WorldWideScience

Sample records for high temperature pressure

  1. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  2. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  3. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  4. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  5. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  6. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  7. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  8. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  9. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  10. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  11. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  12. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  13. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  14. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  15. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  16. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  18. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  19. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  20. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  1. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  2. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  3. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  4. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  5. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  6. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  7. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  8. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  9. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  10. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  11. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  12. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  13. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  14. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  15. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  16. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  17. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  18. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  19. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  20. $\\mu$SR-Measurements under High Pressure and at Low Temperatures

    CERN Multimedia

    2002-01-01

    High pressure causes changes in the volume available to each atom in a solid and will therefore influence local properties like the electronic charge and spin densities and, in the case of magnetic materials, the spin ordering.\\\\ \\\\ The positive muon is known to be an interesting probe particle for the study of certain problems in magnetism. It has in fact been used for one high pressure experiment earlier in CERN, but the present experiments aim at more systematic studie For this purpose it is necessary to carry out pressure experiments at low temperatures. The new experiments use a helium gas pressure system, which covers the temperature range 10-300 K at pressures up to 14 Kbar.\\\\ \\\\ Experiments are in progress on \\item 1)~~~~Ferromagnetic metals like Fe, Co, Ni where the pressure dependence of the local magnetic field ~~~is studied at 77 K and at room temperature. \\item 2)~~~~Knight shifts in semimetals, where in the case of Sb strong variations with temperature and ~~~pressure are observed. \\end{enumerat...

  1. Thermodynamic properties of OsB under high temperature and high pressure

    Science.gov (United States)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  2. Diffraction studies of order-disorder at high pressures and temperatures

    International Nuclear Information System (INIS)

    Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson

    2005-01-01

    Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO 3 ) 2 ) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe 2 O 4 , which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO 4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO 4 -type structure.

  3. Phase stability of TiH{sub 2} under high pressure and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R.; Durygin, A.; Saxena, S.K. [Center for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-150, University Park, Miami, FL 33199 (United States); Merlini, Marco [European Synchrotron Radiation Facility (ESRF), Grenoble 38043 (France); Wang, Zhongwu [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2008-11-15

    Phase stability of titanium hydride (TiH{sub 2}) was studied at high pressure-high temperature conditions using synchrotron radiation under non-hydrostatic conditions. Resistive heating method was used to heat the sample to a maximum temperature of 873 K in a diamond anvil cell (DAC) under pressure up to 12 GPa. Pressure-temperature behavior was studied by varying the temperature upto 823 K in steps of 50 K with pressure variations within 3 GPa. Structural phase transformation from tetragonal (I4/mmm) to cubic (Fm-3 m) was observed with increase in temperature. Tetragonal phase was found to be stabilized when the sample was subjected to pressure and temperature cycle. (author)

  4. Transformations in refractory compounds, caused by high pressures and temperatures

    International Nuclear Information System (INIS)

    Zajnulin, Yu.G.; Alyamovskij, S.I.; Shvejkin, G.P.

    1979-01-01

    Considered is the effect of high pressures and temperatures on structural features of refractory carbides, nitrides and monooxides of transition metals. The results are discussed on the basis of one component of the theory on daltonides and bertollides by N.S. Kurnakov - the theory of imaginary compounds, developed by G.B. Bokij. Several new ideas, resulting from this consideration, are formulated, It is shown that at high pressures and temperatures it is possible to obtain new electron modifications of compounds and to expand sufficiently the region of the existance of variable composition phases. The concept on imaginary compounds is shown to be true. A supposition is made on realization of numerous imaginary compounds at high pressures and temperatures. Other ways of production of imaginary compounds are recommended

  5. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  7. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  8. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  9. Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation

    Science.gov (United States)

    Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the

  10. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    Kropelnicki, P; Mu, X J; Randles, A B; Cai, H; Ang, W C; Tsai, J M; Muckensturm, K-M; Vogt, H

    2013-01-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  11. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  12. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1987-05-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  13. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1988-01-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  14. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  15. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  16. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  17. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  18. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    International Nuclear Information System (INIS)

    Li Chen; Tan Qiu-Lin; Xue Chen-Yang; Zhang Wen-Dong; Li Yun-Zhi; Xiong Ji-Jun

    2015-01-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. (paper)

  19. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    Science.gov (United States)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  20. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  1. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  2. The measurement for level of marine high-temperature and high-pressure vessels

    International Nuclear Information System (INIS)

    Lin Jie.

    1986-01-01

    The various error factors in measurement for level of marine high-temperature and high-pressure vessels are anslysed. The measuring method of error self compensation and its simplification for land use are shown

  3. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  4. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  5. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  6. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  7. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  8. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  9. Properties of planetary fluids at high pressure and temperature

    International Nuclear Information System (INIS)

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Ross, M.; Young, D.A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N 2 and CH 4 . Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

  10. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  11. Structural stability of the smectite-doped lanthanum under high pressures and high temperatures

    International Nuclear Information System (INIS)

    Stefani, Vicente Fiorini

    2012-01-01

    Smectites are phyllosilicates that have a tetrahedron: octahedron structure ratio of 2:1, with high cation exchange capacity (CEC) in the interlayers. For these and other features, smectites have been used in many parts of the world as secondary barriers with the goal of containing a possible leak of radioactive elements in final disposal facilities for radioactive waste through cation exchange. Our aim in this work is to reach the cation exchange in calcium montmorillonite (smectite dioctahedral) by lanthanum to simulate trivalent radionuclides and to study the stability of this structure under high pressure and high temperature. To achieve high pressure it was used two different technique: DAC (Diamond Anvil Cell), achieving pressures up to 12GPa at room temperature and hydraulic press with a toroidal chamber profile to achieve pressures up to 7,7GPa and temperatures up to 900 degree C. The heating is achieved simultaneously by an electric system coupled in the hydraulic press. The outcomes show that the smectite structure doped with lanthanum remains stable under 12GPa at room temperature and 2.5GPa at 200 degree C. However, above 300 degree C at 2.5GPa the structure becomes a new phase of muscovite-like, rich of La, where it loses its interlayer water and turns out to be irreversible. Furthermore, it is important to point out that the higher temperature the better ordered is the structure and it is still stable under 7.7GPa and 900 degree C. Moreover, after all experiments the structure continues being dioctahedral. The new phase of muscovite-like, rich of La, in contact with a calcium solution remains partially unchanged, whereas the other part returns to the original structure (montmorillonite-Ca). The following analyses were performed: X-ray diffraction (XRD) for evaluating the spatial structure; Fourier transform infrared spectroscopy (FTIR) for getting information about the vibrational modes; scanning electron microscopy with dispersive Xray spectroscopy

  12. Analysis of pressure drop accidents in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kameoka, Toshiyuki

    1980-01-01

    Research and development are carried out on various problems in order to realize a multi-purpose, high temperature gas-cooled experimental reactor by Japan Atomic Energy Research Institute and others. In the experimental reactor in consideration at present, it is planned to flow helium at 1000 deg C and 40 atm. For the purpose, high temperature heat insulation structures are designed and developed, which insulate heat on the internal surfaces of pressure vessels and pipings. Consideration must be given to these internal heat insulation structures about the various characteristics in the working environmental temperature and pressure conditions, the measures for preventing the by-pass flow due to the formation of gaps and the abnormal leak of heat through the natural convection in the heat insulators and others. In this paper, the experimental results on the rapid pressure reduction characteristics of ceramic fiber heat insulation structures are reported. The ceramic fiber heat insulation structures have the features such as the application to uneven surfaces and penetration parts, the prevention of by-pass flow, and very low permeability. The problem is the restoring force after the high temperature compression. The experiment on rapid pressure reduction due to the accidental release of gas and the results are reported. (Kako, I.)

  13. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  14. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  15. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  16. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  17. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  18. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  19. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  20. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  1. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    Science.gov (United States)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  2. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    Science.gov (United States)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  3. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  4. Study of CT Scan Flooding System at High Temperature and Pressure

    Science.gov (United States)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  5. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  6. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    Science.gov (United States)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  7. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  8. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  9. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    Science.gov (United States)

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH 4 /air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  10. Design and evaluation of a pressure sensor for high temperature nuclear application

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  11. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    Directory of Open Access Journals (Sweden)

    Maximilian B Maier

    Full Text Available The effect of high pressure thermal (HPT processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa, which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  12. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  13. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  14. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  15. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  16. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  17. Pipe connection for high pressure and temperature loads

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Paetz, E.; Stach, H.

    1976-01-01

    The patent proposes an inprovement of the clamping device for a pipe joint connecting pipelines which are subject to high pressure and temperature loads, e.g. in a nuclear power plant. This clamping device may be tightened and loosened by remote control. The proposed clamping ring consists of several segments connected with each other by hinge-type guide pins and fishplates. (UWI) [de

  18. Effective like- and unlike-pair interactions at high pressure and high temperature

    International Nuclear Information System (INIS)

    Ree, F.H.; van Thiel, M.

    1991-05-01

    We describe how information on effective interactions of chemical species involving C, O, and N atoms at high pressure and high temperature may be inferred from available shock wave data of NO and CO. Our approach uses a modern statistical mechanical theory and a detailed equation of state (EOS) model for the condensed phases of carbon

  19. Thermoelasticity at High Temperatures and Pressures for Ta

    International Nuclear Information System (INIS)

    Orlikowski, D; Soderlind, P; Moriarty, J A

    2004-01-01

    A new methodology for calculating high temperature and pressure elastic moduli in metals has been developed accounting for both the electron-thermal and ion-thermal contributions. Anharmonic and quasi-harmonic thermoelasticity for bcc tantalum have thereby been calculated and compared as a function of temperature (<12,000 K) and pressure (<10 Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is closely coupled with ion-thermal contributions obtained via multi-ion, quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT). For the later contributions two separate approaches are used. In one approach, the quasi-harmonic ion-thermal contribution is obtained through a Brillouin zone sum of the strain derivatives of the phonons, and in the other the anharmonic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical distribution averages of strain derivatives on the multi-ion potentials themselves. The resulting elastic moduli compare well in each method and to available ultrasonic measurements and diamond-anvil-cell compression experiments indicating minimal anharmonic effects in bcc tantalum over the considered pressure range

  20. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  1. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  2. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  3. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  4. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  5. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  6. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography

    Science.gov (United States)

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  7. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    Science.gov (United States)

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  9. High pressure apparatus for hydrogen isotopes to pressures of 345 MPa (50,000 psi) and temperatures of 12000C

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1977-01-01

    A functional new high pressure, high temperature apparatus for hydrogen isotopes uses an internally heated pressure vessel within a larger pressure vessel. The pressure capability is 345 MPa (50 K psi) at 1200 0 C. The gas pressure inside the internal vessel is balanced with gas pressure in the external vessel. The internal vessel is attached to a closure and is also the sample container. Our design allows thin-walled internal vessel construction and keeps the sample from ''seeing'' the furnace or other extraneous environment. The sample container together with the closure can easily be removed and loaded under argon using standard glove-box procedures. The small volume of the inner vessel permits small volumes of gas to be used, thus increasing the sensitivity during pressure-volume-temperature (PVT) work

  10. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  11. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  12. Study of elastic and thermodynamic properties of uranium dioxide under high temperature and pressure with density functional theory

    International Nuclear Information System (INIS)

    Zhou Mu; Wang Feng; Zheng Zhou; Liu Xiankun; Jiang Tao

    2013-01-01

    The elastic and thermodynamic properties of UO 2 under extreme physical condition are studied by using the density functional theory and quasi-harmonic Debye model. Results show that UO 2 is still stable ionic crystal under high temperatures, and pressures. Tetragonal shear constant is steady under high pressures and temperatures, while elastic constant C 44 is stable under high temperatures, but rises with pressure sharply. Bulk modulus, shear modulus and Young's modulus increase with pressure rapidly, but temperature would not cause evident debasement of the moduli, all of which indicate that UO 2 has excellent mechanical properties. Heat capacity of different pressures increases with temperature and is close to the Dulong-Petit limit near 1000 K. Debye temperature decreases with temperature, and increases with pressure. Under low pressure, thermal expansion coefficient raises with temperature rapidly, and then gets slow at higher pressure and temperature. Besides, the thermal expansion coefficient of UO 2 is much lower than that of other nuclear materials. (authors)

  13. Photocatalytic Degradation of Chlorobenzene by TiO2 in High-Temperature and High-Pressure Water

    Directory of Open Access Journals (Sweden)

    N. Kometani

    2008-01-01

    Full Text Available A fluidized-bed-type flow reactor available for the photocatalytic treatment of the suspension of model soil under high-temperature, high-pressure conditions was designed. An aqueous suspension containing hydrogen peroxide (H2O2 as an oxidizer and inorganic oxides as a model soil, titania (TiO2, silica (SiO2, or kaoline (Al2Si2O5(OH4 was continuously fed into the reactor with the temperature and the pressure controlled to be T=20–400∘C and P = 30 MPa, respectively. The degradation of chlorobenzene (CB in water was chosen as a model oxidation reaction. It appeared that most of the model soils are not so harmful to the SCWO treatment of CB in solutions. When the TiO2 suspension containing H2O2 was irradiated with near-UV light, the promotion of the degradation caused by photocatalytic actions of TiO2 was observed at all temperatures. Persistence of the photocatalytic activity in the oxidation reaction in high-temperature, high-pressure water would open up a possibility of the development of the hybrid process based on the combination of SCWO process and TiO2 photocatalysis for the treatment of environmental pollutants in soil and water, which are difficult to handle by conventional SCWO process or catalytic SCWO process alone.

  14. High pressure study of high temperatures superconductors: Material base, universal Tc-behavior, and charge transfer

    International Nuclear Information System (INIS)

    Chu, C.W.; Hor, P.H.; Lin, J.G.; Xiong, Q.; Huang, Z.J.; Meng, R.L.; Xue, Y.Y.; Jean, Y.C.

    1991-01-01

    The superconducting transition temperature (T c ) has been measured in YBa 2 Cu 3 O 6.7 , YBa 2 Cu 3 O 7 , Y 2 Ba 4 Cu 7 O 15 , YBa 2 Cu 4 O 8 , Tl 2 Ba 2 Ca n-1 Cu n O n+4-δ , La 2-x Sr x CuO 4 , and La 2-x Ba x CuO 4 under high pressures. The pressure effect on the positron lifetime (τ) has also been determined in the first four compounds. Based on these and other high pressure data, the authors suggest that (1) all known cuprate high temperature superconductors (HTS's) may be no more than mere modifications of either 214-T, 214-T', 123, or a combination of 214-T' and 123, (2) a nonmonotonic T c -behavior may govern the T c -variation of all hole cuprate HTS's and (3) pressure can induce charge transfer leading to a T c -change. The implications of these suggestions will also be discussed

  15. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    International Nuclear Information System (INIS)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-01-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10 5 frames/second (fps) in air and up to ∼10 4 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures

  16. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Shibazaki, Yuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578 (Japan); Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  17. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Lo Monte, F. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Wyrzykowski, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Weber, B. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Sahmenko, G. [Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Vontobel, P. [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Felicetti, R. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); ETH Zürich, Institute for Building Materials (IfB), Zürich (Switzerland)

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  18. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  19. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    International Nuclear Information System (INIS)

    Meissner, Thomas

    2013-01-01

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa 2 Cu 4 O 8 at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T 1 at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T 1 are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional quadrupolar broadening which is

  20. The influence of defects on the transport properties of AgSbPb18Te20 prepared at high pressure and high temperature

    International Nuclear Information System (INIS)

    Wang Yi; Zhu Pinwen; Jiao Hujun; Chen Haiyong; Ma Yanming; Niu Yingli; Li Yingai; Zhang Lijun; Zhang Tiechen; Gao Chunxiao; Zou Guangtian

    2007-01-01

    We synthesized polycrystal AgSbPb 18 Te 20 by using the method of high pressure and high temperature, and found that the defects produced by high pressure and high temperature caused the changes of transport properties. X-ray diffraction patterns showed that the cell parameters did not change obviously with synthesis at high pressure, apart from a small fluctuation. The electrical resistivity first increased, and then decreased to one quarter of the original value, as the synthesis pressure changed from low to high. The Seebeck coefficient decreased with the increase of synthesis pressure, and then changed from positive to negative. High pressure and high temperature could cause AgSbPb 18 Te 20 to change from a p-type to n-type semiconductor, increase the carrier concentration at maximum by two orders of magnitude, and shift the infrared absorption edge to a higher energy range. All of these phenomena were regarded as showing that high pressure and high temperature favored the formation of certain defects which could change the band structure and thereby change the transport properties

  1. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Directory of Open Access Journals (Sweden)

    Liu Gang

    2015-01-01

    Full Text Available High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were also carried out. The results show that: at the temperatures of 650 ∘C and 700 ∘C, the flow curves exhibit the power-law constitutive relation until peak stress is reached and the deformability is suitable for the HPGF process of Ti-3Al-2.5V alloy tube. The effects of pressurization path on the corner filling process and thickness profile are obvious. The high pressure inflow process can result in temperature difference between the straight wall area and corner area, which makes the thickness profile special. Besides, with the stepped pressurization path, the more constant filling rate and better thickness profile can be obtained.

