measured, and terminal transferase dUTP nick end labeling (TUNEL) assays of liver and comet assays were performed. The expression and activity of antioxidant enzymes, as well as plasma H2O2 and LPO levels were significantly higher after exposure to high temperatures, and significantly lower after exposure to green and blue light. Caspase-3 levels and mRNA expression showed a similar pattern. The TUNEL assay showed that apoptosis markedly increased at higher water temperatures, compared with the 20 °C control. In contrast, green light irradiation decreased apoptosis rate. Furthermore, the comet assays showed that nuclear DNA damage was caused by thermal stress, and that green light irradiation played a role in partially preventing this damage. Overall, these results suggest that light with green and blue wavelengths can reduce both high temperature-induced oxidative stress and apoptosis, and that particularly green light is efficient for this. Therefore, green light can play a role in protecting in olive flounder from thermal stress damage.

  10. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  11. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    Science.gov (United States)

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  12. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.

    Science.gov (United States)

    Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth

    2016-04-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.

  13. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.

    Science.gov (United States)

    Park, Soo Min; Kim, Keun Pill; Joe, Myung Kuk; Lee, Mi Ok; Koo, Hyun Jo; Hong, Choo Bong

    2015-04-01

    Seven genomic clones of tobacco (Nicotiana tabacum W38) cytosolic class I small heat shock proteins (sHSPs), probably representing all members in the class, were isolated and found to have 66 to 92% homology between their nucleotide sequences. Even though all seven sHSP genes showed heat shock-responsive accumulation of their transcripts and proteins, each member showed discrepancies in abundance and timing of expression upon high-temperature stress. This was mainly the result of transcriptional regulation during mild stress conditions and transcriptional and translational regulation during strong stress conditions. Open reading frames (ORFs) of these genomic clones were expressed in Escherichia coli and the sHSPs were purified from E. coli. The purified tobacco sHSPs rendered citrate synthase and luciferase soluble under high temperatures. At room temperature, non-denaturing pore exclusion polyacrylamide gel electrophoresis on three sHSPs demonstrated that the sHSPs spontaneously formed homo-oligomeric complexes of 200 ∼ 240 kDa. However, under elevated temperatures, hetero-oligomeric complexes between the sHSPs gradually prevailed. Atomic force microscopy showed that the hetero-oligomer of NtHSP18.2/NtHSP18.3 formed a stable oligomeric particle similar to that of the NtHSP18.2 homo-oligomer. These hetero-oligomers positively influenced the revival of thermally inactivated luciferase. Amino acid residues mainly in the N-terminus are suggested for the exchange of the component sHSPs and the formation of dominant hetero-oligomers under high temperatures.

  14. Temperature Stress and Redox Homeostasis in Agricultural Crops

    Directory of Open Access Journals (Sweden)

    Rashmi eAwasthi

    2015-03-01

    Full Text Available Plants are exposed to a wide range of environmental conditions and one of the major forces that shape the structure and function of plants are temperature stresses, which include low and high temperature stresses and considered as major abiotic stresses for crop plants. Due to global climate change, temperature stress is becoming the major area of concern for the researchers worldwide. The reactions of plants to these stresses are complex and have devastating effects on plant metabolism, disrupting cellular homeostasis and uncoupling major physiological and biochemical processes. Temperature stresses disrupt photosynthesis and increase photorespiration altering the normal homeostasis of plant cells. The constancy of temperature, among different metabolic equilibria present in plant cells, depends to a certain extent on a homeostatically regulated ratio of redox components, which are present virtually in all plant cells. Several pathways, which are present in plant cells, enable correct equilibrium of the plant cellular redox state and balance fluctuations in plant cells caused by changes in environment due to stressful conditions. In temperature stresses, high temperature stress is considered to be one of the major abiotic stresses for restricting crop production. The responses of plants to heat stress vary with extent of temperature increase, its duration and the type of plant. On other hand, low temperature as major environmental factor often affects plant growth and crop productivity and leads to substantial crop loses. The present review discusses how oxidative damage as a result of temperature stress is detrimental for various crops. Various strategies adapted by the plants to main redox homeostasis are described along with use of exogenous application of some stress protectants.

  15. Dietary L-arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature.

    Science.gov (United States)

    Zhu, W; Jiang, W; Wu, L Y

    2014-12-01

    The current intensive indoor production system of commercial Pekin ducks never allows adequate water for swimming or wetting. Therefore, heat stress is a key factor affecting health and growth of ducks in the hot regions and season. Experiment 1 was conducted to study whether heat stress was deleterious to certain organs of ducks. Forty-one-day-old mixed-sex Pekin ducks were randomly allocated to four electrically heated battery brooders comprised of 10 ducks each. Ducks were suddenly exposed to 37 °C ambient temperature for 3 h and then slaughtered, in one brooder at 21 days and in another brooder at 49 days of age. The results showed that body weight and weight of immune organs, particularly liver markedly decreased in acute heat stress ducks compared with the control. Experiment 2 was carried out to investigate the influences of dietary L-arginine (Arg) supplement on weight and compositions of certain lymphoid organs, and growth performance in Pekin ducks, under daily cyclic hot temperature environment. A total of 151-day-old mixed-sex Pekin ducks were randomly divided into one negative control and two treatment groups, fed experimental diets supplemented with 0, 5, and 10 g L-Arginine (L-Arg)/kg to the basal diet respectively. Ducks were exposed to cyclic high temperature simulating natural summer season. The results showed that the addition of L-Arg improves feed conversion ratio (FCR) during a period of 7-week trial, as well as increases hepatic weight relative to body weight at 21 days, while decreases the hepatic water content at 49 days of age. This study indicated that the liver was more sensitive to acute heat stress, and the hepatic relative weight and chemical composition could be regulated by dietary L-Arg supplementation in Pekin ducks being reared at high ambient temperature. These beneficial effects of Arg on liver might be a cause of improved FCR.

  16. Development and characterization of a high temperature stress responsive subtractive cDNA library in Pearl Millet Pennisetum glaucum (L.) R.Br.

    Science.gov (United States)

    James, Donald; Tarafdar, Avijit; Biswas, Koushik; Sathyavathi, Tara C; Padaria, Jasdeep Chatrath; Kumar, P Ananda

    2015-08-01

    Pearl millet (Pennisetum glaucum L. R. Br.) is an important cereal crop grown mainly in the arid and semi-arid regions of India known to possess the natural ability to withstand thermal stress. To elucidate the molecular basis of high temperature response in pearl millet, 12 days old seedlings of P. glaucum cv. 841A were subjected to heat stress at 46 degrees C for different time durations ( 30 min, 2, 4, 8, 12 and 24 h) and a forward subtractive cDNA library was constructed from pooled RNA of heat stressed seedlings. A total of 331 high quality Expressed Sequence Tags (ESTs) were obtained from randomly selected 1050 clones. Sequences were assembled into 103 unique sequences consisting of 37 contigs and 66 singletons. Of these, 92 unique sequences were submitted to NCBI dbEST database. Gene Ontology through RGAP data base and BLASTx analysis revealed that about 18% of the ESTs showed homology to genes for "response to abiotic and biotic stimulus". About 2% of the ESTs showed no homology with genes in dbEST, indicating the presence of uncharacterized candidate genes involved in heat stress response in P. glaucum. Differential expression of selected genes (hsp101 and CRT) from the SSH library were validated by qRT-PCR analysis. The ESTs thus generated are a rich source of heat stress responsive genes, which can be utilized in improving thermotolerance of other food crops.

  17. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  18. Intergranular stress corrosion cracking of type 304 stainless steels treated with inhibitive chemicals in high temperature pure water

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, T.K. [Nuclear Science and Technology Development Center, National Tsing-Hua Univ. Taiwan (China); Lee, M.Y.; Tsai, C.H. [Department of Engineering and System Science, National Tsing-Hua Univ. Taiwan (China)

    2002-07-01

    Electrochemical potentiodynamic polarizations, electrochemical corrosion potential (ECP) measurements and slow strain rate tensile (SSRT) tests were conducted to investigate the intergranular stress corrosion cracking (IGSCC) characteristics of Type 304 stainless steels treated with inhibitive chemicals in simulated boiling water reactor (BWR) environments. A number of thermally sensitized specimens were prepared and were pre-oxidized in a 288 C environment with the presence of 300 ppb dissolved oxygen for 360 hours. Most of the specimens were then treated with various chemicals including powdered zirconium oxide (ZrO{sub 2}), powdered titanium oxide (TiO{sub 2}), and zirconyl nitrate [ZrO(NO{sub 3}){sub 2}] via static immersion at 90 C, 150 C, and 200 C. Test environments were specifically designed in a circulation loop to create a dissolved oxygen concentration of 300 ppb. Test results showed that the corrosion current densities of all treated specimens were lower than that of the untreated, pre-oxidized specimen at ambient temperature in a solution mixed with 1 mM K{sub 3}Fe(CN){sub 6} and 1 mM K{sub 4}Fe(CN){sub 6}. The ECPs of the treated specimens could be lower or higher than that of the pre-oxidized one at 288 C, depending upon the type of treating chemical and the treating temperature. In addition, IGSCC was observed on all specimens (treated or untreated) in the same environment. However, the untreated specimen exhibited lower elongation, shorter failure time, and more secondary cracks on the side surfaces. It was therefore suggested that inhibitive chemicals such as ZrO{sub 2}, TiO{sub 2}, and ZrO(NO{sub 3}){sub 2} did provide a certain degree of enhancement in improving the mechanical behavior of the treated specimens and in prolonging the IGSCC initiation time. (authors)

  19. Threading dislocation movement in AlGaN/GaN-on-Si high electron mobility transistors under high temperature reverse bias stressing

    Directory of Open Access Journals (Sweden)

    W. A. Sasangka

    2016-09-01

    Full Text Available Dislocations are known to be associated with both physical and electrical degradation mechanisms of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs. We have observed threading dislocation movement toward the gate-edges in AlGaN/GaN-on-Si HEMT under high reverse bias stressing. Stressed devices have higher threading dislocation densities (i.e. ∼5 × 109/cm2 at the gate-edges, as compared to unstressed devices (i.e. ∼2.5 × 109/cm2. Dislocation movement correlates well with high tensile stress (∼1.6 GPa at the gate-edges, as seen from inverse piezoelectric calculations and x-ray synchrotron diffraction residual stress measurements. Based on Peierls stress calculation, we believe that threading dislocations move via glide in 〈 11 2 ¯ 0 〉 / { 1 1 ¯ 00 } and 〈 11 2 ¯ 0 〉 / { 1 1 ¯ 01 } slip systems. This result illustrates the importance of threading dislocation mobility in controlling the reliability of AlGaN/GaN-on-Si HEMTs.

  20. Threading dislocation movement in AlGaN/GaN-on-Si high electron mobility transistors under high temperature reverse bias stressing

    Science.gov (United States)

    Sasangka, W. A.; Syaranamual, G. J.; Made, R. I.; Thompson, C. V.; Gan, C. L.

    2016-09-01

    Dislocations are known to be associated with both physical and electrical degradation mechanisms of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs). We have observed threading dislocation movement toward the gate-edges in AlGaN/GaN-on-Si HEMT under high reverse bias stressing. Stressed devices have higher threading dislocation densities (i.e. ˜5 × 109/cm2) at the gate-edges, as compared to unstressed devices (i.e. ˜2.5 × 109/cm2). Dislocation movement correlates well with high tensile stress (˜1.6 GPa) at the gate-edges, as seen from inverse piezoelectric calculations and x-ray synchrotron diffraction residual stress measurements. Based on Peierls stress calculation, we believe that threading dislocations move via glide in / { 1 1 ¯ 00 } and / { 1 1 ¯ 01 } slip systems. This result illustrates the importance of threading dislocation mobility in controlling the reliability of AlGaN/GaN-on-Si HEMTs.

  1. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  2. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  3. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong

    2017-05-01

    A 56-day feeding trial followed by an acute high temperature stress test were performed to evaluate the effect of dietary probiotic Clostridium butyricum (CB) on growth performance and intestine antioxidant capacity of kuruma shrimp Marsupenaeus japonicus. Shrimp were randomly allocated in 9 tanks (30 shrimp per tank) and triplicate tanks were fed with diets containing different levels of C. butyricum (1×10(9) cfu/g): 0mgg(-1) feed (Control), 100mgg(-1) feed (CB-100), 200mgg(-1) feed (CB-200) as treatment groups. The results indicated that dietary supplementation of C. butyricum increased the growth performance and decreased the feed conversion rate (FCR) of shrimp in the CB-100 group. HE stain showed that C. butyricum increased the intestine epithelium height of M. japonicus. C. butyricum supplemented in diets decreased·O2(-) generation capacity and malondialdehyde (MDA) content, and increased total antioxidant capacity (T-AOC), catalase (CAT) and peroxidase (POD) activity and the expression level of heat shock protein 70 (hsp70) and metallothionein (mt) gene in intestine of shrimp cultured under normal condition for 56 d, while no significant changes in glutathione peroxidase (GPx) activity and ferritin gene expression level. After shrimp exposed to high temperature stress 48h, the lower level of·O2(-) generation capacity and MDA content, and the higher level survival, activities of T-AOC, CAT, GPx and POD, as well as hsp70, ferritin and mt gene expression level were found in intestine of two C. butyricum groups. These results revealed that C. butyricum could improve the growth performance, increase intestine antioxidant capacity of M. japonicus against high temperature stress, and could be a potential feed additive in shrimp aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  5. High Temperature ESP Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  6. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  7. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    Science.gov (United States)

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H2O2) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  9. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  10. Strangeness at high temperatures

    CERN Document Server

    Schmidt, Christian

    2013-01-01

    We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information on the strange meson and baryon contribution to the low temperature hadron resonance gas, the dissolution of strange hadronic states in the crossover region of the QCD transition and the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

  11. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton.

    Science.gov (United States)

    Min, Ling; Li, Yaoyao; Hu, Qin; Zhu, Longfu; Gao, Wenhui; Wu, Yuanlong; Ding, Yuanhao; Liu, Shiming; Yang, Xiyan; Zhang, Xianlong

    2014-03-01

    Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-adenosyl-L-homocysteine hydrolase1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of casein kinasei (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, phytochrome-interacting factor genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.

  12. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang, E-mail: yiqiang-chen@hotmail.com; Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei [Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, 510610 Guangzhou (China)

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  13. Chlorophyll fluorescence characteristics of Amaranthus tricolor L.under high temperature stress%高温胁迫下苋菜的叶绿素荧光特性

    Institute of Scientific and Technical Information of China (English)

    陈梅; 唐运来

    2013-01-01

    为了探明高温胁迫对苋菜(Amaranthus tricolor L.)光合过程的影响,用不同温度(25、30、35、40、45℃)处理苋菜植株1h后,随即测定了其叶绿素荧光动力学参数和快速光响应曲线特征参数的变化.结果表明:40℃以上高温胁迫下,苋菜叶片的光系统Ⅱ(PSⅡ)潜在光化学效率(Fv/Fo)、最大光化学效率(Fv/Fm)下降;最大荧光(Fm)、光合电子传递速率(ETR)、PSⅡ实际光化学效率(Yield)、光化学淬灭系数(qP)也均有所下降;而初始荧光(F.)和非光化学淬灭系数(NPQ)在40℃以上高温胁迫下显著上升.叶绿素荧光快速光响应曲线测定结果表明,初始斜率α、最大相对电子传递速率ETRmax和半饱和光强Ik在40℃以上高温胁迫下有所下降.研究表明,40℃以上高温胁迫对苋菜的光能的吸收、转换、光合电子传递和强光耐受能力等均有一定的影响.%Amaranth (Amaranthus tricolor L.) plants were exposed to several temperature levels (25,30,35,40,and 45 ℃) for 1 h,and then,the characteristic parameters of chlorophyll fluorescence and the rapid light response curves of photosynthesis were measured,aimed to understand the effects of high temperature stress on the photosynthesis process of amaranth.High temperature stress (>40 ℃) decreased the maximum fluorescence (Fm),potential photochemical efficiency (Fv/Fo),and maximum photochemical efficiency of PS Ⅱ (Fv/Fm).Simultaneously,the electron transport rate (ETR),actual photochemical efficiency of PS Ⅱ (Yield),and photochemical quenching coefficient (qP) also had some decrease.In contrast,the initial fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) were increased significantly.The initial slope rate (a),maximum apparent electron transport rates (ETRmax),and half-saturation light intensity (Ik) under high temperature stress also had some decline.These results indicated that the photosynthesis of A.tricolor plants was very sensitive to high

  14. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  15. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  16. Desulfurization at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Panula-Nikkilae, E.; Kurkela, E.; Mojtahedi, W.

    1987-01-01

    Two high-temperature desulfurization methods, furnace injection and gasification-desulfurization are presented. In furnace injection, the efficiency of desulfurization is 50-60%, but this method is applied in energy production plants, where flue gas desulfurization cannot be used. Ca-based sorbents are used as desulfurization material. Factors affecting desulfurization and the effect of injection on the boiler and ash handling are discussed. In energy production based on gasification, very low sulfur emissions can be achieved by conventional low-temperature cleanup. However, high-temperature gas cleaning leads to higher efficiency and can be applied to smaller size classes. Ca-, Fe-, or Zn-based sorbents or mixed metals can be used for desulfurization. Most of the methods under development are based on the use of regenerative sorbents in a cleanup reactor located outside the gasifier. So far, only calcium compounds have been used for desulfurization inside the gasifier.