  2. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  3. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  4. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  5. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually

  6. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  7. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  8. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  9. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  10. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  11. High-pressure high-temperature experiments: Windows to the Universe; Experimentos a alta presion y alta temperatura: Ventanas al universo

    Energy Technology Data Exchange (ETDEWEB)

    Santaria-Perez, D.

    2011-07-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  12. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  13. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  14. High pressure-temperature processing as an alternative for preserving basil

    NARCIS (Netherlands)

    Krebbers, B.; Matser, A.; Koets, M.; Bartels, P.; Berg, van den R.

    2002-01-01

    In this study the effect of sterilisation by high pressure (HP) on the quality of basil was compared to conventional processing techniques. By means of freezing, or blanching followed by drying, microbial reduction of spores was maximal one-log. Pulsed HP-temperature treatment yielded a reduction of

  15. High Temperature, High Pressure Equation of State: Solidification of Hydrocarbons and Measurement of Krytox Oil Using Rolling-Ball Viscometer Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, Isaac K. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Burgess, Ward [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tapriyal, Deepak [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2014-10-03

    The global consumption of oil and gas continues to rise and has led to the search and recovery of petroleum sources from reservoirs exhibiting increasingly high-temperature, high-pressure conditions. For example, ultra-deep petroleum formations found at depths of approximately 5 km or more, can exhibit pressure and temperature values as high as 240 MPa (35,000 psi) and 533 K (260°C). The hydrocarbons produced from these ultra-deep formations experience significant decreases in temperature and pressure from reservoir to platform conditions. Hence, it is highly desirable to develop accurate equation of state models (EOS) and fluid properties databases that covers the entire temperature and pressure ranges associated with this process to promote the efficient, safe, and environmentally responsible production from these reservoirs at extreme conditions. Currently available databases and EOS models are generally limited to approximately 69 MPa and do not correlate accurately when extrapolated to the extreme environments associated with ultra-deep reservoirs where temperatures can reach as high as 533 K and pressures up to 240 MPa. Despite recent exploration and production of petroleum from ultra-deep formations, there are major gaps in the databases for pure and mixture density and viscosity of hydrocarbons. These are the most important fluid properties that enable accurate booking of reserves as well as the design of size and equipment to safely bring these fluids to the platform. The overall objective of this project is to develop methodologies to provide crude oil thermodynamic and transport properties—including density, viscosity, and phase composition— at extreme temperature and pressure conditions. The knowledge of these crude oil properties reduces uncertainties associated with deep drilling and promotes safer and reliable access to domestic energy resources. This report is an extension of work reported in our first Technical Report Series (TRS) released

  16. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  17. Characterization of thick and thin film SiCN for pressure sensing at high temperatures.

    Science.gov (United States)

    Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B

    2010-01-01

    Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40-60 μm) and thick (about 2-3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  18. Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures

    Directory of Open Access Journals (Sweden)

    Rama B. Bhat

    2010-02-01

    Full Text Available Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA, thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 µm and thick (about 2–3 mm films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  19. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  20. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  1. Survival of Escherichia coli O157:H7 in Milk Exposed to High Temperatures and High Pressure**

    Directory of Open Access Journals (Sweden)

    Irena Usajewicz

    2006-01-01

    Full Text Available The objective of the present study was to determine the survival of two enterohemorrhagic Escherichia coli O157:H7 strains (no. 94 and 402 and a saprophytic E. coli 1 strain at temperatures of 55 and 60 °C, and under the pressure of 300 to 600 MPa at ambient temperature (about 20 °C. The strains, in populations of 106–107 CFU/mL, were introduced into the skim milk and broth. The survival of test strains at high temperatures and high pressure depended to a high degree (p<0.05 on the type of medium in which the cells were suspended. At 55 °C the inactivation of E. coli cells was recorded after 60 to 120 min in the broth, and after 180 min in the milk. At 60 °C the time required for their thermal death was 15 to 30 min in broth. In milk only E. coli 1 cells died after 30-minute heating; the other strains survived in populations of about 40 CFU/mL. In the broth, a pressure of 550 MPa, applied for 20 min at ambient temperature, killed the entire populations of E. coli 94 and E. coli 402, and all E. coli 1 cells died at 600 MPa, also applied for 20 min at ambient temperature. In the milk live cells of all pressurized strains survived in the quantities of 102–103 CFU/mL, so their reduction by 5 log cycles was not achieved. Damaged cells were found in the majority of samples exposed to heating and high pressure. These cells did not form colonies on nutrient agar, but were able to repair damage and grow in nutrient broth at 37 °C.

  2. The high temperature out-of-pile test of LVDT for internal pressure measurement of nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Yoon, K. B.; Sin, Y. T.; Park, S. J.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). As the results of out-of-pile test at room temperature, it was concluded that the well qualified out-of-pile tests were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for pressure measurement was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C increasing the pressure from 0 bar to 30 bar. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT at high temperature was introduced. It is known that the results will be used to predict accurately the internal pressure of fuel rod during irradiation test.

  3. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  4. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    OpenAIRE

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  5. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

    Science.gov (United States)

    Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun

    2017-08-25

    The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

  6. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  7. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell

    NARCIS (Netherlands)

    Bougie, H.J.T.; Tulej, M.; Dreier, T.; Dam, N.J.; Meulen, J.J. ter; Gerber, T.

    2005-01-01

    We report on spatially and temporally resolved optical diagnostic measurements of propagation and combustion of diesel sprays introduced through a single-hole fuel injector into a constant volume, high-temperature, high-pressure cell. From shadowgraphy images in non-reacting environments of pure

  8. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  9. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  10. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  11. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  12. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  13. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  14. Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Pâmela Andréa Mantey dos [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil); Gallas, Marcia Russman [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Física (Brazil); Radtke, Cláudio; Benvenutti, Edilson Valmir [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Química (Brazil); Elias, Ana Laura [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Rajukumar, Lakshmy Pulickal [The Pennsylvania State University, Department of Materials Science and Engineering (United States); Terrones, Humberto [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy (United States); Endo, Morinobu [Shinshu University, Carbon Institute of Science and Technology (Japan); Terrones, Mauricio [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Costa, Tania Maria Haas, E-mail: taniaha@iq.ufrgs.br, E-mail: taniahac@gmail.com [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil)

    2015-06-15

    High pressure/temperature was applied on samples of pristine multi-walled carbon nanotubes (MWCNT), functionalized nanotubes (f-MWCNT), and nanotubes doped with nitrogen (CN{sub x}MWNT). Cylindrical compact pellets of f-MWCNT with diameters of about 6 mm were obtained under pressure of 4.0 GPa at room temperature and at 400 °C, using graphite as pressure transmitting medium. The best pellet samples were produced using nitric and sulfuric acids for the functionalization of MWCNT. The effect of high pressure/temperature on CNT was investigated by several spectroscopy and characterization techniques, such as Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, N{sub 2} adsorption/desorption isotherms, and transmission electron microscopy. It was found that MWCNT maintain their main features in the compacted pellets, such as integrity, original morphology, and structure, demonstrating that high-pressure/temperature compaction can indeed be used to fabricate novel CNT self-supported materials. Additionally, the specific surface area and porosity are unchanged, which is important when using bulk CNT in adsorption processes. Raman analysis of the G’-band showed a shift to lower wavenumbers when f-MWCNT were processed under high pressure, suggesting that CNT are under tensile stress.

  15. Experimental on moisture migration and pore pressure formation of concrete members subjected to high temperature

    International Nuclear Information System (INIS)

    Nagao, Kakuhiro; Nakane, Sunao

    1993-01-01

    The experimental studies concerning temperature, moisture migration, and pore pressure of mass concrete mock-up specimens heated up to high temperature at 110degC to 600degC, were performed, so as to correctly estimate the moisture migration behaviour of concrete members subjected to high temperature, which is considered significantly influenced on physical properties of concrete. As a results, it is confirmed that the moisture migration behavior of concrete members can be explained by temperature and pore pressure, and indicate the characteristics both sealed condition (dissipation of moisture is prevented) and unsealed condition (dissipation of moisture occur). (author)

  16. Stress corrosion cracking of austenitic stainless steel in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Uragami, Ken

    1977-01-01

    Austenitic stainless steels used in for equipment in chemical plants have failed owing to stress corrosion cracking (SCC). These failures brought about great problems in some cases. The failures were caused by chloride, sulfide and alkali solution environment, in particular, by chloride solution environment. It was known that SCC was caused not only by high content chloride solution such as 42% MgCl 2 solution but also by high temperature water containing Cl - ions as NaCl. In order to estimate quantitatively the effects of some factors on SCC in high temperature water environment, the effects of Cl - ion contents, oxygen partial pressure (increasing in proportion to dissolved oxygen), pH and temperature were investigated. Moreover SCC sensitivity owing to the difference of materials and heat treatments was also investigated. The experimental results obtained are summarized as follows: (1) Regarding the effect of contaminant Cl - ions in proportion as Cl - ion contents increased, the material life extremely decreased owing to SCC. The tendency of decreasing was affected by the level of oxygen partial pressure. (2) Three regions of SCC sensitivity existed and they depended upon oxygen partial pressure. These were a region that did not show SCC sensitivity, a region of the highest SCC sensitivity and a region of somewhat lower SCC sensitivity. (3) In the case of SUS304 steel and 500 ppm Cl - ion contents SCC did not occur at 150 0 C, but it occurred and caused failures at 200 0 C and 250 0 C. (auth.)

  17. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  18. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    Science.gov (United States)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  19. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    Science.gov (United States)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10

  20. A prestressed concrete pressure vessel for helium high temperature reactor system

    International Nuclear Information System (INIS)

    Horner, R.M.W.; Hodzic, A.

    1976-01-01

    A novel prestressed concrete pressure vessel has been developed to provide the primary containment for a fully integrated system comprising a high temperature nuclear reactor, three horizontally mounted helium turbines, associated heat exchangers and inter-connecting ducts. The design and analysis of the pressure vessel is described. Factors affecting the final choice of layout are discussed, and earlier development work seeking to resolve the conflicting requirements of the structural, mechanical, and system engineers outlined. Proposals to increase the present output of about 1000 MW of electrical power to over 3000 MW, by incorporating four turbines in a single pressure vessel are presented. (author)

  1. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    Science.gov (United States)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  2. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  3. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  4. Low temperature and high pressure crystals of room temperature ionic liquid: N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Imai, Yusuke; Takekiyo, Takahiro; Yoshimura, Yukihiro; Hamaya, Nozomu

    2014-01-01

    Crystals of room temperature ionic liquid (RTIL) are obtained separately at low temperature or under high pressure. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]. At ambient pressure, low-temperature (LT) crystals appeared on slow cooling. By simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, metastable monoclinic and stable orthorhombic phases coexist in pure [DEME][BF 4 ]. Furthermore, the DSC thermal trace indicates that the metastable monoclinic phase was stabilized by adding water. In contrast, on compression process up to 7.6 GPa, crystallization is completely suppressed even upon slow compression. Direct observations using optical microscopy also support no crystal domain growth on compression process. High-pressure (HP) crystals at room temperature were seen only on decompression process, where two different kinds of crystals appeared subsequently. By crystal structure analysis, the LT crystal structures have no relation with the HP ones. Moreover, both metastable monoclinic phase at low temperature and higher pressure crystal has a folding molecular conformation and anti-parallel pairing of the [DEME] cation as the instability factors

  5. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  6. Startup of a high-temperature reactor cooled and moderated by supercritical-pressure light water

    International Nuclear Information System (INIS)

    Yi, Tin Tin; Ishiwatari, Yuki; Koshizuka, Seiichi; Oka, Yoshiaki

    2003-01-01

    The startup schemes of high-temperature reactors cooled and moderated by supercritical pressure light water (SCLWR-H) with square lattice and descending flow type water rods are studied by thermal-hydraulic analysis. In this study, two kinds of startup systems are investigated. In the constant pressure startup system, the reactor starts at a supercritical pressure. A flash tank and pressure reducing valves are necessary. The flash tank is designed so that the moisture content in the steam is less than 0.1%. In sliding pressure startup system, the reactor starts at a subcritical pressure. A steam-water separator and a drain tank are required for two-phase flow at startup. The separator is designed by referring to the water separator used in supercritical fossil-fired power plants. The maximum cladding surface temperature during the power-raising phase of startup is restricted not to exceed the rated value of 620degC. The minimum feedwater flow rate is 25% for constant pressure startup and 35% for sliding pressure startup system. It is found that both constant pressure startup system and sliding pressure startup system are feasible in SCLWR-H from the thermal hydraulic point of view. The core outlet temperature as high as 500degC can be achieved in the present design of SCLWR-H. Since the feedwater flow rate of SCLWR-H (1190 kg/s) is lower than that of the previous SCR designs the weight of the component required for startup is reduced. The sliding pressure startup system is better than constant pressure startup system in order to reduce the required component weight (and hence material expenditure) and to simplify the startup plant system. (author)

  7. The influence of high pressure and high temperature on the structure of ZrO sub 2 nanosolids

    CERN Document Server

    Xu Da Peng; LiuShue; Wang Quan Yong; Su Wen Hui

    2002-01-01

    Using nanoparticles of ZrO sub 2 (disordered structure) prepared by the method of precipitation as starting materials, ZrO sub 2 nanosolids have been synthesized under different pressures and at different temperatures. The x-ray diffraction results show that the crystallization temperature of the nanoparticles and the temperature at which the structural cubic-monoclinic transformation occurs are obviously reduced for the nanosolids synthesized under high pressure. X-ray photoelectron spectroscopy and EPR measurements indicate that there are some Zr sup 3 sup + ions in nanosolids. With increasing pressure, the number of Zr sup 3 sup + ions in the nanosolids essentially does not vary, and yet the content of oxygen ions with unsaturated bonds and dangling bonds in the interfacial region gradually decreases. The effect of synthesis pressure on the structure and interface states is mainly due to the decrease of the interatomic distance and the increasing interdiffusion of atoms in the interface phase.

  8. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  9. Ultrasonic and metallographic studies on AISI 4140 steel exposed to hydrogen at high pressure and temperature

    Science.gov (United States)

    Oruganti, Malavika

    This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.

  10. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  11. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Science.gov (United States)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  12. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  13. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions

    Energy Technology Data Exchange (ETDEWEB)

    Damm, Markus [Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz (Austria); Kappe, C. Oliver, E-mail: oliver.kappe@uni-graz.at [Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz (Austria)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Parallel low-volume coffee extractions in sealed-vessel HPLC/GC vials. Black-Right-Pointing-Pointer Extractions are performed at high temperatures and pressures (200 Degree-Sign C/20 bar). Black-Right-Pointing-Pointer Rapid caffeine determination from the liquid phase. Black-Right-Pointing-Pointer Headspace analysis of volatiles using solid-phase microextraction (SPME). - Abstract: A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200 Degree-Sign C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141 {+-} 11 {mu}g caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90 {+-} 11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90 Degree-Sign C, 10 min). In multiple extraction experiments a total of {approx}150 {mu}g caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee

  14. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions

    International Nuclear Information System (INIS)

    Damm, Markus; Kappe, C. Oliver

    2011-01-01

    Highlights: ► Parallel low-volume coffee extractions in sealed-vessel HPLC/GC vials. ► Extractions are performed at high temperatures and pressures (200 °C/20 bar). ► Rapid caffeine determination from the liquid phase. ► Headspace analysis of volatiles using solid-phase microextraction (SPME). - Abstract: A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5–1.5 mL at a maximum temperature/pressure limit of 200 °C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC–MS or LC–MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141 ± 11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90 ± 11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90 °C, 10 min). In multiple extraction experiments a total of ∼150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME

  15. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  16. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  17. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  18. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  19. Required developments towards ultra high pressure and temperature subsea tree system solutions

    Energy Technology Data Exchange (ETDEWEB)

    Queseth, Per-Olaf

    2010-07-01

    For the subsea High Pressure High Temperature oil and gas production systems, the primary challenge is to provide good, reliable solutions for HPHT reservoir exploitation based on an overview of parameters for already discovered potential fields. The paper will present a resume of Aker Solutions' previous development in this area exemplified with experiences from testing and operator observations during production start of HPHT fields in the North Sea. Further improvements are required to comply with the extreme pressures and temperatures sought to overcome. 'The Devil is in the details' is a very relevant proverb. A program to qualify subsea production X-mas trees for Ultra HPHT use will be presented with highlight on sealing systems, feed-through solutions and materials as well as impact on interfacing systems. Preliminary and intermediate analytical and test results will be presented and remaining activities summarised. (Author)

  20. High Pressure Soxhlet Type Leachability testing device and leaching test of simulated high-level waste glass at high temperature

    International Nuclear Information System (INIS)

    Senoo, Muneaki; Banba, Tsunetaka; Tashiro, Shingo; Shimooka, Kenji; Araki, Kunio

    1979-11-01

    A High Pressure Soxhlet Type Leachability Testing Device (HIPSOL) was developed to evaluate long-period stability of high-level waste (HLW) solids. For simulated HLW solids, temperature dependency of the leachability was investigated at higher temperatures from 100 0 C to 300 0 C at 80 atm. Leachabilities of cesium and sodium at 295 0 C were 20 and 7 times higher than at 100 0 C, respectively. In the repository, the temperatures around solidified products may be hundred 0 C. It is essential to test them at such elevated temperatures. HIPSOL is also usable for accelerated test to evaluate long-period leaching behavior of HLW products. (author)

  1. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  2. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  3. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  4. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    Science.gov (United States)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  5. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  6. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  7. Studies on synthesis of diamond at high pressure and temperature

    Science.gov (United States)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first

  8. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  9. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  10. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    Science.gov (United States)

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Unger, L. [Purdue Univ., Westiville, IN (United States). Dept. of Chemistry; Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.

  12. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures

    International Nuclear Information System (INIS)

    Ichikawa, Y.; England, G.L.

    2004-01-01

    Prediction of moisture migration and pore pressure build-up in non-uniformly heated concrete is important for safe operation of concrete containment vessels in nuclear power reactors and for assessing the behaviour of fire-exposed concrete structures. (1) Changes in moisture content distribution in a concrete containment vessel during long-term operation should be investigated, since the durability and radiation shielding ability of concrete are strongly influenced by its moisture content. (2) The pressure build-up in a concrete containment vessel in a postulated accident should be evaluated in order to determine whether a venting system is necessary between liner and concrete to relieve the pore pressure. (3) When concrete is subjected to rapid heating during a fire, the concrete can suffer from spalling due to pressure build-up in the concrete pores. This paper presents a mathematical and computational model for predicting changes in temperature, moisture content and pore pressure in concrete at elevated temperatures. A pair of differential equations for one-dimensional heat and moisture transfer in concrete are derived from the conservation of energy and mass, and take into account the temperature-dependent release of gel water and chemically bound water due to dehydration. These equations are numerically solved by the finite difference method. In the numerical analysis, the pressure, density and dynamic viscosity of water in the concrete pores are calculated explicitly from a set of formulated equations. The numerical analysis results are compared with two different sets of experimental data: (a) long-term (531 days) moisture migration test under a steady-state temperature of 200 deg. C, and (b) short-term (114 min) pressure build-up test under transient heating. These experiments were performed to investigate the moisture migration and pressure build-up in the concrete wall of a reactor containment vessel at high temperatures. The former experiment simulated

  13. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523 0 K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473 0 K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313 0 K to 2.15 +- 0.25 W/mK at 473 0 K. Thermal diffusivity at 300 0 K was found to be 1.2 +- 0.4 X 10 -6 m 2 /s and shows approximately the same pressure and temperature dependencies as the thermal conductivity

  14. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  15. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    International Nuclear Information System (INIS)

    Gounder, J.D.; Kutne, P.; Meier, W.

    2012-01-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  16. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, J.D., E-mail: James.Gounder@dlr.de; Kutne, P.; Meier, W.

    2012-08-15

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 Degree-Sign C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 Degree-Sign C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled

  17. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  18. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  19. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  20. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.

    Science.gov (United States)

    Li, Zhe; Jia, Pinggang; Fang, Guocheng; Liang, Hao; Liang, Ting; Liu, Wenyi; Xiong, Jijun

    2018-03-10

    Using arc discharge technology, we fabricated a fiber-optic Fabry-Perot (FP) pressure sensor with a very low temperature coefficient based on a microbubble that can be applied in a high-temperature environment. The thin-walled microbubble can be fabricated by heating the gas-pressurized hollow silica tube (HST) using a commercial fusion splicer. Then, the well-cut single-mode fiber (SMF) was inserted into the microbubble, and they were fused together. Thus, the FP cavity can be formed between the end of the SMF and the inner surface of the microbubble. The diameter of the microbubble can be up to 360 μm with the thickness of the wall being approximately 0.5 μm. Experimental results show that such a sensor has a linear sensitivity of approximately -6.382  nm/MPa, -5.912  nm/MPa at 20°C, and 600°C within the pressure range of 1 MPa. Due to the thermal expansion coefficient of the SMF being slightly larger than that of silica, we can fuse the SMF and the HST with different lengths; thus, the sensor has a very low temperature coefficient of approximately 0.17 pm/°C.

  1. Novel instrument for high-pressure research at ultra-high temperatures

    International Nuclear Information System (INIS)

    Schiferl, D.; Katz, A.I.; Mills, R.L.

    1985-01-01

    A resistively heated diamond-anvil cell has been used to achieve pressures of 110 kbar at temperatures exceeding 1200 0 C for periods long enough to collect x-ray powder diffraction data with energy-dispersive techniques using ''white'' x-radiation produced at the Stanford Synchrotron Radiation Laboratory. 9 refs., 1 fig

  2. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  3. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  4. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  5. Thermodynamic properties of standard seawater: extensions to high temperatures and pressures

    Directory of Open Access Journals (Sweden)

    J. Safarov

    2009-07-01

    Full Text Available Measurements of (p, ρ, T properties of standard seawater with practical salinity S≈35, temperature T=(273.14 to 468.06 K and pressures, p, up to 140 MPa are reported with the reproducibility of the density measurements observed to be in the average percent deviation range Δρ/ρ=±(0.01 to 0.03%. The measurements are made with a newly constructed vibration-tube densimeter which is calibrated using double-distilled water, methanol and aqueous NaCl solutions. Based on these and previous measurements, an empirical expression for the density of standard seawater has been developed as a function of pressure and temperature. This equation is used to calculate other volumetric properties including isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, the thermal pressure coefficient, internal pressure and the secant bulk modulus. The results can be used to extend the present equation of state of seawater to higher temperatures for pressure up to 140 MPa.

  6. Electrical behavior of Ca, Sr, Ba, and Eu at very high pressures and low temperatures

    International Nuclear Information System (INIS)

    Bundy, F.P.; Dunn, K.J.

    1981-01-01

    Compression of Ca and Sr initially causes an increase in resistivity, probably because of uncrossing of conduction and valence bands. Then at about 180 kbar for Ca and about 35 kbar for Sr the resistivity drops quite abruptly, following which the resistivity again increases with additional pressure, similar to the behavior of Ba starting at room pressure. The high pressure forms of Ba have already been reported to be superconducting, and the experiments confirm this. Superconductivity appears in Sr at about 350 kbar and develops strongly at higher pressures. In the 440 kbar experiment on Ca a resistance drop started at the lower threshold of the temperature capability, 2.1K, suggesting that Ca, too, becomes superconducting at sufficiently high pressures. The high pressure form of Eu above 125 kbar was tested for superconductivity down to 2.2K with negative results. (Auth.)

  7. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  8. Phase changes induced by guest orientational ordering of filled ice Ih methane hydrate under high pressure and low temperature

    International Nuclear Information System (INIS)

    Hirai, H; Tanaka, T; Yagi, T; Matsuoka, T; Ohishi, Y; Ohtake, M; Yamamoto, Y

    2014-01-01

    Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under pressure and temperature conditions of 2.0 to 77.0 GPa and 30 to 300 K, respectively, using diamond anvil cells and a helium-refrigeration cryostat. Distinct changes in the axial ratios of the host framework were revealed by In-situ X-ray diffractometry. Splitting in the CH vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules, was observed by Raman spectroscopy. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the axial ratio changes. The results indicated that orientational ordering of the guest methane molecules from orientational disordered-state occurred at high pressures and low temperatures, and that this guest ordering led to the axial ratio changes in the host framework. Existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray data. In addition, above the pressure of the guest-ordered phase, another high pressure phase was developed at a low-temperature region. The deuterated-water host samples were also examined and isotopic effects on the guest ordering and phase changes were observed.

  9. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  10. Temperature measurement in the liquid helium range at pressure

    International Nuclear Information System (INIS)

    Itskevich, E.S.; Krajdenov, V.F.

    1978-01-01

    The use of bronze and germanium resistance thermometers and the use of a (Au + 0.07 % Fe)-Cu thermocouple for temperature measurements from 1.5 to 4.2 K in the hydrostatic compression of up to 10 kbar are considered. To this aim, the thermometer resistance as a function of temperature and pressure is measured. It is revealed that pressure does not change the thermometric response of the bronze resistance thermometer but only shifts it to the region of lower temperatures. The identical investigations of the germanium resistance thermometer shows that strong temperature dependence and the shift of its thermometric response under the influence of pressure make the use of germanium resistance thermometers in high-pressure chambers very inconvenient. The results of the analysis of the (Au + 0.07 % Fe) - Cu thermocouple shows that with a 2 per cent accuracy the thermocouple Seebeck coefficient does not depend on pressure. It permits to use this thermocouple for temperature measurements at high pressures

  11. First-principles study of optical, elastic anisotropic and thermodynamic properties of TiN under high temperature and high pressure

    Directory of Open Access Journals (Sweden)

    R. Yang

    2017-12-01

    Full Text Available The optical, elastic anisotropic and thermodynamic properties of TiN in the NaCl (B1 structure are analyzed in detail in the temperature range from 0 to 2000 K and the pressure range from 0 to 20 GPa. From the calculated dielectric constants, a first order isostructural phase transition between 29 and 30 GPa is found for TiN. The absorption spectra exhibit high values ranging from the far infrared region to the ultra-violet one. The anisotropy value of Young's modulus of TiN is smaller than that of c-BN at 0 GPa and the anisotropy of TiN clearly increases with an increase of pressure. The effects of pressure and temperature on the bulk modulus, Grüneisen parameter, Gibbs free energy, and Debye temperature are significant. The Grüneisen parameter of TiN is much larger than that of c-BN. At temperatures below 1000 K, TiN's heat capacity is much larger than that of c-BN.

  12. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  13. Time-resolved x-ray diffraction measurement of C60 under high pressure and temperature using synchrotron radiation

    International Nuclear Information System (INIS)

    Horikawa, T; Suito, K; Kobayashi, M; Onodera, A

    2002-01-01

    C 60 has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C 60 structure are presented and the relevance to the hardness of materials derived from C 60 is discussed

  14. Research design and improvement of high temperature high pressure solenoid valve

    International Nuclear Information System (INIS)

    Luo Yongtang

    1987-12-01

    A process for development of the pilot type high temperature high pressure solenoid valve used in a PWR power plant is described. The whole development process might be divided into two phases: research design and improvement. In the former phase the questions had chiefly been approached in the following several aspects: the principle construction design, the determination of values for the constructionally key elements, the valve seal design and the solenoid actuator design, and made such valve's successful design in the main. In the latter phase an improvement had been made upon such valve against the problems during the testing use of the valve for a period of time, i.e. the unsatisfactory leak tightness, and achieved satisfactory results. The consummate success in this development not only has met the needs of the engineering project, but also made us obtain a valuable experience useful to design the similar valves

  15. High-pressure and high-temperature physical properties of half-metallic full-Heusler alloy Mn{sub 2}RuSi by first-principles and quasi-harmonic Debye model

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, Zi-Jiang [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Wei, Xiao-Ping [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    First-principles calculations based on density functional theory and quasi-harmonic Debye model are used to investigate the high-pressure and high-temperature physical properties, including the lattice constant, magnetic moment, density of states, pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter for the new Mn-based full-Heusler alloy Mn{sub 2}RuSi in CuHg{sub 2}Ti-type structure. The optimized equilibrium lattice constant is consistent with experimental and other theoretical results. The calculated total spin magnetic moment remains an integral value of 2.0 μ{sub B} in the lattice constant range of 5.454–5.758 Å, and then decreases very slowly with the decrease of lattice constant to 5.333 Å. By the spin resolved density of states calculations, we have shown that Mn{sub 2}RuSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The effects of temperature and pressure on bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter are opposite, which are consistent with a compression rate of volume. Furthermore, the results show that the effect of temperature is larger than pressure for heat capacity and the effect of high temperature and pressure on thermal expansion coefficient is small. All the properties of Mn{sub 2}RuSi alloy are summarized in the pressure range of 0–100 GPa and the temperature up to 1200 K. - Highlights: • High-pressure and high-temperature physical properties of Mn2RuSi were investigated. • Ferrimagnetic ground state has been confirmed in Mn2RuSi alloy. • The first-principle calculations and quasi-harmonic Debye model were used. • The pressure up to 100 GPa and the temperature up to 1200 K.

  16. An Integrative Genomic Island Affects the Adaptations of Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-11-01

    Full Text Available Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ∆PYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature and hydrostatic pressure. The ∆PYG1 mutant strain showed reduced growth when grown at 100 °C, while the biomass of ∆PYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module Ⅲ of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.

  17. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    International Nuclear Information System (INIS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-01-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  −100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  −0.967 kHz hPa −1 , namely  −0.69 ppm hPa −1 , which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW. (paper)

  18. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  19. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  20. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    forces. Raising the operating temperature offers a means to boost performance, as both ionic transport and reaction kinetics are exponentially activated with temperature. Indeed, we have demonstrated alkaline electrolysis cells operating at 200-250 °C and 20-50 bar at very high efficiencies and power...... been established enabling experiments with gaseous or liquids reactants/products at cell sizes of up to 25 cm2. Efforts are currently directed towards the investigation of the intrinsic activity of mixed oxides for the oxygen evolution reaction at elevated temperatures and pressures...

  1. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  2. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  3. Analysis of the structural stability of the smectite submitted to high pressures and temperatures

    International Nuclear Information System (INIS)

    Alabarse, Frederico Gil

    2009-10-01

    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  4. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  5. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  6. X-ray diffraction at high pressure and high/low temperatures using synchrotron radiation. Applications in the study of spinel structures

    International Nuclear Information System (INIS)

    Gerward, L.; Jiang, J.Z.; Olsen, J.S.; Recio, J.M.; Wakowska, A.

    2004-01-01

    High-pressure x-ray diffraction made a quantum leap in the 1960's with the advent of the diamond-anvil cell. This ingenious device, where two opposing diamond faces apply pressure to a tiny sample, made it possible to replicate the pressure near the core of the Earth by turning a thumbscrew. Multianvil cells, such as the Japanese MAX80 press, were developed for combined high-pressure and high-temperature studies. The availability n at about the same time n of dedicated synchrotron radiation sources of hard x-rays was another big step forward. Since then, the white-beam energy-dispersive method has been the workhorse for high pressure, high-temperature x-ray diffraction, although it is now gradually being replaced by high-resolution monochromatic methods based on the image plate, the CCD camera or other electronic area detectors. The first part of the paper is a review of high-pressure x-ray diffraction (HPXRD), covering roughly the last three decades. Physical parameters, such as the bulk modulus, the compressibility and the equation of state, are defined. The diamond-anvil cell, the multianvil press and other high-pressure devices are described, as well as synchrotron radiation sources and recording techniques. Examples are drawn from current experimental and theoretical research on crystal structures of the spinel type. Accurate structural parameters have been determined at ambient conditions and at low temperatures using single-crystal diffraction and four-circle diffractometers. The uniform high-pressure behavior of the oxide spinels has been investigated in detail and compared with the corresponding behavior of selenium-based spinels. The synthesis of advanced novel materials is exemplified in the case of the cubic spinel Si 3 N 4 . This and other nitrogen spinels, which have a bulk modulus of about 300 GPa modulated by the actual cation, are opening a road towards superhard materials. The paper finishes off with an outlook into the future, where new

  7. Spin Crossover and the Magnetic P- T Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

    Science.gov (United States)

    Gavriliuk, A. G.; Struzhkin, V. V.; Mironovich, A. A.; Lyubutin, I. S.; Troyan, I. A.; Chow, P.; Xiao, Y.

    2018-02-01

    The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0-72 GPa and the temperature range of 36-300 K in order to study the magnetic properties at a phase transition near a critical pressure of 50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0-77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of 48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS-LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic P- T phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.

  8. High-pressure cell for luminescence studies of condensed phases at low temperatures

    International Nuclear Information System (INIS)

    Variano, B.F.; Brenner, H.C.; Daniels, W.B.