  17. Thermal exchanges and temperature stress

    Science.gov (United States)

    Webb, P.

    1975-01-01

    Thermal comfort during space flight is discussed. Heat production of man during space flight and wear loss as a mean of dissipating heat are described. Water cooled garments are also considered, along with tolerance for extreme heat and body heat storage. Models of human temperature regulation are presented in the form of documented FORTRAN programs.

  18. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  19. Kinetics and Nanostructure Dependence of High Temperature-Low Stress Creep of A1 and A1-0.3~0Fe

    Institute of Scientific and Technical Information of China (English)

    M. Abo-Elsoud

    2012-01-01

    The novel nanostructure of AI and AI-Fe were prepared by ball milling alumina with elemental Fe. The kinetics and nanostructure dependence of high temperature low stress Newtonian creep of AI and AI-0.3%Fe have been investigated and compared with the predications of the Nabarro-Herring (N-H) theory of directional diffusion. A simple theory based on the climb controlled generation of dislocations from a fixed density of sources is developed to explain the observed behavior. The dislocation density increases and subgrains form during the creep. Also, the presence of precipitates of FeAI3 reduces the creep rate of AI by absolute faster of 100 at the same stress and temperature, in spite of the fact that the grain size in the AI-0.3%Fe alloy is smaller by a factor of about 100 nm. The reduction of grain size to the nanometer scale improves their mechanical properties. Electron diffraction methods combined with transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies are a convenient and powerful technique for the characterization of the phases and grain structure of the resulting materials.

  20. Study on the Resistance of Cucumber to Temperature Stresses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Four cucumber (Cucumis sativus L. ) inbred lines with different resistances to temperature stress were used in this experiment. The seedlings of line Q10 and Q21 that have high resistance to chilling stress also have high resistance to heat stress. The seedlings of line T94 and T55 that have lower resistance to chilling stress also have lower resistance to heat stress. It seems that the resistance of cucumber seedlings to different temperature stresses was similar. The influences of chilling and heat stress on the germination ability of cucumber seeds were different. Under the chilling stress, the germination percentage decreased less, and the germination velocity decreased more,so the germination index decreased significantly. Under the heat stress, the germination percentage and velocity of the seeds with high resistance decreased less and those of the seeds with lower resistance decreased more. The differences among the lines became more evident under the extreme heat condition. The content of chlorophyll decreased under the different temperature stresses, the content of chlorophyll a decreased more than that of chlorophyll b, so the value of chlorophyll a/b decreased.The temperature stress inhibited the photosynthesis of cucumber seedlings significantly. After chilling or heat treatment, the net photosynthetic rate (Pn) decreased remarkably. With the stomatal conductance (Gs) decreased, the stomatal limited value (Is) decreased, the intercellular CO2 concentration (Ci) increased, and both the apparent quantum efficiencies (AQE) and the carboxylation efficiencies (CE) decreased. Results showed that the non-stomatal factors were the main causes of Pn decrease, and the photosynthetic mechanism was destroyed remarkably.

  1. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  2. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  3. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  4. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... of the HT-PEM fuel cell are studied in the current work. Both in-situ and ex-situ characterization techniques are conducted to gain insight into the degradation mechanisms of the HT-PEM fuel cell under these operating conditions. The experimental results in this work suggest that the presence of methanol...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  5. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  6. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  7. Relative Damage Stress: Dominant Mechanical Factor for the Failure of Soldered Joints under Temperature Cycling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By temperature normalization of the concept of equivalent damage stress proposed by Lemaitre,a new concept of relative damage stress has been put forward as the dominant mechanical factor for the failure of soldered joints under temperature cycling. Finite element numerical simulation results showed that the highest value of relative damage stress occurred at the high temperaturehold time during temperature cycling history.

  8. Response to temperature stress in rhizobia.

    Science.gov (United States)

    Alexandre, Ana; Oliveira, Solange

    2013-08-01

    It is well established that soil is a challenging environment for bacteria, where conditions may change rapidly and bacteria have to acclimate and adapt in order to survive. Rhizobia are an important group of soil bacteria due to their ability to establish atmospheric nitrogen-fixing symbioses with many legume species. Some of these legumes are used to feed either humans or cattle and therefore the use of rhizobia can reduce the need for synthetic N-fertilizers. Several environmental factors shape the composition and the activity of rhizobia populations in the rhizosphere. Soil pH and temperature are often considered to be the major abiotic factors in determining the bacterial community diversity. The present review focuses on the current knowledge on the molecular bases of temperature stress response in rhizobia. The effects of temperature stress in the legume-rhizobia symbioses are also addressed.

  9. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  10. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  11. Geomechanical characterization of the Upper Carboniferous under thermal stress for the evaluation of a High Temperature - Mine Thermal Energy Storage (HT-MTES)

    Science.gov (United States)

    Hahn, Florian; Brüggemann, Nina; Bracke, Rolf; Alber, Michael

    2017-04-01

    The goal of this R&D project is to create a technically and economically feasible conceptual model for a High Temperature - Mine Thermal Energy Storage (HT-MTES) for the energetic reuse of a mine on the example of the Prosper-Haniel coal mine in Bottrop, Germany. This project is funded by the "Initiative Energy Storage" program of the German Federal Ministries BMWi, BMU and BMBF. At the end of 2018, the last operative coal mine in North Rhine-Westphalia, Germany (Prosper-Haniel), is going to be closed down, plugged and abandoned. Large amounts of subsurface infrastructures, resembled mainly by open parts of former galleries and mining faces are going to be flooded, after the mine is closed down and therefore have the potential to become an enormous geothermal reservoir for a seasonal heat storage. During the summer non-used (waste) heat from solar thermal power plants, garbage incineration, combined heat and power plants (CHP) or industrial production processes can be stored within dedicated drifts of the mine. During the winter season, this surplus heat can be extracted and directly utilized in commercial and/or residential areas. For the evaluation of such a HT-MTES within a former coal mine, the corresponding geomechanical parameters of the Upper Carboniferous under thermal stress needs to be evaluated. Therefore the main rock types of the Upper Carboniferous (claystone, siltstone and sandstone) are subject to a geomechanical characterization before and after thermal cyclic loadings of temperatures up to 200 °C. The samples have been collected directly from the coal mine Prosper-Haniel within a depth range of 1000 - 1200 m. Unconfined compressive and tensile strengths, as well as triaxial tests were performed at room temperature. Furthermore, a range of petrophysical properties like density, thin-section analysis and P-wave velocities were determined. First results show an indication that the overall strength properties of the samples are not effected by

  12. High Temperature Softening Behaviors and Flow Stress Model for a High Molybdenum Austenitic Stainless Steel%高钼奥氏体不锈钢高温软化行为与流变应力模型

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Single-stage and double-stage interrupted hot compression tests for physical simulating hot rolling have been carried out on the THERMECMATSTOR-Z simulator for 00Cr20Ni18Mo6Cu[ N] austenitic stainless steel under high temperature (1223~1373 K) and various strain rates (0.1~60 s- 1 ). The high temperature mechanical behaviors and microstructure evolution of the steel were studied. The activation energies of hot deformation and dynamic, static and metadynamic recrystallization were calculated. Serials of perfect flow stress model considering dynamic recrystallization were established. The predicted result by the model was well agreed with the experiment data.The kinetics of metadynamic and static recrystallization had also been determined.

  13. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  14. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  15. 高温干旱双重胁迫对水稻剑叶光合特性的影响%Effect of High Temperature and Drought Stress on the Photosynthesis Characteristics in Rice

    Institute of Scientific and Technical Information of China (English)

    刘照; 高焕烨; 王三根

    2011-01-01

    Using artificial atmospheric phenomena simulator, rice H5 was treated with high temperature and drought stress, and the changes of photosynthetic characters and physiological indices were measured during grain-filling period.The results showed that photosynthetic rate(Pr), transpiration rate (Tr ), stomatal conductance (Cs) and chlorophyll content had decreased tendencies, whereas MDA content and proline content had increased tendencies under high temperature and drought stress.This paper discussed the physiological mechanism of high temperature and drought stress on rice and provided the information for rice defense against high temperature and drought stress.%以水稻H5为材料,研究高温干旱双重胁迫对抽穗灌浆结实期的水稻光合特性和几种生理指标的变化影响.结果表明:高温干旱双重胁迫使水稻剑叶中光合速率、气孔导度、蒸腾速率和叶绿素质量分数均呈下降趋势,而丙二醛(MDA)质量分数和游离脯氨酸(Pro)质量分数持续增加.该文讨论了高温干旱对水稻的伤害机理,为防御水稻高温干旱危害,抗性育种和栽培提供参考.

  16. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  17. High temperature nanoplasmonics

    Science.gov (United States)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo

    2016-09-01

    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  18. Temperature stress and plant sexual reproduction: uncovering the weakest links.

    Science.gov (United States)

    Zinn, Kelly E; Tunc-Ozdemir, Meral; Harper, Jeffrey F

    2010-04-01

    The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.

  19. Stress envelope of silicon carbide composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kim, Sunghun [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ozawa, Kazumi; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2014-10-15

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case.

  20. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  1. Sleep in High Stress Occupations

    Science.gov (United States)

    Flynn-Evans, Erin

    2014-01-01

    High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.

  2. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  3. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  4. Numerical Research on High Temperature Stress Characteristic of Internally Finned Bayonet Tube%插管式内翅片管高温应力特性的数值研究

    Institute of Scientific and Technical Information of China (English)

    马挺; 吉彦鹏; 曾敏; 王秋旺

    2011-01-01

    In the present paper, the high temperature stress characteristic of internally finned bayonet tube is numerically studied. The results indicate that high temperature is the main factor to cause large stress and deformation. The large stress happens in the joint of inner fins and inner tubes, so the welding quality of the joint must be ensured. Due to the significant potential of reducing thermal stress, the bayonet structure is superior to the traditional tube for use in the high temperature heat exchanger. Furthermore, it is more suitable for use in the high pressure environment than primary surface recuperator.%本文采用ANSYS软件对插管式内翅片管的高温应力特性进行了数值研究,数值模拟结果表明,高温是产生大应力和大应变的主要原因,在内翅片与内管焊接的部位存在较大的应力区,在焊接过程中要保证此处的焊接质量,插管式内翅片管相对于传统内翅片管具有大幅降低热应力的优点,同时在承受高压方面也比原表面回热器具有更大的优势。

  5. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  6. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  7. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  8. Numerical simulation on thermal stress of solar high-temperature shaped heat pipes%太阳能高温异型热管热应力数值摸拟

    Institute of Scientific and Technical Information of China (English)

    曾金令; 马炎; 马婷婷; 朱跃钊; 杨谋存; 陈海军

    2015-01-01

    During high temperature thermo-chemical conversion utilization of solar,problems like local high temperature and poor heat transfer between two cavities occurred in the conventional directly and indirectly irradiated solar high temperature reactors.Thus,a new solar high-temperature phase transition reactor was developed by using high temperature heat plate-heat pipe technology.Its key part is high temperature shaped heat pipe (HTSHP).To investigate the heat bearing capacity of the HTSHP,the temperature field, stress field and thermal deformation of the HTSHP was numerically simulated,by establishing the thermal resistance model of the HTSHP and using thermal-stress coupling function of the large finite element anal-ysis software ANSYS.The analysis shows that,the maximum temperature of the HTSHP is 768 ℃,the maximum temperature difference is 1 8 ℃ and the temperature uniformity and heat transfer capability is ex-cellent.The thermal stress concentration occurs on the transitionally connecting heat plate.The maximum stress is 24.6 MPa,meeting the assessment requirements of the Steel Pressure Vessels- Analysis and De-sign Standard (JB/T4732—2005).%在太阳能高温热化学转化利用中,传统的直接照射式太阳能高温反应器和间接照射式两腔太阳能高温反应器均存在局部高温热点、两腔间传热能力差等问题.为此,应用高温热板-热管技术研制了新型太阳能高温相变反应器,其核心部件为高温异型热管(HTSHP).为分析HTSHP的热承载能力,构建了传热热阻模型,采用有限元分析软件 ANSYS 的热-应力耦合功能,对 HTSHP 在稳态条件下的温度场、应力场、热变形进行了数值模拟.结果表明, HTSHP最高温度为768℃,最大温差为18℃,均温性和传热能力较好;热应力集中于过渡连接的热板内壁上,最大应力为24.6 MPa,满足钢制压力容器分析设计标准的要求.

  9. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  10. Temperature Induced Stress Dependent Photoluminescence Properties of Nanocrystallite Zinc Oxide

    Directory of Open Access Journals (Sweden)

    V. Kumar

    2011-01-01

    Full Text Available In this paper, Temperature induced stress dependent structural, optical and photoluminescence properties of nanoscrysllites ZnO (nc-ZnO films are reported. It is seen that crystallite size, band gap and PL intensity of nc-ZnO are strongly dependent on stress. Large compressive stress has been observed at temperature 350-400 °C while minimum stress obtained at temperature 450 °C. A small amount of expensive stress is obtained at temperature 500 and 500 °C. The surface topography of the nc-ZnO films has been studied using atomic force microscopy. The optical band gap of nc-ZnO has been decreased from 3.25 to 3.23 eV as a function of temperature induced stress. The luminescence property is dependent on stress of nc-ZnO films.

  11. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  12. Aftershock decay, productivity, and stress rates in Hawaii: Indicators of temperature and stress from magma sources

    Science.gov (United States)

    Klein, Fred W.; Wright, Tom; Nakata, Jennifer

    2006-01-01

    We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg-Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post-main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre-main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

  13. Effects of controllable vs. uncontrollable stress on circadian temperature rhythms.

    Science.gov (United States)

    Kant, G J; Bauman, R A; Pastel, R H; Myatt, C A; Closser-Gomez, E; D'Angelo, C P

    1991-03-01

    The effects of sustained stress on body temperature were investigated in rats implanted with mini-transmitters that permitted remote measurement of body temperature. Temperature was first monitored during control conditions. Following the control period, rats were either shaped to avoid/escape signalled around-the-clock intermittent footshock (controllable stress) or yoked to the controlling rats such that the controlling rat and the yoked rat received shock of the same duration, but only the controlling rat could terminate shock by pulling a ceiling chain. Under control conditions, rats demonstrated regular rhythms in body temperature which averaged 1 degree higher during the 12-h dark cycle than the light cycle. Stress disrupted the rhythm and markedly decreased the night-day difference in temperature, especially in the yoked rats in which almost no difference between light and dark cycle temperature was seen. The disruption was most marked for the first days of stress. A regular temperature rhythm was reestablished following about 5 days of stress although the stress condition continued. Leverpressing for food was also affected by the stress conditions with both stress groups leverpressing less than controls and the uncontrollable stress group pressing less than the controllable stress group. These data offer additional evidence of the increased pathophysiological effects of uncontrollable as compared to controllable stress.

  14. Stress and Defect Control in GaN Using Low Temperature Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Akasaki, I.; Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Iwaya, M.; Kashima, T.; Katsuragcawa, M.

    1998-12-04

    In organometallic vapor phase epitaxial growth of Gail on sapphire, the role of the low- temperature-deposited interlayers inserted between high-temperature-grown GaN layers was investigated by in situ stress measurement, X-ray diffraction, and transmission electron microscopy. Insertion of a series of low temperature GaN interlayers reduces the density of threading dislocations while simultaneously increasing the tensile stress during growth, ultimately resulting in cracking of the GaN film. Low temperature AIN interlayers were found to be effective in suppressing cracking by reducing tensile stress. The intedayer approach permits tailoring of the film stress to optimize film structure and properties.