    1986-01-01

    A clamped optical cell for high-pressure low-temperature fluorescence and phosphorescence studies is described. A particular innovation is the use of a bifurcated fiber-optic lightguide to enable sample illumination and emission collection with a single optical window. This very simple type of cell is adaptable to a variety of optical setups and is easily assembled and disassembled for sample mounting

  9. Temperature induced development of porous structure of bituminous coal chars at high pressure

    Directory of Open Access Journals (Sweden)

    Natalia Howaniec

    2016-01-01

    Full Text Available The porous structure of chars affects their reactivity in gasification, having an impact on the course and product distribution of the process. The shape, size and connections between pores determine the mechanical properties of chars, as well as heat and mass transport in thermochemical processing. In the study the combined effects of temperature in the range of 973–1273 °K and elevated pressure of 3 MPa on the development of porous structure of bituminous coal chars were investigated. Relatively low heating rate and long residence time characteristic for the in-situ coal conversion were applied. The increase in the temperature to 1173 °K under pressurized conditions resulted in the enhancement of porous structure development reflected in the values of the specific surface area, total pore volume, micropore area and volume, as well as ratio of the micropore volume to the total pore volume. These effects were attributed to the enhanced vaporization and devolatilization, as well as swelling behavior along the increase of temperature and under high pressure, followed by a collapse of pores over certain temperature value. This proves the strong dependence of the porous structure of chars not only on the pyrolysis process conditions but also on the physical and chemical properties of the parent fuel.

  10. The corrosion rate measurement of Inconel 690 on high temperature and pressure by using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Febrianto; Hidayati, N R; Arifal; Sumarno, Ady; Handoyo, Ismu; Prasetjo, Joko

    1999-01-01

    The corrosion rate measurement of Inconel 690 on high temperature and pressure had been done. By using an Autoclave, and temperature can be simulated. For reducing the pressure on Autoclave so its can be measure by Corrosion Measurement System 100(CMS100), the electrodes placement had designed and fabrication on the cover of Autoclave. The electrodes of CMS100 are reference electrode, working electrodes and counter electrodes. The electrodes placement are made and and designed on two packages, these are Salt bridge and Counter-specimen placement. From the result of testing these both of placement are able to 90 bar (pressure) and 280 C (temperature) operation rate measurement was done on temperature variation from 150 0C, 190 0C, 200 0C, 210 0C, 220 0C and 230 0C, and the solution is 0.1 ppm chloride. The pressure experiment is the pressure, which occurred in Autoclave. From the Tafel analysis, even through very little The corrosion current increased from 150 C to 230 C it is 2,54x10-10 a/cm2 to 1,62x10-9 A/cm2, but the the corrosion rate is still zero

  11. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  12. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  13. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  14. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  15. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  16. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  17. The Corrosion Rate Measurement of Inconel 690 on High Temperature andPressure by Using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Febrianto

    2000-01-01

    The corrosion rate measurement of Inconel 690 on high temperature andpressure had been done. By using an Autoclave, pressure and temperature canbe simulated. The environment of this experiment is 0.1 ppm of chloridesolution, which permit to dissolved in secondary cooling of steam generator.The corrosion rate measurement was done on temperature between 150 o C and230 o C with step 10 o C. Pressure experiment is the pressure, which occurredin Autoclave. Corrosion rate is measured by CMS100. From the Tafel analysis,corrosion rate of Inconel 690 linearity increased from 6.548 x 10 -5 mpy to4.331 x 10 -4 mpy. It concludes that Inconel 690 is resist on corrosionenvironment, so it's most using on the fabrication of steam generator tubeson the advanced power plant. (author)

  18. Root cause analysis of oxide scale forming and shedding in high temperature reheater of a 200MW super high pressure boiler

    Science.gov (United States)

    Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo

    2015-12-01

    In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.

  19. Computational simulation of reactive species production by methane-air DBD at high pressure and high temperature

    Science.gov (United States)

    Takana, H.; Tanaka, Y.; Nishiyama, H.

    2012-01-01

    Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field.

  20. Frictional characteristics of stainless steel 440C lubricated with water at pressurized high temperature

    International Nuclear Information System (INIS)

    Kim, E. H.; Lee, J. S.; Kim, J. H.; Kim, J. I.

    2001-01-01

    The fatigue life of stainless steel bearings is one of the most critical factors to determine the performance of the driving system. Because the bearings which are installed on the driving mechanism in the nuclear reactor are operated at high temperature and high pressure and especially lubricated with water with low viscosity, the friction and wear characteristics of the bearing material should be investigated thoroughly. In many control element drive mechanisms in the nuclear reactor the support bearings are made of the stainless steel and the sliding bearing ceramic material mainly. This study is focused on the characteristics of support bearing which may be used in the SMART. The ball bearings are made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. The friction and wear characteristics of this material operating under severe lubrication condition are not well known yet, however it will be changed with respect to temperature and boundary pressure. In this paper the friction characteristics are investigated experimentally using the reciprocating tribometer which can simulate the SMART operating conditions. Highly purified water is used as lubricant, and the water is warmed up and pressurized. Friction forces on the reciprocating specimens are measured insitu strain gages

  1. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  2. A noncontact wireless passive radio frequency (RF) resonant pressure sensor with optimized design for applications in high-temperature environments

    International Nuclear Information System (INIS)

    Li, Chen; Tan, Qiulin; Xiong, Jijun; Jia, Pinggang; Hong, Yingping; Ren, Zhong; Luo, Tao; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2014-01-01

    A noncontact wireless passive pressure sensor based on alumina ceramic for pressure measurement is presented in this paper. A faithful pressure signal in harsh environment is captured through wireless sensing, and a novel antenna design method is developed to increase the measurement distance between the antenna and the sensor. The sensor is fabricated using a novel no-co-fired technology, and the properties of the alumina ceramic and platinum ensure the feasibility of the sensor in high-temperature environments. The experimental results show that the coupled distance between the antenna and the sensor can be up to 5.5 cm, and the designed sensor, featuring improved structural parameters, has a high responsivity (15.5 kHz kPa −1 ) in a pressure environment at room temperature. The sensor can be coupled with the antenna at 850 °C, which verifies the feasibility in high-temperature environments. (paper)

  3. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  4. Time-resolved x-ray diffraction measurement of C{sub 60} under high pressure and temperature using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suito, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kobayashi, M [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Onodera, A [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2002-11-11

    C{sub 60} has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C{sub 60} structure are presented and the relevance to the hardness of materials derived from C{sub 60} is discussed.

  5. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  6. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  7. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior

    Science.gov (United States)

    Murakami, Motohiko; Asahara, Yuki; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2009-05-01

    Seismic wave velocity profiles in the Earth provide one of the strongest constraints on structure, mineralogy and elastic properties of the Earth's deep interior. Accurate sound velocity data of deep Earth materials under relevant high-pressure and high-temperature conditions, therefore, are essential for interpretation of seismic data. Such information can be directly obtained from Brillouin scattering measurement. Here we describe an in situ Brillouin scattering system for measurements at high pressure and high temperature using a laser heated diamond anvil cell and synchrotron radiation for sample characterization. The system has been used with single-crystal and polycrystalline materials, and with glass and fluid phase. It provided high quality sound velocity and elastic data with X-ray diffraction data at high pressure and/or high temperature. Those combined techniques can potentially offer the essential information for resolving many remaining issues in mineral physics.

  8. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  9. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Fuxi Shi

    2014-01-01

    Full Text Available The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures (293pressures (0.1

    pressure and temperature of molecular compressibility was certified.

  10. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    Science.gov (United States)

    Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.

    2014-05-01

    1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and α → β (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → (~210 °C), with the δ phase being stable up to ~251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.

  11. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Science.gov (United States)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  12. Properties of molecular solids and fluids at high pressures and temperatures. [Final report

    International Nuclear Information System (INIS)

    Etters, R.D.

    1985-01-01

    Equilibrium structures and orientations, lattice vibrational and librational model frequencies, intramolecular vibron mode frequencies, sound velocities, equations of state, compressibilities, and structural and orientational phase transitions in molecular solids are determined over a wide range of pressures and temperatures. In the high temperature fluid phase the equations of state, vibron frequencies, the melting transition, specific heats, compressibilities, second virial coefficients, viscosities and other transport properties, and the nature of orientational and magnetic correlations are determined. The techniques used include several strategies to optimize multi-dimensional functions as a means to determine equilibrium structures and orientations, self consistent phonon lattice dynamics methods, constant pressure and constant volume Monte-Carlo strategies with continuously deformable boundary conditions, mean field approximations, and classical perturbation methods. Systems studied include N 2 , O 2 , CO, CO 2 , F 2 , N 2 O, benzine, nitromethane, HCL, HBr, and H 2 . 50 refs., 4 figs

  13. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  14. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  15. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  16. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  17. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures

    International Nuclear Information System (INIS)

    Askari, Omid; Elia, Mimmo; Ferrari, Matthew; Metghalchi, Hameed

    2017-01-01

    Highlights: • Effect of cell formation on burning speed and flame surface area is investigated. • A new developed non-dimensional number called cellularity factor is introduced. • Cellular burning speed and mass burning rate are calculated using differential based multi-shell model. • Flame instability is studied using thermo-diffusive and hydrodynamics effects. • Power law correlations are developed for cellular burning speeds and mass burning rates. - Abstract: Cellular burning speeds and mass burning rates of premixed syngas/oxidizer/diluent (H_2/CO/O_2/He) have been determined at high pressures and temperatures over a wide range of equivalence ratios which are at engine-relevant conditions. Working on high pressure combustion helps to reduce the pollution and increase the energy efficiency in combustion devices. The experimental facilities consisted of two spherical and cylindrical chambers. The spherical chamber, which can withstand high pressures up to 400 atm, was used to collect pressure rise data due to combustion, to calculate cellular burning speed and mass burning rate. For flame structure and instability analysis the cylindrical chamber was used to take pictures of propagating flame using a high speed CMOS camera and a schlieren photography system. A new differential based multi-shell model based on pressure rise data was used to determine the cellular burning speed and mass burning rate. In this paper, cellular burning speed and mass burning rate of H_2/CO/O_2/He mixture have been measured for a wide range of equivalence ratios from 0.6 to 2, temperatures from 400 to 750 K and pressures from 2 to 50 atm for three hydrogen concentrations of 5, 10 and 25% in the syngas. The power law correlations for cellular burning speed and mass burning rate were developed as a function of equivalence ratio, temperature and pressure. In this study a new developed parameter, called cellularity factor, which indicates the cell formation effect on flame

  18. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  19. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  20. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  1. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  2. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    Directory of Open Access Journals (Sweden)

    L. Dai

    2018-03-01

    Full Text Available The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO  =  7.12, 7.27 and 7.64 % weight percent was measured using a complex impedance spectroscopic technique at 623–1073 K and 1.5 GPa and a frequency range of 10−1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35–0.52 and 0.76–0.87 eV at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+ in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie–Sulu ultrahigh-pressure metamorphic belt. However, the conductivity–depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  3. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  4. Nitrogen aggregation in Ib type synthetic diamonds at low pressure and high-temperature annealing

    International Nuclear Information System (INIS)

    Kazyuchits, N.M.; Rusetskij, M.S.; Latushko, Ya.I.; Kazyuchits, V.N.; Zajtsev, A.M.

    2015-01-01

    A new technique for annealing of diamonds at low pressure and high temperature (LPHT) is considered. The absorption spectra of synthetic Ib diamonds are given before and after annealing. This is evident from a comparison of the spectra that nitrogen aggregation process takes place at the LPHT annealing diamond. (authors)

  5. Small-angle x-ray scattering and density measurements of liquid Se50-Te50 mixture at high temperatures and high pressures using synchrotron radiation

    International Nuclear Information System (INIS)

    Kajihara, Y; Inui, M; Matsuda, K; Tomioka, Y

    2010-01-01

    We have carried out small-angle x-ray scattering and x-ray transmission measurements of liquid Se 50 -Te 50 mixture at SPring-8 in Japan and obtained the structure factor S(Q) at small-Q region (0.6 -1 ) and the density at high temperatures and high pressures up to 1000 0 C and 180 MPa. We report preliminary results in this paper. With increasing temperature, the density shows a minimum at around 500 0 C and a maximum at around 700 0 C. On the other hand, S(0) becomes maximum and S(Q) strongly depends on Q at around 600 0 C, which is about the middle temperature where the density shows the minimum and maximum. The temperatures shift to lower side when the pressure increases. These results prove that, with increasing temperature, the sample exhibits gradual transition from low-density structure to high-density structure, which causes mesoscopic density fluctuations in the intermediate temperature region.

  6. Saturation curve of SiO2 component in rutile-type GeO2: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    International Nuclear Information System (INIS)

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami

    2015-01-01

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO 2 component in the rutile-structured phase of GeO 2 (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO 2 in TiO 2 shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a

  7. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  8. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  9. First-principles investigation of elastic anomalies in niobium at high pressure and temperature

    Science.gov (United States)

    Wang, Yi X.; Geng, Hua Y.; Wu, Q.; Chen, Xiang R.; Sun, Y.

    2017-12-01

    Niobium does not show any structure transition up to very high pressures. Nonetheless, by using density functional theory, we demonstrate in this work that it exhibits striking softening in elastic moduli C44 and C' at a pressure from 20 to 150 GPa. A novel anomaly softening in C44 from 275 to 400 GPa is also predicted. The physics behind these two anomalies is elaborated by electronic structure calculations, which revealed that they are actually different—first one directly relates to an underlying rhombohedral distortion whereas the latter originates in an electronic topological transition. The large magnitude of the softening leads to a remarkable elastic anisotropy in both the shear and the Young's moduli of Nb. Further investigation shows that thermo-electrons have an important role in these anomalies. This effect has not been noticed before. With increased electronic temperature, it is found that all anomalies (both the elastic softening and anisotropy) in Nb are gradually diminished, effectively giving rise to a temperature-induced hardening phenomenon.

  10. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  11. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    Science.gov (United States)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  12. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  13. Temperature and Pressure Effects on Drilling Fluid Rheology and ECD in Very Deep Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, R.; Bjoerkvoll, K.S.

    1997-12-31

    The rheological properties of drilling fluids are usually approximated to be independent of pressure and temperature. In many cases this is a good approximation. However, for wells with small margins between pore and fracture pressure, careful evaluations and analysis of the effects of temperature and pressure on well bore hydraulics and kick probability are needed. In this publication the effects of pressure and temperature are discussed and described for typical HPHT (High Pressure High Temperature) wells. Laboratory measurements show that rheology is very pressure and temperature dependent. The practical implications of these observations are illustrated through a series of calculations with an advanced pressure and temperature simulator. 10 refs., 15 figs.

  14. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  15. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures

    International Nuclear Information System (INIS)

    Mesmer, R.E.; Marshall, W.L.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.

    1990-01-01

    Electrochemical and electrical conductance cells have been widely used at ORNL over the years to quantitatively determine equilibrium constants and their salt effects to 300 degree C (EMF) and 800 degree C (conductance) at the saturation pressure of water (EMF) and to 4000 bars (conductance). The most precise results to 300 degree C for a large number of weak acids and bases show very similar thermodynamic behavior, which will be discussed. Results for the ionization constants of water, NH 3 (aq), HCl(aq), and NaCl(aq), which extend well into the supercritical region, have been fitted in terms of a model with dependence on density and temperature. The entropy change is found to be the driving force for ion-association reactions and this tendency increases (as it must) with increasing temperature at a given pressure. Also, the variation of all thermodynamic properties is greatly reduced at high fixed densities. Considerable variation occurs at low densities. From this analysis, the dependence of the reaction thermodynamics on the P-V-T properties of the solvent is shown, and the implication of large changes in hydration for solutes in the vicinity of the critical temperature will be discussed. Finally, the change in the molar compressibility coefficient for all reactions in water is shown to be the same and dependent only on the compressibility of the solvent

  16. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  17. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    Science.gov (United States)

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.

  18. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  19. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    International Nuclear Information System (INIS)

    Bishop, M M; Dattelbaum, D M; Velisavljevic, N; Chellappa, R S; Liu, Z; Preston, D N; Sandstrom, M M; Vohra, Y K

    2014-01-01

    1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (∼110 °C) and α → β (∼160 °C) structural phase transitions; as well as, indicated an additional transition γ → (∼210 °C), with the δ phase being stable up to ∼251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ∼300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.

  20. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  1. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  2. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  3. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    Science.gov (United States)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km insulator transition and compare them with the experimental seismic and geomagnetic field data.

  4. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  5. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  6. In-situ Raman spectroscopic study of aluminate speciation in H2O-KOH solutions at high pressures and temperatures

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2009-12-01

    The solubility of corundum in H2O is low even at high pressure and temperatures. Therefore, it is commonly assumed that alumina remains essentially immobile during fluid-rock interaction. However, field and experimental evidence suggests that alumina solubility is strongly enhanced in the presence of silica as well as in alkaline solutions. In order to understand what controls the alumina solubility and how it is enhanced as a function of fluid composition, we conducted Raman-spectroscopic study of Al speciation in aqueous fluids at high pressure and temperature. Experiments were carried out in an externally heated hydrothermal diamond-anvil cell equipped with low-fluorescence diamonds and iridium gaskets. Raman spectra were collected with a Horiba Jobin-Yvon Labram HR spectrometer using the 514 nm line of an argon laser for excitation. In a first series of experiments, the speciation of alumina was studied in a 1 M KOH solution in equilibrium with corundum up to 700 oC and ~1 GPa. The Raman spectra show a prominent band at 618 cm-1 interpreted to arise from Al-O stretching vibrations associated with the tetrahedral [Al(OH)4]1- species. At higher pressure and temperature, an additional vibrational mode appears in the spectra at 374 cm-1 (full width at half maximum ~ 20 cm-1). This feature is tentatively attributed to [(OH)3Al-O-Al(OH)3]2- (Moolenaar et al. 1970, Jour. Phys. Chem., 74, 3629-3636). No evidence for KAl(OH)4 was observed, consistent with piston cylinder experiments at 700 oC and 1 GPa (Wohlers & Manning, 2009, Chem. Geol., 262, 310). Upon cooling from high-pressure and high temperature, slow kinetics of corundum regrowth lead to oversaturation in the solutions, as evidenced by sharp peaks at 930 and 1066 cm-1 observed upon cooling. These features are probably due to colloidal aluminum hydroxide. The results provide the first evidence for aluminate polymerization at high pressure and temperature, and offer insights into the causes for enhancement of

  7. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  8. Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography.

    Science.gov (United States)

    Fekete, Szabolcs; Horváth, Krisztián; Guillarme, Davy

    2013-10-11

    In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. High pressure and temperature structure of liquid and solid Cd: implications for the melting curve of Cd

    International Nuclear Information System (INIS)

    Raju, S V; Williams, Q; Geballe, Z M; Godwal, B K; Jeanloz, R; Kalkan, B

    2014-01-01

    The structure of cadmium was characterized in both the solid and liquid forms at pressures to 10 GPa using in situ x-ray diffraction measurements in a resistively heated diamond anvil cell. The distorted hexagonal structure of solid cadmium persists at high pressures and temperatures, with anomalously large c/a ratio of Cd becoming larger as the melting curve is approached. The measured structure factor S(Q) for the melt reveals that the cadmium atoms are spaced about 0.6 Angstroms apart. The melt structure remains notably constant with increasing pressure, with the first peak in the structure factor remaining mildly asymmetric, in accord with the persistence of an anisotropic bonding environment within the liquid. Evolution of powder diffraction patterns up to the temperature of melting revealed the stability of the ambient-pressure hcp structure up to a pressure of 10 GPa. The melting curve has a positive Clausius–Clapeyron slope, and its slope is in good agreement with data from other techniques. We find deviations in the melting curve from Lindemann law type behavior for pressures above 1 GPa. (paper)

  10. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  11. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    International Nuclear Information System (INIS)

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1987-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 0 C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 0 C. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat treating it to form an adherent stable oxide, and bolting it in place in the cavity

  12. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  13. Sintering and characterization of SrBi_2Ta_2O_9 obtained by high-pressure processing at low temperatures

    International Nuclear Information System (INIS)

    Souza, Ricson R.; Kirchner, Rejane K.; Jurado, Jose R.; Pereira, Altair S.; Sousa, Vânia C.

    2016-01-01

    High-pressure processing is a very attractive approach for the production of materials with new and/or improved properties. In this work, pressures in the order of 7.7 GPa and 2.5 GPa were induced in SrBi_2Ta_2O_9 samples at different temperatures placed in a specific reaction cell and generated different effects on phase formation. The microstructural evolution during high-pressure processing was investigated by scanning electron microscopy in association with energy dispersion spectroscopy and with the support of an X-ray diffraction analyzer. Frequency response analysis was used to obtain the dielectric curves by electrochemical impedance spectroscopy. A SrBi_2Ta_2O_9 single-phase sample, treated at 2.5 GPa and 900 °C, was used to evaluate the electrical properties, obtaining a dielectric response similar to SrBi_2Ta_2O_9 samples sintered by conventional processes at temperatures above 1000 °C. In addition, by this method, it was possible to obtain ceramics with uniform microstructure and a relative density of 93%. - Highlights: • The first production of SrBi_2Ta_2O_9 using the technique of high-pressure processing. • The ability to produce single-phase SrBi_2Ta_2O_9 treated at 2.5 GPa and 900 °C. • The electrical properties are compatible with SBT sintered at high temperatures.

  14. Temperature-compensated pressure detectors and transmitter for use in hostile environment

    International Nuclear Information System (INIS)

    Di Noia, E.J.; Breunich, T.R.

    1984-01-01

    A pressure or differential pressure detector suitable for use in a hostile environment, for example, under high pressure, temperature, and radiation conditions in the containment vessel of a nuclear generating plant includes as a transducer a linear variable differential transformer (LVDT) disposed within a detector housing designed to withstand temperatures of about 260 deg C. A signal detecting and conditioning circuit remote from the detector housing includes a demodulator for producing X and Y demodulated signals respectively from A and B secondary windings of the LVDT, a summing circuit for producing a temperature analog voltage X + Y, a subtractor for providing a differential pressure analog voltage X - Y, and a multiplier for multiplying the differential pressure analog voltage X - Y by a temperature compensation voltage X + Y - Ref based on the temperature analog voltage to provide a resulting temperature-compensated differential pressure analog signal. (author)

  15. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Science.gov (United States)

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  16. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  17. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  18. Molecular Dynamics Simulations of Liquid Phosphorus at High Temperature and Pressure

    International Nuclear Information System (INIS)

    Wu Yanning; Zhao Gang; Liu Changsong; Zhu Zhengang

    2008-01-01

    By performing ab initio molecular dynamics simulations, we have investigated the microstructure, dynamical and electronic properties of liquid phosphorus (P) under high temperature and pressure. In our simulations, the calculated coordination number (CN) changes discontinuously with density, and seems to increase rapidly after liquid P is compressed to 2.5 g/cm 3 . Under compression, liquid P shows the first-order liquid-liquid phase transition from the molecular liquid composed of the tetrahedral P 4 molecules to complex polymeric form with three-dimensional network structure, accompanied by the nonmetal to metal transition of the electronic structure. The order parameters Q 6 and Q 4 are sensitive to the microstructural change of liquid P. By calculating diffusion coefficients, we show the dynamical anomaly of liquid P by compression. At lower temperatures, a maximum exists at the diffusion coefficients as a function of density; at higher temperatures, the anomalous behavior is weakened. The excess entropy shows the same phenomena as the diffusion coefficients. By analysis of the angle distribution functions and angular limited triplet correlation functions, we can clearly find that the Peierls distortion in polymeric form of liquid P is reduced by further compression

  19. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  20. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  1. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  2. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  3. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  4. First-Principle Calculations for Thermodynamic Properties of LiBC Under High Temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Zhong-Li; CHENG Yan; TAN Ni-Na; GOU Qing-Quan

    2006-01-01

    The thermodynamic properties of LiBC are investigated by using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Debye model. The dependencies of the normalized lattice parameters a/a0 and c/c0, the ratio (c/a)/2, the normalized primitive volume V/V0 on pressure and temperature are successfully obtained. It is found that the interlayer covalent interactions (Li-B bonds or Li-C bonds) are more sensitive to temperature and pressure than intralayer ones (B-C bonds), as gives rise to the extreme lattice anisotropy in the bulk hcp LiBC.

  5. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell

    Science.gov (United States)

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ˜120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  6. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  7. Melting temperatures of MgO under high pressure determined by micro-texture observation

    Science.gov (United States)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected

  8. High Pressure and High Temperature State of Oxygen Enriched Ice

    Science.gov (United States)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  9. Optimisation of phenolics recovery from Vitex agnus-castus Linn. leaves by high-pressure and temperature extraction.

    Science.gov (United States)

    Lataoui, Mohammed; Seffen, Mongi; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Converti, Attilio; Perego, Patrizia

    2014-01-01

    To optimise recovery of phenolics from Vitex agnus-castus Linn., a non-conventional high-pressure (2-24 bar) and temperature (100-180°C) extraction method was used under nitrogen atmosphere with methanol as a solvent. Optimal temperature was between 100 and 140°C, and optimal extraction time was about one half that of conventional solid/liquid extraction at room temperature. Final yields of total polyphenols, total flavonoids, o-diphenols and anthocyanins extraction were 2.0, 3.0, 2.5 and 11-fold those obtained by conventional extraction.

  10. Measurement of rock properties at elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Pincus, H.J.; Hoskins, E.R.

    1985-01-01

    The papers in this volume were presented at an ASTM symposium held on 20 June 1983 in conjunction with the 24th Annual Rock Mechanics Symposium at Texas A and M University, College Station, TX. The purpose of these papers is to present recent developments in the measurement of rock properties at elevated pressures and temperatures, and to examine and interpret the data produced by such measurement. The need for measuring rock properties at elevated pressures and temperatures has become increasingly important in recent years. Location and design of nuclear waste repositories, development of geothermal energy sites, and design and construction of deep excavations for civil, military, and mining engineering require significantly improved capabilities for measuring rock properties under conditions substantially different from those prevailing in most laboratory and in situ work. The development of high-pressure, high-temperature capabilities is also significant for the analysis of tectonic processes

  11. A system for traceable measurement of the microwave complex permittivity of liquids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Dimitrakis, G A; Robinson, J; Kingman, S; Lester, E; George, M; Poliakoff, M; Harrison, I; Gregory, A P; Lees, K

    2009-01-01

    A system has been developed for direct traceable dielectric measurements on liquids at high pressures and temperatures. The system consists of a coaxial reflectometric sensor terminated by a metallic cylindrical cell to contain the liquid. It has been designed for measurements on supercritical liquids, but as a first step measurements on dielectric reference liquids were performed. This paper reports on a full evaluation of the system up to 2.5 GHz using methanol, ethanol and n-propanol at pressures up to 9 MPa and temperatures up to 273 °C. A comprehensive approach to the evaluation of uncertainties using Monte Carlo modelling is used

  12. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    International Nuclear Information System (INIS)

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1988-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 deg. C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 deg. C. The 200-kW motor for each circulator is enclosed in the pressure boundary, and the motor is cooled by circulating the gas within the cavity over a water-cooled coil. The full operating speed is 23,500 rpm. A full-flow filter, absolute for particulate above 10 μm, is installed upstream of the circulator to protect the gas bearing surfaces. The minimum clearances between these surfaces during operation are in the range of 15 to 30 μm. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat

  13. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  14. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    Science.gov (United States)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  15. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    Science.gov (United States)

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  16. High-Pressure and High-Temperature in situ X-Ray Diffraction Study of FeP2 up to 70 GPa

    International Nuclear Information System (INIS)

    Gu Ting-Ting; Wu Xiang; Qin Shan; Liu Jing; Li Yan-Chun; Zhang Yu-Feng

    2012-01-01

    The high-pressure and high-temperature structural behavior of FeP 2 is investigated by means of synchrotron x-ray powder diffraction combined with a laser heating technique up to 70 GPa and at least 1800 K. No phase transition of FeP 2 occurs up to 68 GPa at room temperature. While a new phase of FeP 2 assigned to the CuAl 2 -type structure (I4/mcm, Z = 4) is observed at 70 GPa after laser-heating. This new phase presents a quenchable property on decompression to ambient conditions. Our results update previous experimental data and are consistent with theoretical studies. (condensed matter: structure, mechanical and thermal properties)

  17. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the

  18. Evaluation of anti-scale property of CrN coatings at high temperature and high pressure

    International Nuclear Information System (INIS)

    Honda, Tomomi; Iwai, Yoshiro; Uno, Ryoji; Yoshinaga, Shigeki

    2007-01-01

    It is well known that oxide scale which adheres to the inner wall of the nozzle in nuclear power plant causes a serious problem. This study was carried out to obtain the knowledge about initiation and deposition behavior of oxide scale on the surface of SUS304 stainless steel and the evaluation of anti-scale property of chromium nitride (CrN) coatings at high temperature and high pressure. SUS304 stainless steel and CrN coating specimens were heated in water up to 200degC for more than 250 hours. Obtained results are summarized as follows. Initiation of the scale started from corrosive part of SUS304 stainless steel and the scale grows by deposition of magnetite particles. CrN coating can be applied to prevent the initiation and deposition of oxide scale. (author)

  19. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    Science.gov (United States)

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  1. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yonggang Jiang

    2016-10-01

    Full Text Available Single-crystal silicon carbide (SiC-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale at room temperature.

  2. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  3. Quasi-dynamic pressure and temperature

    International Nuclear Information System (INIS)

    Zaug, J M.; Farber, D L; Blosch, L L; Craig, I M; Hansen, D W; Aracne-Ruddle, C M; Shuh, D K

    1998-01-01

    The phase transformation of(beta)-HMX ( and lt; 0.5% RDX) to the(delta) phase has been studied for over twenty years and more recently with an optically sensitive second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al.[l] in 1978. However the stability field favors the(beta) polymorph over(delta) as pressure is increased (up to 5.4 GPa) along any sensible isotherm. In this experiment strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced(beta) - and gt;(delta) transition, the pressure induced is heterogeneous in nature. The room pressure and temperature(delta) - and gt;(beta) transition is not immediate although it seems to occur over tens of hours. Transition points and kinetics are path dependent and so this paper describes our work in progress

  4. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  5. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  6. High-pressure and high-temperature physical properties of LiF studied by density functional theory calculations and molecular dynamics simulations

    Science.gov (United States)

    Sun, Xiao-Wei; Liu, Zi-Jiang; Quan, Wei-Long; Song, Ting; Khenata, Rabah; Bin-Omran, Saad

    2018-05-01

    Using the revised Perdew-Burke-Ernzerhof generalized gradient approximation based on first-principles plane-wave pseudopotential density functional theory, the high-pressure structural phase transition of LiF is explored. From the analysis of Gibbs free energies, we find that no phase transition occurs for LiF in the presented pressure range from 0 to 1000 GPa, and this result is consistent with the theoretical prediction obtained via ab initio calculations [N.A. Smirnov, Phys. Rev. B 83 (2011) 014109]. Using the classical molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction, the melting phase diagram of LiF is determined. The obtained normalized volumes under pressure are in good agreement with our density functional theory results and the available experimental data. Meanwhile, with the help of the quasi-harmonic Debye model in which the phononic effects are considered, the thermodynamic properties of interest, including the volume thermal expansion coefficient, isothermal bulk modulus and its first and second pressure derivatives, heat capacity at constant volume, entropy, Debye temperature, and Grüneisen parameter of LiF are predicted systematically. All the properties of LiF with the stable NaCl-type structure in the temperature range of 0-4900 K and the pressure up to 1000 GPa are summarized.

  7. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  8. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    Science.gov (United States)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and

  9. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  10. ''Cs-tetra-ferri-annite:'' High-pressure and high-temperature behavior of a potential nuclear waste disposal phase

    International Nuclear Information System (INIS)

    Comodi, P.; Zanazzi, P.F.

    1999-01-01

    Structure deformations induced by pressure and temperature in synthetic Cs-tetra-ferri-annite 1M [Cs 1.78 (Fe 2+ 5.93 Fe 3+ 0.07 )(Si 6.15 Fe 3+ 1.80 Al 0.05 )O 20 (OH) 4 ], space group C2/m, were analyzed to investigate the capability of the mica structure to store the radiogenic isotopes 135 Cs and 137 Cs. Cs-tetra-ferri-annite is not a mineral name, but for the sake of brevity is used here to designate a synthetic analog of the mineral tetra-ferri-annite. The bulk modulus and its pressure derivative determined by fitting the unit-cell volumes between 0 a/nd 47 kbar to a third-order Birch-Murnaghan equation of state are K 0 = 257(8) kbar and K' 0 = 21(1), respectively. Between 23 C and 582 C, the a and b lattice parameters remain essentially unchanged, but the thermal expansion coefficient of the c axis is α c = 3.12(9) x 10 -5 degree C -1 . High pressure (P) and high temperature (T) produce limited internal strain in the structure. The tetrahedral rotation angle, α, is very small and does not change significantly throughout the P and T range investigated. Above 450 C in air, Cs-tetra-ferri-annite underwent an oxidation of octahedral iron in the M2cis site, balanced by the loss of H and shown by a decrease of the unit-cell volume. Independent isobaric data on thermal expansion and isothermal compressibility data define the geometric equation of state for Cs-tetra-ferri-annite. On the whole, the data confirm that the structure of Cs-tetra-ferri-annite may be a suitable candidate for the storage of large ions, such as Cs in the interlayer and should be considered as a potential Synroc component

  11. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  12. Effect of high pressure on the mechanical properties of lithium disilicate glass ceramic

    International Nuclear Information System (INIS)

    Buchner, Silvio; Lepienski, Carlos M.; Jr, Paulo C. Soares; Balzaretti, Naira M.