  15. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  16. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  17. Studying the effect of Ruthenium on High Temperature Mechanical Properties of Nickel Based Superalloys and Determining the Universal Behavior of Ruthenium at Atomic Scale with respect to alloying elements, Stress and Temperature

    Directory of Open Access Journals (Sweden)

    Sriswaroop Dasari

    2016-10-01

    Full Text Available Any property of a material is a function of its microstructure and microstructure is a function of material composition. So, to maximize the desired properties of a material, one has to understand the evolution of microstructure which in turn is nothing but the reflection of the role of alloying elements. Research has not been done to understand the universal behavior of a certain base/alloying element. Let’s take the example of Cl- ion in HCl, we all know that in general, chloride ion can only be replaced by Fluoride or oxygen ion and that no other ion can replace it. But when you consider a metal like Ni, Co, Cr, Fe etc. there is no establishment that it behaves only in a certain way. Though I concord to the fact that discovery of universal behavior of Ni is lot complex than chloride ion, I think that future research should be focused in this direction also. Superalloys are the candidate materials required to improve thermal efficiency of a gas turbine by allowing higher turbine inlet gas temperatures. Gas turbines are the heart of local power systems, next generation jet engines and high performance space rockets. Recent research in superalloys showed that addition of some alloying elements in minor quantities can result in drastic change in properties. Such an alloying element is Ruthenium (Ru. Addition of Ruthenium to superalloys has shown improvement in mechanical properties by an order of magnitude. However reasons for such improvement are not known yet. Hence, there is a need to identify its role and discover the universal behavior of ruthenium to utilize it efficiently. In this proposal, we study materials with different compositions that are derived based on one ruthenium containing superalloy, and different thermomechanical history. Based on the evolution of microstructures and results of mechanical testing, we plan to determine the exact role of Ruthenium and prediction of its behavior with respect to other elements in the material

  18. 汽车高速盘制动的摩擦温度场及热应力分析%Friction Temperature Field and Thermal-stress Analysis of Auto Brake Disc at High Speed

    Institute of Scientific and Technical Information of China (English)

    韩宁; 赵河明; 王维

    2013-01-01

    The finite element software ABAQUS is used to analyze temperature variation of brake disc with the changing of fic-tion time and fiction speed, and the distribution of Mises stress at highest speed.The following conclusion are researched that brake disc heat dissipation is better at low speed, the temperature growth is linear with time.With the growth of speed, the high temperature ring narrow area occurres in the center of fiction, temperature range of strip near area and high temperature area are increasing.Mises stress in high temperature area is minimum, which means elastic modulus geting smaller with the increasing of temperature, the conclusion provides an theoretical basis for the study of new composite materials.%应用有限元软件ABAQUS分析刹车盘随摩擦时间、摩擦速度的温度变化情况及在转速最大时Mises 应力分布。得出如下结论:当低速时刹车盘的散热比较好,升温幅度与时间成线性关系;随着速度的增加在摩擦中心出现一条高温环形窄带,并且在条带附近区与高温区的温差也随速度随之增加;在高温区的Mises 应力最小,说明弹性模量也随温度增加在变小,分析结论为新型复合材料研究提供理论依据。

  19. Gallium phosphide high temperature diodes

    Science.gov (United States)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  20. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  1. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry

    2016-06-01

    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  2. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  3. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  4. Axillary temperature measurement: a less stressful alternative for hospitalised cats?

    Science.gov (United States)

    Girod, M; Vandenheede, M; Farnir, F; Gommeren, K

    2016-02-20

    Rectal temperature measurement (RTM) can promote stress and defensive behaviour in hospitalised cats. The aim of this study was to assess if axillary temperature measurement (ATM) could be a reliable and less stressful alternative for these animals. In this prospective study, paired rectal and axillary temperatures were measured in 42 cats, either by a veterinarian or a student. To assess the impact of these procedures on the cat's stress state, their heart rate was checked and a cat stress score (CSS) was defined and graded from 1 (relaxed) to 5 (terrified). A moderate correlation was found between RTM and ATM (r=0.52; Pcats.

  5. Effects of Hf and B on high temperature low stress creep behavior of a second generation Ni-based single crystal superalloy DD11

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhang, J.; Luo, Y.S. [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Li, J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); NCS Testing Technology Co., Ltd., Beijing 100081 (China); Tang, D.Z., E-mail: Dingzhongtang621@163.com [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2016-08-30

    The as-cast and heat-treated microstructures and high temperature creep properties have been investigated in four experimental Ni-based single crystal superalloys containing various levels of Hf addition (0–0.4 wt%) and B addition (0–0.02 wt%). The experimental results indicated that the creep rupture life showed an improvement with individual addition of Hf, but it was decreased with individual addition of B. The elemental partitioning ratio and interfacial dislocation spacing of γ/γ′ were obviously changed with individual Hf or B additions. Meanwhile, the formation of secondary phases, such as the blocky MC carbide, script-like shape M{sub 3}B{sub 2} phases, was observed in the creep samples, which was also closely related to the high temperature creep behaviors. The high volume fraction of residual (γ+γ′) eutectics was mainly attributed to the significant decrease of creep rupture life for the present experimental alloy containing both Hf and B additions. This study is helpful to better understand Hf and B's role of strengthening mechanism and to optimize Hf and B additions in single crystal superalloys.

  6. The Varying Effects of Uniaxial Compressive Stress on the Bainitic Transformation under Different Austenitization Temperatures

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2016-05-01

    Full Text Available In this study, thermal simulation experiments under different austenitization temperatures and different stress states were conducted. High-temperature laser scanning confocal microscopy (LSCM, thermal dilatometry, and scanning electron microscope (SEM were used to quantitatively investigate the effects of the uniaxial compressive stress on bainitic transformation at 330 °C following different austenitization temperatures. The transformation plasticity was also analyzed. It was found that the promotion degree of stress on bainitic transformation increases with the austenitization temperature due to larger prior austenite grain size as well as stronger promoting effect of mechanical driving force on selected variant growth at higher austenitization temperatures. The grain size and the yield strength of prior austenite are other important factors which influence the promotion degree of stress on bainitic transformation, besides the mechanical driving force provided by the stress. Moreover, the transformation plasticity increases with the austenitization temperature.

  7. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  8. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  9. Adaptability of Cherry Tomato to High Temperature Stress under NFT%高温胁迫条件下营养液膜水培樱桃番茄的逆境适应性

    Institute of Scientific and Technical Information of China (English)

    陈海生; 朱兆平

    2012-01-01

    The influence of high temperature stress on several physiological indices of cherry tomato in NFT and in soil was studied in this paper.The variation of physiological indices,including leaf water potential,photosynthetic rate and superoxide dismutase of cherry tomato under high temperature stress was measured.The results showed that the physiological indices above mentioned decreased dramatically when the plants were planted in soil under high temperature condition,while only a slight decrease was found from the plants planted in NFT.It can be concluded that the heat resistance of tomato seeding under NFT was stronger than that under soil culture.%通过测定高温处理后水培和土培樱桃番茄的几项生理指标,研究了樱桃番茄在高温胁迫条件下的叶水势、光合速率、SOD酶活性等生理指标的变化特征,结果表明,高温胁迫条件下土培番茄叶水势、光合速率和SOD活性大幅度下降,而水培番茄上述生理指标虽有下降,但幅度远较土培番茄为少,因此,水培樱桃番茄对高温的抵抗能力要强于土培。

  10. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  11. High temperature polymer matrix composites

    Science.gov (United States)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  12. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  13. Effect of temperature and pressure on stress of impeller in axial-centrifugal combined compressor

    Directory of Open Access Journals (Sweden)

    Xinqian Zheng

    2016-06-01

    Full Text Available Axial-centrifugal combined compressors are commonly used, and the stresses of their impeller are important and influenced by temperature and pressure. The effects of temperature and pressure on the stresses of the impeller with different inlet conditions are investigated. Conjugate heat transfer analysis and three-dimensional structural finite element analysis are used to get the stresses of the impeller. The effects of temperature and pressure are obtained by comparing the equivalent (Von-Mises stresses between cases taking and not taking them into account. From the result, the temperature effect is surprisingly large for low inlet temperature, reaching 57% of the total equivalent stress, and should be carefully considered. The effect strongly relates with the inlet conditions and the disk thermal boundary conditions. Thus, the later can’t be treated as adiabatic as usual. For certain inlet conditions, the stress of the impeller can be improved by adjusting the disk thermal boundary conditions. In addition, the temperature mainly affects the stress on the disk and the root of the blade. The pressure effect is small for low inlet temperature and can be sufficiently large for high inlet temperature. Furthermore, the pressure mainly influences the stress on the blade part and can reduce the stresses at the inducer of a negative-lean impeller.

  14. 三系杂交棉花粉育性对高温和低温胁迫的反应%Reaction of Pollen Fertility to High or Low Temperature Stresses in CMS-Based Hybrid Cotton

    Institute of Scientific and Technical Information of China (English)

    倪密; 王学德; 张昭伟; 朱云国; 张海平; 邵明彦; 袁淑娜; 刘英新; 文国吉

    2009-01-01

    Planting CMS-based hybrid cotton is an important way to use cotton hetcrosis. Fertility of hybrid cotton pollens is in-fluenced by cultivar, climatic conditions, management practices and pests. Among all the factors, temperature is the primary one affecting cotton growth, the following is air humidity. Stability of pollen fertility under high and low temperature stresses, associ-ated with the hetcrosis expression of CMS-based hybrids, is the main point to elucidate in this study. The fertility differences be-tween hybrids and the maintainer were compared by testing the percentage of fertile pollens in the greenhouse experiment with temperature controlled and the field experiment with natural temperature. In addition, percentage of setting bolls and percentage of aborted seeds were tested in the field experiment. Pollen fertility was checked by benzidine-Naphthol fluorescence microscopic method, while cross-pollination experiments were performed by dusting pollen obtained from corresponding restorers, then per-centage of setting boils and percentage of aborted seeds were determined by calculating the number of boils or seeds, respectively. The critical temperatures for upper limit and lower limit were searched from different given consistent temperatures, which each temperature was kept for eight days in the greenhouse when cotton pollens turned from fertility to sterility. The results showed that the response of CMS-based hybrids to the extreme temperature stress was more sensitive than that of the maintainer, while the former usually had lower stability in pollen vitality under the stress. However, different CMS-based hybrids had various toler-ances to temperature stress, for example, hybrids (F_1) restored by Zheda strong restorer showed higher pollen viability, more set-ting bolls and less aborted seeds under the stress than others. The response of pollen fertility to air temperature had a 5-day's delay in the field. Furthermore, the changes of maximum air

  15. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  16. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2017-01-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  17. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  18. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  19. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  20. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  1. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  2. The effect on the stress to the photosystem of Achnanthes sp. led by high temperature%高温热胁对Achnanthes sp.光系统的影响

    Institute of Scientific and Technical Information of China (English)

    马晶; 赵洋甬

    2013-01-01

    本文以 A chnanthes sp.为例,通过测定其光系统II的量子产率的变化,间接分析高温热胁对其生长与消亡的影响。结果表明,光量子产率对高温胁迫有较强的响应,整个电子传递步骤的影响可以通过其变化反映出来。 A chnanthes sp.的最适温度范围为15℃~35℃,适温范围比较广,自然条件下温度对其光合活性影响较小。故而自然条件下高温不是其消亡的主要原因。%In this report ,the effect on the stress to Achnanthes sp. led by high temperature was ana-lysed through the changs of photochemical quantum yield in photosystem II.The result showes that yield have a stronger response to heat stress ,the electron transfer step influence can be reflected through its changes. The most suitable temperature range of Achnanthes sp. may be 15℃-35℃.So high temperature is not the main reason for the water bloom of Achnanthes sp. demise under natural conditions.

  3. Derivation and test of elevated temperature thermal-stress-free fastener concept

    Science.gov (United States)

    Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.

    1985-01-01

    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.

  4. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    K Bhanu Sankara Rao

    2003-06-01

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of property advantages they possess including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance, and their amenability for significant improvment in creep and fatigue resistance through alloying. Reliability of intermetallics when used as engineering materials has not yet been fully established. Ductility and fracture toughness at room and intermediate temperatures continue to be lower than the desired values for production implementation. In this paper, progress made towards improving strain-controlled fatigue resistance of nickel and titanium aluminides is outlined. The effects of manufacturing processes and micro alloying on low cycle fatigue behaviour of NiAl are addressed. The effects of microstructure, temperature of testing, section thickness, brittle to ductile transition temperature, mean stress and environment on fatigue behaviour of same -TiAl alloys are discussed.

  5. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  6. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  7. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  8. High Temperature Sorbents for Oxygen

    Science.gov (United States)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  9. High-temperature beryllium embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Fabritsiev, S.A. [D.V. Efremov Scientific Research Institute, 189631 St. Petersburg (Russian Federation); Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Goncharenko, Yu.D. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1996-10-01

    The neutron irradiation effect on the mechanical properties, swelling and fracture surface structure of various beryllium grades was studied in the BOR-60 reactor at 340 to 350 C up to a fluence of 7.2 x 10{sup 21} n/cm{sup 2}. At a mechanical testing temperature of 400 C there was observed a strong anisotropy of plastic beryllium deformation depending on the direction of sample cutting relative to the pressing direction. An increase of the testing temperature up to 700 C resulted in an abrupt embrittlement of all irradiated samples. In the most part of the surface structure the intercrystallite fracture along the grain boundaries was covered entirely with large pores, 1 to 4 {mu}m in size. It was suggested that the increased rate of pore formation along the grain boundaries resulted from a high-temperature embrittlement under irradiation. (orig.).

  10. The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Fiocco

    2011-08-01

    Full Text Available Small heat shock proteins (sHsps are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR procedure was developed and used to quantify the transcript level of a small heat shock gene (shs in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C, bile (0.3% w/v, hyperosmosis (1 M and 2.5 M NaCl, and low pH value (pH 4. The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR sequence (TTAGCACTC-N9-GAGTGCTAA homologue to the controlling IR of chaperone expression (CIRCE elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.

  11. The hsp 16 gene of the probiotic Lactobacillus acidophilus is differently regulated by salt, high temperature and acidic stresses, as revealed by reverse transcription quantitative PCR (qRT-PCR) analysis.

    Science.gov (United States)

    Capozzi, Vittorio; Arena, Mattia Pia; Crisetti, Elisabetta; Spano, Giuseppe; Fiocco, Daniela

    2011-01-01

    Small heat shock proteins (sHsps) are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR) procedure was developed and used to quantify the transcript level of a small heat shock gene (shs) in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C), bile (0.3% w/v), hyperosmosis (1 M and 2.5 M NaCl), and low pH value (pH 4). The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR) sequence (TTAGCACTC-N9-GAGTGCTAA) homologue to the controlling IR of chaperone expression (CIRCE) elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.

  12. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  13. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  15. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  16. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  17. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  18. Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    K.H.Chang; G.C.Jang; C.H.Lee; S.H.Lee

    2008-01-01

    In the squeeze casting process, loaded high pressure (over approximately 100 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermo- physical and mechanical properties of the steel mold.

  19. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting. The co...

  20. Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults

    DEFF Research Database (Denmark)

    Nielsen, Søren Laurentius; Nielsen, Hanne Dalsgaard; Pedersen, Morten Foldager

    2014-01-01

    The combined effects of exposure to copper and temperature were investigated in adult specimens and germlings of the canopy-forming brown alga Fucus serratus. A matrix of four temperatures, 6, 12, 17 and 22 °C, and three concentrations of copper, 0, 100 and 1,000 nM total copper were used. Measured...

  1. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be optim

  2. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  3. Research on temperature field and temperature stress of prestressed concrete girders

    Directory of Open Access Journals (Sweden)

    Chen Cheng

    2011-02-01

    Full Text Available This paper introduces the establishment and simplification of the temperature field and the general calculation method of temperature stress of the prestressed concrete box girders. Three kinds of sunshine temperature gradient models were loaded to a real bridge respectively, and got stress and displacement curves. Research data of several prestressed concrete box girders were selected from different regions of China to compare the relative error of the calculated and measured value. We indicate that the study of temperature field and thermal stress of prestressed concrete box girders is necessary, and will help engineers to solve the problem in structure design.

  4. Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations

    Science.gov (United States)

    Yasuhara, Hideaki; Kinoshita, Naoki; Ohfuji, Hiroaki; Takahashi, Manabu; Ito, Kazumasa; Kishida, Kiyoshi

    2015-07-01

    In this study, a series of long-term, intermittent permeability experiments utilizing Berea sandstone and Horonobe mudstone samples, with and without a single artificial fracture, is conducted for more than 1000 days to examine the evolution of rock permeability under relatively high-temperature and confining pressure conditions. Effluent element concentrations are also measured throughout the experiments. Before and after flow-through experiments, rock samples are prepared for X-ray diffraction, X-ray fluorescence, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy to examine the mineralogical changes between pre and postexperimental samples, and also for microfocus X-ray CT to evaluate the alteration of the microstructure. Although there are exceptions, the observed, qualitative evolution of permeability is found to be generally consistent in both the intact and the fractured rock samples—the permeability in the intact rock samples increases with time after experiencing no significant changes in permeability for the first several hundred days, while that in the fractured rock samples decreases with time. An evaluation of the Damkohler number and of the net dissolution, using the measured element concentrations, reveals that the increase in permeability can most likely be attributed to the relative dominance of the mineral dissolution in the pore spaces, while the decrease can most likely be attributed to the mineral dissolution/crushing at the propping asperities within the fracture. Taking supplemental observations by microfocus X-ray CT and using the intact sandstone samples, a slight increase in relatively large pore spaces is seen. This supports the increase in permeability observed in the flow-through experiments.

  5. Damage evolution of metallic materials during high temperature plastic deformation

    Institute of Scientific and Technical Information of China (English)

    汪凌云; 刘雪峰; 汤爱涛; 黄光杰

    2002-01-01

    The damage evolution of high temperature plastic deformation of metallic materials was studied by use of continuum damage mechanics (CDM) theory. Based on thermodynamics, on a damage variable D and Zener-Hollomon parameter Z, and on the effective stress concept, a damage evolution model of high temperature plastic deformation was derived and was used to analyze the damage evolution of 1420 Al-Li alloy during high temperature plastic deformation. The model that is verified by tests can also be applied to the materials that are loaded prorata or out of proportion during high temperature plastic deformation. It extends the applied scope of damage mechanics.

  6. The behaviour of concrete at high temperatures and triaxial stress - FE model based on the concrete structure; Betonverhalten bei hohen Temperaturen und triaxialer Beanspruchung - FE-Modell auf der Basis der Betonstruktur

    Energy Technology Data Exchange (ETDEWEB)

    Ameler, J.