    2011-01-01

    Research highlights: → High pressure densification of LS2 decreases the mechanical properties. → Densification of LS2 at high temperature improves the mechanical properties. → Hardness and elastic modulus of LS2 densified at high temperature are notably high. - Abstract: Lithium disilicate glass has been submitted to a high pressure treatment associated to a heat treatment, and the effects of densification and crystallization at high pressure on the mechanical properties were evaluated. The hardness and elastic modulus were examined by instrumented indentation using a Berkovich tip. The crack pattern morphology after indentation with a cube corner indenter was also investigated. The hardness and elastic modulus of the samples submitted to high pressure at room temperature decreased with increasing pressure. The hardness and elastic modulus of the samples submitted simultaneously to high pressure (up to 7.7 GPa) and high temperature increased noticeably. The amount, length and type of cracks induced by the cube corner tip changed with increasing pressure. These results indicate that the high temperature treatment under high pressure improved the mechanical properties of LS 2 .

  13. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  14. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    Science.gov (United States)

    Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.

    2008-07-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.

  15. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Saito, T; Noguchi, S; Matsumoto, T; Sasaki, M; Goto, M

    2008-01-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time

  16. Research of explosives in an environment of high pressure and temperature using a new test stand

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2015-01-01

    Full Text Available In this article the test stand for determining the blast abilities of explosives in high pressure and temperature conditions as well as the initial results of the research are presented. Explosives are used in rock burst and methane prevention to destroy precisely defined fragments of the rock mass where energy and methane are accumulated. Using this preventive method for fracturing the structure of the rocks which accumulate the energy or coal of the methane seam very often does not bring the anticipated results. It is because of the short range of destructive action of the post-blast gases around the blast hole. Evaluation of the blast dynamics of explosives in a test chamber, i.e. in the pressure and temperature conditions comparable to those found “in situ”, will enable evaluation of their real usefulness in commonly used mining hazard preventive methods. At the same time, it will enable the development of new designs of the explosive charges used for precisely determined mining hazards. In order to test the explosives for their use in difficult environmental conditions and to determine the characteristics of their explosion, a test chamber has been built. It is equipped with a system of sensors and a high-frequency recording system of pressure and temperature during a controlled explosion of an explosive charge. The results of the research will enable the development of new technologies for rock burst and methane prevention which will significantly increase workplace health and safety level. This paper presented results constitute the initial phase of research started in the middle of 2014.

  17. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  18. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  19. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The

  20. Development and testing of a new apparatus for the measurement of high-pressure low-temperature phase equilibria

    DEFF Research Database (Denmark)

    Fonseca, José M.S.; von Solms, Nicolas

    2012-01-01

    A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors, at tem...

  1. Corrosion kinetics at high pressure and temperature of Zr-2.5 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-2.5 Nb pressure tube (PT) specimens, with ageing treatments at 400 and 500 C degrees for different times, was studied. The results were analyzed using the corrosion behavior of Zr-20 Nb and Zr-1 Nb samples heat treated during 1 hour at 850 C degrees, cooled in air and aged at the same temperature and times than the PT specimens. The comparison between the corrosion behaviour of Zr-1 Nb and Zr-20 Nb aged coupons with the aged pressure tube specimens, together with the metal/oxide interface morphology of Zr-2.5 Nb specimens, suggest that the increase in the corrosion resistance in the latter coupons is associated with the decomposition of the β-Zr phase. There is also a contribution of α-Zr phase when the ageing temperatures are high enough or the ageing times are long enough, due to a decrease in the Nb content of this phase. This last contribution is associated with an increase in the corrosion resistance of the central zone of pressure tube in the reactor. (author)

  2. Development and testing of a high temperature (673-1273K), high pressure regenerative desulphurization process for IGCC concepts

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, F.J.J.G.; Meijer, R. (KEMA Fossil Power Plants, Arnhem (Netherlands))

    1994-01-01

    In the period 1990-1993 a European Community (EC) subsidized international project on the subject of high-temperature and high-pressure desulfurization of coal gas has been carried out within the framework of the JOULE 1 program. This report is a summary of the final report, in which an overview is given of the developed and tested absorbents and the results of a feasibility study for a 100 MWe Integrated Coal Gasification Combined Cycle (ICGCC) in combination with a high-temperature desulfurization process. The Utrecht University in Utrecht, Netherlands, developed absorbents in cooperation with The Dutch Centre for Gas Technology GASTEC in Apeldoorn, Netherlands. The absorbents are tested by KEMA and the Netherlands Energy Research Foundation in Petten, Netherlands. Foster Wheeler in Livingston, New Jersey, USA, executed the feasibility study. The combination of iron oxide/molybdenum oxide on aluminium phosphate appears to be the most promising absorbent. The preparation method has been patented. From the feasibility study it appeared that by means of a high-temperature desulfurization process the investment and operational costs can be reduced considerably. Further development of the absorbent and the accompanying reactor concept already has started in a new EC project within the framework of the JOULE 1 program

  3. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  4. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  5. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    Science.gov (United States)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  6. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    Science.gov (United States)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  7. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  8. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuebing; Chen, Ting; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook, New York 11794 (United States); Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Kung, Jennifer [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Tony; Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  9. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    International Nuclear Information System (INIS)

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin

    2015-01-01

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al 2 O 3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al 2 O 3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus

  10. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  11. Melting temperature of H2, D2, N2 and СH4 under high pressure

    Indian Academy of Sciences (India)

    the analysis indicates the presence of the melting maximum in these solids. ... values of the melting temperature in case of hydrogen up to a pressure of 4800 ... temperature, Tm, will rise with the increase in pressure, reach to a maximum and.

  12. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  13. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  14. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  15. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  16. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  17. Achievement report for fiscal 1974 on Sunshine Program. Research and development of hydrogen production technology using high-temperature and high-pressure water electrolysis; 1974 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    The goals at present are to clarify conditions for the realization of the water electrolysis process relative to various primary energy sources and to experimentally construct a small practical electrobath to operate at high temperature and high pressure for the attainment of high economic efficiency. Efforts in this fiscal year are mentioned below. Surveys and studies are conducted about hydrogen production by water electrolysis and about achievements in the past and problems at present concerning hydrogen production by water electrolysis in Japan and overseas. The expected role of water electrolysis in various primary energy sources is also studied and evaluated. For a high-temperature high-pressure water electrolysis bath conceptual design (small test plant, bathing temperature 120 degrees C, pressure 20atm, hydrogen production rate 2Nm{sup 3}/h), studies are conducted about a constant-load type high-temperature high-pressure (bipolar) diaphragm-assisted water electrolysis bath and a variable-load type high-temperature high-pressure diaphragm-assisted water electrolysis bath. Surveys and studies are also conducted about the expected role of water electrolysis in various primary energy sources, and the role is evaluated. (NEDO)

  18. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  19. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage

    Science.gov (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf

    2013-07-01

    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  20. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  1. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  2. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  4. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  5. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    Science.gov (United States)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well

  6. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  7. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  8. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  9. Analysis and evaluation system for elevated temperature design of pressure vessels

    International Nuclear Information System (INIS)

    Hayakawa, Teiji; Sayawaki, Masaaki; Nishitani, Masahiro; Mii, Tatsuo; Murasawa, Kanji

    1977-01-01

    In pressure vessel technology, intensive efforts have recently been made to develop the elevated temperature design methods. Much of the impetus of these efforts has been provided mainly by the results of the Liquid Metal Fast Breeder Reactor (LMFBR) and more recently, of the High Temperature Gas-cooled Reactor (HTGR) Programs. The pressure vessels and associated components in these new type nuclear power plants must operate for long periods at elevated temperature where creep effects are significant and then must be designed by rigorous analysis for high reliability and safety. To carry out such an elevated temperature designing, numbers of highly developed analysis and evaluation techniques, which are so complicated as to be impossible by manual work, are indispensable. Under these circumstances, the authors have made the following approaches in the study: (1) Study into basic concepts and the associated techniques in elevated temperature design. (2) Systematization (Analysis System) of the procedure for loads and stress analyses. (3) Development of post-processor, ''POST-1592'', for strength evaluation based on ASME Code Case 1592-7. By linking the POST-1592 together with the Analysis System, an analysis and evaluation system is developed for an elevated temperature design of pressure vessels. Consequently, designing of elevated temperature vessels by detailed analysis and evaluation has easily and effectively become feasible by applying this software system. (auth.)

  10. Negative magnetoresistance of pitch-based carbon fibers Temperature and pressure dependence

    Science.gov (United States)

    Hambourger, P. D.

    1986-01-01

    The negative transverse magnetoresistance of high-modulus pitch-based carbon fibers has been measured over the temperature range 1.3-4.2 K at ambient pressure and at 4.2 K under hydrostatic pressure up to 16 kbar. At low fields (less than 0.5 torr) the magnitude of the magnetoresistance increases markedly as the temperature is lowered from 4.2 K to 1.3 K, in disagreement with Bright's theoretical model, and decreases with pressure at the rate -0.6 percent/kbar.

  11. Effects of carbon nanotube content and annealing temperature on the hardness of CNT reinforced aluminum nanocomposites processed by the high pressure torsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Phuong, Doan Dinh, E-mail: phuongdd@ims.vast.ac.vn [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Trinh, Pham Van; An, Nguyen Van; Luan, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Khisamov, Rinat Kh.; Nazarov, Konstantin S.; Zubairov, Linar R.; Mulyukov, Radik R.; Nazarov, Ayrat A. [Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39, Stepan Khalturin Str., Ufa 450001 (Russian Federation)

    2014-11-15

    Highlights: • CNT/Al nanocomposites were consolidated by HIP and subsequently processed by the high pressure torsion technique. • High pressure torsion processing was unable to break apart or disperse the CNT agglomerates persisted in powder preparation. • HPT-processed CNT/Al nanocomposites exhibited secondary hardening during annealing at temperatures below 150 °C. - Abstract: In this paper, the microstructure and hardness of CNT reinforced aluminium (CNT/Al) nanocomposites prepared by the advanced powder metallurgy method and subsequently processed by the high pressure torsion (HPT) technique are studied. The effects of CNT content and annealing temperature on the hardness of the nanocomposites are investigated. The results show that annealing materials at temperatures below 150 °C leads to secondary hardening, while annealing at higher temperatures soften the nanocomposites. HPT-processed CNT/Al nanocomposites with 1.5 wt.% of CNTs are shown to have the highest hardness in comparison with other composites containing CNTs from 0 up to 2 wt.%. Microstructures, CNT distribution and the phase composition of CNT/Al nanocomposites are investigated by transmission and scanning electron microscopy and X-ray diffraction techniques.

  12. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO4/YPO4:Yb3+-Tm3.

    Science.gov (United States)

    Runowski, Marcin; Shyichuk, Andrii; Tymiński, Artur; Grzyb, Tomasz; Lavín, Víctor; Lis, Stefan

    2018-05-23

    Upconversion luminescence of nano-sized Yb 3+ and Tm 3+ codoped rare earth phosphates, that is, LaPO 4 and YPO 4 , has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm -1 ), the thermalized states of Tm 3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm 3+ band ratio ( 3 F 2,3 → 3 H 6 / 3 H 4 → 3 H 6 ), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).

  13. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  14. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  15. Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR

    Science.gov (United States)

    Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.

    2014-07-01

    We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.

  16. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  17. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  18. Thermally induced coloration of KBr at high pressures

    Science.gov (United States)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  19. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    Science.gov (United States)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  20. The thermal expansion of a highly crystalline hexagonal BC2N compound synthesized under high temperature and pressure

    International Nuclear Information System (INIS)

    Wu Qinghua; Liu Zhongyuan; Hu Qianku; Li Hui; He Julong; Yu Dongli; Li Dongchun; Tian Yongjun

    2006-01-01

    The thermal expansion has been investigated for a highly crystalline hexagonal BC 2 N compound synthesized by the compression of a turbostratic B-C-N precursor with iron catalyst at the high temperature of 1500 deg. C and the high pressure of 5.5 GPa. The thermal expansion in the c direction is large and linear with an expansion coefficient of 35.86 x 10 -6 K -1 up to 1000 deg. C, while in the basal plane, the a dimension displays a slight linear contraction up to 750 deg. C with a contraction coefficient of -8.76 x 10 -7 K -1 , but above 750 deg. C a linear expansion is observed with a larger expansion coefficient of 1.52 x 10 -6 K -1

  1. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  2. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  3. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  4. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  5. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  6. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  7. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  8. The application of high pressure-mild temperature processing for prolonging the shelf-life of strawberry purée

    Science.gov (United States)

    Marszałek, K.; Woźniak, Ł.; Skąpska, S.

    2016-04-01

    The aim of this study was to monitor the shelf-life and quality of strawberry purée preserved using combined high pressure processing (HPP)-mild temperature processing at 300 and 600 MPa for 15 min during cold storage (6°C). Increasing the pressure resulted in a prolonged shelf-life of from 4 to 28 weeks for HPP-preserved purée at 300 and 600 MPa, respectively. The highest inactivation of peroxidases, pectinesterases and polygalacturonases was noted when a higher pressure was used, whereas a lower pressure was more efficient for polyphenoloxidases. The degradation of vitamin C and anthocyanins was 20% and 5% higher at 600 MPa than at 300 MPa, respectively. Significantly fewer changes in the colour coefficient, expressed as ΔE, and the browning index, were observed in purée preserved at 600 MPa. Oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests other inhibitors should be used to increase the shelf-life of good-quality fruit products.

  9. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  10. Evidence of new high-pressure magnetic phases in Fe-Pt Invar alloy

    International Nuclear Information System (INIS)

    Matsushita, M.; Endo, S.; Miura, K.; Ono, F.

    2003-01-01

    To investigate the magnetic properties of disordered Fe 70 Pt 30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2-385 K using a cubic anvil high-pressure apparatus. The Curie temperature (T C ) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe-Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure

  11. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  12. The Capacitance and Temperature Effects of the SiC- and Si-Based MEMS Pressure Sensor

    International Nuclear Information System (INIS)

    Marsi, N; Majlis, B Y; Hamzah, A A; Mohd, F

    2013-01-01

    This project develops the pressure sensor for monitoring the extreme conditions inside the gas turbine engine. The capacitive-based instead of piezoresistive-based pressure sensor is employed to avoid temperature drift. The deflecting (top) plate and the fixed (bottom) plate generate the capacitance, which is proportional to the applied input pressure and temperature. Two thin film materials of four different sizes are employed for the top plate, namely cubic silicon carbide (3C-SiC) and silicon (Si). Their performances in term of the sensitivity and linearity of the capacitance versus pressure are simulated at the temperature of 27°C, 500°C, 700°C and 1000°C. The results show that both materials display linear characteristics for temperature up to 500°C, although SiC-based sensor shows higher sensitivity. However, when the temperatures are increased to 700°C and 1000°C, the Si- based pressure sensor starts to malfunction at 50 MPa. However, the SiC-based pressure sensor continues to demonstrate high sensitivity and linearity at such high temperature and pressure. This paper validates the need of employing silicon carbide instead of silicon for sensing of extreme environments.

  13. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    Science.gov (United States)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  14. Predicting fluorescence quantum yield for anisole at elevated temperatures and pressures

    Science.gov (United States)

    Wang, Q.; Tran, K. H.; Morin, C.; Bonnety, J.; Legros, G.; Guibert, P.

    2017-07-01

    Aromatic molecules are promising candidates for using as a fluorescent tracer for gas-phase scalar parameter diagnostics in a drastic environment like engines. Along with anisole turning out an excellent temperature tracer by Planar Laser-Induced Fluorescence (PLIF) diagnostics in Rapid Compression Machine (RCM), its fluorescence signal evolution versus pressure and temperature variation in a high-pressure and high-temperature cell have been reported in our recent paper on Applied Phys. B by Tran et al. Parallel to this experimental study, a photophysical model to determine anisole Fluorescence Quantum Yield (FQY) is delivered in this paper. The key to development of the model is the identification of pressure, temperature, and ambient gases, where the FQY is dominated by certain processes of the model (quenching effect, vibrational relaxation, etc.). In addition to optimization of the vibrational relaxation energy cascade coefficient and the collision probability with oxygen, the non-radiative pathways are mainly discussed. The common non-radiative rate (intersystem crossing and internal conversion) is simulated in parametric form as a function of excess vibrational energy, derived from the data acquired at different pressures and temperatures from the literature. A new non-radiative rate, namely, the equivalent Intramolecular Vibrational Redistribution or Randomization (IVR) rate, is proposed to characterize anisole deactivated processes. The new model exhibits satisfactory results which are validated against experimental measurements of fluorescence signal induced at a wavelength of 266 nm in a cell with different bath gases (N2, CO2, Ar and O2), a pressure range from 0.2 to 4 MPa, and a temperature range from 473 to 873 K.

  15. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-03-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  16. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  17. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    International Nuclear Information System (INIS)

    Wang, X.; Kamenev, K.V.

    2015-01-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed

  18. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  19. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  20. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon.

    Science.gov (United States)

    Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M

    2017-12-01

    Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer preference. © 2017 Institute of Food Technologists®.

  1. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  2. Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures

    Science.gov (United States)

    Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.

    2016-12-01

    We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.

  3. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  4. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  5. Pressure and temperature dependence of laser-induced fluorescence of Sm:YAG to 100 kbar and 700 degree C and an empirical model

    International Nuclear Information System (INIS)

    Hess, N.J.; Schiferl, D.

    1990-01-01

    The inability to measure pressure with accuracy at high temperature has been a hindrance to the development of simultaneous high-temperature, high-pressure experimental techniques. The results of recent laser-induced fluorescence studies at high temperature and high pressure indicate that Sm:YAG is a promising pressure calibrant with very low-temperature sensitivity. The most intense feature in the fluorescence spectrum is a doublet at 16186.5 cm -1 . The Sm:YAG doublet exhibits a pressure-induced peak shift comparable to the R 1 shift of ruby. However, the temperature-induced shift of the doublet is almost two orders of magnitude less than that observed for the R 1 peak. Simultaneous high-pressure-temperature experiments indicate that the pressure and temperature effects on the frequency and line shape can be added linearly. An empirical model based on the linear combination of pressure dependent frequency shift and temperature dependent linewidth and intensity ratio successfully predicts the doublet line shape at simultaneous pressure and temperature. Use of the model facilitates measurement of peak position at high temperature resulting in improved accuracy and repeatability of the pressure determination. Pressure measurements at 400 degree C and 40 kbar based on the Sm:YAG doublet peak position agree with the temperature-corrected ruby R 1 pressure measurement to within 3 kbar. At 15 kbar and 900 degree C the uncertainty in the Sm:YAG fluorescence peak wavelength is 5 cm -1 due to temperature-induced line broadening; this corresponds to an uncertainty in the pressure determination of ±2.5 kbar. The high thermal and chemical stability of YAG materials make Sm:YAG an ideal pressure calibrant for high-temperature applications

  6. Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Voce, Sabrina; Zironi, Roberto

    2017-06-01

    The effects of the number of passes and processing temperature management (controlled vs. uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was more important. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75°C). The two processing variables also affected the volatile composition of the autolysates produced: higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions may allow the compositional characteristics of the products to be modulated, making them suitable for different winemaking applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.

    1985-11-01

    Pore-fluid chemical interactions on both short and long time scales can significantly change the permeability of a rock. Measurement of the permeability variations requires adaption and modification on standard measurement systems, with special attention given to pore-fluid flow rates and metal corrosion of system components. In this report, system requirements and capabilities are reviewed, analyzed, and recommendations made. Special attention is given to the choice of corrosion resistant metals, fluid-flow systems, back-pressure systems, jacketing materials, and flow-rate measurement. On the basis of this study, an economical, highly flexible, permeability system was designed and built. The system allows measurement of permeability over the darcy to nanodarcy range, using geologically meaningful, chemically reactive, pore fluids under constant volume flow rates as small as 0.2 ml/day at temperatures in excess of 300C, fluid pressures to 20 MPa, and confining pressures to 100 MPa. 7 refs., 3 figs., 1 tab.

  8. Effect of temperature on the transport of solvents through PTMSP under ultra-high pressures

    International Nuclear Information System (INIS)

    Grekhov, A M; Belogorlov, A A; Eremin, Yu S; Pastukhova, E V; Yushkin, A A; Volkov, A V

    2016-01-01

    Despite a large number of studies, by now there is no any definitive explanation of the solvent transport mechanism in nanostructured polymer materials. Both convective and diffusive transport of solvents can be observed in these materials. The study of the solvents permeability at different temperatures and pressures allow the variation of the physical parameters and structure of the solvent-membrane interaction thus becoming the key factor in the understanding of the fundamental aspects of the selective transport process in nanostructured polymer membranes. The paper presents the study of ethanol, propanol and water transport through poly [1- (trimethylsilyl)-l-propine] (PTMSP) at pressures 50-150 atm and temperature up to 90°C. The study was done by the method of pressure dynamic decay. As the temperature rises, the permeability of ethanol and propanol through PTMSP is shown to increase in proportion to decreasing viscosity that denotes a convective type of transport. As for water, the permeability change is thermo-activated that is typical for a diffusive type of transport. This difference in the transport characteristics can be related to a change in the membrane structure and energetic characteristics of the solvent-polymer interaction. (paper)

  9. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  10. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  11. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  12. An improved fiber optic pressure and temperature sensor for downhole application

    International Nuclear Information System (INIS)

    Aref, S H; Zibaii, M I; Latifi, H

    2009-01-01

    We report on the fabrication of a high pressure extrinsic Fabry–Perot interferometric (EFPI) fiber optic sensor for downhole applications by using a mechanical transducer. The mechanical transducer has been used for increasing the pressure sensitivity and the possibility of installation of the sensor downhole. The pressure–temperature cross-sensitivity (PTCS) problem has been solved by replacing the reflecting fiber with a metal microwire in the EFPI sensor. In this way the PTCS coefficient of the sensor was decreased from 47.25 psi °C −1 to 7 psi °C −1 . By using a new EFPI design, a temperature sensor was fabricated. Further improvement in the pressure and temperature sensor has been done by developing fabrication technique and signal processing

  13. Achievement report for fiscal 1976 on Sunshine Program. Research and development of hydrogen production technology using high-temperature high-pressure water electrolysis; 1976 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Basic data are collected for the construction of a high-temperature high-pressure membrane-assisted water electrolysis test plant of the constant load type and another of the variable load type. To collect the data, basic experiments are conducted on a small water electrolysis unit, diaphragms are fabricated and tested for performance, design calculation is performed using a computer, a test unit for testing electrolysis bath constituting materials is built for the construction of a gas/liquid separation unit. The ultimate goal of this project is to develop a high-temperature high-pressure water electrolysis test apparatus. The first part of this report is titled 'Outline' and states the objectives of this research, summarizes the achievements of fiscal 1974, 1975, and 1976, and mentions the names of officers responsible for the execution of the research and development, etc. The second part is titled 'Contents of research' and reports the details of the research conducted in fiscal 1976. The subjects taken up in the second part are 'Research on constant-load type high-temperature high-pressure (bipolar) diaphragm-assisted water electrolysis bath,' 'Research on Teflon-based diaphragms for high-temperature high-pressure water electrolysis baths,' 'Research on variable-load type high-temperature high-pressure diaphragm-assisted water electrolysis bath,' 'Research on small test plant electrolysis bath design,' etc., which are being undertaken by Showa Denko K.K. and four other corporations. (NEDO)

  14. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    Science.gov (United States)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  15. Changes in permittivity and density of molecular liquids under high pressure.

    Science.gov (United States)

    Kiselev, Vladimir D; Kornilov, Dmitry A; Konovalov, Alexander I

    2014-04-03

    We collected and analyzed the density and permittivity of 57 nonpolar and dipolar molecular liquids at different temperatures (143 sets) and pressures (555 sets). No equation was found that could accurately predict the change to polar liquid permittivity by the change of its density in the range of the pressures and temperatures tested. Consequently, the influence of high hydrostatic pressure and temperature on liquid permittivity may be a more complicated process compared to density changes. The pressure and temperature coefficients of permittivity can be drastically larger than the pressure and temperature coefficients of density, indicating that pressure and particularly temperature significantly affect the structure of molecular liquids. These changes have less influence on the density change but can strongly affect the permittivity change. The clear relationship between the tangent and secant moduli of the permittivity curvatures under pressure for various molecular liquids at different temperatures was obtained, from which one can calculate the Tait equation coefficients from the experimental values of the pressure influence on the permittivity at ambient pressure.

  16. Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature

    Directory of Open Access Journals (Sweden)

    Pedro Henrique R. Pereira

    2017-10-01

    Full Text Available An Al–3% Mg–0.2% Sc alloy was solution treated and processed through 10 turns of high-pressure torsion (HPT at 450 K. Afterwards, the HPT-processed alloy was annealed for 1 h at temperatures ranging from 423 to 773 K and its mechanical properties and microstructural evolution were examined using microhardness measurements and electron backscattered diffraction (EBSD analysis. The results demonstrate that HPT processing at an elevated temperature leads to a more uniform microhardness distribution and to an early saturation in the hardness values in the Al alloy compared with high-pressure torsion at room temperature. In addition, detailed EBSD analysis conducted on the HPT-processed samples immediately after annealing revealed that the Al–Mg–Sc alloy subjected to HPT processing at 450 K exhibits superior thermal stability by comparison with the same material subjected to HPT at 300 K. Keywords: Aluminium alloys, Hall–Petch relationship, Hardness, High-pressure torsion, Severe plastic deformation, Thermal stability

  17. The use of on-line ion chromatography for high temperature and high pressure reaction studies

    International Nuclear Information System (INIS)

    Lynch, G.J.

    1993-10-01

    This paper describes the use of on-line ion chromatography as a tool for chemistry reaction studies in small volume systems. The technique was used to study chemistry behavior in a high temperature and high pressure autoclave system. A dual analyzer, multi-channel on-line ion chromatograph (IC) was configured to automate the sampling and analysis. Analytical channels were set up for analysis of inorganic anions, monovalent cations, conductivity, and pH. Conductivity and pH were measured using the IC as a flow injection analyzer. Use of the IC system provides significant advantages over conventional sampling and analysis techniques: Reduction in sample volume, a closed sampling system that protects air or light sensitive analytes from breakdown, around-the-clock test performance combined with automatic calibration and quality control checking, and detection and tracking of reaction products or unexpected contaminants. Methods used to correct measured concentrations for the effects of sampling and for calculation of control chemical loss half-lives are presented. A limited evaluation of the flow injection analysis methods for conductivity and pH is provided

  18. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    International Nuclear Information System (INIS)

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  19. Effects of pressure and temperature on gate valve unwedging

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  20. Effects of pressure and temperature on gate valve unwedging

    International Nuclear Information System (INIS)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-01-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. open-quotes Pressure lockingclose quotes and open-quotes thermal bindingclose quotes refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an open-quotes interferenceclose quotes between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat open-quotes interferenceclose quotes. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat open-quotes interferenceclose quotes or disk-to-seat friction

  1. High temperature defect equilibrium in ZnS:Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lott, K.; Shinkarenko, S.; Tuern, L.; Nirk, T.; Oepik, A. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia); Kallavus, U. [Centre for Materials Research, Tallinn University of Technology, Tallinn (Estonia); Gorokhova, E. [Scientific Research and Technological Institute of Optical Material Science, S. I. Vavilov State Optical Institute, All-Russia Science Center, St. Petersburg (Russian Federation); Grebennik, A.; Vishnjakov, A. [Department of Physical Chemistry, D. Mendelejev University of Chemical Technology of Russia, Moscow (Russian Federation)

    2010-07-15

    High temperature investigations in ZnS:Cu crystals were performed under defined conditions. High temperature electrical conductivity and copper solubility data were obtained under different component vapour pressures and under different sample temperatures. The experimental data at sulphur vapour pressure can be explained by the inclusion of abnormal site occupation i.e. by antistructural disorder. Compensating association of copper with this antistructure defect may occur. Antistructure disorder disappears with increasing of zinc vapour pressure and with increasing role of holes in bipolar conductivity. The method for solving the system of quasichemical reactions without approximation was used to model high temperature defect equilibrium. This model contains antistructure disorder and copper solubility limitation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  3. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Study of the effects of elevated pressure and temperature on the evaporation of a single fuel droplet

    International Nuclear Information System (INIS)

    Memon, A.A.; Memon, M.A.; Durrani, H.A.

    1991-01-01

    The experimental studies were made on the evaporation of single fuel droplet in high pressure and high temperature gaseous environments. The time history of the size and the temperature of an evaporating droplet suspended on a fine quartz thread was recorded using a movie camera and an oscilloscope. The fuel used was n-heptane. The experimental range of conditions consists of gas pressure from 0 atg to 50 atg, gas temperature from 100 c to 500 c which correspond to the subcritical, critical and supercritical state of a droplet. The evaporation rate, the life time and the wet-bulb temperature of a droplet were obtained. The results showed that the temperature of an evaporating droplet increased with an increase in gas pressure and temperature, through it did not reach the critical temperature of fuel even at supercritical environments. It was evident that with an increase in gas pressure, the evaporation rate increased at high gas temperature while it decreased at low gas temperature. (author)

  5. High-pressure Moessbauer study of perovskite iron oxides

    CERN Document Server

    Kawakami, T; Sasaki, T; Kuzushita, K; Morimoto, S; Endo, S; Kawasaki, S; Takano, M

    2002-01-01

    The perovskite oxides CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 have been investigated by high-pressure sup 5 sup 7 Fe Moessbauer spectroscopy. The critical temperatures of the charge disproportionation (CD) and the magnetic order (MO) have been determined as a function of pressure. In CaFeO sub 3 the CD (2Fe sup 4 sup + -> Fe sup 3 sup + + Fe sup 5 sup +) occurs at an almost constant temperature of 290 K in the pressure range of 0-17 GPa. Above 20 GPa, the CD is suppressed. The MO temperature of 125 K at an ambient pressure rises to 300 K at 34 GPa. In La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 the CD (3Fe sup 1 sup 1 sup / sup 3 sup + -> 2Fe sup 3 sup + + Fe sup 5 sup +) and the MO occur at the same temperature up to 21 GPa, which decreases from 207 to 165 K with increasing pressure. Above 25 GPa, however, the MO temperature rises above 400 K.

  6. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  7. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  8. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  9. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  10. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  11. Superconductivity in the unconventional high pressure phase bismuth-III

    Energy Technology Data Exchange (ETDEWEB)

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  12. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  13. Phase stability and elastic properties of Tan+1AlCn (n = 1-3) at high pressure and elevated temperature

    International Nuclear Information System (INIS)

    Music, Denis; Emmerlich, Jens; Schneider, Jochen M

    2007-01-01

    We have studied the electronic structure of Ta n+1 AlC n (space group P6 3 /mmc,n = 1-3) under uniform compression from 0 to 60 GPa and at temperatures from 0 to 1500 K using ab initio calculations. These phases can be characterized by alternating layers of high and low electron density and are referred to as nanolaminates. At 0 K we observe similar compressibilities in both the a and c directions for all phases investigated. This is unusual for nanolaminates. Based on the density of states analysis, we propose that these similar compressibilities may be caused by an increase in Ta-Al and Ta-Ta bonding strength as well as a stronger long-range interaction between TaC-TaC layers. No evidence of a phase transition is observed as the pressure is increased to 60 GPa. However, as the temperature is increased to approximately 1000 K without applying pressure, a first-order phase transition occurs in Ta 3 AlC 2 . These results are relevant for applications of Ta n+1 AlC n at elevated temperature and pressure

  14. Prediction of pressure between packers of staged fracturing pipe strings in high-pressure deep wells and its application

    Directory of Open Access Journals (Sweden)

    Fuxiang Zhang

    2015-03-01

    Full Text Available Addressing to the deteriorated load conditions of working string and packers caused by annular pressure drop between packers during the staged stimulation of high-pressure deep well, one 2D temperature field transient prediction model for borehole under injecting conditions which considers such influences as friction heat, convection heat exchange was set up, based on energy conservation principle and borehole heat transfer theory. By means of analyzing the influences of borehole temperature and pressure changes on the annular volume between packers, and in combination with borehole temperature transient prediction model, annular fluid PVT equations of state, radial deformation model of tubing and formation transient seepage equation, a typical high-pressure deep well inter-packer annular pressure prediction model was established. Taking a high-pressure gas well in Tarim Oilfield for example, the inter-packer annular pressure prediction was conducted, on which, the mechanical analysis on packers and working strings was carried out. The analysis results show that although the pipe string is safe in the viewpoint of conventional design methods, it is still susceptible to failure after the annular pressure drop between packers was taken into consideration. Such factor should be fully considered in the design of staged stimulation pipe strings, and this prediction model provides new thoughts for the optimal design of high-pressure deep well staged stimulation pipe strings.

  15. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  16. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  17. NATO Advanced Research Workshop on Frontiers of High-Pressure Research

    CERN Document Server

    Etters, Richard

    1991-01-01

    The role of high pressure experiments in the discovery of supercon­ ducting materials with a T. above liquid nitrogen temperature has demon­ strated the importance of such experiments. The same role holds true in the tailoring of materials for optoelectronic devices. In addition, much progress has been made recently in the search for metallic hydro­ gen, and the application of high pressure in polymer research has brought forth interesting results. These facts together with the suc­ cess of previous small size meetings (such as the "First International Conference on the Physics of Solids at High Pressure", held in 1965 in Tucson, Arizona, U. S. A. ; "High Pressure and Low Temperature Physics", held in 1977 in Cleveland, Ohio, U. S. A. ; and "Physics of Solids Under High Pressure", held in 1981 in bad Honnef, Germany), motivated us to organize a workshop with emphasis on the newest results and trends in these fields of high pressure research. Furthermore, it was intended to mix experienced and young scien�...

  18. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  19. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  20. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  1. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  2. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  3. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  4. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  5. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  6. High-pressure high-temperature stability of hcp-IrxOs1-x (x = 0.50 and 0.55) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Crichton, Wilson A.; Hanfland, Michael; Margadonna, Serena; Dubrovinsky, Leonid S.