    1997-12-31

    In this work, an analytical material model was developed, based on the finite element (FE) method, with which the material behaviour of a normal quartzite concrete under temperature stress can be described. Starting from natural fires, the short term area and temperatures between the normal temperature and about 800 C are of special interest. Altogether, it was found that important processes reducing the strength, which occur in high temperature stresses of concrete, can be directly traced back to the additive or the mortar phase, while others are due to the interaction between the two partners. In this attempted model, the compound material concrete is therefore regarded as a system consisting of two components, the additive and the mortar matrix. The mortar matrix is defined as the part consisting of the cement, the water and the fine proportion of the additive (diameter{<=}4 mm). (orig./MM) [Deutsch] In der vorliegenden Arbeit wurde ein analytisches Werkstoffmodell auf der Basis der FE-Methode entwickelt, mit dem das Werkstoffverhalten eines quarzitischen Normalbetons unter einer Temperaturbeanspruchung beschrieben werden kann. Ausgehend vom natuerlichen Brandgeschehen, interessieren besonders der Kurzzeitbereich und Temperaturen zwischen Normaltemperatur und ca. 800 C. In der Summe zeichnet sich ab, dass wesentliche festigkeitsmindernde Prozesse, die sich bei einer Hochtemperaturbeanspruchung von Beton abspielen, direkt dem Zuschlag bzw. der Moertelphase zugeordnet werden koennen, waehrend andere auf die Interaktion zwischen den beiden Partnern zurueckzufuehren sind. Im vorliegenden Modellansatz wird der Verbundwerkstoff Beton deshalb als ein aus zwei Komponenten bestehendes System betrachtet, dem Zuschlag und der Moertelmatrix. Die Moertelmatrix wird als der aus dem Zement, dem Wasser und dem Feinanteil des Zuschlags (Durchmesser{<=}4 mm) zusammengesetzte Teil definiert. (orig./MM)

  7. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  8. Current trends in high temperature design

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L. (Illinois Univ., Urbana, IL (United States). Dept. of Mechanical Engineering)

    1992-01-01

    A review of high temperature design guidelines has been carried out in preparation for designing a solar storage module for the Freedom Spacelab. Three major guidelines, N47, R5 and RCC-MR form the basis of the survey. The main issues with current, mature design in the power industry appear to be adequately covered by these guidelines. A significant finding is that long established models of material damage have survived the test of time very well. A new design regime referred to as Very High Temperature Design (VHTD) is identified. The characteristics of this regime are changing material properties which require some changes in philosophy in drafting of future codes, particularly in regard to definitions of yield strengths and other design allowables. Finally, there is some discussion of the more general use of the stress/strain plane, e.g. isochronous curves, for representation of very complex material constitutive behaviour. A concept called the 'Relaxation Locus', which summarizes essential local constrained component behavior, is introduced and its application to high temperature design problems is discussed briefly. (author).

  9. Effect of High Temperature Stress on Leaf Growth and Stomatal Conductance in Rice%高温对水稻剑叶生长和气孔导度影响

    Institute of Scientific and Technical Information of China (English)

    张玉屏; 朱德峰; 林贤青; 向镜; 张浩

    2012-01-01

    In this study, different early rice varieties were studied in different temperature treatments, and the effect of high temperature stress on leaf growth and stomatal conductance in rice were probed. The results showed that: ( 1 ) in a certain temperature range, the higher the temperature, the longer the leaf elongation. The value of leaf elongation of Shengtai No. 1 was the maximum, and that of Xianxiaozhan was the minimum. (2) Leaf temperature increased significantly. The changing trend of four varieties was the same, and leaf temperature was slightly lower than the air temperature. (3) The stomatal conductance and the value of SPAD were increasing, especially when the temperature rose from 36 X. To 38 t , the stomatal conductance almost grew sharply, and the transpiration strengthened. (4) Yuexiangzhan was less sensitive to high temperature and its heat resistance was stronger.%为探讨高温对剑叶生长及气孔导度的影响,采用人工气候箱模拟抽穗期高温,对不同的早稻品种采用不同温度处理.结果表明:(1)在一定温度范围内,温度越高,叶片伸长越长,胜泰1号叶片伸长量最大,籼小占叶片伸长量最小;(2)大气温度升高,叶片温度明显升高,4个品种处理间变化趋势一致,且无显著性差异,叶片温度变化与气温变化一致,叶片温度略低于气温;(3)温度升高,气孔导度明显增加,SPAD值增大,特别是气温从36℃升到38℃时,气孔导度几乎成直线增长,蒸腾作用增强;(4)4个品种中粤香占对高温敏感性较小,耐高温性较强.

  10. Investigation of temperature effect on stress of flexspline

    Institute of Scientific and Technical Information of China (English)

    项青; 尹征南

    2014-01-01

    The effect of temperature loading on the stress of a flexspline is investigated. Based on the geometric and mechanical characteristics of the harmonic gear flexspline, a circular thin shell model is presented in this paper. The theoretical solution for the flexspline under different displacement loads and different temperature fields is derived. Meanwhile, an impact factor formula, which reflects the effect of the temperatures of the inner and outer surfaces of the flexspline on the stress of the flexspline, is presented. Finally, numerical calculations by the finite element method (FEM) are adopted to verify the corresponding conclusions.

  11. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  12. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Science.gov (United States)

    Caborgan, R.; Muracciole, J. M.; Wattrisse, B.; Chrysochoos, A.

    2010-06-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC) provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT) gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering) was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This is consistent with

  13. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Directory of Open Access Journals (Sweden)

    Chrysochoos A.

    2010-06-01

    Full Text Available Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This

  14. Analysis of Transient Temperature and Thermal Stress Distribution on the High-speed Strain Brake Disk by Simulation%高速列车制动盘瞬态温度和热应力分布仿真分析

    Institute of Scientific and Technical Information of China (English)

    周素霞; 杨月; 谢基龙

    2011-01-01

    inputting and reaches peak value. Then the temperature decreases slowly through radiation and convection. The temperature during the ramp brake rises slower than the other cases. The temperature and thermal stress distributions of the brake disk can give the basis for the thermal fatigue properties study of the composite material used in high-speed train brake disc.

  15. 高温三轴应力下气煤蠕变特征及本构模型%Creep characteristics and constitutive model of gas coal mass under high temperature and triaxial stress

    Institute of Scientific and Technical Information of China (English)

    周长冰; 万志军; 张源; 刘渝; 张博

    2012-01-01

    Utilizing the 20 MN servo-controlled triaxial rock testing machine with high temperature and high pressure developed by China University of Mining and Technology,experimental study was carried out on the creep properties of large size gas coal specimens of 200 mm×400 mm under two temperature points of triaxial stress at 200 ℃ and 400 ℃.The research results indicate that the gas coal experiences the first and second phases of creep at 200 ℃,but without acceleration of creep;and phase that creep accelerates appears after a short time at 400 ℃.In the joint action of temperature and stress,the gas coal specimens show typical sticky-elastic-plastic deformation;because of the moment and subsequent deformation in the loading process,coal specimens are always accompanied by significant plastic deformation.By the analysis of the permeability and porosity of gas coal under different temperatures,it was initially judged that 300 ℃ is the critical temperature of the change of creep characteristics about gas coal.On the basis of high-temperature creep characteristics of gas coal,a new type of nonlinear dashpots was introduced,and a creep constitutive model under high temperature aimed at gas coal was built,which theoretical curves of axial creep could agree well with the experimental curves,which indicating that this constitutive model can preferably simulate the creep characteristics of the gas coal under high temperature.%采用中国矿业大学研制的"600℃20 MN伺服控制高温高压岩体三轴试验机",对尺寸为200 mm×400 mm的山东兴隆庄气煤进行了200℃和400℃两个温度点的三轴应力下的蠕变实验。实验表明:200℃时,气煤蠕变具有明显的第1,2阶段,但未出现加速蠕变阶段,而400℃时,气煤在很短时间内就进入加速蠕变阶段;在温度和应力共同作用下,气煤在加载瞬间及后续变形过程中,始终伴随着显著的塑性变形,煤体变形为典型的黏弹塑性变形。通过

  16. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  17. Temperature and stress fields of multi-track laser cladding

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-yun; ZHANG nong-tao; XU Chun-hua; YANG Xian-qun

    2009-01-01

    Based on genetic algorithm and neural network algorithm, the finite element analyses on the temperature fields and stress fields of multi-track laser cladding were carried out by using the ANSYS software. The results show that, in the multi-track cladding process, the temperature field ellipse leans to the cladding formed, and the front cladding has preheating function on the following cladding. During cladding, the longitudinal stress is the largest, the lateral stress is the second, and the thickness direction stress is the smallest. The center of the cladding is in the tensile stress condition. The longitudinal tensile stress is higher than the lateral or thickness direction stress by several times, and the tensile stress achieves the maximum at the area of joint between the cladding and substrate. Therefore, it is inferred that transversal crack is the most main crack form in multi-track laser cladding. Moreover, the joint between cladding and substrate is the crack sensitive area, and this is consistent with the actual experiments.

  18. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  19. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  20. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  1. High temperature autoclave vacuum seals

    Science.gov (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  2. Mining highly stressed areas, part 1.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available The aim of this long-term project has been to focus on the extreme high-stress end of the mining spectrum. Such high stress conditions will prevail in certain ultra-deep mining operation of the near future, and are already being experienced...

  3. High-temperature responses of North American cacti

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do more massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.

  4. 基于二维面探的高温合金GH4169残余应力分析%Residual Stress Analysis of High Temperature Alloy GH4169 by Two-dimensional Detector Method

    Institute of Scientific and Technical Information of China (English)

    叶璋; 王婧辰; 陈禹锡; 高玉魁

    2016-01-01

    目的 通过二维面探X射线衍射法测试高温合金GH4169的残余应力.方法 由于GH4169是Ni基高温合金,Ni合金在Cr靶下有较强衍射峰,因此采用Cr靶来测试GH4169合金的残余应力.二维面探仪有500个探测头,均匀分布在一个面上,根据每一个探测器测得的衍射角变化,就能得到500个方向上的应变值,再根据应力与应变之间的关系,就可以计算出材料的残余应力.结果 GH4169合金的德拜环只有一个衍射峰,而且衍射峰的强度随着角度α的变化而变化.这说明该材料的应力取向不均匀,存在较为明显的织构.该材料表面主应力方向上的残余应力测试值为-968 MPa,误差为62 MPa;切向上的残余应力测试值为24 MPa,误差为43 MPa.由于测试的GH4169合金是经过喷丸处理的,主应力方向上受残余压应力,而其测试结果 确为负值,说明此次测试结果 可信.结论 通过二维面探X射线衍射方法 测试材料残余应力从原理和实际操作上都是可行的,并成功测试出GH4169合金的残余应力.经喷丸处理后的GH4169材料受残余压应力的作用,且应力分布不均匀,存在较为明显的织构.%Objective To measure the residual stress of GH4169, a kind of high temperature alloy, using two-dimensional de-tector method. Methods Because GH4169 is a high temperature nickel base alloy which has a strong diffraction peak under the Cr target, this paper used Cr target to obtain the residual stress of GH4169 alloy. Using 500 detection heads uniformly distributed on a surface to measure diffraction angle changes, the portable X-ray machine could get the values of strain in 500 directions. Accord-ing to the relationship between stress and strain, the residual stress of the material could be calculated. Results The Debye ring of GH4169 alloy hasd only one diffraction peak and its intensity changed with the changes of angle alpha. This result showed that the stress orientation of the material

  5. High-temperature thermocouples and related methods

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  6. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  7. High temperature suppression of dioxins.

    Science.gov (United States)

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants.

  8. The role of creep in high temperature low cycle fatigue.

    Science.gov (United States)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  9. High temperature power electronics for space

    Science.gov (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  10. Plasticity in behavioural responses and resistance to temperature stress in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    2015-01-01

    at the benign temperature, whereas the Spanish flies were able to stay active for longer at the stressful temperature. Population differences in behavioural traits and heat resistance were obtained using flies held for several generations in a laboratory common garden setting; therefore we suggest that exposure...... to and avoidance of high temperatures under natural conditions has been an important selective agent causing the suggested adaptive differentiation between the populations....

  11. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.

    Science.gov (United States)

    Killi, Dilek; Bussotti, Filippo; Raschi, Antonio; Haworth, Matthew

    2017-02-01

    Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs ), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions. © 2016 Scandinavian Plant Physiology Society.

  12. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  13. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  14. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  15. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Science.gov (United States)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  16. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Science.gov (United States)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  17. Stress corrosion cracking in the fusion boundary region of an alloy 182 - A533B low alloy steel dissimilar weld joint in high temperature oxygenated water

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Q.; Xue, H.; Hou, J.; Takeda, Y.; Kuniya, J.; Shoji, T. [Fracture and Reliability Research Institute, Tohoku University (Japan)

    2011-07-01

    In this work, following a microstructural characterization of the fusion boundary (FB) region in an Alloy 182 - A533B LAS dissimilar weld joint, the SCC growth behaviour in the FB region of the dissimilar weld joint in 288 C degrees water was investigated by employing crevice bent beam (CBB) and crack growth rate (CGR) testing, in conjunction with a simulation by finite element method (FEM). The microstructure characterization showed that there is a narrow high hardness zone (HHZ) in the dilution zone (DZ) of the weld metal adjacent to the FB. Further, a sharp increase of the hardness was observed immediately adjacent to the FB, suggesting the existence of a hardness gradient in the HHZ. FEM simulation of the growth of a crack perpendicular to the FB in the DZ showed that there is a drop in crack tip strain rate as the crack entered the HHZ, suggesting a decreased crack growth rate can be expected for a crack propagating perpendicular to the FB in the high hardness zone where a continuous increase of the hardness with crack growth may exist. Cracking path observation on the cross-section of the CBB specimen suggested that a SCC propagating perpendicular to the FB in the DZ was blunted by pitting after it reached the FB, indicating that the FB is a barrier to SCC growth. However, reactivation of crack growth from the pitting in LAS by preferential oxidation along the grain boundary was observed as well, suggesting a combined effect of microstructure and the high sulphate concentration in the water used for the test. The effects of sulphate doping and DO on CGR in the DZ and FB region were further clarified by the results of the SCC-CGR test. At a DO of 0.25 ppm, the SCC growth rate was low in the FB region even with a sulphate addition of up to 50 ppb in water. The crack growth, however, was reactivated by increasing the DO to 2 ppm at both sulphate concentrations of 50 ppb and 20 ppb, indicating an important role of DO in SCC growth in the DZ. The existence of a

  18. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    OpenAIRE

    Chrysochoos A.; Wattrisse B.; Muracciole J.M.; Caborgan R.

    2010-01-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard th...

  19. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响%Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice

    Institute of Scientific and Technical Information of China (English)

    杜尧东; 李键陵; 王华; 唐湘如; 胡飞

    2012-01-01

    Super hybrid rice variety Tianyou 998 was pot-cultured in climate chambers to study the characteristics of its flag leaf photosynthesis and chlorophyll fluorescence parameters at four growth stages ( heading, milking, wax-maturing, and full maturing) under high temperature stress. Five high temperature treatments were installed. The maximum temperature was installed at 32, 35 , 38 , 40, and 42 ℃ , respectively, with a 6 ℃ difference per day, and each treatment was lasted for 5 days, 2 hours per day, and taking the natural condition as the control (CK). High temperature had obvious effects on the characteristics of the flag leaf photosynthesis and chlorophyll fluorescence parameters, and the effects differed with the high temperature treatments, rice development stages, and test items. The higher the temperature, the greater the effects were. After treated with high temperature, the test items such as chlorophyll content (SPAD) , net photosynthetic rate ( Pn) , stomatal conductance ( Gs) , efficiency of PSII photochemistry ( Fv/Fm ) , actual quantum yield ( φPSII ) , apparent photosynthetic electron transport rate ( ETR) , photochemical quenching coefficient (qP) , and photochemical reaction ( P) decreased, while the intercellular CO2 concentration ( C;) , initial fluorescence (F o) , non-photo- chemical quenching coefficient (qN) , and other heat dissipation (E) increased. Most of the photosynthetic and chlorophyll fluorescence parameters at the four growth stages changed significantly when the maximum temperature was above 35 ℃ , and decreased greatly when the maximum temperature was above 38 X.. At heading and milking stages, the Pn and Gs had a significant decrease while the Ci had a significant increase; at wax- and full maturing stages, the SPAD decreased significantly. The decrement of the Fv/Fm and the decrement of the FO were greater at heading and milking stages than at wax- and full maturing stages. High temperature stress had greater effects on

  20. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  1. Deformation behavior of dispersion-strengthened copper at high temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Mengjun; ZHANG Yingchun; LUO Yun; LIU Xinyu

    2006-01-01

    The deformation behavior of dispersion-strengthened copper with different compositions was investigated by hot compression simulation tests on a Gleeble-1500 thermal-mechanical simulator. The microstructure during deformation at high temperature was also studied. The result shows that at the beginning of hot compression simulation, the flowing stress of the dispersion-strengthened copper quickly attains a peak value and the stress shows a greater decrease when the temperature is higher and the strain rate is lower. The dispersion particles lead to an obvious increase in the recrystallization temperature. Under experimental conditions, dynamic recovery is the main softening method. The constitutive equation at high temperature of 1.2%Al2O3-0.4%WC/Cu is obtained.

  2. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  3. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  4. Experimental study on thermophysical properties of C/C composites at high temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YI Fa-jun; HAN Jie-cai; MENG Song-he

    2006-01-01

    The coefficient of thermal expansion, thermal diffusivity and specific heat of C/C composites from room temperature to ultra high temperature were experimentally investigated. Thermal conductivity and thermal stress resistance of the composites were therefore computed based on experimental results. The results show that the composite has a very low thermal expansion coefficient. Thermal diffusivity decreases exponentially with temperature increase. The specific heat increases linearly as the temperature rises, and the variation trend of thermal conductivity is similar to that of thermal diffusivity. The thermal stress coefficient of C/C composite has little change with temperature variation, and thermal stress resistance of the composite at high temperature is stable.

  5. High temperature superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  6. Ageing under Shear: Effect of Stress and Temperature Field

    Science.gov (United States)

    Shukla, Asheesh; Joshi, Yogesh M.

    2008-07-01

    In this work we studied the effect of oscillatory stress and temperature on the ageing dynamics of aqueous suspension of laponite. At the higher magnitude of stress, elastic and viscous moduli of the system underwent a sharp rise with the ageing time. The age at the onset of rise and the sharpness of the same increased with the magnitude of stress. We propose that at the beginning of ageing, the strain associated with the oscillatory stress field affects the lower modes in the relaxation time distribution. The higher modes, which are not significantly affected by the deformation field, continue to grow increasing the viscosity of the system thereby lowering the magnitude of the deformation field. Progressive decrease in the later reduces the range of relaxation modes affected by it. This dynamics eventually leads to an auto-catalytic increase in the elastic and viscous moduli. An increase in temperature accelerates the ageing process by shifting the ageing dynamics to a lower ageing time. This is due the microscopic relaxation dynamics, which causes ageing, becomes faster with increase in the temperature.

  7. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  8. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    the various physical and chemical factors that may affect freshwater snails. However ... order to assess the effect of temperature on the organism, it is essential to ..... of snails by parasites is of cardinal importance to shed light on the population ...

  9. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes.

  10. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  11. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-07-01

    Full Text Available The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  12. Material laws for room temperature and high temperature, automatic adaptation to experimental data sets and applications to components under multiaxial stress; Stoffgesetze fuer Raum- und Hochtemperatur, automatisierte Anpassung an experimentelle Datensaetze und Anwendungen auf mehrachsig belastete Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, R.

    1998-12-01

    Models of materials mechanics were applied and improved, and a universal method for adapting the model parameters was developed. Measurements of several steels were processed by this method. The efficiency of the models and method was established by a comparison with measurements of components under multiaxial stress and components with FEA predictions. [German] Im Rahmen dieser Arbeit wurden werkstoffmechanische Modelle angewendet und weiterentwickelt. Fuer diese Modelle wurde eine universelle Methode zur Anpassung der Modellparameter entwickelt. Es wurden Messergebnisse verschiedener Stahlwerkstoffe mit dieser Methode bearbeitet. Die Leistungsfaehigkeit der untersuchten Modelle bzw. der entwickelten Methode wurde durch den Vergleich von Messergebnissen mehrachsig belasteter Komponenten bzw. Bauteilen mit Finite-Element Vorhersagen nachgewiesen. (orig.)

  13. Study of alloy 600`S stress corrosion cracking mechanisms in high temperature water; Etude des mecanismes de corrosion sous contrainte de l`alliage 600 dans l`eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rios, R.

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600`s stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens` fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes.

  14. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  15. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum

    Science.gov (United States)

    Temperature and drought are major abiotic limitations to crop productivity worldwide. While abiotic stress physiology research has focused primarily on fully expanded leaves, no studies have investigated photosynthetic tolerance to concurrent drought and high temperature during leaf ontogeny. To add...

  16. Historical temperature variability affects coral response to heat stress.

    Directory of Open Access Journals (Sweden)

    Jessica Carilli

    Full Text Available Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions.

  17. Influence of temperature in thermal and oxidative stress responses in estuarine fish.

    Science.gov (United States)

    Madeira, D; Narciso, L; Cabral, H N; Vinagre, C; Diniz, M S

    2013-10-01

    The influence of increasing temperatures in thermal and oxidative stress responses were studied in the muscle of several estuarine fish species (Diplodus vulgaris, Diplodus sargus, Dicentrarchus labrax, Gobius niger and Liza ramada). Selected fish were collected in July at the Tagus estuary (24±0.9°C; salinity of 30±4‰; pH=8). Fish were subjected to a temperature increase of 1°C.h(-1) until they reached their Critical Thermal Maximum (CTMax), starting at 24°C (control temperature). Muscle samples were collected during the trial and results showed that oxidative stress biomarkers are highly sensitive to temperature. Results from stress oxidative enzymes show alterations with increasing temperature in all tested species. Catalase (CAT; EC 1.11.1.6) activity significantly increased in L. ramada, D. labrax and decreased in D. vulgaris. Glutathione S-transferase (GST; EC 2.5.1.18) activity increased in L. ramada, D. sargus, D. vulgaris, and D. labrax. In G. niger it showed a cycle of increase-decrease. Lipid peroxidation (LPO) increased in L. ramada, D. sargus and D. labrax. With respect to correlation analysis (Pearson; Spearman r), the results showed that oxidation products and antioxidant defenses were correlated in L. ramada (LPO-CAT and LPO-GST, D. sargus (LPO-CAT), and D. labrax (LPO-CAT). Oxidative biomarkers were correlated with thermal stress biomarker (Hsp70) in L. ramada (CAT-Hsp70), D. vulgaris (LPO-Hsp70), D. labrax (GST-Hsp70) and G. niger (LPO-Hsp70). In conclusion, oxidative stress does occur with increasing temperatures and there seems to be a relation between thermal stress response and oxidative stress response. The results suggest that oxidative stress biomarkers should be applied with caution, particularly in field multi-species/multi-environment studies.

  18. Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review

    Science.gov (United States)

    Zahid, Kashif Rafiq; Ali, Farhan; Shah, Farooq; Younas, Muhammad; Shah, Tariq; Shahwar, Durri; Hassan, Waseem; Ahmad, Zahoor; Qi, Chao; Lu, Yanli; Iqbal, Amjad; Wu, Wei

    2016-01-01

    Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can respond to withstand adverse environmental condition in several phases among which the accumulation of chemicals is extremely vital. Calcium, kinases, reactive oxygen species, carbohydrate, transcription factors, gene expression regulation, and plant hormones signaling pathways are playing a handy role in activating the major genes responsible to encounter and defend elevated temperature stress. The production of heat shock proteins is up-regulated when crops are unleashed to high temperature stress. Molecular breeding can play a functional role to identify superior genes for all the important attributes as well as provide breeder ready markers for developing ideotypes. The development of high-temperature resistant transgenic cultivars of cotton can grant a stability benefit and can also ameliorate the production capacity in response to elevated temperature. PMID:27446165

  19. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  20. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    Science.gov (United States)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  1. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  2. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  3. High Temperature Heterojunction Bipolar Transistors

    Science.gov (United States)

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  4. A high temperature fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, A.; Nakai, M.; Ninomiya, Y.

    1982-12-21

    A solid electrolyte which conducts electricity with heating by oxygen ions and operates at a temperature of 1,000C is used in the element. The cathode, besides the ionic conductivity in oxygen, has an electron conductivity. The anode has electron conductivity. Substances such as Bi203, into which oxides of alkaline earth metals are added, are used for making the cathode. The electrolyte consists of ZrO2 and Y2O3, to which CaO is added. WC, to which an H2 type fuel is fed, serves as the anode. The element has a long service life.

  5. Ultrasonic Sensors for High Temperature Applications

    Science.gov (United States)

    Tittmann, Bernhard; Aslan, Mustafa

    1999-05-01

    Many processes take place under conditions other than ambient, and chief among these is high temperature. Examples of high temperature industrial processes are resin transfer molding, molten metal infiltration and rheocasting of composite metals alloys. The interaction of waves with viscous fluids is an additional complication adding to an already complicated problem of operating a sensor at high temperature for extended periods of time. This report attempts to provide an insight into the current state of the art of sensor techniques for in-situ high temperature monitoring.

  6. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  7. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  8. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  9. 华北春玉米高温胁迫影响机理及其技术应对探讨%Effects of high temperature stress on spring maize and its technologic solutions in North China Plain

    Institute of Scientific and Technical Information of China (English)

    陶志强; 陈源泉; 隋鹏; 袁淑芬; 高旺盛

    2013-01-01

    This paper studied limiting factor (high temperature stress occurred during grain filling period) for high yield production of spring maize in North China Plain (NCP).By analyzing the available high yield technologic solutions for spring maize under high temperature stress (HTS),we expected that spring maize might break the barriers from HTS during grain filling period in NCP.The results showed that the main clinical manifestations of spring maize under HTS at filling stage included,shortened the linear growth stage of maize grain; reduced the grain size and the amount of assimilate transfer to grain,leading to a reduced grain filling rate; pollen abortion and mismatched pollination period which reduced seed setting rate; the temperature over 35 ℃ would reduce root growth rate and hindered the lateral root growth;reduced photosynthetic enzyme activity,chlorophyll content and PSI I function,which resulting in photosynthesis reduction;lowered leaf water status and plant nitrogen accumulation;induced sheath blight and bacterial wilt.To break the barrier exerted by HTS on spring maize during grain filling stage,the following practices could be used:advancing or delaying sowing date to avoid high temperature,breeding high temperature tolerant maize varieties; applying chemicals such as exogenous salicylic acid (SA),kinetin (BA) and abscisic acid (ABA) to improve the tolerance; pre-exercising with high temperature well before the grain filling stage; practicing agronomic and farming approaches to regulate the nutrition levels and soil and water and light properties.Based on this study,a design integrated technology of the individual techniques could be used to form an integrated technology system,thus to improve heat tolerance and increase spring maize yield under HTS in NCP.%本研究针对华北平原春玉米一熟制高产的限制因子(灌浆期高温胁迫)问题,在分析了国内外高温对玉米胁迫影响机理的相关研究基础上,

  10. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  11. Trends in Extremes of Surface Humidity, Temperature, and Summertime Heat Stress in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the past half century, the mean summertime temperature in China has increased, with nights warm ing more than days. Using surface station observations, we show that the frequency of extreme heat-stress events in China, caused by extremely hot and humid days as well as by heatwaves lasting for a few days, has increased over the period from 1951 to 1994. When humidity is high, hot weather can cause heat stress in humans. The increased heat-stress trend may pose a public health problem.

  12. Response to osmotic stress and temperature of the fungus Ustilago maydis.

    Science.gov (United States)

    Salmerón-Santiago, Karina Gabriela; Pardo, Juan Pablo; Flores-Herrera, Oscar; Mendoza-Hernández, Guillermo; Miranda-Arango, Manuel; Guerra-Sánchez, Guadalupe

    2011-10-01

    Ustilago maydis is a fungal pathogen which is exposed during its life cycle to both abiotic and biotic stresses before and after the infection of maize. To cope with extreme environmental changes, microorganisms usually accumulate the disaccharide trehalose. We have investigated both the accumulation of trehalose and the activity of trehalase during the adaptation of U. maydis haploid cells to thermal, sorbitol, and NaCl stresses. Sorbitol and sodium chloride induced sustained accumulation of trehalose, while a transient increase was observed under heat stress. Sorbitol stressed cells showed higher trehalase activity compared with control cells and to those stressed by NaCl and high temperature. Addition of cycloheximide, a protein synthesis inhibitor, did not affect the trehalose accumulation during the first 15 min, but basal levels of trehalose were reached after the second period of 15 min. The proteomic analysis of the response of U. maydis to temperature, sorbitol, and salt stresses indicated a complex pattern which highlights the change of 18 proteins involved in carbohydrate and amino acid metabolism, protein folding, redox regulation, ion homeostasis, and stress response. We hypothesize that trehalose accumulation during sorbitol stress in U. maydis might be related to the adaptation of this organism during plant infection.

  13. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  14. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  15. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire.

    Science.gov (United States)

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V(2)/Pa(1/3) with nonlinearity lower than 1%, revealing high performance characteristic of the sensors.

  16. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  17. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  18. High-Temperature Passive Power Electronics

    Science.gov (United States)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  19. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    Science.gov (United States)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  20. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  1. Experimental aspects of stress-strain curves determination at high temperature and controlled atmosphere: Al{sub 2}O{sub 3}-MgO-C refractories; Aspectos experimentales de la determinacion de curvas esfuerzo-deformacion a alta temperatura y en atmosfera controlada: Refractarios Al{sub 2}O{sub 3}-MgO-C

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, V.; Rohr, G. A.; Tomba Martinez, A. G.; Cavalieri, A. L.

    2011-07-01

    A methodology for the mechanical evaluation of refractory materials at high temperatures and controlled atmosphere, designed and implemented in the Structural Materials Laboratory of Ceramics Division of INTEMA, is described. The methodology includes the measurement of the specimen deformation by contact extensometry in compression tests to obtain stress-strain curves and the use of a gaseous flow as a system to control atmosphere. The determination of stress-strain curves of Al{sub 2}O{sub 3}-MgO-C commercial refractories used in steelmaking ladles at room temperature and 1260 degree centigrade in different atmospheres is presented as an example of application of this methodology. (Author) 34 refs.

  2. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  3. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  4. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  5. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  6. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  7. Ceramic fibres for high temperature insulation

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, G.C.

    1986-03-01

    Traditionally, refractory linings for high temperature plant and furnaces have comprised either brick or some form of concrete. In recent years, energy conservation has encouraged the greater use of high temperature insulation which is also available in either brick or a lightweight concrete. As an alternative, insulation can also be achieved using fibrous products or fibres combining low heat transfer with low heat capacity.

  8. Analytical Methods for Temperature Field and Temperature Stress of Column Pier under Solar Radiation

    Directory of Open Access Journals (Sweden)

    Yin-hui Wang

    2015-01-01

    Full Text Available Based on the previous research work, a new idea is proposed for analyzing the impact of solar radiation on the substructure of bridges. Investigation is conducted in the thermodynamic phenomena and temperature stress of a dual-column pier. Research is led to the thermal conductivity of concrete structure and the values of the environmental parameters under solar radiation. An analytical code is written for the thermal analysis of the dual-column pier using the parametric modeling function of FE software, by means of which the temperature distribution of the bridge structure is computed under solar radiation. Using the thermal analytical results, the temperature stress of the dual-column pier is further calculated. The results tell that the temperature gradient distribution curve inside the concrete of the pier fits favorably the curve defined in the design specification and coincides quite well with real situation, which verifies the new idea proposed in this paper. Under the solar radiation which is a time-variable nonlinear temperature load to the bridge, the maximum principal stress is found at the corner of the pier with the sign of negative, which is believed to threaten the safety of the substructure of bridge and is necessary to arouse emphasis.

  9. Effect of temperature stress on protein methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Welch, W.; Kracaw, K.

    1986-05-01

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with (methyl-/sup 3/H)methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released (/sup 3/H)methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress.

  10. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  11. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  12. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-05-12

    An interesting discovery in biology is that most genes in an organism are dispensable. That means these genes have minor effects on survival of the organism in standard laboratory conditions. One explanation of this discovery is that some genes play important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms and associated genes of each stress condition responses are usually different. In our analysis, we combined protein abundance data and mutant conditional fitness data into E. coli constraint-based metabolic models to study conditionally essential metabolic genes under temperature and pH stress conditions. Flux Balance Analysis was employed as the modeling method to analysis these data. We discovered lists of metabolic genes, which are E. coli dispensable genes, but conditionally essential under some stress conditions. Among these conditionally essential genes, atpA in low pH stress and nhaA in high pH stress found experimental evidences from previous studies. Our study provides new conditionally essential gene candidates for biologists to explore stress condition mechanisms.

  13. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress

    National Research Council Canada - National Science Library

    Van Goor, Angelica; Bolek, Kevin J; Ashwell, Chris M; Persia, Mike E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2015-01-01

    ...), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens...

  14. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  15. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  16. 玉米花期高温响应的基因型差异及其生理机制%Genotypic Responses and Physiological Mechanisms of Maize (Zea mays L.) to High Temperature Stress during Flowering

    Institute of Scientific and Technical Information of China (English)

    赵龙飞; 李潮海; 刘天学; 王秀萍; 僧珊珊; 潘旭

    2012-01-01

    以耐热基因型浚单20和热敏感基因型驻玉309为材料,分别于花前(吐丝前0~8 d)和花后(吐丝后0~8d)高温处理,研究了对产量的影响及其生理机制.结果表明,花后高温胁迫使2个基因型玉米花粉活力和籽粒ATP酶活性均下降,其中驻玉309下降达显著水平;高温胁迫导致2个基因型玉米产量显著下降,浚单20产量下降幅度小于驻玉309,且花后高温处理影响大于花前处理.花前和花后高温胁迫均使浚单20叶片的SOD、POD和CAT活性显著升高,而花前高温使驻玉309叶片SOD、POD活性升高,CAT活性下降,花后高温使驻玉309叶片SOD、POD和CAT的活性均下降.高温处理使2个基因型丙二醛(MDA)含量升高,浚单20升高的幅度显著小于驻玉309.高温胁迫降低了2个基因型的叶片光合速率,浚单20减小的幅度显著小于驻玉309.高温胁迫使浚单20的根系活力显著升高,驻玉309的根系活力显著降低.结果提示,在高温胁迫下保持较强的根系活力、叶片较高的光合速率和抗氧化能力及籽粒ATP酶活性是耐热玉米基因型具有较高产量的重要生理原因,也是耐高温胁迫的重要生理特征.%High temperature is one of the key limiting factors leading to serious yield reduction in maize production. The effect of high temperature treatments during flowering (0-8 d before silking and 0-8 d after silking) on yield and physiological response was investigated using heat-tolerant maize genotype Xundan 20 and heat-sensitive maize genotype Zhuyu 309. The results showed that high temperature treatment significantly reduced pollen fertility rate in heat-sensitive genotype, but the effect was similar to that of control in heat-tolerant genotype. The heat-sensitive genotype had a significant reduction in grain yield with a longer reduction rate under the treatment after flowering than before flowering, which was less affected for heat-tolerant genotype. The heat-stress treatment

  17. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    Sanjay Upadhyay; Hem Chandra; Meenakashi Joshi; Deepika P Joshi

    2011-01-01

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended the Kumar’s formulation by taking into the account the concept of anharmonicity in minerals above the Debye temperature (D). In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as temperature-independent and then by treating T as temperature-dependent parameter. The results obtained when T is temperature-dependent are in close agreement with experimental data.

  18. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  19. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  20. STUDY OF NUMERICAL MODELING OF SHAPE DEFORMING ZONE OF DIES, DURING DRAWING HIGH CARBON STEEL WIRE TO THE TEMPERATURE AND THE STRESS-STRAIN STATE IN THE WIRE AND DIE

    Directory of Open Access Journals (Sweden)

    O. L. Bobarikin

    2012-01-01

    Full Text Available Investigation by numerical modeling of influence of the form of deforming zone of die at drawing of steel high- carbon wire on temperature and strained-deformed state in wire and die is carried out.

  1. Mining highly stressed areas, part 2.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available A questionnaire related to mining at great depth and in very high stress conditions has been completed with the assistance of mine rock mechanics personnel on over twenty mines in all mining districts, and covering all deep level mines...

  2. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  3. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  4. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  5. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  6. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  7. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  8. Development of high temperature capable piezoelectric sensors

    Science.gov (United States)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  9. Inelastic deformation and damage at high temperature

    Science.gov (United States)

    Krempl, E.

    1992-06-01

    Combined experimental and theoretical investigations into the inelastic deformation and damage behavior of engineering alloys at elevated temperatures are being pursued. The analysis of previously performed strain rate change and relaxation tests on modified 9Cr-1Mo steel showed the need for inclusion of a recovery of state term in the growth laws for the state variables of the viscoplasticity theory based on overstress (VBO). Recovery of state terms were introduced and the experimental results were satisfactorily simulated. The finite deformation theory of VBO has been developed further to include a convected derivative rationale for the choice of the objective stress rate. The reversing direct current voltage drop measurements during low cycle fatigue at elevated temperature were improved. A passive filter bank and new positioning devices for the coils were installed. Tests at 650 C and lasting several days showed excessive, uncontrollable temperature changes. It was decided to drop the test temperature to 538 C which is close to the operating temperature of type 304 stainless steel. The temperature fluctuations in torsion tests were within +/- 3 C which was considered satisfactory.

  10. Inelastic deformation and damage at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Krempl, E.

    1992-01-01

    Combined experimental and theoretical investigations into the inelastic deformation and damage behavior of engineering alloys at elevated temperatures are being pursued. The analysis of previously performed strain rate change and relaxation tests on modified 9Cr-1Mo steel showed the need for inclusion of a recovery of state term in the growth laws for the state variables of the viscoplasticity theory based on overstress (VBO). Recovery of state terms were introduced and the experimental results were satisfactorily simulated. The finite deformation theory of VBO has been developed further to include a convected derivative rationale for the choice of the objective stress rate. The reversing direct current voltage drop measurements during low cycle fatigue at elevated temperature were improved. A passive filter bank and new positioning devices for the coils were installed. Tests at 650{degrees}C and lasting several days showed excessive, uncontrollable temperature changes. It was decided to drop the test temperature to 538{degrees}C which is close to the operating temperature of Type 304 Stainless Steel. The temperature fluctuations in torsion tests were within {plus minus}3{degrees}C which was considered satisfactory. Testing will continue at 538{degrees}C.

  11. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  12. Experimental study of acoustic emission of granite due to thermal cracking under high temperature and isostatic stress%高温均匀压力花岗岩热破裂声发射特性实验研究

    Institute of Scientific and Technical Information of China (English)

    武晋文; 赵阳升; 万志军; 冯子军; 董付科; 李义

    2012-01-01

    In order to obtain the rules of thermal cracking on granite, the evolution of the acoustic emission of granite sample( φ200 mm×400 mm)within the temperature range from the room temperature to 500 ℃ under isostatic stress and the thermal cracking characteristics of the rock as manifested by the acoustic emissions in each stage were ana- lyzed and discussed based on experiments. It is shown in this research that 330 ℃ is the demarcation point of acoustic emission and hot rock changed. Thermal cracking is elastic rupture when temperature is lower than 330 ℃and it ap- pears a local plastic deformation and failure beyond 330 ℃ ;When the granite sample is heated to 330℃, a great num- ber of acoustic emission of lower energy rate occurres from local plastic failure. In concentrated area of acoustic emis- sion, most acoustic emission is in low energy rate and a little is in high energy rate, and the whole cumulative energy is lower than the cumulative energy at 330 ℃and below ; When the counts rate of acoustic emission abruptly changes, the micro-fracture zone of granite begins to form and the granite experiences two significant improvements of the thermal crack network respectively from the temperatures of 110℃ and 420 ℃.%为研究花岗岩体热破裂规律,通过实验研究了均匀压力(25 MPa)下大试件(200 mm×400 mm)花岗岩在常温~500℃范围的声发射变化规律及特性,探讨了各个阶段声发射信号反映的岩石破裂特性。研究表明:①330℃为花岗岩破裂声发射和热破裂性质转变的分界点,低于330℃,热破裂为弹性破裂,330℃以后,花岗岩出现局部塑性变形和破坏;②330℃以后,局部塑性破坏造成大量低能量释放率的声发射产生,声发射密集区由小部分能量率很大的声发射和数量很多、低能量释放率的声发射组成,声发射密集区整体上累积释放能量较低;③声发射振铃率发生突变可以作为花岗岩内部

  13. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  14. High Temperature Self-Healing Metallic Composite

    Science.gov (United States)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  15. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  16. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  17. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  18. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  19. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  20. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  1. Scientific Pluralism: the battle of High Temperature Superconductivity

    CERN Document Server

    Lederer, Pascal

    2015-01-01

    The early development of conflicting theories (i.e. one aspect of scientific pluralism) about the microscopic mechanism of High Temperature Superconductivity is described. The biographical roots of this diversity are stressed, as well as its subjective/objective roots. Scientific pluralism is discussed in relation with this study, as well as various philosophical teachnings about relativism, the Duhem-Quine thesis on the underdetermination of theory by facts, and the dialectics of knowledge and nature.

  2. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  3. PLA recycling by hydrolysis at high temperature

    Science.gov (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  4. Recent developments in high temperature organic polymers

    Science.gov (United States)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  5. Orexinergic neurotransmission in temperature responses to methamphetamine and stress: mathematical modeling as a data assimilation approach.

    Directory of Open Access Journals (Sweden)

    Abolhassan Behrouzvaziri

    Full Text Available Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth. In experiments in rats, SB-334867 (SB, an antagonist of orexin receptors (OX1R, at a dose of 10 mg/kg decreases late temperature responses (t > 60 min to an intermediate dose of Meth (5 mg/kg. A higher dose of SB (30 mg/kg attenuates temperature responses to low dose (1 mg/kg of Meth and to stress. In contrast, it significantly exaggerates early responses (t < 60 min to intermediate and high doses (5 and 10 mg/kg of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult.We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD. Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.

  6. Orexinergic Neurotransmission in Temperature Responses to Methamphetamine and Stress: Mathematical Modeling as a Data Assimilation Approach

    Science.gov (United States)

    Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.

    2015-01-01

    Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods. PMID:25993564

  7. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-08-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  8. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    Science.gov (United States)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  9. High-temperature discontinuously reinforced aluminum

    Science.gov (United States)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  10. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  11. Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites

    Science.gov (United States)

    Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi

    2012-01-01

    Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.

  12. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  13. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  14. Computational characterization of high temperature composites via METCAN

    Science.gov (United States)

    Brown, H. C.; Chamis, Christos C.

    1991-01-01

    The computer code 'METCAN' (METal matrix Composite ANalyzer) developed at NASA Lewis Research Center can be used to predict the high temperature behavior of metal matrix composites using the room temperature constituent properties. A reference manual that characterizes some common composites is being developed from METCAN generated data. Typical plots found in the manual are shown for graphite/copper. These include plots of stress-strain, elastic and shear moduli, Poisson's ratio, thermal expansion, and thermal conductivity. This manual can be used in the preliminary design of structures and as a guideline for the behavior of other composite systems.

  15. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  16. Stigma structure and response of respiratory metabolism of Gomphocerus sibiricus to high temperature stress%西伯利亚蝗气门结构及呼吸代谢对高温胁迫的响应

    Institute of Scientific and Technical Information of China (English)

    钱雪; 窦洁; 王冬梅; 李爽; Roman Jashenko; 季荣

    2016-01-01

    [Objectives] To explore the stigma structure and response of the respiratory metabolism of Gomphocerus sibiricus to high temperature stress. [Methods] Stigma structure was observed via scanning electron microscope (SEM), and O2 uptake rates, CO2 release rates, metabolic rates, and respiratory quotients, measured with a multi-channel insect respiration apparatus (Sable Systems, USA). Respiratory measurements were made a 3℃ intervals within a temperature gradient of 18-42℃. [Results] G. sibiricus has ten pairs of circular, or near circular, shaped stigmata. Filter apparatus inside stigma were clustered. The respiratory metabolism of G. sibiricus first increased, then decreased, between temperatures from 18 to 42℃. O2 uptake rates, CO2 release rates and metabolic rates of male and female adults at 18℃ were significantly lower than those at the other temperatures (P<0.05);corresponding values for females were 0.0022 mL/min、0.0019 mL/min and 0.0210 mL/(g×min), whereas those for males were 0.0016 mL/min、0.0016 mL/min and 0.0236 mL/(g×min). The respiratory metabolism of male and female adults underwent little change between 21 and 27℃, but respiration increased rapidly at temperatures over 30℃. Metabolic rates and O2 uptake rates of male and female adults at 36℃ were significantly higher than those at other temperatures (P<0.05);corresponding values for females were 0.0592 mL/(g×min) and 0.0071 mL/min, and for males were 0.1108 mL/(g×min) and 0.0089 mL/min. However, CO2 release rates of male and female adults were 0.0074 mL/min and 0.0067 mL/min, respectively, at 39℃;significantly higher than at other temperatures (P<0.05). [Conclusion] G. sibiricus is likely to remain an important pest in Xinjiang alpine and subalpine grasslands despite global warming.%【目的】掌握西伯利亚蝗Gomphocerus sibiricus的气门结构和呼吸代谢应对高温胁迫的响应策略。【方法】运用扫描电镜观察西伯利亚蝗气门超显微结构,

  17. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  18. High-temperature granulites and supercontinents

    Institute of Scientific and Technical Information of China (English)

    J.L.R. Touret; M. Santosh; J.M. Huizenga

    2016-01-01

    The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T) conditions of (ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion post-dating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  19. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  20. Stress effects in twisted highly birefringent fibers

    Science.gov (United States)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  1. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  2. High-entropy alloys as high-temperature thermoelectric materials

    Science.gov (United States)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  3. High temperature workability behaviour of a modified P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Carsi, Manuel; Ruano, Oscar A. [CENIM-CSIC, Madrid (Spain); Penalba, Felix [TECNALIA, San Sebastian (Spain); Rieiro, Ignaciao [Castilla-La Mancha Univ., Toledo (Spain). Dept. Matematicas

    2011-11-15

    The high temperature forming behaviour of a modified P92, type 9% Cr, steel is studied by means of torsion tests. The data obtained from these tests allowed correlation of the number of turns to failure, a measure of ductility, as a function of strain rate and temperature. In addition, the data were correlated by the Garofalo equation with a stress exponent of 4.78 and an activation energy of 390 kJ mol{sup -1}. This equation was used to predict the formability behaviour for the rolling process and also to determine the maximum forming efficiency and stability of the steel. A temperature of 1 140 C is found to give the optimum forming temperature. (orig.)

  4. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  5. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton%高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响

    Institute of Scientific and Technical Information of China (English)

    衡丽; 李亚兵; 胡大鹏; 王桂霞; 吕春花; 张祥; 陈源; 陈德华

    2016-01-01

    four days, and significant reduced after seven days with the reduction of 11.32% for SK-3 and 14.18% for SK-1. Under the treat-ment conditions the soluble protein contents, glutamate pyruvate transaminase (GPT) activities reduced, but the free amino acid contents, protease activities increased. There existed significant negative correlation of insecticidal protein content with free amino acid contents, and protease activities; and significantly positive correlation of insecticidal protein content with soluble pro-tein contents, and GPT activities under high temperature stresses. Therefore, the reduced synthesis and the enhanced degradation for protein in the square under the high temperature condition resulted in the decrease of soluble protein content, including Bt insecticidal protein content. The larger reductions of the square Bt insecticidal protein content and nitrogen metabolic strength were detected in cultivar SK-1 as confound with cultivar SK-3 under the high temperature treatments.

  6. Effect of High Temperature Stress on Photosynthesis and Chlorophyll Fluorescence of Rice%高温胁迫对水稻光合作用和叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    宋丽莉; 赵华强; 朱小倩; 董根西; 谢戎

    2011-01-01

    [Objective]The aim was to study photosynthesis and chlorophyll fluorescence parameters of plant under high temperature stress. [Method] Two varieties of rice were treated at 30,35,40 and 45 ℃ for two hours, respectively, and then placed at 25 ℃ to resumed for 0,3,6 d, respectively. The photosynthesis and chlorophyll fluorescence parameters were measured. [ Result ] High temperature resulted in the reduction of net photosynthesis in two kinds of rice, whereas the net photosynthesis in 'Zhongyou 9801' decreased more than 'II you7' under same high temperature. The decrease of the net photosynthesis in ' II you 7' was reversible and that in ' Zhongyou 9801' was nonreversible. The decrease of net photosynthesis in ' H you 7' was primarily due to stoma limiting factor at 30-35 t whereas due to non-stoma limiting factor under 40 ℃. Non-stoma factor was the primary reason for the decrease of net photosynthesis in ' Zhongyou 9801'. Lower water loss resulted from rapid decrease of stomatal conductance and transpiration rate might be one of the reasons for thermotolerance of ' Iiyou 7'. High temperature resulted in significant increase of F0 and reduction of Pn,Fv/Fm,Qp and ETR in 'Zhongyou 9801' .which demonstrated that PSD reaction center had been destroyed or inactivated reversibly and then induced electron transfer delay and photochemistry reduction. [Conclusion] The increase of F0 and decrease of Pn, Fv/Fm, Qp and ETR in ' II you 7' were significantly weaker than in ' Zhongyou 9801'. Moreover, the above parameters resumed to control level after 6 d recovery. Higher stability and self-repair ability of PSQ were the important reason fors the thermotolerance of ' fl you 7'.%[目的]研究高温胁迫对植物光合作用和叶绿素荧光参数的影响.[方法]以不同耐热性的2种水稻品种为材料,30、35、40、45℃温度下处理2h后于25℃恢复3、6d,分别在第0、3、6天进行光合指标和叶绿素荧光的测定.[结果]高温胁迫导致2种

  7. High-temperature superconducting conductors and cables

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  8. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum.

    Science.gov (United States)

    Nie, Hongtao; Jiang, Liwen; Huo, Zhongming; Liu, Lianhui; Yang, Feng; Yan, Xiwu

    2016-08-01

    The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture, with a broad thermal tolerance. The ability to cope with cold stress is quite important for the survival of aquatic species under natural conditions. A cold-tolerant clam that can survive the winter at temperatures below 0 °C might extend our understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of the Manila clam to cold stress (-1 °C) was characterized using RNA sequencing. The transcriptomes of a cold-treatment (O) group of clams, which survived under cold stress, and the control group (OC2), which was not subjected to cold stress, were sequenced with the Illumina HiSeq platform. In all, 148,593 unigenes were generated. Compared with the unigene expression profile of the control group, 1760 unigenes were up regulated and 2147 unigenes were down regulated in the O group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, mitochondrial metabolism, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following biological functions in the cold-tolerant Manila clam: signal response to cold stress, antioxidant response, cell proliferation, and energy production.

  9. Effect of tempering temperature on the stress rupture properties of Grade 92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Lakshmiprasad, E-mail: prasadmlp@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010 (India); Ballal, A.R.; Peshwe, D.R.; Paretkar, R.K. [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010 (India); Laha, K.; Mathew, M.D. [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    P92 steel is used in normalized and tempered condition for optimal creep properties. Effect of varying tempering temperatures in the range of 740–780 °C on the stress rupture properties has been investigated in this study. High dislocation density and fine laths resulted in high rate of microstructural evolution in 740 °C tempering case, hence the steep slope of rupture curve was observed as compared to higher tempering temperatures. Quantification of lath width and precipitate size under Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed increase in lath width and precipitate coarsening with tempering temperature and exposure time. Increase in lath width was more pronounced in 740 °C tempering case. The results were supported by the damage parameter (λ) and hardness measurements. Variation in fractographic features was associated more with rupture time, for a particular tempering temperature. Coarser precipitates were responsible for cavity initiation, inducing some brittle fracture at higher rupture times.

  10. High Temperature VARTM of Phenylethynyl Terminated Imides

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  11. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    Science.gov (United States)

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  12. Optical properties and residual stress of YbF3 thin films deposited at different temperatures.

    Science.gov (United States)

    Wang, Ying; Zhang, Yue-guang; Chen, Wei-lan; Shen, Wei-dong; Liu, Xu; Gu, Pei-fu

    2008-05-01

    The influence of deposition temperature on the optical properties, microstructure, and residual stress of YbF(3) films, deposited by electron-beam evaporation, has been investigated. The increased refractive indices and surface roughness of YbF(3) films indicate that the film density and columnar structure size increase with deposition temperature. At the same time, higher packing density reduces absorption of moisture. The residual stress is related to deposition temperature and to substrate. For the samples deposited on BK7, the residual stress mainly comes from intrinsic stress, however, for those on fused silica, thermal stress is the dominant factor of total residual stress.

  13. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    Science.gov (United States)

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  14. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    Science.gov (United States)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  15. Modeling temperature and stress in rocks exposed to the sun

    Science.gov (United States)

    Hallet, B.; Mackenzie, P.; Shi, J.; Eppes, M. C.

    2012-12-01

    The potential contribution of solar-driven thermal cycling to the progressive breakdown of surface rocks on the Earth and other planets is recognized but under studied. To shed light on this contribution we have launched a collaborative study integrating modern instrumental and numerical approaches to define surface temperatures, stresses, strains, and microfracture activity in exposed boulders, and to shed light on the thermo-mechanical response of boulders to diurnal solar exposure. The instrumental portion of our study is conducted by M. Eppes and coworkers who have monitored the surface and environmental conditions of two ~30 cm dia. granite boulders (one in North Carolina, one in New Mexico) in the field for one and tow years, respectively. Each boulder is instrumented with 8 thermocouples, 8 strain gauges, a surface moisture sensor and 6 acoustic emission (AE) sensors to monitor microfracture activity continuously and to locate it within 2.5 cm. Herein, we focus on the numerical modeling. Using a commercially available finite element program, MSC.Marc®2008r1, we have developed an adaptable, realistic thermo-mechanical model to investigate quantitatively the temporal and spatial distributions of both temperature and stress throughout a boulder. The model accounts for the effects of latitude and season (length of day and the sun's path relative to the object), atmospheric damping (reduction of solar radiation when traveling through the Earth's atmosphere), radiative interaction between the boulder and its surrounding soil, secondary heat exchange of the rock with air, and transient heat conduction in both rock and soil. Using representative thermal and elastic rock properties, as well as realistic representations of the size, shape and orientation of a boulder instrumented in the field in North Carolina, the model is validated by comparison with direct measurements of temperature and strain on the surface of one boulder exposed to the sun. Using the validated

  16. 3-D Temperature and Stress Simulations of Hardening Concrete

    DEFF Research Database (Denmark)

    Jensen, Poul; Buhr, Birit; Thorborg, Jesper

    2003-01-01

    When concrete is cast, heat develops. When the concrete cools down there is a risk that thermal gradients induce cracks in the structure. In the Middle East this is especially important as extensive heat builds up due to the high ambient temperatures. Possible formed cracks will have a detrimenta...

  17. 3-D Temperature and Stress Simulations of Hardening Concrete

    DEFF Research Database (Denmark)

    Jensen, Poul; Buhr, Birit; Thorborg, Jesper

    2003-01-01

    When concrete is cast, heat develops. When the concrete cools down there is a risk that thermal gradients induce cracks in the structure. In the Middle East this is especially important as extensive heat builds up due to the high ambient temperatures. Possible formed cracks will have a detrimenta...

  18. Fluctuations and correlations in high temperature QCD

    CERN Document Server

    Bellwied, R; Fodor, Z; Katz, S D; Pasztor, A; Ratti, C; Szabo, K K

    2015-01-01

    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\\dots24$ in the crossover-region and $N_t=8\\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results.

  19. Ultra High Temperature Ceramics for aerospace applications

    OpenAIRE

    Jankowiak, A.; Justin, J.F.

    2014-01-01

    Après relecture une erreur est apparue dans le document et doit être retiré; International audience; The Ultra High Temperature Ceramics (UHTCs) are of great interest for different engineering sectors and notably the aerospace industry. Indeed, hypersonic flights, re-entry vehicles, propulsion applications and so on, require new materials that can perform in oxidizing or corrosive atmospheres at temperatures higher than 2000°C and sometimes, for long life-time. To fulfil these requirements, U...

  20. Effects of High Temperature on Collector Coatings

    Science.gov (United States)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  1. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house...... performance of heating and cooling systems for achieving the same thermal indoor environment. The results show that it is crucial to minimize the heating and cooling demands in the design phase since these demands determine the terminal units and heat sources and sinks that could be used. Low temperature...... heating and high temperature cooling systems (a radiant water-based floor heating and cooling system in this study) proved to be superior to compared systems, evaluated with different system analysis tools; energy, exergy, and entransy. Radiant systems should be coupled to appropriate heating and cooling...

  2. Efficient egress of escaping ants stressed with temperature.

    Directory of Open Access Journals (Sweden)

    Santiago Boari

    Full Text Available In the present work we investigate the egress times of a group of Argentine ants (Linepithema humile stressed with different heating speeds. We found that the higher the temperature ramp is, the faster ants evacuate showing, in this sense, a group-efficient evacuation strategy. It is important to note that even when the life of ants was in danger, jamming and clogging was not observed near the exit, in accordance with other experiments reported in the literature using citronella as aversive stimuli. Because of this clear difference between ants and humans, we recommend the use of some other animal models for studying competitive egress dynamics as a more accurate approach to understanding competitive egress in human systems.

  3. Efficient Egress of Escaping Ants Stressed with Temperature

    Science.gov (United States)

    Boari, Santiago; Josens, Roxana; Parisi, Daniel R.

    2013-01-01

    In the present work we investigate the egress times of a group of Argentine ants (Linepithema humile) stressed with different heating speeds. We found that the higher the temperature ramp is, the faster ants evacuate showing, in this sense, a group-efficient evacuation strategy. It is important to note that even when the life of ants was in danger, jamming and clogging was not observed near the exit, in accordance with other experiments reported in the literature using citronella as aversive stimuli. Because of this clear difference between ants and humans, we recommend the use of some other animal models for studying competitive egress dynamics as a more accurate approach to understanding competitive egress in human systems. PMID:24312264

  4. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  5. Creep testing and viscous behavior research on carbon constructional quality steel under high temperature

    Institute of Scientific and Technical Information of China (English)

    余敏; 罗迎社; 彭相华

    2008-01-01

    Creep tests under at a certain temperature and different stress levels were performed on two carbon constructional quality steels at a certain stress level and different temperatures,and their creep curves at high temperature were obtained based on analyzing the testing data.Taking 45 steel at a certain temperature and stress as the example,the integral creep constitutive equation and the differential stress-strain constitutive relationship were established based on the relevant rheological model,and the integral core function was also obtained.Simultaneously,the viscous coefficients denoting the viscous behavior in visco-plastic constitutive equation were determined by taking use of the creep testing data.Then the viscous coefficients of three carbon steels(20 steel,35 steel and 45 steel) were compared and analyzed.The results show that the viscosity is different due to different materials at the same temperature and stress.

  6. Ultra-High Temperature Metallic Seal/Energizer Development for Aero Propulsion and Gas Turbine Applications

    Science.gov (United States)

    Cornett, Ken; Newman, Jesse; Datta, Amit

    2009-01-01

    The industry is requiring seals to operate at higher and higher temperatures. Traditional static seal designs and materials experience stress relaxation, losing their ability to maintain contact with moving flanges. Ultra High Temperature seal development program is a multiphase program with incremental increases in seal operating temperatures.

  7. Joining of ultra-high temperature ceramics

    OpenAIRE

    Silvestroni, Laura; Sciti, Diletta; Esposito, Laura; Glaeser, Andreas

    2012-01-01

    In the last decade, ultra-high temperature ceramics raised renewed interest after the first studies in the 60's. Thanks to their high melting point, superior to any group of materials, and to their set of interesting physical and engineering properties, they find application in aerospace industry, propulsion field, as cladding materials in generation IV nuclear reactors and solar absorbers in novel HT CSP systems. Recent efforts were devoted to the achievement of high strength and toughness m...

  8. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  9. Low toxicity high temperature PMR polyimide

    Science.gov (United States)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  10. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  11. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  12. 28-Homobrassinolide Modulate Antenna Complexes and Carbon Skeleton of Brassica juncea L. under Temperature Stress

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    2014-08-01

    Full Text Available The aim of present study was to explore the ameliorative impact of 28-homoBL on morpho-physiological attributes, photosynthetic pigments and sugars of Brassica juncea L. exposed to oxidative stress caused by extreme temperatures (4 and 44 °C. For this, experiments were carried out at the Plant Physiology Laboratory, Department of Botany, Punjabi University, Patiala. Effect of different degrees of temperature (4 and 44 °C taking 24 °C as control was studied. 28-homoBL (10-6, 10-9 and 10-12M primed and unprimed seeds of B. juncea L. in terms of antenna complexes and end products of photosynthesis that is total carbohydrates and total soluble sugars was investigated. All concentrations of 28-homoBL used in present study showed different effects on morphology and light quenching pigments. All concentrations of 28-homoBL showed promoting effect on growth and light quenching pigments. The carbon makeup ameliorated positively in stressed and non-stressed components of photosynthetic machinery and 10-9 M 28-homoBL showed best results. In conclusion 28-homoBL showed great potential in protecting the reaction centre of photosynthetic machinery from oxidative stress caused by extreme low and high temperatures but in very dose dependent manner and thus modulate the carbon skeleton of the plant.

  13. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2

    NARCIS (Netherlands)

    Ilk, Nadine; Ding, Jia; Ihnatowicz, Anna; Koornneef, Maarten; Reymond, Matthieu

    2015-01-01

    Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Qua

  14. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  15. Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

  16. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  17. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  18. High Temperature Protonic Conductors by Melt Growth

    Science.gov (United States)

    2007-11-02

    ceramic materials of BaCe1 -xNdxO3-a and Ba3(CaNb2)O9 that exhibit high temperature protonic conductance and superior mechanical properties at elevated...TEM). The mechanical behavior BaCe1 -xNdxO3-a (x=0 to 0.2) and Ba3(CaNb2)O9 ceramics in the elastic, brittle and plastic regime will be studied...spatial variations of compositions in BaCe1 -xNdxO3-a and Ba3(CaNb2)O9 following high temperature wet atmosphere treatment will be measured using a

  19. Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures

    Institute of Scientific and Technical Information of China (English)

    DING Fa-xing; YU Zhi-wu

    2006-01-01

    Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China,with the compressive cube strength of concrete from 20 to 80 Mpa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally,based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub columns at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.

  20. High-temperature MAS-NMR at high spinning speeds.

    Science.gov (United States)

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  1. High Temperature Mechanisms for Venus Exploration

    Science.gov (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  2. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  3. On-wafer high temperature characterization system

    Science.gov (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  4. Effects of Temperature Stresses on the Resistance of Chickpea Genotypes and Aggressiveness of Didymella rabiei Isolates

    Directory of Open Access Journals (Sweden)

    Seid Ahmed Kemal

    2017-09-01

    Full Text Available Chickpea (Cicer arietinum L. is an important food and rotation crop in many parts of the world. Cold (freezing and chilling temperatures and Ascochyta blight (Didymella rabiei are the major constraints in chickpea production. The effects of temperature stresses on chickpea susceptibility and pathogen aggressiveness are not well documented in the Cicer-Didymella pathosystem. Two experiments were conducted under controlled conditions using chickpea genotypes and pathogen isolates in 2011 and 2012. In Experiment 1, four isolates of D. rabiei (AR-01, AR-02, AR-03 and AR-04, six chickpea genotypes (Ghab-1, Ghab-2, Ghab-3, Ghab-4, Ghab-5 and ICC-12004 and four temperature regimes (10, 15, 20, and 25°C were studied using 10 day-old seedlings. In Experiment 2, three chickpea genotypes (Ghab-1, Ghab-2, and ICC-12004 were exposed to 5 and 10 days of chilling temperature exposure at 5°C and non-exposed seedlings were used as controls. Seedlings of the three chickpea genotypes were inoculated with the four pathogen isolates used in Experiment 1. Three disease parameters (incubation period, latent period and disease severity were measured to evaluate treatment effects. In Experiment 1, highly significant interactions between genotypes and isolates; genotypes and temperature; and isolate and temperature were observed for incubation and latent periods. Genotype x isolate and temperature x isolate interactions also significantly affected disease severity. The resistant genotype ICC-12004 showed long incubation and latent periods and low disease severity at all temperatures. The highly aggressive isolate AR-04 caused symptoms, produced pycnidia in short duration as well as high disease severity across temperature regimes, which indicated it is adapted to a wide range of temperatures. Short incubation and latent periods and high disease severity were observed on genotypes exposed to chilling temperature. Our findings showed that the significant interactions of

  5. High-pressure-low-temperature x-ray power diffractometer.

    Science.gov (United States)

    Syassen, K; Holzapfel, W B

    1978-08-01

    A high-pressure technique for x-ray diffraction studies at low temperatures is described. The system consists of a Bridgman anvil type high-pressure device with either tungsten carbide or boron carbide anvils, a liquid He cryostat, and x-ray diffractometer operating in Debye-Scherrer geometry. The newly developed boron carbide anvil cell is capable of containing a liquid pressure transmitting medium. The precision of the lattice parameter determination is discussed and the effect of nonisostatic stress components on the diffraction pattern is examined.

  6. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  7. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  8. BEHAVIOR OF FLOW STRESS OF ALUMINUM SHEETS USED FOR PRESSURE CAN DURING COMPRESSION AT ELEVATED TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    G.S. Fu; W.Z. Chen; K.W. Qian

    2005-01-01

    The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression testusing Gleeble1500 dynamic hot-simulation testing machine. The results show that the A1 sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the Al pieces prepared by no or conventional melt-treatment, hot deformation activation energy of Al sheets prepared by high-efficient melt-treatment is the smallest (Q = 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.

  9. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  10. Residual stress in high modulus carbon fibers

    Science.gov (United States)

    Chen, K. J.; Diefendorf, R. J.

    1982-01-01

    The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.

  11. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... of dissolved oxygen. A potential step method (hydrodynamic chronocoulometry) is evaluated for simultaneous measurement of diffusivity and solubility of oxygen by means of RDE. Finally, the ORR tests are extended to conc. H3PO4 at more relevant working temperatures and under increased oxygen pressure. Direct...... of platinumphosphoric acid. At room temperature, a relative slow ORR hindering process is active, which requires using a fast method (cyclic voltammetry with high scan rate / hydrodynamic chronocoulometry) to accurately measure the diffusion limited currents, and thus, oxygen diffusivity and solubility. In conc. H3PO4...

  12. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  13. valuation of Germination Characteristics for Hedysarum Criniferum Boiss in Alternative Temperature and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Shahbazi

    2016-05-01

    24-26 °C day-night and four drought levels (0, -2, -4, and -6 bar with three replications. According to the results, different levels of drought stress and alternative temperature had significant effects on germination percentage and germination speed of the species seeds (α=5%. The study showed that increasing temperature and drought levels leads to reducing the germination percentage and germination speed of the species. Higher germination percentage of H. criniferum seeds in different drought levels compared to alternative temperature levels of 24-26 °C indicated that this species is more sensitive to higher temperature than high levels of drought condition. Therefore, it could partly be concluded that the H. criniferum is a relatively drought resistance species.

  14. Nuclear and Quark Matter at High Temperature

    CERN Document Server

    Biro, T S; Schram, Z

    2016-01-01

    We review important ideas on nuclear and quark matter description on the basis of high- temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the - partially still open - problems of the hadronization process.

  15. Technology of high temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Makin, R.S.; Vorobei, M.P.; Kuprienko, V.A.; Starkov, V.A.; Tsykanov, V.A.; Checketkin, Y.V. [Research Institute of Atomic Reactors, Ulyanovsk (Russian Federation)

    1993-12-31

    Research has been performed on the problems related to the use of high temperature organic coolants in small and medium nuclear power plants. The work performed and also the experience of operating the ARBUS reactor confirmed the inherent safety features, reliability, and enhanced safety margins of the plants with this type of coolants. The advantages of this system and research highlights are presented.

  16. Enamel for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  17. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  18. Analysis of iron oxidation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, J.C.; Peng, K.Y.; Gadalla, A.M.; Gadalla, N. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

    1995-10-01

    A new theory for the high-temperature oxidation of iron is proposed, in which the rate-limiting step is ternary diffusion of ferric, ferrous, and oxygen ions in the iron oxides that are formed. The predictions of this theory are compared with previously published experimental data. The only thermodynamic information required is a phase diagram.

  19. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  20. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  1. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  2. 10.3 High-temperature Instrumentation

    Science.gov (United States)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  3. Anharmonic phonons and high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1993-07-01

    We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x

  4. High-temperature langasite SAW oxygen sensor.

    Science.gov (United States)

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  5. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  6. Solar-driven high temperature radiant cooling

    Institute of Scientific and Technical Information of China (English)

    SONG ZhaoPei; WANG RuZhu; ZHAI XiaoQiang

    2009-01-01

    Solar energy is widely used as one of the most important renewable energy. In addition to the growing applications of solar PV and solar water heater, solar cooling is also considered very valuable and the related researches are developing fast because of the synchronism between solar irradiance and building cooling load. Current studies mainly focus on the high temperature solar collector technique and heat-driven cooling technique, while little concern has been paid to the transport process of cooling power. In this paper, the high temperature radiant cooling is studied as an alternative way for transporting cooling power, and the performance of the combination of radiant ceiling and solar cooling is also studied. From simulation and theoretical analysis results, high temperature radiant cooling terminal shows better cooling power transportation ability against conventional air-conditioning terminal, and its thermal comfort is improved. Experiment results indicate that radiant cooling can enhance the chiller's COP (Coefficient of Performance) by 17% and cooling power regeneration by 50%.According to analysis in this paper, high temperature radiant cooling is proved to be suitable for solar cooling system, and out work can serve as a reference for later system design and promotion.

  7. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  8. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  9. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  10. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  11. High temperature furnace modeling and performance verifications

    Science.gov (United States)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  12. High temperature superconductors applications in telecommunications

    Science.gov (United States)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  13. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  14. Influence of temperature on the corticosterone stress-response: an experiment in the Children's python (Antaresia childreni).

    Science.gov (United States)

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier; Angelier, Frédéric

    2013-11-01

    To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Children's python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state.

  15. Stress Relaxation of Chemically Treated Wood during Processes of Temperature Elevation and Decline

    Institute of Scientific and Technical Information of China (English)

    Xie Man-hua; Zhao Guang-jie

    2005-01-01

    In order to clarify the effect of drying on structural changes of DMSO swell treated and DEA-SO2-DMSO decrystallization treated Chinese fir (Cunninghamia lanceolate) wood, the stress relaxation of treated oven-dry specimens during the processes of temperature elevation and reduction and that of treated wet specimens at constant temperature were determined. A stress decrease process and a stress increase process were observed in all stress ratio curves of wood during the processes of decreasing temperature. Untreated wood, during the process of temperature reduction under higher initial temperature conditions and during the process of temperature elevation, has a larger stress decrease than treated woods. In a wet state this trend is reversed. It indicated that the drying set made treated woods have a smaller increase in fluidity of wood constituents with increasing temperature. Some bonding between decrystallization reagents and wood molecules may occur.

  16. Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)

    Science.gov (United States)

    1997-01-01

    The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.

  17. Comments on theories of high temperature superconductivity

    Directory of Open Access Journals (Sweden)

    T. M. Rice

    2006-09-01

    Full Text Available   The recently discovered MgB2 superconductors have a record transition temperature for a BCS superconductor due to the high vibration frequencies associated with its light elements. The transition temperatures in the cuprate family of superconductors are much higher but these do not fit the BCS paradigm. The most promising microscopic origin for their many anomalous properties lies in magnetic pairing described by the RVB (Resonant Valence Bond ansatz. However a comprehensive theoretical description of the key anomalous properties of the cuprates remains to be an open challenge.

  18. Recrystallization of quartz after low-temperature plasticity - The record of stress relaxation below the seismogenic zone

    Science.gov (United States)

    Trepmann, Claudia A.; Hsu, Chen; Hentschel, Felix; Döhler, Katharina; Schneider, Christian; Wichmann, Veronica

    2017-02-01

    Quartz microfabrics in rocks from the Silvretta basal thrust and the Defereggen-Antholz-Vals (DAV) shear zone in the Eastern Alps, are analysed by polarized light and electron microscopy. The microfabrics from both shear zones record a switch from low-temperature plasticity at transient high stress to recrystallization at relaxing stresses at greenschist facies conditions. The development of new grains is dominantly by subgrain rotation and subsequent strain-induced grain-boundary migration in areas of localized high strain developed during initial low-temperature plasticity. The findings suggest that new grains develop at almost random crystallographic orientations at fast rates of stress relaxation (i.e. at low stress), as indicated by recrystallized quartz zones in the Silvretta fault rocks. In contrast, at slow rates of stress relaxation, new grains develop at moderately high stresses with crystallographic preferred orientation characterized by high Schmid factor for basal glide, as indicated by vein quartz samples from the DAV shear zone. Both recorded histories with transient peak stresses and different rates of stress relaxation are interpreted to be related to seismic activity of the fault systems. This study demonstrates that characteristic microfabrics provide important information about the deformation history of natural shear zones developed in different tectonic regimes.

  19. Mechanical Behavior of MTMoCr under High Temperature and High Strain-rate

    Directory of Open Access Journals (Sweden)

    Zhengwei Dong

    2013-02-01

    Full Text Available MTMoCr is a kind of Mo-Cr alloy cast iron often used to make automobile panel dies. To study high-speed machining process of automobile panel dies, the material’s elastic modulus and rupture critical values of MTMoCr at 20℃-800℃ were studied based on the high temperature elongation test. The material’s stress-strain diagram at various temperatures set-points (20℃-500℃ and various strain-rates (500/s-5000/s were studied and the dynamic tensile yield strength values were obtained by dynamic SHPB (Split Hopkinson Pressure Bar high-speed compression test. The experimental results indicate that MTMoCr has heat resistance and its behavior is between toughness and brittleness materials. Its toughness is enhanced with temperature increasing. The strain-rate strengthening effect prevails over temperature softening effect.

  20. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  1. Optically transparent high temperature shape memory polymers.

    Science.gov (United States)

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

  2. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  3. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    Science.gov (United States)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this

  4. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  5. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  6. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... (RDE) and (ii) a gas diffusion electrode (GDE) setup designed for experiments in conc. H3PO4. The pressurized cell is demonstrated by tests on polycrystalline platinum electrodes up to 150 ºC. Functionality of the RDE system is proved studying the oxygen reduction reaction (ORR) at temperatures up...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...

  7. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  8. A Snapshot View of High Temperature Superconductivity 2002

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Basov, Dimitri N. [Univ. of California, San Diego, CA (United States)

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  9. A Snapshot View of High Temperature Superconductivity 2002

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Basov, Dimitri N. [Univ. of California, San Diego, CA (United States)

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity is well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that independently of any current or future applications, this is a very important area of basic research.

  10. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  11. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  12. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Bottoli, Federico; Christiansen, Thomas Lundin; Winther, Grethe

    2016-01-01

    or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic...

  13. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  14. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  15. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  16. Germination of Jacaranda mimosifolia (D. Don - Bignoniaceae seeds: effects of light, temperature and water stress

    Directory of Open Access Journals (Sweden)

    Fábio Socolowski

    2004-09-01

    Full Text Available Investigations were carried out to study the effect of light, temperature and water stress on the germination of seeds of Jacaranda mimosifolia which showed the minimum and maximum germination temperature at 15 and 40º C, respectively. The optimum temperature was 25º C with high percentage and germination rate. Slight promotive effect of white light was observed. Under water stress conditions the effect of light was high but at optimum temperature no effect of light was observed. At -0.9MPa few seeds germinated.Sementes de Jacaranda mimosifolia apresentaram temperaturas mínima e máxima de germinação a 15 e a 40º C, respectivamente. A temperatura ótima foi de 25º C com alta porcentagem e velocidade de germinação. Uma pequena estimulação da germinação pela luz foi observada. Sob condições de estresse de água o efeito promotor da luz foi maior, mas na temperatura ótima este efeito da luz não foi observado. No potencial de água de -0,9MPa praticamente nenhuma semente germinou.

  17. 高温胁迫对灰岩皱叶报春生理指标的影响%Effects of High Temperature Stress on Physiological Indicators of Primula forrestii

    Institute of Scientific and Technical Information of China (English)

    张路; 张启翔

    2011-01-01

    In order to study the heat resistance, the changes of chlorophyll, malondianldehyde ( MDA) , proline, soluble protein, soluble sugar contents in leaves and relative conductance rate of leaves of Primula forrestii with 30,35,40 and 45t heat stress for 24 hours, then recovered at room temperature were dtermined. The results showed that,with extending treated time,chlorophyll content first climbed up then went down, while MDA content and relative conductance rate increased all the way and the temperature was higher, the change was more dramatic. Proline, soluble sugar and soluble protein content first grew and then decreased under 40 and 45 t treatment, but they increased steadily during the stress under 30 and 35 *C. "Hie conclusions were drawn that Primula forrestii could tolerate the heat under 35 t for a relatively long time, 40 °C for 24 h, but when Primula forrestii was treated under 45 °C for 12 h, it was seriously hurted and when it was treated under 45 t for 24 h it was hard to recover.%本研究对灰岩皱叶报春进行30、35、40和45℃24h的高温胁迫,之后置于室温下恢复12h,测定叶片的叶绿素、丙二醛、游离脯氧酸、可溶性蛋白、可溶性糖以及相对电导率,以研究灰岩皱叶报春的耐热性.结果表明:随胁迫时间的延长,各温度处理下,叶绿素含量呈先上升后下降趋势,MDA含量和相对电导率持续上升,且随胁迫加剧各指标变化幅度加大.游离脯氨酸、可溶性糖以及可溶性蛋白含量在40和45℃胁迫下先上升后下降,而30和35℃处理下持续上升.灰岩皱叶报春能耐受35℃以下较长时间的高温胁迫,以及40℃下24h的胁迫,而45℃处理12h即产生明显伤害,24h处理后较难恢复.

  18. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...

  19. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  20. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts.

    Directory of Open Access Journals (Sweden)

    Mia O Hoogenboom

    Full Text Available BACKGROUND: Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate. METHODOLOGY/PRINCIPAL FINDINGS: This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress. CONCLUSIONS/SIGNIFICANCE: Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host.

  1. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress.

    Science.gov (United States)

    Zhang, Cheng; Jia, Haifeng; Wu, Weimin; Wang, Xicheng; Fang, Jinggui; Wang, Chen

    2015-12-10

    In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress.

  2. Evolution of asthenospheric layers as a result of changing temperature and stress fields

    Science.gov (United States)

    Czechowski, Leszek; Grad, Marek

    2015-04-01

    The lithosphere is underlain by the asthenosphere. Traditionally, the boundary between the lithosphere and the asthenosphere (LAB) is defined by a difference in response to stress: the lithosphere remains elastic or brittle, while the asthenosphere deforms viscously and accommodates strain through plastic deformation. The reology of rocks depends on many factors: temperature, pressure, chemical composition, size of grains, etc. However, the basic differences of lithosphere and asthenosphere properties could be explained as a result of the temperature and pressure. The effective viscosity of mantle is proportional to C exp(A q), where q is the ratio (melting temperature/temperature), C and A are positive constants. The mantle is not molten, so q >1. If the temperature is close to the melting temperature then q is close to 1 and effective viscosity is low (e.g. 1018 Pa s). This situation is observed in asthenosphere. The lithosphere is a thermal boundary layer for the convection in the mantle. The temperature of the upper part is low (q is high) but the temperature gradient in the lithosphere is high and temperature is increasing fast. In the mantle below the lithosphere, the temperature gradient is low (could be close to the adiabatic one). The melting temperature is increasing with depth faster than true temperature. Hence, q and the viscosity reach minimum value just below LAB and are increasing with depth in the mantle below. It is a typical situation. The tectonic processes in subduction zones could change this picture. The one lithospheric plate could be placed in the mantle below another plate. Distribution q in such a case could have two minima, so two asthenospheric layers could be formed. Another important factor determining rheological properties is a stress tensor T. Generally viscosity is proportional to the power of the invariant of the stress tensor: I(T)^(1-n). For n=1 the viscosity does not depend on stress (i.e. Newtonian rheology), for true mantle

  3. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo, E-mail: swffrog@seu.edu.c [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2009-10-15

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO{sub 2} interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  4. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Institute of Scientific and Technical Information of China (English)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo

    2009-01-01

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO_2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  5. High temperature fatigue behavior of tungsten copper composites

    Science.gov (United States)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  6. High temperature alloys: their exploitable potential

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Merz, M.; Nihoul, J.; Ward, J. (eds.) (Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center; NET-TEAM, Garching (DE))

    1987-01-01

    This book is the proceedings of a conference dealing with fundamental and technical aspects of the applications of high temperature alloys. It is split into five sections which cover the opening session of the conference and four further sessions covering: the theoretical and practical limits for HT alloys; the potential for development in alloys and processing; engineering considerations; the future outlook. The different sessions each included a number of invited papers followed by a series of posters and were concluded by a presentation of a 'synthesis' by a session rapporteur and general discussion. This structure is retained in the proceedings, including the discussion points in those cases where the authors have provided written answers to the questions raised. This book will be of interest to metallurgists, materials scientists, physicists and research workers in high temperature materials.

  7. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  8. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  9. High temperature superconductor materials and applications

    Science.gov (United States)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  10. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... and shape, composition, reactivity and burnout depend significantly on the operating conditions of the fast pyrolysis. Biomass fast pyrolysis experiments were performed in a laboratory-scale wire mesh reactor and bench scale atmospheric pressure drop tube / entrained flow reactors with the aim...

  11. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  12. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  13. Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karabela, A. [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Zhao, L.G., E-mail: liguo.zhao@port.ac.uk [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Tong, J. [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom); Simms, N.J.; Nicholls, J.R. [School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Hardy, M.C. [Rolls-Royce plc, Elton Road, Derby DE24 8BJ (United Kingdom)

    2011-07-25

    Highlights: {yields} FIB shows the formation of surface oxide scales and internal micro-voids. {yields} Oxidation damage at 800 deg. C is much more severe than that at 700 deg. C and 750 deg. C. {yields} Cyclic stress enhances the extent of oxidation damage at 750 deg. C and above. {yields} Enrichment of Cr and Ti, as well as lower Ni and Co levels, in the surface oxides. {yields} Penetration of oxygen into the material and internal oxidation are evidenced. - Abstract: Oxidation damage, combined with fatigue, is a concern for nickel-based superalloys utilised as disc rotors in high pressure compressor and turbine of aero-engines. A study has been carried out for a nickel-based alloy RR1000, which includes cyclic experiments at selected temperatures (700-800 deg. C) and microscopy examination using focused ion beam (FIB). The results suggest that the major mechanism of oxidation damage consists of the formation of surface oxide scales and internal micro-voids and oxide particles beneath the oxide scales, which become more severe with the increase of temperature. Applying a cyclic stress does not change the nature of oxidation damage but tends to enhance the extent of oxidation damage for temperatures at 750 deg. C and 800 deg. C. The influence of cyclic stress on oxidation damage appears to be insignificant at 700 deg. C, indicating a combined effect of cyclic stress and temperature. Further energy-dispersive X-ray spectrometry (EDXS) analyses show the enrichment of Cr and Ti, together with lower Ni and Co levels, in the surface oxide scales, suggesting the formation of brittle Cr{sub 2}O{sub 3}, TiO{sub 2}, NiO and Co{sub 3}O{sub 4} oxides on the specimen surface. Penetration of oxygen into the material and associated internal oxidation, which leads to further material embrittlement and associated failure, are evidenced from both secondary ion imaging and EDXS analyses.

  14. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2001-04-01

    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  15. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  16. On quark number susceptibilities at high temperatures

    CERN Document Server

    Bazavov, A; Hegde, P; Karsch, F; Miao, C; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Velytsky, A

    2013-01-01

    We calculated second and fourth order quark number susceptibilities for 2+1 flavor QCD in the high temperature region using two improved staggered fermion formulations. The calculations are performed at several lattice spacing and we show that in the continuum limit the two formulations give consistent results. We compare our continuum extrapolated results on quark number susceptibilities with recent weak coupling calculations, and find that these cannot simultaneously explain the lattice results for second and fourth order quark number susceptibilities.

  17. Intermetallic-based high-temperature materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-07-01

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminides are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  18. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  19. Hydrogen dominant metallic alloys: high temperature superconductors?

    Science.gov (United States)

    Ashcroft, N W

    2004-05-07

    The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a candidate for high temperature superconductivity are shown to apply with comparable weight to alloys of metallic hydrogen where hydrogen is a dominant constituent, for example, in the dense group IVa hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil cells, but at pressures considerably lower than may be necessary for hydrogen.

  20. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...