    2016-12-23

    Hcp-Ir0.55Os0.45 and hcp-Ir0.50Os0.50 alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH4)2[Ir0.55Os0.45Cl6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has been investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir0.55Os0.45 alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10-5 K-1 at ambient pressure and α = 0.3·10-5 K-1 at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.

  7. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  8. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Science.gov (United States)

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  9. A novel interferometric characterization technique for 3D analyses at high pressures and temperatures

    Science.gov (United States)

    Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred

    2018-04-01

    Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).

  10. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    Science.gov (United States)

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  11. Applications of high and ultra high pressure homogenization for food safety

    Directory of Open Access Journals (Sweden)

    Francesca Patrignani

    2016-08-01

    Full Text Available Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT and high temperature short time (HTST treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP, pulsed electric field (PEF, ultrasound (US and high pressure homogenization (HPH. This last technique has been demonstrated to have a great potential to provide fresh-like products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of high pressure homogenization against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered

  12. Viscosity of low-temperature substances at pressure

    International Nuclear Information System (INIS)

    Rudenko, N.S.; Slyusar', V.P.

    1976-01-01

    The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated

  13. Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

    Science.gov (United States)

    Hui, Jin; Yong, Li; Mou-Sheng, Song; Lin, Chen; Xiao-Peng, Jia; Hong-An, Ma

    2016-07-01

    In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 °C. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).

  14. The suppression of dissolution for alloy 690 in high temperature and high pressure water with chromium ion implantation

    International Nuclear Information System (INIS)

    Shibata, Toshio; Fujimoto, Shinji; Ohtani, Saburou; Watanabe, Masanori; Hirao, Kyozo; Okumoto, Masaru; Shibaike, Hiroyuki.

    1994-01-01

    As the material of heat exchanger tubes for PWRs, the nickel alloys such as alloy 690 and alloy 600 have been used, but 58 Ni and 60 Co contained as an impurity elute in primary cooling water, and are radioactivated, in this way, they become the cause of radiation exposure. By increasing chromium concentration, the corrosion resistance of nickel alloys is improved, and for modern heat exchangers, the alloy 690, of which the chromium content is increased up to 30%, has been adopted, and excellent results have been obtained. In this research, aiming at the further reduction of radiation exposure, by increasing the chromium concentration in surface layer using ion implantation technology, the change of the corrosion behavior of alloy 690 in high temperature, high pressure water was investigated. The chemical composition of the alloy 690 used, and the making of plate specimens are shown. The polarization behavior of alloy 690 in 0.1 mol/l sulfuric acid deaerated at normal temperature is reported, and the effect of suppressing dissolution was remarkable in the specimens with much implantation. The electrochemical behavior of alloy 690 in simulated cooling water was investigated. Immobile case has high chromium content and is thin. (K.I.)

  15. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  16. Optical Pressure-Temperature Sensor for a Combustion Chamber

    Science.gov (United States)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  17. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    Science.gov (United States)

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found.

  18. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  19. THE BEHAVIOR OF SOLUBLE METALS ELUTED FROM Ni/Fe-BASED ALLOY REACTORS AFTER HIGH-TEMPERATURE AND HIGH-PRESSURE WATER PROCESS

    Directory of Open Access Journals (Sweden)

    M. Faisal

    2012-05-01

    Full Text Available The behavior of heavy metals eluted from the wall of Ni/Fe-based alloy reactors after high-temperature and high-pressure water reaction were studied at temperatures ranging from 250 to 400oC. For this purpose, water and cysteic acid were heated in two reactor materials which are SUS 316 and Inconel 625. Under the tested conditions, the erratic behaviors of soluble metals eluted from the wall of Ni/Fe-based alloy in high temperature water were observed. Results showed that metals could be eluted even at a short contact time. The presence of air also promotes elution at sub-critical conditions. At sub-critical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. It was observed that eluted metals tend to increased under acidic conditions and most of those metals were over the limit of WHO guideline for drinking water. The results are significant both on the viewpoint of environmental regulation on disposal of wastes containing heavy metals, toxicity of resulting product and catalytic effect on a particular reaction.

  20. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  1. Asphaltene laboratory assessment of a heavy onshore reservoir during pressure, temperature and composition variations to predict asphaltene onset pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Peyman; Ahmadi, Yaser [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kharrat, Riyaz [Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Mahdavi, Sedigheh; James, Lesley [Memorial University of Newfoundland, Saint John' s (Canada)

    2015-02-15

    An Iranian heavy oil reservoir recently encountered challenges in oil production rate, and further investigation has proven that asphaltene precipitation was the root cause of this problem. In addition, CO{sub 2} gas injection could be an appropriate remedy to enhance the production of heavy crudes. In this study, high pressure-high temperature asphaltene precipitation experiments were performed at different temperatures and pressures to investigate the asphaltene phase behavior during the natural depletion process and CO{sub 2} gas injection. Compositional modeling of experimental data predicted onset points at different temperatures which determine the zone of maximum probability of asphaltene precipitation for the studied heavy oil reservoir. Also, the effect of CO{sub 2} gas injection was investigated as a function of CO{sub 2} concentration and pressure. It was found that a CO{sub 2}-oil ratio of 40% is the optimum for limiting precipitation to have the least formation damage and surface instrument contamination.

  2. High pressure Moessbauer spectrometer for the high-resolution 93.3 keV resonance in 67Zn

    International Nuclear Information System (INIS)

    Adlassnig, W.; Potzel, W.; Moser, J.; Schaefer, C.; Steiner, M.; Kalvius, G.M.

    1989-01-01

    A high pressure, low temperature Moessbauer spectrometer for the high-resolution 93.3 keV resonance in 67 Zn is described. The pressure is generated by applying the opposed anvil technique. Using B 4 C anvils and a sandwich gasket quasihydrostatic pressures up to 6 GPa were obtained for the required large samples of 7 mm diameter and 2 mm thickness. The piezoelectric Doppler drive is mounted on top of the pressure clamp. The whole system can be cooled to liquid He temperatures. The spectrometer was used to investigate at 4.2 K the pressure dependence of the Moessbauer parameters of Zn metal. (orig.)

  3. PH measurement under pressure and at high temperatures; Mesure du pH sous pression et a temperature elevee

    Energy Technology Data Exchange (ETDEWEB)

    Fournie, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Le Peintre, M; Mahieu, C [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1961-07-01

    In the first part the development and operation of a glass electrode under pressure at room temperature is described. The pressure equilibrium between the inside and outside of the glass membrane several centimetres thick is obtained instantaneously by means of a siphon. The use of a silicone oil as electrical insulator makes possible the working of the glass electrode with the siphon at high pressures (100 kg/cm{sup 2}). In the second part, we determined the pH of various buffer solutions up to 250 deg. C using a cell of our design having two hydrogen electrodes. The values thus obtained for the buffer solutions make it possible to verify and calibrate the pH electrodes independently of the oxido-reduction potential of the medium. In the third part we give the results obtained up to 200 deg. C with the glass electrodes developed in conjunction with the Societe St Gobain. (author) [French] Dans une premiere partie, nous exposons la mise au point et le fonctionnement d'une electrode en verre sous pression a la temperature ordinaire. L'equilibrage instantane de la pression a l'interieur et a l'exterieur de la membrane en verre de quelques diziemes de millimetres d'epaisseur s'effectue par l'intermediaire d'un siphon. L'emploi d'une huile de silicone comme isolant electrique a permis le fonctionnement de l'electrode en verre a siphon sous haute pression (1000 kg/cm{sup 2}). Dans une deuxieme partie, nous avons determine jusqu'a 250 deg. C les valeurs du pH des diverses solutions tampons avec une cellule de notre conception a deux electrodes d'hydrogene. Les valeurs des solutions tampons ainsi obtenues permettent de verifier et d'etalonner les electrodes a pH independantes du potentiel d'oxydo-reduction du milieu. Dans une troisieme partie, nous relatons les resultats obtenus jusqu'a 200 deg. C avec les electrodes en verre mis au point en collaboration avec la Societe Saint-Gobain. (auteur)

  4. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  5. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  6. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  7. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    Science.gov (United States)

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  8. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    Science.gov (United States)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Conduction mechanism in a novel oxadiazole derivative: effects of temperature and hydrostatic pressure

    International Nuclear Information System (INIS)

    Luo Jifeng; Han Yonghao; Tang Bencheng; Gao Chunxiao; Li Min; Zou Guangtian

    2005-01-01

    The quasi-four-probe resistivity measurement on the microcrystal of 1,4-bis[(4-heptyloxyphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-3) is carried out under variable pressure and temperature conditions using a diamond anvil cell (DAC). Sample resistivity is calculated with a finite element analysis method. The temperature and pressure dependences of the resistivity of OXD-3 microcrystal are measured up to 150 0 C and 15 GPa, and the resistivity of OXD-3 decreases with increasing temperature, indicating that OXD-3 exhibits organic semiconductor transport property in the region of experimental pressure. With an increase of pressure, the resistivity of OXD-3 first increases and reaches a maximum at about 8 GPa, and then begins to decrease at high pressures. From the x-ray diffraction data in DAC under pressure, we can conclude that the anomaly of resistivity variation at 8 GPa results from the pressure-induced amorphism of OXD-3

  11. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  12. Dew-point measurements at high water vapour pressure

    Science.gov (United States)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  13. High pressure driven superconducting critical temperature tuning in Sb{sub 2}Se{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Anversa, Jonas [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Escola de Engenharia Civil, Faculdade Meridional, 99070-220, Passo Fundo, RS (Brazil); Chakraborty, Sudip, E-mail: sudiphys@gmail.com [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Piquini, Paulo [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2016-05-23

    In this letter, we are reporting the change of superconducting critical temperature in Sb{sub 2}Se{sub 3} topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb{sub 2}Se{sub 3} was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb{sub 2}Se{sub 3} is primarily the electron–phonon coupling.

  14. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  15. Systematic prediction of high-pressure melting curves of transition metals

    International Nuclear Information System (INIS)

    Hieu, Ho Khac

    2014-01-01

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  16. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Science.gov (United States)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  17. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  18. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  19. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  20. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    Energy Technology Data Exchange (ETDEWEB)

    Yeckel, Christopher; Curry, Randy [Department of Computer and Electrical Engineering, Center for Physical and Power Electronics, University of Missouri--Columbia, Columbia, Missouri 65211 (United States)

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  1. Isosteric Vapor PressureTemperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressuretemperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressuretemperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  2. Alkaline electrolysis cell at high temperature and pressure of 250 °C and 42 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures and pressures up to 250 °C and 42 bar, respectively. Current densities of 1.0 A cm−2 have been measured at a cell v...... voltage of 1.5 V without the use of expensive noble metal catalysts. High electrical efficiency and current density combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production....

  3. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  4. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Superconductivity at high pressure in NbSe3

    International Nuclear Information System (INIS)

    Nunez Regueiro, M.; Castello, D.; Mignot, J.M.

    1992-01-01

    We have measured the electrical resistivity of NbSe 3 between 2 K and room temperature up to a pressure of 7.2 GPa. At P 1 = 3.5 GPa we observe the extinction of the high-temperature charge density wave (T 1 -CDW) and the enhancement of the superconducting critical temperature T c to ≅ 5 K. The logarithmic pressure slopes of T 1 (P 1 ) and T c (P > P 1 ) are found to be practically equal. A similar behaviour had been reported previously at lower pressures for T 2 (P 2 ) and T c (P 2 1 ) in the distorted state. We discuss these results in terms of an anisotropic superconducting state in NbSe 3 , with different gaps associated with different types of chains. 10 refs., 2 figs

  6. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  8. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  9. Neutron spin echo studies of the effects of temperature and pressure in a ternary microemulsion

    CERN Document Server

    Kawabata, Y; Seto, H; Takeda, T; Komura, S; Schwahn, D

    2002-01-01

    In order to clarify the self-assembling mechanisms in complex fluids involving amphiphiles, we have investigated dynamic features of amphiphilic membranes and droplets at high temperature and at high pressure in a ternary microemulsion, consisting of AOT, water, and n-decane. A high-pressure cell for neutron spin echo (NSE) experiments has been improved, and the static and dynamic features of droplets are observed in detail by means of small angle neutron scattering and NSE. It is found that the size fluctuation and the diffusion of droplets are enhanced by increasing temperature, while they are suppressed by increasing pressure. (orig.)

  10. Automatic torque magnetometer for vacuum-to-high-pressure hydrogen environments

    International Nuclear Information System (INIS)

    Larsen, J.W.; Livesay, B.R.

    1979-01-01

    An automatic torque magnetometer has been developed for use in high-pressure hydrogen. It will contain pressures ranging from vacuum to 200 atm of hydrogen gas at sample temperatures greater than 400 0 C. This magnetometer, which uses an optical lever postion sensor and a restoring force technique has an operating range of 2.0 x 10 3 dyn cm to l.6 x 10 -4 dyn cm. An accompanying digital data collection system extends the sensitivity to 1 x 10 -5 dyn cm as well as increasing the data handling capacity of the system. The magnetic properties of thin films in high-temperature and high-pressure hydrogen environments can be studied using this instruments

  11. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Sano-Furukawa, A. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Komatsu, K. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Yamada, A. [University of Shiga Prefecture, Shiga 522-8533 (Japan); Inamura, Y.; Nakatani, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seto, Y. [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Nagai, T. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Utsumi, W. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, Saitama 351-0198 (Japan); Kagi, H. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Katayama, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Inoue, T. [Geodynamic Research Center, Ehime University, Matsuyama 790-8577 (Japan); Otomo, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Suzuya, K. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kamiyama, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Arai, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-04-21

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

  12. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    International Nuclear Information System (INIS)

    Hattori, T.; Sano-Furukawa, A.; Arima, H.; Komatsu, K.; Yamada, A.; Inamura, Y.; Nakatani, T.; Seto, Y.; Nagai, T.; Utsumi, W.; Iitaka, T.; Kagi, H.; Katayama, Y.; Inoue, T.; Otomo, T.; Suzuya, K.; Kamiyama, T.; Arai, M.; Yagi, T.

    2015-01-01

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions

  13. Fiscal 1975 Sunshine Project research report. R and D on hydrogen production technology by high-temperature high- pressure water electrolysis; 1975 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-29

    This report details the research result in fiscal 1975. Part 1 'Outlines' includes the research target, the summary of fiscal 1974 research results, the summary of fiscal 1975 research results, and responsible researchers. Part 2 'Details of the research' includes the fiscal 1975 research results. Chapter 1 reports 'Study on constant-load high- temperature high-pressure (multi-electrode type) diaphragm water electrolysis tank' promoted by Mitsubishi Kakoki Kaisha. Chapter 2 reports 'Study on Teflon system diaphragm for high-temperature high-pressure water electrolysis tanks' promoted by Yuasa Battery Co. through Mitsubishi Kakoki Kaisha. Chapter 3 reports 'Study on variable-load high- temperature high-pressure diaphragm water electrolysis tank' promoted by Showa Denko K.K. Chapter 4 reports 'The first detailed design of the electrolysis tank for a small test plant' promoted by Hitachi Zosen Corp. through Showa Denko K.K. Chapter 5 reports 'Research on the applicability of water electrolysis systems to various fields' promoted by Mitsubishi Research Institute, Inc. through Showa Denko K.K. (NEDO)

  14. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  15. Applications of High and Ultra High Pressure Homogenization for Food Safety

    OpenAIRE

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT) and high temperature short time (HTST) treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP), pulsed ele...

  16. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    Science.gov (United States)

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  17. The inclusions of Mg-B (MgB12?) as potential pinning centres in high-pressure-high-temperature-synthesized or sintered magnesium diboride

    International Nuclear Information System (INIS)

    Prikhna, T A; Gawalek, W; Savchuk, Ya M; Habisreuther, T; Wendt, M; Sergienko, N V; Moshchil, V E; Nagorny, P; Schmidt, Ch; Dellith, J; Dittrich, U; Litzkendorf, D; Melnikov, V S; Sverdun, V B

    2007-01-01

    A systematic study of the structure and superconductive characteristics of high-pressure-high-temperature (2 GPa, 700-1000 deg. C )-synthesized and sintered MgB 2 without additions from different initial powders was performed. Among various secondary phases Mg-B inclusions with a stoichiometry close to MgB 12 were identified. With an increasing amount of these inclusions the critical current density increased. So these inclusions can be feasible pinning centres in MgB 2 . The highest j c values in zero field were 1300 kA cm -2 at 10 K, 780 kA cm -2 at 20 K and 62 kA cm -2 at 35 K and in 1 T field were 1200 kA cm -2 at 10 K, 515 kA cm -2 at 20 K and 0.1 kA cm -2 at 35 K for high-pressure-synthesized magnesium diboride and the field of irreversibility at 20 K reached 8 T. The average grain sizes calculated from x-ray examinations in materials having high j c were 15-37 nm

  18. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  19. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  20. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology