Sample records for high temperature hydrothermal

  1. Geothermic analysis of high temperature hydrothermal activities area in Western plateau of Sichuan province, China (United States)

    Zhang, J.


    There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with VsGeothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.

  2. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.


    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  3. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)


    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  4. Reactive transport model of growth and methane production by high-temperature methanogens in hydrothermal regions of the subseafloor (United States)

    Stewart, L. C.; Algar, C. K.; Topçuoğlu, B. D.; Fortunato, C. S.; Larson, B. I.; Proskurowski, G. K.; Butterfield, D. A.; Vallino, J. J.; Huber, J. A.; Holden, J. F.


    Hydrogenotrophic methanogens are keystone high-temperature autotrophs in deep-sea hydrothermal vents and tracers of habitability and biogeochemical activity in the hydrothermally active subseafloor. At Axial Seamount, nearly all thermophilic methanogens are Methanothermococcus and Methanocaldococcus species, making this site amenable to modeling through pure culture laboratory experiments coupled with field studies. Based on field microcosm incubations with 1.2 mM, 20 μM, or no hydrogen, the growth of methanogens at 55°C and 80°C is limited primarily by temperature and hydrogen availability, with ammonium amendment showing no consistent effect on total methane output. The Arrhenius constants for methane production by Methanocaldococcus jannaschii (optimum 82°C) and Methanothermococcus thermolithotrophicus (optimum 65°C) were determined in pure culture bottle experiments. The Monod constants for hydrogen concentration were measured by growing both organisms in a 2-liter chemostat at two dilution rates; 55°C, 65°C and 82°C; and variable hydrogen concentrations. M. jannaschii showed higher ks and Vmax constants than M. thermolithotrophicus. In the field, hydrogen and methane concentrations in hydrothermal end-member and low-temperature diffuse fluids were measured, and the concentrations of methanogens that grow at 55°C and 80°C in diffuse fluids were determined using most-probable-number estimates. Methane concentration anomalies in diffuse fluids relative to end-member hydrothermal concentrations and methanogen cell concentrations are being used to constrain a 1-D reactive transport model using the laboratory-determined Arrhenius and Monod constants for methane production by these organisms. By varying flow path length and subseafloor cell concentrations in the model, our goal is to determine solutions for the potential depth of the subseafloor biosphere coupled with the amount of methanogenic biomass it contains.

  5. Towards an understanding of the high-temperature, high-salinity part of magmatic-hydrothermal systems (United States)

    Driesner, T.


    In situ observations of fluid state and composition, fluid-rock interaction and flow characteristics in active magmatic-hydrothermal systems is restricted to wells in the upper, i.e. epithermal or geothermal environments. Our knowledge about the deeper parts therefore comes from exposed fossil examples. Up to very recently, the temperature, pressure and fluid evolution could only be inferred from standard petrological and fluid inclusion results. With the advent of quantitative multi-element analysis by LA-ICPMS of fluid inclusions, "hard" constraints on the fluid evolution in complex fossil systems can now be obtained and in ideal cases processes such as ore precipitation by fluid mixing or cooling can be distinguished. While such field-based results moved our understanding of the processes at given points in the systems to a new level of detail, the dynamics of the underlying hydrodynamic and chemical processes can only be inferred quite vaguely and crucial tests of these models are frequently impossible. Worse, such "geological" interpretations cannot distinguish between physically possible and impossible hydrodynamic scenarios because of the highly nonlinear and coupled nature of governing equations and physical fluid properties. A test of such a geological model and the understanding of the dynamics of such a system can only be achieved by forward modeling. This requires two essential components: (1) a simulation tool that is able to handle both flexible geometries with "geologically realistic" detail and material and flow properties with variations of several orders of magnitude, and (2) a comprehensive description of fluid properties over very wide ranges of T, P, and X. If chemical fluid-rock interactions play an important role, a versatile thermodynamic formalism for accurate solute properties even in the near-critical region is required. The Fluids and Ore Deposits Group at ETH has recently developed such a simulation tool (see S. Geiger et al., this

  6. Nickel and platinum in high-temperature H2O + HCl fluids: Implications for hydrothermal mobilization (United States)

    Scholten, Lea; Watenphul, Anke; Beermann, Oliver; Testemale, Denis; Ames, Doreen; Schmidt, Christian


    The dissolution of NiS and NiAs (nickeline) in 0.1 and 1 molal HCl at 400 °C, 80 MPa, and of PtAs2 (sperrylite) and Pt metal in 1 and 6.86 molal HCl at 500 °C, 80 MPa was studied in-situ using synchrotron radiation X-ray fluorescence and absorption spectroscopy. The Pt concentration in the fluid averaged 8 · 10-5 molal (12.8 ppm) during dissolution of Pt metal in 6.86 molal HCl, and was below the minimum detection limit (mdl; 2.6 · 10-5 molal) in all other experiments. Dissolution of NiS was congruent or nearly congruent. Equilibrium was attained rapidly in about 250 min at an initial HCl concentration of 1 molal HCl, and in about 500 min at 0.1 molal HCl. Addition of HCl resulted in a large increase in the Ni solubility from 7.2 · 10-3 molal Ni (423 ppm) at 0.1 molal HCl to 8.72 · 10-2 molal Ni (4959 ppm) at 1 molal HCl. Dissolution of NiAs in 0.1 and 1 molal HCl was incongruent. A steady state was not reached even at a run duration of more than 16 h, and the maximum recorded Ni concentrations in the fluid were much lower than the Ni solubility in the corresponding experiments with NiS at the same HCl molality. Measured K-edge XANES spectra in comparison with literature data indicated that arsenic in the fluid was present as As(V) and that nickel complexed with Cl and H2O as tetrahedral [NiCl2(H2O)2]0 and [NiCl3(H2O)]- and octahedral [NiCl2(H2O)4]0 species. In addition, Raman spectra of H2O + NiCl2 and H2O + NiCl2 + HCl solutions and of H2O + HCl fluids reacted with NiS crystals were acquired at temperatures (T) up to 600 °C and pressures (P) up to 1.15 GPa. All spectra at T ≥ 300 °C and P Based on calculated vibrational frequencies available in the literature, it may stem from the species [NiCl4]2- or [NiCl2(H2O)4]0, although particularly the first assignment is in conflict with the information from published XAS data. The results of this study demonstrate that nickel is readily mobilized by acidic chloridic hydrothermal fluids, but platinum remains


    Nathenson, Manuel


    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  8. Biodiversity patterns, environmental drivers and indicator species on a High-temperature Hydrothermal edifice, mid-Atlantic ridge

    KAUST Repository

    Sarrazin, Jozée


    Knowledge on quantitative faunal distribution patterns of hydrothermal communities in slow-spreading vent fields is particularly scarce, despite the importance of these ridges in the global mid-ocean system. This study assessed the composition, abundance and diversity of 12 benthic faunal assemblages from various locations on the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) and investigated the role of key environmental conditions (temperature, total dissolved iron (TdFe), sulfide (TdS), copper (TdCu) and pH) on the distribution of macro- and meiofaunal species at small spatial scales (< 1 m). There were differences in macro- and meiofaunal community structure between the different sampling locations, separating the hydrothermal community of the Eiffel Tower edifice into three types of microhabitats: (1) cold microhabitats characterized by low temperatures (<6 °C), high TdCu (up to 2.4±1.37 µmol l−1), high pH (up to 7.34±0.13) but low TdS concentrations (<6.98±5.01 µmol l−1); (2) warm microhabitats characterized by warmer temperatures (>6 °C), low pH (<6.5) and high TdS/TdFe concentrations (>12.8 µmol l−1/>1.1 µmol l−1 respectively); and (3) a third microhabitat characterized by intermediate abiotic conditions. Environmental conditions showed more variation in the warm microhabitats than in the cold microhabitats. In terms of fauna, the warm microhabitats had lower macro- and meiofaunal densities, and lower richness and Shannon diversity than the cold microhabitats. Six macrofaunal species (Branchipolynoe seepensis, Amathys lutzi, Bathymodiolus azoricus, Lepetodrilus fucensis, Protolira valvatoides and Chorocaris chacei) and three meiofaunal taxa (Paracanthonchus, Cephalochaetosoma and Microlaimus) were identified as being significant indicator species/taxa of particular microhabitats. Our results also highlight very specific niche separation for copepod juveniles among the different hydrothermal microhabitats. Some sampling

  9. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures (United States)

    Schmidt, Christian; Chou, I-Ming; Dubessy, Jean; Caumon, Marie-Camille; Pérez, Fernando Rull


    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  10. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures (United States)

    Schmidt, Christian; Chou, I-Ming; Dubessy, J.; Caumon, M.-C.; Rull, F.


    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  11. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. (United States)

    Jollivet, Didier; Mary, Jean; Gagnière, Nicolas; Tanguy, Arnaud; Fontanillas, Eric; Boutet, Isabelle; Hourdez, Stéphane; Segurens, Béatrice; Weissenbach, Jean; Poch, Olivier; Lecompte, Odile


    Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic

  12. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.

    Directory of Open Access Journals (Sweden)

    Didier Jollivet

    Full Text Available Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty

  13. Quick high-temperature hydrothermal synthesis of mesoporous materials with 3D cubic structure for the adsorption of lysozyme. (United States)

    Lawrence, Geoffrey; Baskar, Arun V; El-Newehy, Mohammed H; Cha, Wang Soo; Al-Deyab, Salem S; Vinu, Ajayan


    Three-dimensional cage-like mesoporous FDU-12 materials with large tuneable pore sizes ranging from 9.9 to 15.6 nm were prepared by varying the synthesis temperature from 100 to 200 °C for the aging time of just 2 h using a tri-block copolymer F-127(EO106PO70EO106) as the surfactant and 1,3,5-trimethyl benzene as the swelling agent in an acidic condition. The mesoporous structure and textural features of FDU-12-HX (where H denotes the hydrothermal method and X denotes the synthesis temperature) samples were elucidated and probed using x-ray diffraction, N2 adsorption, (29)Si magic angle spinning nuclear magnetic resonance, scanning electron microscopy and transmission electron microscopy. It has been demonstrated that the aging time can be significantly reduced from 72 to 2 h without affecting the structural order of the FDU-12 materials with a simple adjustment of the synthesis temperature from 100 to 200 °C. Among the materials prepared, the samples prepared at 200 °C had the highest pore volume and the largest pore diameter. Lysozyme adsorption experiments were conducted over FDU-12 samples prepared at different temperatures in order to understand their biomolecule adsorption capacity, where the FDU-12-HX samples displayed high adsorption performance of 29 μmol g(-1) in spite of shortening the actual synthesis time from 72 to 2 h. Further, the influence of surface area, pore volume and pore diameter on the adsorption capacity of FDU-12-HX samples has been investigated and results are discussed in correlation with the textural parameters of the FDU-12-HX and other mesoporous adsorbents including SBA-15, MCM-41, KIT-5, KIT-6 and CMK-3.

  14. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini


    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  15. Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits (United States)

    Mathur, Ryan; Brantley, S.; Anbar, A.; Munizaga, F.; Maksaev, V.; Newberry, R.; Vervoort, J.; Hart, G.


    Measurable molybdenum isotope fractionation in molybdenites from different ore deposits through time provides insights into ore genesis and a new technique to identify open-system behavior of Re-Os in molybdenites. Molybdenite samples from six porphyry copper deposits, one epithermal polymetallic vein deposit, four skarns, and three Fe-oxide Cu-Au deposits were analyzed. The δ97Mo‰ (where [InlineEquation not available: see fulltext.]) for all samples varied from 1.34 ± 0.09‰ to -0.26 ± 0.04‰. This is the largest molybdenum isotopic variation in molybdenite from high-temperature ore deposits recorded to date. δ97Mo‰ of molybdenite varies as a function of the deposit type and the rhenium and osmium concentrations of the samples. Isotope values for Mo also vary within the individual deposits. In general, molybdenites from porphyry copper deposits have the lightest values averaging 0.07 ± 0.23‰ (1 σ). Molybdenites from the other deposit types average 0.49 ± 0.26‰ (1 σ). The variations could be related to the fractionation of Mo into different mineral phases during the ore-forming processes. A comparison of the Mo isotope ratios and the Re-Os ages obtained from the same aliquot may possess a geochronological evaluation tool. Samples that yielded robust ages have different Mo isotopic compositions in comparison to samples that yielded geologically unreasonable ages. Another observed relationship between the Re-Os and Mo isotope data reveals a weak correspondence between Re concentration and Mo isotope composition. Molybdenites with higher concentrations of Re correspond to lighter Mo isotope values.

  16. In situ analysis of proteins at high temperatures mediated by capillary-flow hydrothermal UV-vis spectrophotometer with a water-soluble chromogenic reagent. (United States)

    Kawamura, Kunio; Nagayoshi, Hiroki; Yao, Toshio


    In situ monitoring of quantities, interactions, and conformations of proteins is essential for the study of biochemistry under hydrothermal environments and the analysis of hyperthermophilic organisms in natural hydrothermal systems on Earth. We have investigated the potential of a capillary-flow hydrothermal UV-vis spectrophotometer (CHUS) for performing in situ measurements of proteins and determining their behavior at extremely high temperatures, in combination with a chromogenic reagents probe, which interacts with the proteins. The spectral shift obtained using a combination of water-soluble porphyrin (TPPS) and bovine serum albumin (BSA) was the best among the spectral shifts obtained using different combinations of chromogenic reagents and proteins. The association behavior of TPPS with BSA was investigated in detail using CHUS at temperatures up to 175 degrees C and the association constant (K(ass)) of TPPS with BSA was successfully determined at temperatures up to 100 degrees C. The lnK(ass) values were inversely proportional to the T(-1) values in the temperature range 50-100 degrees C. These analyses showed for the first time that the decrease of association of TPPS with BSA is due to the conformational change, fragmentation, and/or denaturing of BSA rather than the decrease of the hydrophobic association between TPPS and BSA. This study conclusively demonstrates the usability of the CHUS system with a chromogenic reagent as an in situ detection and measurement system for thermostable proteins at extremely high temperatures. Copyright 2010 Elsevier B.V. All rights reserved.

  17. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature (United States)

    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Yasui, Kanji; Hashim, Abdul Manaf


    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end facets and were highly oriented towards the c-axis direction. Photoluminescence (PL) spectra of the hydrothermal layers were composed of the ultraviolet (UV) emission (370 to 380 nm) and the visible emission (481 to 491 nm), and the intensity ratio of the former emission ( I UV) to the latter emission ( I VIS) changed, depending on both the molarity of the solution and temperature. It is surprising that all the Hall mobilities for the hydrothermal ZnO layers were significantly larger than those for their corresponding CVD seed films. It was also found that, for the hydrothermal films grown at 70°C to 90°C, the molarity dependences of I UV/ I VIS resembled those of mobilities, implying that the mobility in the film is affected by the structural defects. The highest mobility of 166 cm2/Vs was achieved on the hydrothermal film with the carrier concentration of 1.65 × 1017 cm-3 grown from the aqueous solution of 40 mM at 70°C.

  18. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming


    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  19. One-pot fabrication of Co{sub 3}O{sub 4} microspheres via hydrothermal method at low temperature for high capacity supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chao; Zhang, Jinfeng [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Yida, E-mail: [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhong, Cheng [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Lei [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Wenbin [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China)


    Highlights: • Take full advantage of the easily oxidized feature of cobalt (II) complexes ammonia. • Low temperature method was applied with absence of subsequent calcination process. • The Co{sub 3}O{sub 4} microspheres possess extraordinary electrochemical properties. - Abstract: Co{sub 3}O{sub 4} microspheres were successfully produced with one-step low temperature hydrothermal method and their electrochemical properties have been investigated. By means of utilizing easily oxidized characteristic of cobalt complexes ammonia, the Co{sub 3}O{sub 4} microspheres were synthesized for the first time with an extremely low hydrothermal temperature (100 °C). In the absent case of surfactant, these Co{sub 3}O{sub 4} microspheres with a diameter of ca. 500 nm and smooth surface were prepared with the assistance of nitrate. Influences concerning about temperature and concentration of nitrate on morphology and size distribution were thoroughly discussed. Electrochemical characterization indicated that the Co{sub 3}O{sub 4} microspheres exhibited high specific capacitance of 850, 780, 700, 630 F/g at current densities of 1, 2, 4, 8 A/g, respectively. And after 1000 cycles, the devices with Co{sub 3}O{sub 4} microspheres showed high charge/discharge reversibility with an efficiency of 90.8% at a current density of 2 A/g.

  20. Synthesis and characterization of K(Ta(x)Nb(1_x))O3 particles by high temperature mixing method under hydrothermal and solvothermal conditions. (United States)

    Gu, Honghui; Zhu, Kongjun; Qiu, Jinhao; Ji, Hongli; Cao, Yang; Jin, Jiamei


    KTa(x)Nb(1_x)O3 (KTN) particles with an orthorhombic perovskite structure were synthesized via a high temperature mixing method (HTMM) under hydrothermal and solvothermal conditions. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microcopy (HRTEM). The influences of alkaline concentration and Ta doping amounts on the phase structure and morphology of the obtained powders were investigated. The results showed that KTN powders could be solvothermally prepared when the KOH concentration is as low as 0.5 M. In comparison with the hydrothermal process, supercritical isopropanol plays an important role in synthesizing KTN particles under milder conditions. The KTa(0.4)Nb(0.6)O3 particles solvothermally synthesized in isopropanol are made of well crystallized and single crystalline particles with a size of about 100-200 nm. Room temperature PL studies excited at different wavelengths reveal five emission bands centered at about 421 nm, 446 nm, 468 nm, 488 nm, and 498 nm, respectively. The supercritical process proposed here provides a new potential route for synthesizing other perovskite-type materials.

  1. Temperatures of Mediterranean Volcanic Hydrothermal Systems Reflected by Gas Geothermometry (United States)

    Fiebig, J.; Tassi, F.; D'Alessandro, W.; Vaselli, O.; Woodland, A. B.


    We have addressed the genetic relationship between H2, H2O, CO, CO2, n-alkanes and n-alkenes in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, Campi Flegrei and Pantelleria (all Italy). Methane attains chemical and isotopic equilibrium with CO2 in the associated hydrothermal systems within the single liquid phase. Calculated aquifer temperatures at depth are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at Campi Flegrei and ~540°C at Pantelleria. CH4-CO2 equilibrium temperatures are in agreement with propane/propene concentration ratios. Temperatures >400°C are additionally confirmed by ethane/ethene ratios. In contrast to CH4-CO2, metastable equilibration of the alkane/alkene pairs takes place in the saturated water vapor phase. Overall agreement of vapor and liquid equilibration temperatures suggests that boiling in the investigated high-enthalpy hydrothermal systems is essentially isothermal. Our results imply that the chemical and isotopic CH4-CO2 geothermometer is least prone to re-equilibration reactions occurring in the vapor phase after vapor separation. Redox conditions during these re-equilibration reactions are homogeneously buffered by H2/H2O ratios of the vapor phase, which, in turn, are controlled by those of the parental liquid phase and by the degree of superimposed vapor separation. Amongst the redox pairs investigated, CO/CO2 is most prone to secondary vapor phase equilibration. Our results imply that the isotopic CH4-CO2 geothermometer has the potential to record temperatures of aquifers associated with dormant volcanoes. Alkene/alkane and H2/H2O concentration ratios should be measured along with CH4 and CO2 to prove independently whether isotopic equilibrium has been attained.

  2. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges? (United States)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.


    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  3. Hydrothermal nontronite formation associated with microbes from low-temperature diffuse hydrothermal vents at the South Mid-Atlantic Ridge (United States)

    Ta, Kaiwen; Peng, Xiaotong; Chen, Shun; Xu, Hengchao; Li, Jiwei; Du, Mengran; Hao, Jialong; Lin, Ying


    Oceanic nontronite deposits have been identified to be closely related to low-temperature hydrothermal activities. However, their formation mechanisms associated with microbes in diffuse hydrothermal vents still remain largely unknown. The friable deposits, collected from the low-temperature diffuse flow at the Southern Atlantic Ridge, display a layered structure. Scanning electron microscope and transmission electron microscope analyses reveal that abundant filamentous, spherical, and rod-shaped mineralized forms are preserved in the yellowish-green layer of the deposits. These mineralized forms primarily consist of Si and Fe. Selected area electron diffraction patterns of the mineralized forms indicate that they are composed of nontronite. High intensities of 12C and 12C14N signals derived from cellular structures determined by nanosecondary ion mass spectrometry suggest the intimate relationship between nontronite and microbes. The results of 454 pyrosequencing analyses provide insights into the microbial communities involved in the biologically induced mineralization in the yellowish-green layer. We propose an evolutionary model for establishing paragenetic sequences among nontronite, Mn oxide, and Fe oxyhydroxide in the deposits. This paragenetic sequence could be widespread in modern and ancient low-temperature hydrothermal fields.

  4. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa


    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  5. Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. (United States)

    Jin, Xiaoying; Chen, Xiaohu; Cheng, Yute; Wang, Longshen; Hu, Bing; Tan, Junjun


    In this paper, colloidal hydrophilic hydroxyapatite nanorods were synthesized in the presence of sodium citrate via thermal-decomplexing method. The influences of hydrothermal temperature and time on the synthesis of HA nanorods were characterized in terms of structure, size, morphology, and colloidal stability through TEM, XRD, zeta potential, DLS and long-term standing test. Results show that increasing hydrothermal temperature and prolonging hydrothermal time would evidently improve crystallinity and enlarge size of HA nanorods but decrease the colloidal stability of nanorods. It is worth noting that the effect of raising the hydrothermal temperature and time on diameter increase is far greater than that on length increase; meanwhile, the colloidal stability would be seriously deteriorated when the hydrothermal temperature is over 180 °C for 24 h or when the hydrothermal temperature is 150 °C for over 48 h, in these cases, dispersion of HA nanorods would apparently settle within 2 months. The origin responding to the results is that although the charge density of HA nanorods is not obviously affected, the dynamic diameters of HA particles increase greatly, which reduces colloidal stability of the dispersion. This work provides new insights into the role of hydrothermal temperature and time on tailoring morphology, crystallinity and colloidal stability of HA nanorods. Moreover, it would be helpful to optimize the experimental procedure both on scientific and industrial applications related to HA. For example, on the premise of satisfying the necessary requirements including crystallinity, size, morphology and colloid stability, it is feasible to compress the consumption of experimental time through raising the hydrothermal temperature, or vice versa. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Temperature Effects on Phase Relations in Ultramafic-Hosted Hydrothermal Systems (United States)

    Seyfried, W. E.; Foustoukos, D. I.; Fu, Q.


    The effect of temperature on alteration processes in ultramafic hosted hydrothermal systems is significant and manifest by complex changes in secondary mineralization and the composition of coexisting fluids, as suggested by recent experimental and theoretical data. At relatively high temperatures (400C) olivine recrystallization reactions are sluggish, generally limiting mass transfer. In SiO2 bearing fluids, such as the case for the Rainbow hydrothermal system (36N, MAR), evidence indicates olivine recrystallization to a more fayalite-rich phase and talc, enhancing olivine stability at reaction zone conditions. These phases plus tremolite play a key role in maintaining fluid acidity, accounting for the unusually high levels of dissolved metals that characterize the high temperature Rainbow vent fluids. In contrast, hydrothermal alteration of ultramafic rocks by seawater at temperatures below 300C generally results in high pH fluids, serpentinization of olivine and coexisting pyroxene, and Ca for Mg exchange in the fluid. Data also indicate potentially high dissolved H2 and low dissolved Fe and total dissolved sulfide species. Analogous processes likely characterize subseafloor reaction zones at the Lost City Hydrothermal Field (LCHF), which lies on the Atlantis Massif at 30N, 15 km west of the Mid-Atlantic Ridge. Indeed, geochemical modeling of the Lost City vent fluid chemistry suggests subseafloor temperatures of approximately 200C, which are considerably greater than the measured vent fluid temperatures (40 to 90C), suggesting conductive cooling and seawater mixing effects; processes consistent with the reported mineralization of chimney structures. Available data also suggest moderately high fluid/rock mass ratios, which in combination with reaction zone temperature estimates make it unlikely that hydrothermal circulation can be a direct result of the exothermic nature of the conversion of olivine to serpentine. Accordingly, alternative heat sources need to

  7. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature


    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; TERASAKO, Tomoaki; YASUI, KANJI; Hashim, Abdul Manaf


    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end fac...

  8. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer


    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  9. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. (United States)

    Meyer, Stefanie; Wegener, Gunter; Lloyd, Karen G; Teske, Andreas; Boetius, Antje; Ramette, Alban


    The Guaymas Basin (Gulf of California) hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit of life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml(-1) d(-1) at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs) number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  10. Enhanced ferromagnetic properties and high temperature dielectric anomalies in Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, K. Kamala, E-mail: [Department of Materials Science and Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon 305-701 (Korea, Republic of); Ramesh, G. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Patro, L.N. [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Raju, N. Ravi Chandra [School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 (Australia); Kim, Do Kyung, E-mail: [Department of Materials Science and Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon 305-701 (Korea, Republic of)


    Graphical abstract: Temperature variation of dielectric constant of Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} at various frequencies as a function of temperature indicating anomalies at 420 and 540 K. - Highlights: • Substitution of Sm ions for Bi enhances the saturation magnetization of BiFeO{sub 3}. • XPS studies indicate the creation of oxygen vacancies upon Ca substitution. • Dielectric measurements show dielectric anomalies at high temperatures. • Raman spectra at high temperatures confirm the dielectric anomaly temperatures. - Abstract: Enhanced ferromagnetic properties and high temperature dielectric anomalies in the temperature range of 300–873 K in Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} (BCSFO) prepared by hydrothermal method are reported. BiFeO{sub 3} is seen to crystallize in rhombohedrally distorted perovskite structure without any impurity phase. Substitution of small amount of Ca and Sm (Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3}) leads to increase in the lattice constant values and formation of small amount of secondary phase. Magnetization curve of pure BFO indicates very weak ferromagnetism combined with antiferromagnetic nature of the samples. Whereas, BCSFO sample shows very clear and enhanced ferromagnetic nature. Saturation magnetization and Neel’s temperature values are found to be 4.36 emu/g and 664 K, respectively. X-ray photoelectron spectroscopy indicates the creation of oxygen vacancies upon Ca substitution in Bi site. Dielectric anomalies at 420 and 540 K were observed for Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} from the temperature variation of dielectric constant and specific heat capacity measurements. Observation of dielectric anomalies in pure BiFeO{sub 3} sample reveals that the origin of dielectric peaks is purely from the primary phase. Raman spectroscopy study indicates a clear shift and broadening of A modes (between 100 and 200 cm{sup −1}) at the dielectric anomaly temperatures supporting the

  11. Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. (United States)

    Guo, Hanzheng; Guo, Jing; Baker, Amanda; Randall, Clive A


    Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.

  12. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia


    .5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly...

  13. Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field (United States)

    Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim


    A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays

  14. Hydrothermal Liquefaction of Dried Distillers Grains with solubles: A reaction temperature study

    DEFF Research Database (Denmark)

    Mørup, Anders; Christensen, Per Runge; Aarup, David Friis


    The effect of the reaction temperature on hydrothermal liquefaction of dried distillers grains with solubles (DDGS) was investigated using a novel stop-flow reactor system at varying temperatures (300–400 °C), fixed pressure (250 bar), and fixed reaction time (15 min). The stop-flow reactor...

  15. Synthesis and electrochemical properties of Co3O4 nanoparticles by hydrothermal method at different temperatures (United States)

    Duan, Qiuyan; Chen, Haiyan


    In this work, Co3O4 nanoparticles were synthesized by hydrothermal method at different temperatures. The synthesized Co3O4 nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS) and nitrogen adsorption-desorption. The Co3O4 nanoparticles prepared at the hydrothermal temperature of 140 °C and at the annealing temperature of 350 °C have a shorter crystal spacing distance associated to the (220) crystal planes, larger BET surface area and more bivalent cobalt on the surface than these of Co3O4 nanoparticles prepared at higher hydrothermal temperature or higher annealing temperature. The supercapacitor performances of synthesized Co3O4 nanoparticles were analysed by cyclic voltammograms (CVs), Galvano static charge/discharge (GCD) and the electrochemical impedance spectroscopy (EIS) in 6 M KOH aqueous electrolyte solution. The Co3O4 nanoparticles produced at lower temperatures exhibit good pseudo capacitance behaviour. Also, owning to the low hydrothermal temperature and the annealing temperature of Co3O4 nanoparticles, they can be relatively low cost in favour of a promising candidate for electrochemical supercapacitors.

  16. Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5


    Tarach, Karolina A.; Martínez-Triguero, Joaquín; Rey Garcia, Fernando; Góra-Marek, Kinga


    Highly siliceous zeolites, namely MFI type have attracted the great attention due to their higher hydrothermal stability, higher selectivity to organic compounds, and often better catalytic properties in comparison with Al-rich zeolites. The native zeolite (Si/Al = 164) and its desilicated analogues were deeply characterized with regard to their structural and textural properties by X-ray diffraction, low temperature adsorption of nitrogen and solid-state Al-27 MAS NMR. Their acidic propertie...

  17. Conversion of Undaria pinnatifida residue to glycolic acid with recyclable methylamine in low temperature hydrothermal liquefaction. (United States)

    Chen, Yongxing; Ren, Xiulian; Wei, Qifeng


    The conversion of Undaria pinnatifida residue to glycolic acid was carried out using methylamine as catalyst by hydrothermal method at relatively low temperature. GC-MS and HPLC were used to identify the composition of bio-oil and liquid products which provide the knowledge of the chemical reaction pathways of the hydrothermal liquefaction. The main liquid product was organic acid which contained glycolic acid, lactic acid, formic acid and acetic acid. And the major organic acid was glycolic acid with the highest yield of 46.52% or 33.98% of dry biomass. Methylamine promoted the dissolution of cellulose from Undaria pinnatifida residue, and significantly improved the yield of glycolic acid. The mechanism of HTL was investigated and the results show that the carbocation C3 was attacked by methylamine molecule which led to the high yield of glycolic acid. In addition, the recovery of methylamine was studied and the highest recovery rate reached 99.28%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    Despite the use of sol-gel derived nanoporous silica membranes in substitution of traditional separation processes is expected leading to vast energy savings, their intrinsic poor steam-stability hampers their application at an industrial level. Transition metal ions can be used as dopant...... to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...... and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile nanoporous structure...

  19. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures (United States)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd


    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  20. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad


    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  1. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.


    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  2. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand (United States)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.


    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  3. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis (United States)

    Gao, Jiabing; Shi, Haiyue; Dong, Huina; Zhang, Rui; Chen, Deliang


    Highly dispersed BaTiO3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios ( R Ba/Ti), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L-1 and R Ba/Ti = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO3 nanocrystals under the static hydrothermal conditions were investigated.

  4. Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis (United States)

    Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad


    The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.

  5. High temperature measuring device (United States)

    Tokarz, Richard D.


    A temperature measuring device for very high design temperatures (to 2, C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia) (United States)

    Monnin, C.; Chavagnac, V.; Boulart, C.; Ménez, B.; Gérard, M.; Gérard, E.; Pisapia, C.; Quéméneur, M.; Erauso, G.; Postec, A.; Guentas-Dombrowski, L.; Payri, C.; Pelletier, B.


    H 11) are not significantly different from one site to the other although the sites are several kilometres away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline endmembers shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal endmember with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at a pH of around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high-pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of Prony Bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).

  7. Characterization of ZnO:Co particles prepared by hydrothermal method for room temperature magnetism (United States)

    Peng, Yingzi; Huo, Dexuan; He, Haiping; Li, Yuan; Li, Lingwei; Wang, Huawen; Qian, Zhenghong


    ZnO based diluted magnetic semiconductor particles (ZnO:Co) have been grown using a hydrothermal method with good crystallinity. The atomic percentage of Co presented in the specimen is about 0.01. Based on the x-ray diffraction and high-resolution transition electron, Co is found to be incorporated into ZnO lattice without evidence of obvious Co precipitates. However, from photoluminescence (PL) spectra in the range of 1.94 -3.45 eV, a strong broad emission centered around 600 nm (2.07 eV) in the visible range as well as a relatively weak peak at 2.81 eV are observed, indicating the presence of Co impurities. Moreover, intrinsic emissions such as DOX suggest that at least some Co have been doped into ZnO lattice, substituting for Zn2+ ions. The PL results further confirm the substitution of Zn2+ ions by Co, which leads to the changes of the electronic band structures. Magnetism could be realized at room temperature for the ZnO:Co nanoparticles under our experimental conditions although with low coercivity. The field-cooled and zero-field-cooled curves can be explained as a result of competition between the ferromagnetic and the antiferromagnetic ordering in the ZnO:Co nanoparticles. Combining the results from PL and magnetism characterization, it is reasonable to think that both doped Co in the ZnO lattice and Co impurities contribute to magnetism in ZnO:Co nanoparticles at room temperature.

  8. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra


    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  9. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park (United States)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.


    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  10. Hydrothermal Synthesis of High Crystalline Silicalite from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    Chaiwat Kongmanklang


    Full Text Available The objective of this research work was to evaluate the hydrothermal synthesis of silicalite with high crystallinity within a small particle size. The current study focused on investigating the effects of silica sources such as rice husk ash (RHA and silica gel (SG, crystallization time, and ratios of NaOH/SiO2, H2O/NaOH, and SiO2/TPABr. The crystallinity, particle size, and morphology were characterized by FT-IR, XRD, particle size analyser, and SEM. The conclusion of the main findings indicated that the XRD patterns of these samples clearly showed a pure phase of MFI structure corresponding to FT-IR spectra with vibration mode at 550 and 1223 cm−1. The highest crystallinity was obtained at reaction time only 6 hours with the mole ratios of NaOH/SiO2, H2O/NaOH and SiO2/TPABr as 0.24, 155, and 30, respectively. When SG was used as a silica source, it was found that the particle size was smaller than that from RHA. The morphologies of all silicalite samples were coffin and cubic-like shape.

  11. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA (United States)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.


    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  12. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas


    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  13. Facile Hydrothermal Approach to ZnO Nanorods at Mild Temperature

    Directory of Open Access Journals (Sweden)

    Yang Jiao


    Full Text Available In this work, ZnO nanorods are obtained through a facile hydrothermal route. The structure and morphology of the resultant products are characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The experimental results indicated that the as-synthesized ZnO nanorods have an average diameter of approximate 100 nm. A possible growth mechanism for ZnO nanorods was proposed based on the experimental results and found that Zn powder plays a critical role for the morphology of the products. Room temperature photoluminescence property of ZnO nanorods shows an ultraviolet emission peak at 390 nm.

  14. Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Guru Nisha; Sankar Ganesh, R.; Karthigeyan, A., E-mail:


    Zinc oxide nanorods were grown employing a low cost hydrothermal method on microslide glass substrates pre-coated with ZnO seed layer. The as grown nanorods were annealed in air at 350 °C, 450 °C and 550 °C. The effect of annealing at different temperatures on morphology, structural, optical and electrical properties was investigated using field emission scanning electron microscopic, X-ray diffraction, UV–vis spectral, photoluminescence and electrical studies. The X-ray diffraction pattern of all the samples showed wurtzite structure preferentially oriented along the c-axis (0 0 2) direction. It was found that diameter of the nanorods increased with increasing of annealing temperature. The UV–vis absorption spectra showed a red shift from which it was inferred that the optical bandgap of the material decreases from 3.33 eV to 3.28 eV with increase in annealing temperature. Photoluminescence measurements showed increase in the UV emission intensity with respect to annealing temperature and also produced additional peaks attributed to defects and impurities. Annealing the ZnO nanorod structures at various temperatures evidently showed that the sample annealed at 550 °C acquired the lowest resistivity about 1.62 × 10{sup −4} Ω-cm. - Highlights: • ZnO nanorods were synthesized by hydrothermal method on microslide glass substrates. • Pre-deposited ZnO seeds were used. • Structural, optical and electrical properties of ZnO nanorods were studied. • Crystalline structure of ZnO nanorods was improved with increase in annealing temperature. • Resistivity decrease was observed with increase in the annealing temperature.

  15. High-resolution shallow seismic tomography of a hydrothermal area: application to the Solfatara, Pozzuoli (United States)

    Letort, J.; Roux, P.; Vandemeulebrouck, J.; Coutant, O.; Cros, E.; Wathelet, M.; Cardellini, C.; Avino, R.


    The Solfatara is one of the major volcanoes of the Phlegrean Fields (Campi Flegrei) volcanic complex, and it is located in a densely populated area a few kilometres west of the city of Naples. It is an active resurgent caldera that has been characterized by a rich history of surface-ground deformation and soil diffuse degassing and fumarolic emissions, which are indications of the top of a hydrothermal plume. A seismic survey was completed in May 2009 for the characterization of the main subsurface features of the Solfatara. Using the complete data set, we have carried out surface wave inversion with high spatial resolution. A classical minimization of a least-squares objective function was first computed to retrieve the dispersion curves of the surface waves. Then, the fitting procedure between the data and a three-sediment-layer forward model was carried out (to a depth of 7 m), using an improved version of the neighbourhood algorithm. The inversion results indicate a NE-SW fault, which is not visible at the surface. This was confirmed by a temperature survey conducted in 2010. A passive seismic experiment localized the ambient noise sources that correlate well with the areas of high CO2 flux and high soil temperatures. Finally, considering that the intrinsic attenuation is proportional to the frequency, a centroid analysis provides an overview of the attenuation of the seismic waves, which is closely linked to the petrophysical properties of the rock. These different approaches that merge complete active and passive seismic data with soil temperature and CO2 flux maps confirm the presence of the hydrothermal system plume. Some properties of the top of the plume are indicated and localized.

  16. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.


    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  17. High temperature structural silicides

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.


    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  18. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  19. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg


    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  20. High Temperature QCD

    CERN Document Server

    Lombardo, M P


    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  1. CAREER: Hydrothermal vent flow and temperature fluctuations: exploring long-term variability through an integrated research and education program (United States)

    Di Iorio, D.


    An acoustic scintillation system was built in partnership with ASL Environmental Sciences (Sidney BC Canada), which provided a unique opportunity for two engineering undergraduate students to live and work abroad. The acoustic instrumentation was tested in coastal waters and then deployed to study deep-sea hydrothermal plume dynamics. Undergraduate students were involved in the deployment of instrumentation and the development of processing software to give vertical velocities and temperature fluctuations from a vigorous hydrothermal vent. A graduate student thesis has yielded insights into the vertical and azimuthal dependence of entrainment and into plume bending and rise height. Teachers and Ocean Science Bowl students also participated in research cruises describing physical oceanography of estuaries, coastal waters, and deep-sea hydrothermal vents and participated in data collection, processing and analysis. Teachers used the knowledge they gained to develop creative educational curricula at their schools, to present their experiences at national conferences and to publish an article in the National Science Teachers Association - The Science Journal. One of the teachers was recently recognized with the Presidential Award for Excellence in Mathematics and Science Teaching. Working with the ocean bowl team at Oconee County High School has led to top ten placements in the national championships in 2005 (fourth place) and 2006 (sixth place). In order to increase quantitative methods in an undergraduate class, students acquire data from an ocean observatory and analyze the data for specific quantities of interest. One such project led to the calculation of the upper ocean heat content for the Greenland Sea using 7 years of Argo profiles, which showed a 0.04oC/year trend. These results were then published in JGR.

  2. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard


    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  3. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi


    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  4. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas


    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  5. Short Time and Low Temperature Reaction between Metal Oxides through Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    S. M. V. Novais


    Full Text Available This work demonstrates the possibility of synthesis of cadmium tungstate at low temperatures using oxide precursors. Cadmium tungstate (CdWO4 scintillator was produced via microwave-assisted hydrothermal reaction using the precursors CdO and WO3. The methodology was based on microwave radiation for heating, which is remarkably faster than the solid-state route or conventional hydrothermal procedure. CdWO4 monoclinic (wolframite structure was successfully obtained at 120°C for synthesis times as short as 20 min. This route does not require the use of templates or surfactants and yields self-assembled nanorods with size of around 24 ± 9 nm width and 260 ± 47 nm length. The growth mechanism for the formation of CdWO4 involves microwave-induced dissociation of the reagents and solvation of Cd2+ and WO42- ions, which are free to move and start the nucleation process. The luminescence properties of the produced nanoparticles were investigated, presenting a broad emission band at around 500 nm, which is comparable to that observed for samples produced using other chemical routes. This result highlights the great potential of the proposed method as a low-cost and time saving process to fabricate luminescent oxide nanoparticles.

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.


    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr


    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  8. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)


    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  9. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  10. The low temperature hyperalkaline hydrothermal system of the Prony bay (New Caledonia) (United States)

    Monnin, C.; Chavagnac, V.; Boulart, C.; Ménez, B.; Gérard, M.; Gérard, E.; Quéméneur, M.; Erauso, G.; Postec, A.; Guentas-Dombrowski, L.; Payri, C.; Pelletier, B.


    members (at pH 11) are not significantly different from one site to the other although the sites are several km away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline end members shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal end member with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca-carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca-carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at pH around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of the Prony bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).

  11. Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge (United States)

    Pasini, Valerio; Brunelli, Daniele; Dumas, Paul; Sandt, Christophe; Frederick, Joni; Benzerara, Karim; Bernard, Sylvain; Ménez, Bénédicte


    The origin of light hydrocarbons discovered at serpentinite-hosted mid-ocean hydrothermal fields is generally attributed to the abiogenic reduction of carbon (di)oxide by molecular hydrogen released during the progressive hydration of mantle-derived peridotites. These serpentinization by-products represent a valuable source of carbon and energy and are known to support deep microbial ecosystems unrelated to photosynthesis. In addition, the pool of subsurface organic compounds could also include materials derived from the thermal degradation of biological material. We re-investigate the recently described relics of deep microbial ecosystems hosted in serpentinites of the Mid-Atlantic Ridge (4-6°N) in order to study the ageing and (hydro)thermal degradation of the preserved biomass. An integrated set of high resolution micro-imaging techniques (Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman and Fourier Transform Infra-Red microspectroscopy, Confocal Laser Scanning Microscopy, and Scanning Transmission X-ray Microscopy at the carbon K-edge) has been applied to map the distribution of the different organic components at the micrometer scale and to characterize their speciation and structure. We show that biologically-derived material, containing aliphatic groups, along with carbonyl and amide functional groups, has experienced hydrothermal degradation and slight aromatization. In addition, aliphatic compounds up to C6-C10 with associated carboxylic functional groups wet the host bastite and the late serpentine veins crosscutting the rock. These compounds represent a light soluble organic fraction expelled after biomass degradation through oxidation and thermal cracking. The detected complex organic matter distribution recalls a typical petroleum system, where fossil organic matter of biological origin maturates, expelling the soluble fraction which then migrates from the source to the reservoir. Ecosystem-hosting serpentinites

  12. Hydrothermal synthesis of hexagonal CeO{sub 2} nanosheets and their room temperature ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanming, E-mail: [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zhang, Cheng; Fan, Zhenghua; Gong, Jinfeng; Li, Aixia; Ding, Zongling; Tang, Huaibao; Zhang, Miao; Wu, Guifang [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)


    Hexagonal CeO{sub 2} nanosheets of 40–50 nm in thickness and 300–400 nm in side-length have been successfully synthesized via controlling the morphology of CeCO{sub 3}OH precursors by a facile hydrothermal technique using CeCl{sub 3}·7H{sub 2}O as cerium source, ammonium hydrogen carbonate as precipitants, and ethylenediamine as complexant. The reaction time and the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine were systematically investigated. The as-synthesized hexagonal CeO{sub 2} nanosheets were examined by XRD, SEM, TEM, XPS, Raman scattering and magnetization measurements. It is found that the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine are key parameters for controlling the final morphology. The hexagonal CeO{sub 2} nanosheets have a fluorite cubic structure and there are Ce{sup 3+} ions and oxygen vacancies in surface of samples. The synthesized CeO{sub 2} shows excellent room temperature optical properties. M–H curve exhibits excellent room-temperature ferromagnetism (RTFM) with saturation magnetization (M{sub s}) of 3.02 × 10{sup −2} emu/g, residual magnetization (M{sub r}) of 0.68 × 10{sup −2} emu/g and coercivity (H{sub c}) of 210 Oe, which is likely attributed to the effects of the Ce{sup 3+} ions and oxygen vacancies. - Highlights: • Hexagonal CeO{sub 2} nanosheets with superexerllent RTFM are synthesized by a facile hydrothermal method. • RTFM mechanism of CeO{sub 2} nanosheets can be attributed to the influences of oxygen vacancies and Ce{sup 3+} ions. • A defect driven dissolution–recrystallization mechanism is suggested to explain the transformation from nanowires to nanosheets.

  13. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals


    A. Khanfekr; Tamizifar, M.; R. Naghizadeh


    The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH) conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the ...

  14. Hydrothermal synthesis of hexagonal WO3 nanowires with high aspect ratio and their electrochemical properties for lithium-ion batteries (United States)

    Phuruangrat, Anukorn; Yayapao, Oranuch; Thongtem, Titipun; Thongtem, Somchai


    One dimensional WO3 nanowires with high aspect ratio of >200 were synthesized by hydrothermal method. The effects of reaction temperature and time on phase and morphologies were studied and discussed. In this research, a suitable hydrothermal condition is at 200°C for 48 h. XRD, SEM, and TEM results show that the product is hexagonal WO3 phase with diameter of 25 nm and several ten micrometers long with growth in the c direction. The electrochemical properties were tested for rechargeable lithium batteries. The WO3 NWs electrode exhibits a stability trend over the 30 cycle testing. Some long-term activation process is attributed to the WO3 NWs electrode during charge/discharge reaction.

  15. High temperature future

    Energy Technology Data Exchange (ETDEWEB)

    Sheinkopf, K. [Solar Energy Research and Education Foundation, Washington, DC (United States)


    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  16. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. (United States)

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai


    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials.

  17. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires. (United States)

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas


    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ∼100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ∼450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (10(5)-10(7)), steep subthreshold slope (V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (∼0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  18. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries (United States)

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai


    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials.

  19. Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping; Zhou, Wei; Li, Ying; Wang, Jianchun; Wu, Ping, E-mail:


    Highlights: • CuO/ZnO nanocomposites have been synthesized by a one-step hydrothermal method. • The interaction between ZnO and CuO causes a modification of electronic structure. • The abnormal RTFM is discovered at the interface of CuO/ZnO. • The M{sub S} can be tuned by changing the phase ratios of the CuO and ZnO. • The indirect double-exchange model was employed to explain the origin of magnetism. - Abstract: CuO/ZnO nanocomposites have been successfully synthesized by a one-step hydrothermal method with different phase ratios. Field emission scanning electron microscopy and transmission electron microscopy results show that the obtained products of nanosheets are composed of small primary particles with an average size of about 20 nm. With the increasing proportion of CuO phase, nanosheets have significant collapse and the amount of small sheets increases obviously. The abnormal room temperature ferromagnetism was discovered at the interface between diamagnetic ZnO and antiferromagnetic CuO, which can be tuned by changing the phase ratios. Optical spectra indicate that the interaction between ZnO and CuO modifies the electronic structure of nanocomposites. XPS results verify the valence change of Cu ions and the presence of oxygen vacancies, which are ultimately responsible for the observed ferromagnetism. The indirect double-exchange model was employed to explain the origin of magnetism. Our study suggests that magnetically functional interfaces exhibit very appealing properties for novel devices.

  20. Study of the effect of hydrothermal process conditions on pasta quality


    Maache-Rezzoug, Zoulikha; Allaf, Karim


    International audience; The effect of hydrothermal treatment on the pasting, hydration properties and colour quality of commercial fresh pasta were studied following an Instantaneous Controlled Pressure Drop treatment. This hydrothermal procedure involves a physical modification at high temperature (

  1. High Temperature Piezoelectric Drill (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom


    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  2. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  3. Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps (United States)

    Volpi, Giorgio; Magri, Fabien; Frattini, Paolo; Crosta, Giovanni B.; Riva, Federico


    Thermal springs are widespread in the European Alps, with hundreds of geothermal sites known and exploited. The thermal circulation and fluid outflows were examined in the area around Bormio (Central Italian Alps), where ten geothermal springs discharge from dolomite bodies located close to the regional Zebrù thrust. Water is heated in deep circulation systems and upwells vigorously at a temperature of about 40 °C. Heat and fluid transport is explored by steady and transient three-dimensional finite-element simulations taking into account the effect of the last glaciation, which in the study area was recognized to end around 11,000-12,000 years ago. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite-element planar grid. Numerical simulations suggest a reactivation of the system following the end of the Last Glacial Maximum. Results correctly simulate the observed discharge rate of ca. 2,400 L/min and the spring temperatures after ca. 13,000 years from deglaciation, and show a complete cooling of the aquifer within a period of approximately 50,000 years. Groundwater flow and temperature patterns suggest that thermal water flows through a deep system crossing both sedimentary and metamorphic lithotypes along a fracture network associated with the thrust system. This example gives insights into the influences of deep alpine structures and glaciations on groundwater circulation that control the development of many hydrothermal systems not necessarily associated with convective heat flow.

  4. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)


    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  5. Improving the circular economy via hydrothermal processing of high-density waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  6. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans


    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  7. Structural and room temperature ferromagnetic properties of Ni doped ZnO nanoparticles via low-temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kun; Liu, Changzhen, E-mail:; Chen, Rui; Fang, Xiaoxiang; Wu, Xiuling; Liu, Jie


    A series of Zn{sub 1−x}Ni{sub x}O (x=0, 1%, 3%, 5%) nanoparticles have been synthesized via a low-temperature hydrothermal method. Influence of Ni doping concentration on the structure, morphology, optical properties and magnetism of the samples was investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometer and vibrating sample magnetometer instruments. The results show that the undoped and doped ZnO nanoparticles are both hexagonal wurtzite structures. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The images of SEM reveal that the structure of pure ZnO and Ni doped samples are nanoparticles which intended to form flakes with thickness of few nanometers, being overlain with each one to develop the network with some pores and voids. Based on the ultraviolet–visible (UV–vis) spectroscopy analysis, it indicates that the band gap energy decreases with the increasing concentration of Ni. Furthermore, The Ni doped ZnO samples didn't exhibit higher ultraviolet-light-driven photocatalytic activity compared to the undoped ZnO sample. Vibrating sample magnetometer was used for the magnetic property investigations, and the result indicates that room temperature ferromagnetism property of 3% Ni doped sample is attributed to oxygen vacancy and interaction between doped ions.

  8. High Temperature Aquifer Storage (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas


    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  9. The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids (United States)

    Lee, Namhey; Foustoukos, Dionysis I.; Sverjensky, Dimitri A.; Cody, George D.; Hazen, Robert M.


    Natural hydrothermal vent environments cover a wide range of physicochemical conditions involving temperature, pH and redox state. The stability of simple biomolecules such as amino acids in such environments is of interest in various fields of study from the origin of life to the metabolism of microbes at the present day. Numerous previous experimental studies have suggested that amino acids are unstable under hydrothermal conditions and decompose rapidly. However, previous studies have not effectively controlled the redox state of the hydrothermal fluids. Here we studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mM aqueous H2 at temperatures of 150, 200 and 250 °C and initial (25 °C) pH values of 6 and 10 in a flow-through hydrothermal reactor with reaction times from 3 to 36 min. We combined the experimental measurements with theoretical calculations to model the in situ aqueous speciation and pH values. As previously observed under hydrothermal conditions, the main reaction involves glutamate cyclizing to pyroglutamate through a simple dehydration reaction. However, the amounts of decomposition products of the glutamate detected, including succinate, formate, carbon dioxide and ammonia depend on the temperature, the pH and particularly the redox state of the fluid. In the absence of dissolved H2, glutamate decomposes in the sequence glutamate, glutaconate, α-hydroxyglutarate, ketoglutarate, formate and succinate, and ultimately to CO2 and micromolar quantities of H2(aq). Model speciation calculations indicate the CO2, formate and H2(aq) are not in metastable thermodynamic equilibrium. However, with 13 mM H2(aq) concentrations, the amounts of decomposition products are suppressed at all temperatures and pH values investigated. The small amounts of CO2 and formate present are calculated to be in metastable equilibrium with the H2. It is further proposed that there is a metastable equilibrium between glutamate

  10. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.


    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  11. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass (United States)

    Oktaviananda, Cyrilla; Rahmawati, Ria F.; Prasetya, Agus; Purnomo, Chandra W.; Yuliansyah, Ahmad T.; Cahyono, Rochim B.


    Hydrothemal treatment is a thermochemical process that converts biomass into a coal-like materials called hydrochar by applying elevated temperature to biomass in a suspension with water under saturated pressure for a certain time. With this conversion process, easy to handle fuel with well-defined properties can be created from biomass residues, even with high moisture content. In this research, the effects of temperature (200-330°C) and biomass to water ratio (5%-20%) at initial pressure of 1.0 MPa to hydrothermal treatment of biomass (in the form of sawdust) were examined. All samples were then characterized in terms of yield, proximate analysis, calorific value,and changes in functional groups by FTIR. Approximately 52-69% of the original material was recovered as hydrochar. The gross calorific value ranged from 5472-7032 cal/g compared 5180 cal/g in the raw material. Fixed carbon ranged from 26.035-wt% compared with 26.269 wt% in the raw material.

  12. Effect of hydrothermal processing on ginseng extract

    Directory of Open Access Journals (Sweden)

    Jebin Ryu


    Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over 140°C, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.

  13. Preliminary study of the importance of hydrothermal reactions on the temperature history of a hot, dry rock geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.R.


    The conditions under which the heat associated with hydrothermal reactions may be recovered from a dry rock geothermal reservoir were assessed. A theoretical computer model, based upon the finite element method, of a two-dimensional fracture in a hot, dry rock geothermal reservoir was developed and tested. Simulated water circulation through the fracture at constant velocity extracted heat from the wall rock via conduction as well as from chemical processes. Water temperature was assumed equal to the temperature of the wall rock boundary: thus, the combined processes of water circulation and heat transport were simply described by the two-dimensional heat diffusion equation with a time dependent water circulation boundary. The accuracy of the basic finite element approximation was tested by comparing numerical solutions to known analytical solutions for related mathematical models. Hydrothermal reactions occurring between water and a granitic source rock were subdivided into two categories; dissolving reactions and alteration reactions. It was found that the quartz dissolving reaction had little or no direct effect on reservoir temperatures for any combination of flow and fracture parameters. It was shown that hydrothermal alteration reactions could contribute significant chemical energy to a fractured system under conditions of small flow rate and large alteration velocities. Detailed studies of the time dependence of rock and water temperatures with and without alteration were determined.

  14. Low-temperature hydrothermal synthesis of the three-layered sodium cobaltite P3-Na{sub x}CoO{sub 2} (x ∼ 0.60)

    Energy Technology Data Exchange (ETDEWEB)

    Miclau, M., E-mail: [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu, 300224, Timisoara (Romania); Bokinala, K. [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu, 300224, Timisoara (Romania); CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Politehnica University of Timisoara, Pta Victoriei No. 2, 300006, Timisoara (Romania); Miclau, N. [Politehnica University of Timisoara, Pta Victoriei No. 2, 300006, Timisoara (Romania)


    Highlights: • We report direct synthesis of the high temperature stable phase, P3-Na{sub 0.6}CoO{sub 2}. • The hydrothermal synthesis of P3-Na{sub 0.6}CoO{sub 2} involves one step and low temperature. • The yield diagram for Na–Co–H{sub 2}O system has been builded up to 250 °C. • We propose a formation mechanism of P3-Na{sub 0.6}CoO{sub 2} phase using the unit cell theory. • The thermal stability of P3-Na{sub 0.6}CoO{sub 2} has been investigated by means of HT-XRD. - Abstract: In order to obtain the layered sodium cobalt oxide materials by hydrothermal synthesis, the yield diagram for Na–Co–H{sub 2}O system has been built and studied. In the same time, the well-known data of Co–H{sub 2}O system have been extended at 250 °C in basic solution. We had first synthesized directly the high temperature stable phase, P3-Na{sub 0.6}CoO{sub 2} by a one-step low-temperature hydrothermal method. The rhombohedral structure of P3-Na{sub 0.6}CoO{sub 2} has been determined by X-ray diffraction (XRD) and the purity of phases has been confirmed by XPS. The thermal stability of P3-Na{sub 0.6}CoO{sub 2} has been investigated by means of high temperature X-ray diffraction in 298–873 K range and when the temperature has reached 723 K, the completely transformation of P3-Na{sub 0.6}CoO{sub 2} in the rhombohedral stable phase α-NaCoO{sub 2} (space group R-3m) was observed. Also, a formation mechanism of P3-Na{sub 0.6}CoO{sub 2} phase using the unit cell theory in the hydrothermal process was proposed.

  15. Improving the circular economy via hydrothermal processing of high-density waste plastics. (United States)

    Helmer Pedersen, Thomas; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High Temperature Hybrid Elastomers (United States)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  17. The effects of temperature and color value on hydrochars' properties in hydrothermal carbonization. (United States)

    Li, Hui; Wang, Siyuan; Yuan, Xingzhong; Xi, Yanni; Huang, Zhongliang; Tan, Mengjiao; Li, Changzhu


    In order to investigate the influence of hydrothermal carbonization (HTC) on the properties of the hydrochars, sawdust with a particle size below 0.45mm was treated in an autoclave at 200-260°C. The physical and chemical characteristics of products were studied, including proximate analysis, elemental composition, fiber content, surface area, bulk density, energy yield, color value, combustion activities and pyrolysis kinetics, etc. It showed that the color of hydrochars turned blacker, greener, and bluer after HTC. The ash, carbon, hydrogen and lignin contents showed a good correlation (R2>0.96) with color coordinates. The decrement in stage 1 and increment in stage 2 of temperature intervals were attributed to the volatile matters removal and fixed carbon accumulation, improving the stability and safety of hydrochars combustion. As shown by the Kissenger-Akahira-Sunose (KAS) and Coats-Redfern calculations, the HTC process can also make the pyrolysis more stable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Iwan, S., E-mail: [Jurusan Fisika, FMIPA-UNJ, Rawamangun, Jakarta (Indonesia); Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Fauzia, Vivi [Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Umar, A. A. [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Sun, X. W. [School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue (Singapore)


    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffraction peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.

  19. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach (United States)

    Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na


    Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.

  20. Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. (United States)

    Ghanim, Bashir M; Pandey, Daya Shankar; Kwapinski, Witold; Leahy, James J


    In this study, hydrochars were prepared by hydrothermal carbonisation (HTC) of poultry litter (PL) at temperatures between 150-300°C with residence times of 30, 120 and 480min. The effects of treatment temperature and residence time on the yield and composition of hydrochar were investigated. Both treatment temperature and residence time effects were observed however, the effect of residence time was lower. The results indicated that the HHV was improved by up to 25.17% and the overall ash in hydrochar was significantly lower compared to PL, however this coincided with a lower hydrochar yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Lassen hydrothermal system (United States)

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.


    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  2. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations (United States)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.


    Remotely operated vehicle (ROV) dives were made at 7 submarine volcanoes between 14-23° N in the Mariana Arc in April 2004 with the ROPOS ROV. Six of these volcanoes were known to be hydrothermally active from CTD data collected during a previous expedition in March 2003: NW Rota-1, E Diamante, NW Eifuku, Daikoku, Kasuga-2, and Maug, a partly submerged caldera. The physical setting of hydrothermal venting varies widely from volcano to volcano. High-resolution bathymetric surveys of the summits of NW Rota-1 and NW Eifuku volcanoes were conducted with an Imagenex scanning sonar mounted on ROPOS. Near bottom observations during ROPOS dives were recorded with digital video and a digital still camera and the dives were navigated acoustically from the R/V Thompson using an ultra-short baseline system. The mapping and dive observations reveal the following: (1) The summits of some volcanoes have pervasive diffuse venting (NW Rota-1, Daikoku, NW Eifuku) suggesting that hydrothermal fluids are able to circulate freely within a permeable edifice. At other volcanoes, the hydrothermal venting is more localized (Kasuga-2, Maug, E Diamante), suggesting more restricted permeability pathways. (2) Some volcanoes have both focused venting at depth and diffuse venting near the summit (E Diamante, NW Eifuku). Where the hydrothermal vents are focused, fluid flow appears to be localized by massive lava outcrops that form steep cliffs and ridges, or by subsurface structures such as dikes. High-temperature (240° C) venting was only observed at E Diamante volcano, where the "Black Forest" vent field is located on the side of a constructional cone near the middle of E Diamante caldera at a depth of 350 m. On the side of an adjacent shallower cone, the venting style changed to diffuse discharge and it extended all the way up into the photic zone (167 m). At NW Eifuku, the pattern of both deep-focused and shallow-diffuse venting is repeated. "Champagne vent" is located at 1607 m, ~150 m

  3. Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal. (United States)

    Wang, Lixia; Li, Jianchen; Wang, Zhitao; Zhao, Lijun; Jiang, Qing


    A facile low-temperature hydrothermal process to synthesize α-Fe/Fe(3)O(4) nanocomposite is reported. TEM and HRTEM revealed that the α-Fe/Fe(3)O(4) nanocomposite was composed of catenulate α-Fe and lamellar structured Fe(3)O(4). The weight ratio of α-Fe in the α-Fe/Fe(3)O(4) nanocomposite is 35.6%. The α-Fe/Fe(3)O(4) nanocomposite demonstrates an extremely high Congo red (CR) removal efficiency from waste water showing almost complete removal within 3 min. For 100 mg L(-1) of CR aqueous solution, the maximum CR removal can reach 1297.06 mg g(-1). The large saturation magnetization (80.5 emu g(-1)) of the nanocomposite allows fast separation of α-Fe/Fe(3)O(4) nanoparticles loaded with CR from the liquid suspension. The synergistic effect of the nanocomposite may contribute to the enhanced CR removal ability, because the CR can be removed by reduction reaction and adsorption at the same time. Based on the degradation products identified by UV-Vis spectra, XRD and FTIR spectra, a possible degradation mechanism of CR on the α-Fe/Fe(3)O(4) composite was proposed. The significantly reduced treatment time required to remove the CR and the simple, low-cost and pollution-free preparation method make α-Fe/Fe(3)O(4) nanocomposite promising for highly efficient removal of dyes from waste water.


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  5. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)


    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  6. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  7. Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel)

    Energy Technology Data Exchange (ETDEWEB)

    Quirino, M.R. [Chemistry Laboratory of Federal University of Paraiba (LABQUIM), Campus III, 58200-000 Bananeiras, PB (Brazil); Oliveira, M.J.C. [Academic Unit of Materials Engineering, UFCG, Campina Grande Campus I, 58429-900 Campina Grande, PB (Brazil); Keyson, D. [Laboratory of study in Science, DME, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, PB (Brazil); Lucena, G.L., E-mail: [Chemistry Laboratory of Federal University of Paraiba (LABQUIM), Campus III, 58200-000 Bananeiras, PB (Brazil); Oliveira, J.B.L. [Federal University of Rio Grande do Norte, UFRN, Campus I, 59078-970 Natal, RN (Brazil); Gama, L. [Academic Unit of Materials Engineering, UFCG, Campina Grande Campus I, 58429-900 Campina Grande, PB (Brazil)


    Highlights: • ZnAl{sub 2}O{sub 4} spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min. • The powders show high specific surface area. • ZAT{sub b}15 showed activity of 52.22% for the conversion of soybean oil into biodiesel. - Abstract: Zinc aluminate is a material with high thermal stability and high mechanical strength that, owing to these properties, is used as a catalyst or support. In this work, zinc aluminate spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min at a low temperature (150 °C) without templates, using only Al(NO{sub 3}){sub 3}·9H{sub 2}O, Zn(NO{sub 3}){sub 2}·6H{sub 2}O, and urea as precursors and applied in the transesterification of soybean oil. X-ray diffraction analysis showed that ZnAl{sub 2}O{sub 4} had a cubic structure without secondary phases. The nitrogen adsorption measurements (BET) revealed a high surface area (266.57 m{sup 2} g{sup −1}) for the nanopowder synthesized in 15 min. This powder showed activity of 52.22% for the catalytic conversion of soybean oil into biodiesel by transesterification.

  8. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel


    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  9. Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis. (United States)

    Zhou, Zhi; Bowland, Christopher C; Patterson, Brendan A; Malakooti, Mohammad H; Sodano, Henry A


    Two-dimensional (2D) ferroelectric films have vast applications due to their dielectric, ferroelectric, and piezoelectric properties that meet the requirements of sensors, nonvolatile ferroelectric random access memory (NVFeRAM) devices, and micro-electromechanical systems (MEMS). However, the small surface area of these 2D ferroelectric films has limited their ability to achieve higher memory storage density in NVFeRAM devices and more sensitive sensors and transducer. Thus, conformally deposited ferroelectric films have been actively studied for these applications in order to create three-dimensional (3D) structures, which lead to a larger surface area. Most of the current methods developed for the conformal deposition of ferroelectric films, such as metal-organic chemical vapor deposition (MOCVD) and plasma-enhanced vapor deposition (PECVD), are limited by high temperatures and unstable and toxic organic precursors. In this paper, an innovative fabrication method for barium titanate (BaTiO3) textured films with 3D architectures is introduced to alleviate these issues. This fabrication method is based on converting conformally grown rutile TiO2 nanowire arrays into BaTiO3 textured films using a simple two-step hydrothermal process which allows for thickness-controlled growth of conformal films on patterned silicon wafers coated with fluorine-doped tin oxide (FTO). Moreover, the processing parameters have been optimized to achieve a high piezoelectric coupling coefficient of 100 pm/V. This high piezoelectric response along with high relative dielectric constant (εr = 1600) of the conformally grown textured BaTiO3 films demonstrates their potential application in sensors, NVFeRAM, and MEMS.

  10. Investigating the effects of post-heat treatment temperatures on the structure of prepared nanorod by hydrothermal method

    Directory of Open Access Journals (Sweden)

    M. Hamadanian


    Full Text Available In this study, the TiO2 nanorods were synthesized from P25 TiO2 nanoparticles by hydrothermal method in 10 M NaOH solution. The effects of annealing temperatures on produced nanorods were investigated  by scanning  electron microscopy (SEM X-ray diffraction (XRD and photoluminescence (PL spectroscopy. Diameter growth and  changes  of  surface  oxygen  defects of  synthesized nanorods are studied  with  increasing  annealing temperatures.

  11. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang


    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  12. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  13. Life at High Temperatures

    Indian Academy of Sciences (India)


    Sep 15, 2005 ... or more in the vicinity of geothermal vents in the deep sea and the plant Tidestromia oblongifolia (Amaranthaceae) found in Death. Valley in California, where the hottest temperature on earth ever recorded during 43 consecutive days in 1917 was >48 °C. (Guinness Book of W orId Records, 1999).

  14. The effects of hydrothermal temperature on the photocatalytic performance of ZnIn{sub 2}S{sub 4} for hydrogen generation under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fei [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Zhu, Rongshu, E-mail: [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Song, Kelin; Niu, Minli [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Ouyang, Feng, E-mail: [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Cao, Gang, E-mail: [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China)


    Highlights: • The ZnIn{sub 2}S{sub 4} (120, 140, 160, 180, and 200 °C) was prepared. • The activities splitting water to hydrogen under visible light were evaluated. • The activity achieved the best when hydrothermal temperature was 160 °C. • The activity order is related to the surface morphology and surface defects. - Abstract: A series of ZnIn{sub 2}S{sub 4} photocatalysts were successfully synthesized using the hydrothermal method with different hydrothermal temperatures (120, 140, 160, 180, and 200 °C) and characterized by various analysis techniques, such as UV–vis, XRD, SEM, BET and PL. The results indicated that these photocatalysts had a similar band gap. The hydrothermal temperature had a huge influence on the properties of the photocatalysts such as the BET surface area, the total pore volume, the average pore diameter, the defects and the morphology. The photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated based on photocatalytic hydrogen production from water under visible-light irradiation. The activity order is attributed to the coefficient of the surface morphology and the surface defects. The hydrogen production efficiency achieved the best when the hydrothermal temperature was 160 °C. On the basis of the characterization of the catalysts, the effects of the hydrothermal temperature on the photocatalytic activity of ZnIn{sub 2}S{sub 4} were discussed.

  15. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng


    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  16. Additive-free hydrothermal synthesis of high aspect ratio ZnO particles from aqueous solution


    Elen, Ken; van Bael, Marlies; Van den Rul, Heidi; D'Haen, Jan; MULLENS, Jules


    In this work, a new hydrothermal process is described, in which, for the first time, an aquatic Zn2+ precursor is used for the synthesis of high aspect ratio ZnO particles, without the presence of any organic additive. Characterization of the particles is carried out by XRD, TEM, and SAED. Also the influence of different reaction times and of another reaction medium on the morphology and the dimensions of the rods is investigated.

  17. High-resolution Topography of PACMANUS and DESMOS Hydrothermal Fields in the Manus Basin through ROV "FAXIAN" (United States)

    Luan, Z.; Ma, X.; Yan, J.; Zhang, X.; Zheng, C.; Sun, D.


    High-resolution topography can help us deeply understand the seabed and related geological processes (e.g. hydrothermal/cold spring systems) in the deep sea areas. However, such studies are rare in China due to the limit of deep-sea detection technology. Here, we report the advances of the application of ROV in China and the newly measured high-resolution topographical data in PACMANUS and DESMOS hydrothermal fields. In June 2015, the ROV "FAXIAN" with a multibeam system (Kongsberg EM2040) was deployed to measure the topography of PACMANUS and DESMOS hydrothermal fields in the Manus basin. A composite positioning system on the ROV provided long baseline (LBL) navigation and positioning during measurements, giving a high positioning accuracy (better than 0.5m). The raw bathymetric data obtained were processed using CARIS HIPS (version 8.1). Based on the high-resolution data, we can describe the topographical details of the PACMANUS and DESMOS hydrothermal fields. High-resolution terrain clearly shows the detailed characters of the topography in the PACMANUS hydrothermal field, and some cones are corresponding to the pre discovered hydrothermal points and volcanic area. Most hydrothermal points in the PACMANUS hydrothermal field mainly developed on the steep slopes with a gradient exceeding 30 °. In contrast, the DESMOS field is a caldera that is approximately 250 m deep in the center with an E-W diameter of approximately1 km and a N-S diameter of approximately 2 km. The seafloor is much steeper on the inner side of the circular fracture. Two highlands occur in the northern and the southern flanks of the caldera. Video record indicated that pillow lava, sulfide talus, breccia, anhydrite, outcrops, and sediment all appeared in the DESMOS field. This is the first time for the ROV "FAXIAN" to be used in near-bottom topography measurements in the hydrothermal fields, opening a window of deep-sea researches in China.

  18. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  19. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin - Hydrothermal Vent Area - Influence of Temperature and Substrates

    DEFF Research Database (Denmark)



    Microbial sulfate reduction was studied by a S-35 tracer technique in sediments from the hydrothermal vent site in Guaymas Basin, Gulf of California, Mexico. In situ temperatures ranged from 2.7-degrees-C in the overlying seawater to > 120-degrees-C at 30 cm depth in the hydrothermal sediment....... Sulfate reduction was measured in intact cores of hydrothermal sediment at 3-degrees, 20-degrees, 35-degrees, 50-degrees, 70-degrees, and 90-degrees-C. The maximum rates of sulfate reduction were found in the upper 0-2 cm of the sediment and ranged from 32 nmol cm-3 d-1 at 90-degrees-C to 1563 nmol cm-3 d......-1 at 70-degrees-C. The rates of sulfate reduction rapidly decreased with depth in the upper 0- 10 cm of the sediment and the maximal depth-integrated rate (0-10 cm) was 70.3 mmol SO42- m-2 d-1 at 70-degrees-C. In comparison, the sulfate reduction rate in nonhydrothermal sediment from the vent area...

  20. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten


    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  1. Tuning the Morphological Structure and Photocatalytic Activity of Nitrogen-Doped (BiO2CO3 by the Hydrothermal Temperature

    Directory of Open Access Journals (Sweden)

    Chongjun Wang


    Full Text Available Various nitrogen-doped hierarchical (BiO2CO3 nanosheets architectures were synthesized by a facile one-step template-free hydrothermal method through controlling the hydrothermal temperature (HT. The as-synthesized samples were characterized by XRD, SEM, FT-IR, XPS, and UV-vis DRS. The photocatalytic activity of the samples was evaluated towards degradation of NO at ppb level in air under visible light (VIL. It was found that HT acted as a crucial factor in determining the morphology of the samples. The rosa chinensis-like, red camellia-like, and lamina-like of nitrogen-doped (BiO2CO3 (N-BOC micro-/nanostructures can be selectively fabricated under hydrothermal temperatures of 150, 180, and 210°C. The thickness of the nanosheets was in direct proportion to the increasing HT. Nitrogen-doping can extend the light absorption spectra of (BiO3CO3 to visible light region and enhance the VIL photocatalytic activity. Especially, the red camellia-like N-BOC-180 exhibited the highest photocatalytic performance, superior to the well-known VIL-driven photocatalyst C-doped TiO2 and N-doped TiO2. The high photocatalytic performance of N-BOC was attributed to the synergetic effects of enhanced visible light absorption, multiple light-reflections between the nanosheets, and accelerated transfer of reactants and product. This research could provide new insights to the development of excellent photocatalyst with efficient performance for pollution control.

  2. Hydrothermal Synthesis of Zeolite from Coal Class F Fly Ash. Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Goñi, S.


    Full Text Available The influence of temperature of alkaline hydrothermal treatment on the conversion in zeolite of Spanish coal low calcium-fly ash (ASTM class F is presented in this work. Zeolite Na-P1 gismondine type (Na6Al6Si10O32.12H2O was formed at the temperature of 100ºC, which transformed in zeolite; analcime-C type (Na(Si2AlO6H2O and sodalite (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O at 200ºC together with traces of tobermorite-11Å (Ca5(OH2Si6O16.4H2O. At this temperature the 100% of the fly ash reaction was allowed. An equivalent study was carried out in water as reference. The zeolite conversion of the fly ash was characterized by X ray diffraction (XRD, FT infrared (FTIR spectroscopy, surface area (BET-N2 and thermal analyses.

    En este trabajo se presenta el papel que juega la temperatura durante el tratamiento hidrotermal en medio alcalino para convertir una ceniza volante de bajo contenido en cal (clase F, según la norma ASTM en zeolita. Durante este tratamiento a la temperatura de 100ºC se forma Zeolita Na-P1 tipo gismondina (Na6Al6Si10O32.12H2O; al elevar la temperatura a 200ºC, dicha zeolita se transforma en zeolita Analcima C (Na(Si2AlO6H2O y en fase sodalita (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O junto con trazas de tobermorita-11Å (Ca5(OH2Si6O16.4H2O. A esta temperatura y en estas condiciones se ha conseguido un 100% de reacción. Un estudio equivalente se ha llevado a cabo empleando agua como medio de referencia. La conversión de ceniza volante en zeolita se ha caracterizado mediante técnicas, como difracción de Rayos X (DRX, espectroscopia

  3. High-Temperature Superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was  significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

  4. Effects of Temperature and Pressure on Sulfate Reduction and Anaerobic Oxidation of Methane in Hydrothermal Sediments of Guaymas Basin†


    Kallmeyer, Jens; Boetius, Antje


    Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200°C and pressures of 1 × 105, 2.2 × 107, and 4.5 × 107 Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95°C and 2.2 × 107 and 4.5 × 107 Pa. Maximal AOM was observed at 35 to 90°C but generally accounted for less than 5% of SR.

  5. 2H-CuScO2 Prepared by Low-Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties. (United States)

    Draskovic, Thomas I; Yu, Mingzhe; Wu, Yiying


    The delafossite structured CuScO2 is a p-type, wide band gap oxide that has been shown to support significant oxygen intercalation, leading to darkened color and increased conductivity. Control of this oxidation proves difficult by the conventional high-temperature solid-state syntheses. In addition, a pure hexagonal (2H) or rhombohedral (3R) polytype of CuScO2 requires careful control of synthetic parameters or intentional doping. Lower-temperature hydrothermal syntheses have thus far led to only a mixed 2H/3R product. Herein, control of hydrothermal conditions with the consideration of copper and scandium hydrolysis led to the synthesis of light beige, hierarchically structured particles of 2H-CuScO2. Absorption of the particles in the visible range was found to increase upon annealing of the sample in air, most likely due to the Cu(II) formation from oxygen interstitials. X-ray photoelectron spectroscopy confirmed purely Cu(I) in the as-synthesized 2H-CuScO2 and increased Cu(II) amounts upon annealing. Oxidation of the samples also led to shifts of the Fermi level toward the valence band as observed by increases in the measured flat band potentials versus normal hydrogen electrode, confirming increased hole carrier densities.

  6. High Temperature Electrostrictive Ceramics Project (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  7. Synthesis of highly disperse tetragonal BaTiO3 nanoparticles with core–shell by a hydrothermal method

    Directory of Open Access Journals (Sweden)

    Jinhui Li


    Full Text Available In order to synthesize of high-dispersion and tetragonal BaTiO3 (BT nanoparticle, a hydrothermal method is used in a mixture of chloride metal sources and KOH with polyvinylpyrrolidone (PVP. The properties of BT–PVPs prepared by different reaction temperature and time are investigated via XRD, FE-SEM, DLS, FT-IR, and TEM to clarify the changes of the crystal phase, dispersion, and particle structure. The reaction is finished at 230 °C for 24 h and the critical reaction condition for that the crystal phase of the obtained BT particle changed from the cubic to the tetragonal is found to be 190 °C fixed in reaction time 24 h, and 9 h. During reaction the PVP on the BT surface decomposed to different form, and the PVP plays the role of dispersant in aqueous solution. By the hydrothermal condition of 230 °C for 24 h almost monodisperse BT–PVP with sizes of 83 nm and tetragonality (c/a of 1.0062 were synthesized. The structure of nanoparticle, core (BT–shell (PVP was investigated by FT-IR and direct observed by TEM and the mechanism of particle growth and dispersion was discussed.

  8. High Temperature Surface Interactions (United States)


    oxidation rate of "pure SiC* in air (from compilation of data by Schlichting6). For T < 14001C, partial cristobalite formation; T > 1400"C, decreased...aluminium content is high enough, the beta phase percolates and contains a dispersion of -- Ni particles. Such a tructure is certainly less favourable

  9. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method (United States)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed


    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.


    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek


    Full Text Available The main objective of this article is to describe the influence of hydrothermal curing conditions in an autoclave device (different pressure and temperature, which took place at various ages of a fresh mixture (cement matrix – CM, and fibre-reinforced cement matrix – FRCM, on textile reinforced concrete production. The positive influence of autoclaving has been evaluated through the results of physical and mechanical testing – compressive strength, flexural strength, bulk density and dynamic modulus of elasticity, which have been measured on specimens with the following dimensions: 40×40×160mm3. In addition, it has been found that increasing the pressure and temperature resulted in higher values of measured characteristics. The results indicate that the most suitable surrounding conditions are 0.6MPa, and 165 °C at the age of 21 hours; the final compressive strength of cement matrix is 134.3MPa and its flexural strength is 25.9MPa (standard cured samples achieve 114.6MPa and 15.7MPa. Hydrothermal curing is even more effective for cement matrix reinforced by steel fibres (for example, the compressive strength can reach 177.5MPa, while laboratory-cured samples achieve a compressive strength of 108.5MPa.

  11. Reactive temperature and growth time effects on the morphology of PMN–PT nanorods by hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, W.B., E-mail: [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); He, K. [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Xu, D., E-mail: [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, C.; Bai, X.Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shuai, Y.; Wu, C.G.; Zhang, W.L. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)


    Single crystalline nanorod (Nr) is considered to be a promising candidate in many nano-electric devices due to its excellent electric properties. Here we report a method to fabricate 0.65(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN–PT) single crystalline Nr by controlling the hydrothermal synthesis temperature and reactive time. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been employed to investigate the morphology and crystal characteristics of the PMN–PT Nrs. It was confirmed that single crystalline PMN–PT Nrs have been fabricated under optimal synthesis condition. Finally, the ferroelectric properties of PMN–PT Nrs were measured, and the coercive field, remnant polarization and spontaneous polarization of the nanorods are 2.78 kV/mm, 17.08 μC/cm{sup 2} and 31.25 μC/cm{sup 2} respectively. - Highlights: • 0.65(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN–PT) nanorods were prepared by the hydrothermal method. • The hydrothermal temperature and reaction time have importance influence on the morphology of PMN–PT Nanorods. • The coercive field, remnant polarization and spontaneous polarization of PMN–PT Nrs are: 2.78 kV/mm, 17.08 μc/cm{sup 2} and 31.25 μc/cm{sup 2}.

  12. Effect of oxygen vacancy induced by pulsed magnetic field on the room-temperature ferromagnetic Ni-doped ZnO synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Tariq, Muhammad; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Jin, Hongmin [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing [School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)


    Room temperature ferromagnetic 2% Ni doped ZnO rods were synthesized by high pulsed magnetic field-assisted hydrothermal method. A detailed study on the effect of high pulsed magnetic field on morphology, structural and magnetic properties of the ZnO rods has been carried out systematically by varying the intensity of field from 0 to 4 T. X-ray diffraction, Energy-dispersive spectroscopy measurements, and Raman spectra analysis suggest that all the samples have hexagonal wurtzite structure without detectable impurity. Field emission scanning electron microscopy images indicate that the particle size of samples decrease with increasing intensity of field. High resolution transmission electron microscopy observation ensures that the Ni ions addition do not change the wurtzite host matrix. X-ray photoelectron spectroscopy confirms the incorporation of Ni elements as divalent state and the dominant presence of oxygen vacancies in samples fabricated under 4 T pulsed magnetic field. Hysteresis loops demonstrate that the saturation magnetization increased regularly with the mounting magnetic field. On the framework of bound magnetic polaron model, the rising content of oxygen vacancies, as donor defect, lead to the stronger ferromagnetism in samples with pulsed magnetic field. Our findings provide a new insight for tuning the defect density by precisely controlling the intensity of field in order to get the desired magnetic behavior at room temperature. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for 2%Ni doped ZnO as prepared with 0, 1, 2, 3 and 4 T pulsed magnetic field at 290 K. For 0 T sample, no ferromagnetic response is observed. But all the samples synthesized with field were well-defined hysteresis loops. The saturation magnetization estimated from the hysteresis loop come out to be ∼0.0024, 0.0023, 0.0036 and 0.0061 emu/g for 1 T, 2 T, 3 T and 4 T samples, respectively. As shown in the curves, the room-temperature

  13. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    Snail Research Unit of the SAMRC and Department of Zoology, Potchefstroom University for CHE,. Potchefstroom. The survival of the freshwater snail species Bulinus africanus, Bulinus g/obosus and Biompha/aria pfeifferi at extreme high temperatures was experimentally investigated. Snails were exposed to temperatures ...


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  15. High Temperature Bell Motor Project (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  16. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  17. Variability of low temperature hydrothermal alteration in upper ocean crust: Juan de Fuca Ridge and North Pond, Mid-Atlantic Ridge (United States)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Teagle, D. A. H.


    Over 2/3 of the global hydrothermal heat flux occurs at low temperatures (sports a thick sediment blanket. Rare basement outcrops are sites of fluid recharge and discharge. The average alteration extent (~10% secondary minerals), oxidation ratio (Fe3+/FeTOT=34%), and alteration character (orange, green, grey halos) of basement is constant with crustal age and depth along a 0.97-3.6 m.yr transect of ODP basement holes. However, vesicle fills record an increasingly complex history of successive alteration with age. In contrast, North Pond, a ~8 m.yr-old sediment-filled basin at 22N on the slow spreading Mid Atlantic Ridge, hosts rapid, relatively cool SE to NW basinal fluid flow. Average alteration extent (~10%) and oxidation ratio (33%) of Hole 395A basalts are similar to JdF. However, 395A cores are dominated by orange alteration halos, lack celadonite, but have abundant zeolite. Vesicle fill combinations are highly variable, but the most common fill progression is from oxidising to less oxidising secondary assemblages. The comparable extent of alteration between these two sites and the absence of an age relationship on the JdF suggests that the alteration extent of the upper crust is uniform and mostly established by 1 Myr. However, the variable alteration character reflects the influence of regional hydrology on hydrothermal alteration.

  18. Hydrothermal extraction of antioxidant compounds from mangosteen pericarp with low-transition-temperature mixture and sonication pretreatment (United States)

    Machmudah, Siti; Widiyastuti, Nurtono, Tantular; Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu


    Antioxidant compounds from mangosteen pericarps have been extracted with low-transition-temperature mixture (LTTM) assisted hydrothermal method. Extracted antioxidant compounds were determined as xanthone and total phenolic compounds. The effects of temperature, concentration of LTTM, and sonication pretreatment on the recovery of xanthone and total phenolic compounds were investigated. Extraction were carried out in a batch extractor at various temperatures (120 - 160°C), concentrations of LTTM (0.1 - 0.3 mg/mL), and sonication pretreatments (0 - 10 min). LTTM used for extraction was consisted of citric acid as hydrogen bond donor and alanine as hydrogen bond acceptor. Xanthone and total phenolic compounds were analyzed by spectrophotometer. In order to determine the effect of extraction condition on the antioxidant efficiency of the extract, the antioxidant efficiency of extract were analyzed by DPPH assay method. Based on the result, the recovery of xanthone increased as increasing temperature and concentration of LTTM. Inversely, the recovery of total phenolic compounds decreased as increasing temperature. The sonication pretreatment had significantly effect on the recovery of both xanthone and total phenolic compounds, however the optimum condition of sonication pretreatment was at 5 min. The antioxidant efficiency of the extract was affected by the extraction condition, and the highest antioxidant efficiency was 1.395 obtained at temperature of 120°C, LTTM concentration of 0.3 mg/mL, and sonication time of 5 min.

  19. Hydrothermal Biogeochemistry (United States)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.


    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  20. Temperature Effect of Crystalinity in Cellulose Nanocrystal from Oil Palm Empty Fruit Bunch (OPEFB using Sonication-Hydrothermal Methods

    Directory of Open Access Journals (Sweden)



    Full Text Available Production of cellulose nanocrystals (CNCs from cellulose of oil palm empty fruit bunches (OPEFB have been done. The delignification of OPEFB was mixed with 17,5% NaOH and carried out in the three-neck flask with refluxed for 2 hour at 80oC. Further the suspension was bleached with NaOCl 2% for 1 hour at 70oC. Then, to produce CNCs, Cellulose was firstly sonicated for 30 minutes at 40oC. After that cellulose was hydrolized at hydrothermal reactor for 0,1,2,3,4,5, hours at 110 and 120oC respectively. After filtration and washing, CNCs was analyzed by X-Ray Diffraction and the result shows that the grade of the highest CNCs crystalinity at consentration of HCL 2 M at a temperature of 110oC with reaction time of 2 hours is equal to 75.87%. It can be concluded that sonication-hydrothermal can increase the grade of crystalinity of cellulose nanocrystal.

  1. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry


    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  2. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R


    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  3. Hydrothermal synthesis of tetragonal BaTiO3 nanotube arrays with high dielectric performance. (United States)

    Wang, Liming; Deng, Xiangyun; Li, Jianbao; Liao, Xinxing; Zhang, Guoqing; Wang, Chunpeng; Su, Kuifan


    Tetragonal Barium titanate (BaTiO3) nanotube arrays have been prepared using the template-assisted hydrothermal method combined with an annealing process. The in-situ chemical conversion of TiO2 nanotube array templates ensured that BaTiO3 maintained the morphology of the nanotube architectures. Moreover, X-ray diffraction and Raman spectrum characterization were used to confirm that the BaTiO3 nanotube arrays had a tetragonal phase after the use of a simple annealing technique. Typical hysteresis loops showed their ferroelectricity, with the remanent polarization and coercive fields being 2.57 microC/cm2 and 2.52 kV/cm, respectively. The relative dielectric constant of the tetragonal BaTiO3 nanotube arrays reached up to 1000 and the dielectric loss was as low as 0.02 at 1 kHz at room temperature.

  4. HIgh Temperature Photocatalysis over Semiconductors (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  5. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  6. High temperature superconductor accelerator magnets


    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is ...

  7. High Temperature Superconductor Accelerator Magnets


    Van Nugteren, Jeroen; ten Kate, Herman; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet ...

  8. A Facile Low-Temperature Hydrothermal Method to Prepare Anatase Titania/Cellulose Aerogels with Strong Photocatalytic Activities for Rhodamine B and Methyl Orange Degradations

    Directory of Open Access Journals (Sweden)

    Caichao Wan


    Full Text Available A facile low-temperature hydrothermal method for in situ preparation of anatase titania (TiO2 homogeneously dispersed in cellulose aerogels substrates was described. The formed anatase TiO2 aggregations composed of a mass of evenly dispersed TiO2 nanoparticles with sizes of 2−5 nm were embedded in the interconnected three-dimensional (3D architecture of the cellulose aerogels matrixes without large-scale reunion phenomenon; meanwhile, the obtained anatase titania/cellulose (ATC aerogels also had a high loading amount of TiO2 (ca. 35.7%. Furthermore, compared with commercially available Degussa P25, ATC aerogels displayed comparable photocatalytic activities for Rhodamine B and methyl orange degradations under UV radiation, which might be useful in the fields of catalysts, wastewater treatment, and organic pollutant degradation. Meanwhile, the photocatalytic reaction behaviors of ATC aerogels under UV irradiation were also illuminated.

  9. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogino

    Full Text Available The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  10. Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia

    Directory of Open Access Journals (Sweden)

    Breiter Karel


    Full Text Available A unique case of low-temperature metamorphic (hydrothermal overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc-rich zircon, fluorapatite, topaz, schorlitic tourmaline, the following evolutionary scenario is proposed: (1 Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2 The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite to albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3 Alpine (Cretaceous thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO2 unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

  11. Superconducting double perovskite bismuth oxide prepared by a low-temperature hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Mirza H.K.; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Mozahar Ali, M.; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao [Center for Crystal Science and Technology, University of Yamanashi, Kofu (Japan); Oka, Kengo; Azuma, Masaki [Materials and Structural laboratory, Tokyo Institute of Technology, Kanagawa (Japan); Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Hiroshima (Japan); Azharul Islam, A.K.M. [Department of Physics, University of Rajshahi (Bangladesh)


    Perovskite-type structures (ABO{sub 3}) have received significant attention because of their crystallographic aspects and physical properties, but there has been no clear evidence of a superconductor with a double-perovskite-type structure, whose different elements occupy A and/or B sites in ordered ways. In this report, hydrothermal synthesis at 220 C produced a new superconductor with an A-site-ordered double perovskite structure, (Na{sub 0.25}K{sub 0.45})(Ba{sub 1.00}){sub 3}(Bi{sub 1.00}){sub 4}O{sub 12}, with a maximum T{sub c} of about 27 K. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. High-Temperature Optical Sensor (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.


    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  13. Solute strengthening at high temperatures (United States)

    Leyson, G. P. M.; Curtin, W. A.


    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  14. High temperature superconductor current leads (United States)

    Hull, John R.; Poeppel, Roger B.


    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  15. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Wate Bakker


    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  16. Nonlinear plasmonics at high temperatures (United States)

    Sivan, Yonatan; Chu, Shi-Wei


    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  17. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan


    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  18. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xun [School of Chemical Engineering of Hefei University of Technology, Hefei, 230009 (China); Shi Tiejun, E-mail: [School of Chemical Engineering of Hefei University of Technology, Hefei, 230009 (China); Zhou Haiou [School of Materials and Chemical Engineering of Anhui University of Architecture, Hefei, 230901 (China)


    Hydrothermal method was utilized to prepare reduced graphene oxide (RGO) and fabricate ZnO-RGO hybrid (ZnO-RGO) with zinc nitrate hexahydrate and graphene oxide (GO) as raw materials under pH value of 11 adjusted by ammonia water. During the process of reduction of GO, hydrothermal condition with ammonia provided thermal and chemical factors to synthesize RGO. The retained functional groups on RGO planes played an important role in anchoring ZnO to RGO, which was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy and photoluminescence spectra. The various mass ratios of zinc nitrate hexahydrate to GO used to prepare ZnO-RGO impacted significantly on the morphology of ZnO nanostructures such as nanoparticles and nanorods. And, the RGO sheets wrapped ZnO nanoparticles and nanorods very tightly. After the emission of photo electrons from ZnO, RGO in ZnO-RGO can effectively transfer the photo electrons to exhibit a high performance and reproducibility in photocatalytic degradation toward methylene blue (MB) absorbed on the surface of RGO through {pi}-{pi} conjugation.

  19. Pengaruh Variasi Temperatur Post Hydrothermal Terhadap Sensitivitas Sensor Gas Co Dari Material Wo3 Hasil Proses Sol Gel

    Directory of Open Access Journals (Sweden)

    Agung Seras Perdana


    Full Text Available Gas karbon monoksida (CO adalah gas yang tidak berbau, tidak berwarna, dan tidak larut dalam air, tetapi beracun bila berikatan secara metabolis dengan darah ketika terhirup kedalam tubuh manusia.     Oleh karena itu diperlukan suatu alatberupa sensor untuk mendeteksi keberadaan gas CO secara dini untuk mengindari efek yang berbahaya bagi kesehatan.  Penelitian ini bertujuan mempersiapkan material WO3 sebagai sensor gas CO. Proses sintesa material WO3 dilakukan dengan metode sol gel menggunakan WCl6, ethanol, dan NH4OH. Chip sensor dibuat dari serbuk hasil proses post hydrothermal dengan variasi temperatur 160oC, 180oC dan 200oC selama 12 jam dikompaksi pada tekanan 150 bar dan dianil 300oC selama 1 jam. Proses karakterisasi material WO3 dilakukan dengan pengujian Scanning Electron Microscope (SEM dan X-Ray Diffraction (XRD. Luas permukaan aktif diukur dengan Brauner Emmet Teller (BET, dan pengujian sensitivitas menggunakan alat Potentiostat sebagai Instrumen pengukur arus.     Hasil pengujian menunjukkan struktur kristal adalah monoklinik. Sensitivitas  naik seiring dengan kenaikan temperatur operasi, begitu juga dengan peningkatan konsentrasi gas. Nilai sensitivitas tertinggi adalah pada sampel temperatur 160oC dengan temperatur operasi 100oC dan konsentrasi gas 500 ppm.

  20. Chemistry of high temperature superconductors

    CERN Document Server


    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  1. High temperature component life assessment

    CERN Document Server

    Webster, G A


    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  2. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.


    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  3. High-temperature flooding injury (United States)

    This problem, also called scald, is most serious in the hot desert valleys of the southwestern United States, subtropical regions in eastern Australia, and western Asia and northern Africa (Middle East) where fields are established and irrigated under high temperatures. The disorder also occurs to...

  4. High temperature thermoelectric energy conversion (United States)

    Wood, Charles


    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  5. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  6. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze


    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High Temperature Composite Heat Exchangers (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.


    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  8. First results from the in-situ temperature measurements by the newly developed downhole tool during the drilling cruise in the hydrothermal fields of the mid-Okinawa Trough (United States)

    Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.


    The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational

  9. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. (United States)

    Joshi, Upendra A; Yoon, Songhak; Baik, Sunggi; Lee, Jae Sung


    Barium titanate nanowires synthesized with a surfactant-free hydrothermal method have been characterized by various techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), synchrotron X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM and SEM analyses show the uniform cylindrical nanowires. The Rietveld refinement with synchrotron X-ray powder diffraction showed that the lattice parameters of cubic and tetragonal phases were a (= b = c) = 4.0134 A and a (= b) = 3.9998 A, c = 4.0303 A, respectively. The final weighted R-factor, R(wp), was 6.75% and the goodness of fit indicator was 1.30. The mass fraction of tetragonal and cubic phases based on the refined scale factor for the two phases were 98.4% and 1.6%, respectively, which clearly show the nanowires are tetragonal. The XPS analysis has shown that as-obtained BaTiO3 nanowires were phase pure. The Raman spectra confirm the tetragonal phase of the BaTiO3 nanowires. The dielectric constant measurement shows the shift in the transition temperature (Tc = 105 degrees C) compared to the bulk transition temperature (Tc = 132 degrees C). The dielectric constant at Tc was 174 measured at 1 kHz frequency.

  10. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  11. High temperature two component explosive (United States)

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles


    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of K. At temperatures on the order of K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  12. WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions. (United States)

    Navarro, Julien R G; Mayence, Arnaud; Andrade, Juliana; Lerouge, Frédéric; Chaput, Frédéric; Oleynikov, Peter; Bergström, Lennart; Parola, Stephane; Pawlicka, Agnieszka


    WO3 nanorods and wires were obtained via hydrothermal synthesis using sodium tungstate as a precursor and either oxalic acid, citric acid, or poly(methacrylic acid) as a stabilizing agent. Transmission electron microscopy images showed that the organic acids with different numbers of carboxylic groups per molecule influence the final sizes and stacking nanostructures of WO3 wires. Three-dimensional electron diffraction tomography of a single nanocrystal revealed a hexagonal WO3 structure with preferential growth along the c-axis, which was confirmed by high-resolution transmission electron microscopy. WO3 nanowires were also spin-coated onto an indium tin oxide/glass conducting substrate, resulting in the formation of a film that was characterized by scanning electron microscopy. Finally, cyclic voltammetry measurements performed on the WO3 thin film showed voltammograms typical for the WO3 redox process.

  13. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. (United States)

    Kitson, Philip J; Marshall, Ross J; Long, Deliang; Forgan, Ross S; Cronin, Leroy


    3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery


    Brebu, Mihai; Bhaskar, Thallada; Muto, Akinori; Sakata, Yusaku


    A method to recover both Br and Br-free plastic from brominated flame retardant high impact polystyrene (HIPS-Br) was proposed. HIPS-Br containing 15% Br was treated in autoclave at 280℃ using water or KOH solution of various amounts and concentrations. Hydrothermal treatment (30 ml water) leads to 90% debromination of 1 g HIPS-Br but plastic is strongly degraded and could not be recovered. previous termAlkalinenext term hydrothermal treatment (45 ml or 60 ml KOH 1 M) showed similar debromina...

  15. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics. (United States)

    Wang, Liping; Zhang, Lei; Li, Aimin


    Dewatering is very important for excess sludge treatment and disposal. Hydrothermal treatment coupled with mechanical expression is a novel technology, in which a conventional pressure dewatering is combined with hydrothermal effect to realize an improved liquid/solids separation with low energy consumption. In this study, the process was performed by way of that the excess sludge was hydrothermally treated first and then the mechanical expression was employed immediately at increased temperature in two separate cells respectively. The results demonstrated that the mechanical expression employed at increased temperature showed a significant advantage than that at room temperature, given a further reduction of 19-47% of the moisture content. The dewatering process at room temperature was mostly depended on the effect of mechanical expression. Hydrothermal process, more importantly than mechanical effect at increased temperatures, seemed to govern the extent to which the dewatering process occurred. The dewatering began to show a positive effect when the temperature was exceeded the threshold temperature (between 120 and 150 °C). The residence time of 30 min promoted a substantial conversion in the sludge surface properties. After dewatering at temperatures of 180-210 °C, the moisture content decreased from 52 to 20% and the corresponding total water removal as filtrate was between 81 and 93%. It was observed that the moisture content of filter cake correlated with surface charge (Rp = -0.93, p < 0.05) and relative hydrophobicity (Rp = -0.99, p < 0.05). The calculated energy balance suggested that no additional external energy input is needed to support the dewatering process for excess sludge. The dewatering process needs an obviously lower energy input compared to thermal drying and electro-dewatering to produce a higher solids content cake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High temperature structural sandwich panels (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  17. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.


    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  18. Motor for High Temperature Applications (United States)

    Roopnarine (Inventor)


    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  19. Chemical environments of submarine hydrothermal systems (United States)

    Shock, Everett L.


    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  20. Very High Temperature Sound Absorption Coating Project (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  1. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W


    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  2. One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties (United States)

    Jiang, Qianqian; Wang, Xingyao; Zhang, Han


    The spinel LiMn2O4 was prepared by a one-step hydrothermal method using acetone as the reductant under different hydrothermal temperatures. X-ray diffraction and scanning electron microscopy analysis indicated that optimal LiMn2O4 particles (LMO-120) were synthesized at the temperature of 120°C and the particles were well distributed and about 410 nm in size. Electrochemical performance showed that the as-prepared LiMn2O4 particles exhibited a higher initial discharge capacity than commercial LiMn2O4 (131.5 mAh g-1 versus 115.6 mAh g-1 at 0.2 C). An excellent discharge capacity retention rate of 94.07% was observed after 60 charge-discharge cycles. On the other hand, when cycled at the high rate of 1 C, the optimal LiMn2O4 in this work showed a high discharge capacity of 107.5 mAh g-1 in contrast to only 92.3 mAh g-1 of the commercial LiMn2O4. These results indicate that LMO-120 showed excellent electrochemical performance, especially the prolonged cycling life and high-rate performance, which suggested that this spinel LiMn2O4 has promise for practical application as a high-rate cathode material for lithium ion batteries.

  3. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.


    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  4. High temperature PEM fuel cells (United States)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  5. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.


    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  6. Hydrothermal process of coal obtainment from high humidity biomasses - grass, peat, sugar cane bagasse; Processo hidrotermal de obtencao de carvao a partir de biomassas de alta umidade (capim, turfa e bagaco de cana)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarinho, Silvio Benedicto


    To convert biomass of high productivity and high moisture to coal, the author proposes a hydrothermal process. This way, the carbonization proceeds under wet conditions and drying before processing is not needed. Three raw materials have been tested: Pennisetun Purpureum Shum (elephant grass), peat and sugar cane bagasse. The first material has high productivity, the latter two show high moisture, they are easily available and up to now, a good coalification technology has not been developed. This study gives results of the hydrothermal process applied and characterizes some steps of this process in more detail to enhance understanding of process. Tests have been conducted in autoclaves of 1 L capacity with external pressure and temperature control. The range of temperatures used is 180 to 300 deg C and the coalification time has been 5, 15 and 45 minutes. The result of this study shows that during the hydrothermal process, a high quantity of volatile material is retained in the newly formed coal due to working with low temperature and high pressures. This gives a product of high calorific power (about 6,000 kcal/Kg) and high reactivity and mass. The resulting product does not need much grinding to be used by burners. The process partially removes the ashes and the final ash content of the coal is much lower than the one produced by dry coalification. Dewatering is very easily done by mechanical means, filter pressing by example and does not require high amount of energy. (Author)

  7. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong


    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  8. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I


    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  9. Highly dispersed NiW/{gamma}-Al{sub 2}O{sub 3} catalyst prepared by hydrothermal deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Fan, Yu.; Bao, Xiaojun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); The Key Laboratory of Catalysis, China National Petroleum Corp., China University of Petroleum, Beijing 102249 (China); Shi, Gang; Liu, Haiyan [The Key Laboratory of Catalysis, China National Petroleum Corp., China University of Petroleum, Beijing 102249 (China); Liu, Zhihong [Science and Technology Management Department, PetroChina Company Ltd., World Tower, 16 Andelu, Dongcheng District, Beijing 100011 (China)


    This article describes a novel hydrothermal deposition method for preparing highly dispersed NiW/{gamma}-Al{sub 2}O{sub 3} catalysts and demonstrates its advantages over the conventional impregnation method. Via the hydrothermal precipitation reactions between sodium tungstate and hydrochloric acid and between nickel nitrate and urea, respectively, the active species W and Ni were deposited on {gamma}-Al{sub 2}O{sub 3}. In the hydrothermal deposition of WO{sub 3}, a surfactant hexadecyltrimethyl ammonium bromide (CTAB) was used to prevent the aggregation of WO{sub 3}. The characterization results obtained by means of X-ray photoelectron spectroscopy (XPS), N{sub 2} adsorption and high-resolution transmission electron microscopy (HRTEM) measurements showed that compared with the catalyst prepared by the conventional impregnation method, the catalyst with the same metal contents prepared by the hydrothermal deposition had much higher W and Ni dispersion, higher specific surface area, larger pore volume, the significantly decreased slab length and slightly increased stacking degree of sulfided W species, leading to the significantly enhanced dibenzothiophene (DBT) hydrodesulfurization (HDS) activity. The DBT HDS assessment results also revealed that the catalyst containing 17.7 wt% WO{sub 3} and 2.4 wt% NiO prepared by the hydrothermal deposition method had the similar DBT HDS activity as a commercial NiW/{gamma}-Al{sub 2}O{sub 3} catalyst containing 23 wt% WO{sub 3} and 2.6 wt% NiO, resulting in the greatly decreased amount of active metals for achieving the same HDS activity. (author)

  10. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. (United States)

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A


    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  11. Effects of Temperature on the Microstructure and Magnetic Property of Cr-Doped ZnO DMS Prepared by Hydrothermal Route Assisted by Pulsed Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Shiwei Wang


    Full Text Available In the present work, Cr-doped ZnO diluted magnetic semiconductor was synthesized by hydrothermal method under pulsed magnetic fields. The samples were characterized by XRD, SEM, VSM, Raman, and XPS techniques. Results demonstrated that Zn ions in the ZnO crystal lattice were partially displaced by Chromium (III ions. All samples show room temperature ferromagnetism which was enhanced by pulsed magnetic fields. The mechanism of ferromagnetism of Cr-doped ZnO particles was discussed.

  12. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  13. Early Archaean hydrothermal systems (United States)

    de Vries, S. T.; Nijman, W.


    Although many people have written about hydrothermal systems in the early Earth, little real evidence is available. New data from the Barberton greenstone belt (South Africa) and greenstone belts of the East Pilbara (Western Australia), provide proof of the existence and nature of hydrothermal systems in the Early Archaean (around 3.4 Ga). Detailed field relationships between vein systems, host rock and overlying sediments are combined with data from fluid inclusions studies on quartz fills in the sediments. An intimate relationship between chert veins and the overlying sediments has been established (the veins are syn-sedimentary). The salinity and temperature of the fluids in the inclusions shows that these are of hydrothermal origin. Similar types of hydrothermal systems, of approximately the same age, have been found at different locations; in the Barberton greenstone belt and at various locations in the East Pilbara. The setting of these hydrothermal systems is not always identical however. Although a felsic substratum is more common, in the North Pole area (Pilbara) the hydrothermal systems rise from a basaltic substratum. In the Barberton greenstone belt, the systems are closely related to shallow intrusive (felsic) bodies. The study of these ancient hydrothermal systems forms an important framework for studies of early life on Earth. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Foundation Dr. Schürmannfonds.

  14. Faraday imaging at high temperatures (United States)

    Hackel, Lloyd A.; Reichert, Patrick


    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  15. High temperature autoclave vacuum seals (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.


    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  16. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface. (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun


    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  17. High Temperature Solid Lubricant Coating for High Temperature Wear Applications (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)


    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  18. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    , radon etc. to locate active venting site 4. Seabed sampling for rocks and minerals looking for indications of hydrothermal mineralization 5. TV and still Photographic surveys with real- time imaging on board 6. Submersible/ROVs for direct... thriving in this unique environments. However, the study of hydrothermal systems is still relatively young, and there are many fundamental questions that remain to be addressed in the forthcoming years. Suggested reading 1. Seafloor hydrothermal...

  19. Application of hydrothermal method derived titanate nanotubes as adsorbents. (United States)

    Lee, Chung-Kung; Liu, Shin-Shou; Chen, Huang-Chi


    Titanate nanotubes (TNT) derived from alkaline hydrothermal method are characterized by high specific surface area, specific pore volume, and ion-exchange capacity. They may be a promising and important adsorbent in the environmental protection. Although their applications in the fields of lithium ion batteries, dye-sensitized solar cell, photocatalysis, catalysts support, gas and humidity sensors, and ion exchange have been intensely studied during recent years, however, the researches concerning their potential application as an adsorbent are seldom reported. In this mini-review, we first highlight the effects of hydrothermal temperature and sodium content on the microstructures of hydrothermal method derived TNT, because the morphology and microstructure of TNT are highly dependent on the preparation conditions. Effects of the alterations of microstructures induced by the variation of hydrothermal temperature and sodium content on the dyes, heavy metal ions, and organic vapors adsorption characteristics of TNT are then introduced citing recent patents.

  20. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  1. Hydrothermal synthesis and shape-reactivity correlation study of automotive three-way nanocatalysts. (United States)


    In this project, we have shown that the hydrothermal method can be used to tune : the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully : prepared at low and high hydrothermal reaction temperature, respectively. The ...

  2. High-temperature borehole instrumentation (United States)

    Dennis, B. R.; Koczan, S. P.; Stephani, E. L.


    A new method of extracting natural heat from the Earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320(0)C (610(0)F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resources to develop the necessary downhole instruments to meet programmatic schedules.

  3. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.


    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano


    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  5. High Temperature Chemistry at NASA: Hot Topics (United States)

    Jacobson, Nathan S.


    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John


    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. Hydrothermal stability of zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.Y. [Daelim College of Technology, Anyang (Korea); Gogotsi, G.A. [National Academy of Sciences of Ukraine, Kiev (Uzbekistan); Kim, D.J. [Korea Institute of Science and Technology, Seoul (Korea); Park, N.J. [Kumho National University of Technology, Kumi (Korea)


    3 mol% Y{sub 2}O{sub 3} partially-Stabilized Zirconia single Crystals (PSZCs) containing a small quantity (<0.5%) of rare-earth oxides (CeO{sub 2}, Tb{sub 2}O{sub 3}) were prepared by using a direct high-frequency skull melting technique to evaluate hydrothermal stability in an autoclave. Pole figure measurements indicate that both CeO{sub 2} and Tb{sub 2}O{sub 3} containing specimens prepared by the skull melting are single crystals. PSZCs exhibited no t{yields}m phase transformation during aging for 5 h at temperatures from 150 to 250 deg. C and 4 MPa water vapor pressure in an autoclave, resulting in excellent hydrothermal stability. (author). 19 refs., 1 tab., 4 figs.

  8. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Gong, Yongshuai; Li, Zhilin; Dou, Meiling, E-mail:; Wang, Feng, E-mail:


    Highlights: • A green and facile hydrothermal approach for Sb{sub 2}S{sub 3} films was developed. • The film possessed a relatively ideal S/Sb atomic ratio and a compact surface. • The grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. • The film annealed at 450 °C showed the improved optical and electrical performance. - Abstract: High-quality semi-conducting antimony sulfide (Sb{sub 2}S{sub 3}) thin films were directly deposited on the indium tin oxide (ITO) substrates by a green and facile one-step approach based on a hydrothermal reaction and post-annealing process without any assistance of complexing agents. The obtained Sb{sub 2}S{sub 3} films possessed a relatively ideal S/Sb atomic ratio and a compact and continuous surface as the grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. The Sb{sub 2}S{sub 3} film annealed at 450 °C exhibited the improved optical and electrical performances, with a narrow band gap of 1.63 eV, an electrical resistivity of 1.3 × 10{sup 4} Ω cm, a carrier concentration of 7.3 × 10{sup 13} cm{sup −3} and a carrier mobility of 6.4 cm{sup 2} V{sup −1} s{sup −1}. This environmentally friendly synthetic route is promising for the preparation of high-quality Sb{sub 2}S{sub 3} films to be used as absorber layer materials for high-performance solar cells.

  9. Effect of Synthesizing Temperature on Microstructure and Electrochemical Property of the Hydrothermal Conversion Coating on Mg-2Zn-0.5Mn-Ca-Ce Alloy

    Directory of Open Access Journals (Sweden)

    Guanghui Guo


    Full Text Available Mg(OH2 conversion coatings were formed on an Mg-2Zn-0.5Mn-Ca-Ce alloy via hydrothermal method at three different synthesizing temperatures (160, 170 and 180 °C. The effect of synthesizing temperature on microstructure and electrochemical property of the coatings were systematically studied. With increasing synthesizing temperature, the coating became thicker due to the faster reaction and deposition of Mg(OH2 on the α-Mg phase and secondary phases of the substrate Mg alloy. Internal micro-cracks were also generated in the higher-temperature synthesized coatings due to the increased shrinking stress, but the cross-cutting micro-cracks were suppressed. Benefiting from the improved barrier effect against penetration of corrosive medium, the higher-temperature synthesized thicker coating presented significantly enhanced electrochemical property and anti-corrosion efficiency in Hanks’ solution.

  10. Hydrothermal Fluid Permeability, Temperature, and Nutrient Fluxes: Three Controls on the Structure and the Dynamics of Subsurface Extremophilic Microbe Communities (United States)

    Ryan, M. P.; Yang, J.


    We continue to develop a set of models whose aim is to provide broad constraints on the range of possible community structures for subsurface thermally-tolerant microbes. We combine studies of the three-dimensional internal structure of the dike and sill complexes of active volcanoes, studies of the scale- and direction-dependent 3-D in-situ permeability of intrusive and extrusive rocks from in-situ and laboratory data, numerical modelling of hydrothermal convection in volcanic interiors, data on the optimal metabolic and life-limiting thermal requirements of extremophilic microbes, with the set of nutrients and nutrient pathways required for the survival of given species of thermophiles and hyperthermophiles. With this mix of data bases and analysis tools, we can begin to divine a set of broad theoretical guidelines for constraining the structure and dynamics of extremophilic communities in the subsurface environments of volcanoes. We are searching for the first-order controls on transport. The effects of mineral attachment, detachment, and microbial reproduction may be incorporated in refinements of this basic model. Critical thermal intervals and/or isotherms that correlate with (1) optimal metabolic and (2) life-limiting temperatures for thermophilic microbes are, e.g., in degrees Celcius: Thermus thermophilius [70, 85]; Thermomicrobium roseum [70-75, 85]; Thermus aquaticus [70, 79]; and Sulfolobus acidocaldarius [70-75, 90]. Numerical models of the convective migration of thermophilic (50-80 C), and hyperthermophilic (80-113 C) microbes and their macromolecular amino acid building blocks (113- ~200 C) have been developed that explicitly incorporate the roles of fractures and fluid properties. Fluid transport properties are evaluated through the optimal metabolic and life-limiting temperate ranges and beyond. These models quantify our intuition with respect to controls on community structure and dynamics. Important relationships appear to be: (1) Great

  11. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel


    The Cu-Mo Senj deposit covering an area about 5 km2 is located in the central part of the Alborz Magmatic Arc (AMA. The Nb/Y versus Zr/TiO2 diagram (after Winchester and Floyd, 1977 illustrates a typical trend for the magmas in the Senj magmatic area–starting from basaltic and evolving to dacite/rhyodacitic compositions, with few data plotting in the alkali basalt field. Most of the igneous rocks plot within the medium- and high-K fields in the K2O versus SiO2 diagram. The igneous rocks from the Senj area define a typical high-K calc-alkaline on SiO2 versus K2O diagram (Le Maitre et al., 1989. All studied rocks show similar incompatible trace element patterns with an enrichment of large ion lithophile elements (LILE: K, Rb, Ba, Th and depletion of high field strength elements (HFSE: Nb and Ti, which are typical features of magmas from convergent margin tectonic settings (Pearce and Can, 1973. At least three veining stages namely QBC, QM, and QP which are related to alteration and mineralization are distinguished at the Senj mineralized area. Three distinct alteration assemblages including K-feldspar-biotite-sericite-quartz, quartz-sericite-K-feldspar-pyrite, and K-feldspar-biotite-sericite-quartz, are distinguishable with these veins. About 80 % of the copper at Senj is associated with the early QBC-stage veins, with another 5 to 15 % in the QM-and QP-stage veins. About 70 % of the molybdenite occur in QM veins. Discussion Fluid inclusion distribution, fluid chemistry, and homogenization behavior document that S2-type fluids are samples of magma-derived aqueous-saline fluids characterized by high salinity and temperature, and high Cu content. Such parental fluids scavenged Cu and Mo from the melt below and transported them to the hydrothermal system above. The increased abundance of S- and LV-types inclusion coinciding with the highest grade Cu mineralization (early QBC-stage veins at the Senj deposit suggests that brine-vapor unmixing and phase separation plays an

  12. Measurement of thermodynamic temperature of high temperature fixed points

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)


    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  13. Measurement of thermodynamic temperature of high temperature fixed points (United States)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.


    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 "Radiation Thermometry". The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  14. Low temperature synthesis of N-doped TiO{sub 2} with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Shahzad Abu, E-mail: [Department of Chemistry, Federal University of São Carlos, Washington Luiz Highway, km 235, 13565-905 São Carlos, SP (Brazil); Embrapa CNPDIA, XV de Novembro Street, 1452, CP 741, 13560-970 São Carlos, SP (Brazil); Ribeiro, Caue [Embrapa CNPDIA, XV de Novembro Street, 1452, CP 741, 13560-970 São Carlos, SP (Brazil)


    Highlights: • The N:TiO{sub 2} nanorice were prepared using facile peroxo-assisted hydrothermal method at low temperature. • The N:TiO{sub 2} exhibited rice-like morphology. • The nitrogen doping favoured UV/visible light photocatalytic activity. • The RhB and Atrazine were chosen as model pollutants. - Abstract: Nanorice-shaped N:TiO{sub 2} photocatalysts have been prepared by the peroxo assisted hydrothermal method using stabilized titanium complex as a precursor and urea as a N source. The N:TiO{sub 2} nanorices were characterised by XRD, FE-SEM, HRTEM, XPS, UV–vis spectroscopy, Raman spectroscopy and measurements of photocatalytic degradation of organic molecules (atrazine and RhB dye) under the UV and visible-light irradiation. XRD analyses showed that pristine TiO{sub 2} crystallizes into anatase polymorph and that the N-doping process at 5% introduced a degree of disorder on the TiO{sub 2} crystalline structure. XPS study revealed the successful incorporation of the nitrogen atoms at the interstitial sites of the TiO{sub 2} crystal lattice. Microscopy studies revealed that the particle size was in the range 50–80 nm for the pristine TiO{sub 2}. The photocatalysts were assembled in the form of nanorices with a high surface area (102 m{sup 2} g{sup −1}). The successful incorporation of nitrogen atoms into the TiO{sub 2} crystal lattice is expected to be responsible for enhanced photocatalytic activity of the as-prepared samples for the degradation of pollutants (RhB and atrazine) under UV and visible light irradiation. The rate of ·OH radicals formation under visible-light irradiation was examined and found to be correlated with the photocatalytic activity per unit surface area. The N:TiO{sub 2} particles with nanorice morphology was efficient photocatalysts for decomposition of organic dyes under UV and visible-light exposure while pristine TiO{sub 2} photocatalyst did not show any significant photocatalytic activity when stimulated by visible

  15. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.


    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  16. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. (United States)

    Li, Hao; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Lu, Haifeng; Duan, Na; Liu, Minsheng; Zhu, Zhangbing; Si, Buchun


    Hydrothermal liquefaction (HTL) is a promising technology for converting algae into biocrude oil. Here, HTL of a low-lipid high-protein microalgae (Nannochloropsis sp.) and a high-lipid low-protein microalgae (Chlorella sp.) was studied. An orthogonal design was applied to investigate the effects of reaction temperature (220-300°C), retention time (30-90 min), and total solid content (TS, 15-25%wt) of the feedstock. The highest biocrude yield for Nannochloropsis sp. was 55% at 260°C, 60 min and 25%wt, and for Chlorella sp. was 82.9% at 220°C, 90 min and 25%wt. The maximum higher heating values (HHV) of biocrude oil from both algae were ∼ 37 MJ/kg. GC-MS revealed a various distribution of chemical compounds in biocrude. In particular, the highest hydrocarbons content was 29.8% and 17.9% for Nannochloropsis and Chlorella sp., respectively. This study suggests that algae composition greatly influences oil yield and quality, but may not be in similar effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    A number of opinions are held on the relative importance of the various physical ... optimum as well as extreme temperatures on vital functions such as survival, egg ..... solids on the biology of certain freshwater molluscs. D .Sc. thesis,. Potch.

  18. High structural complexity of potassium uranyl borates derived from high-temperature/high-pressure reactions. (United States)

    Wu, Shijun; Wang, Shuao; Polinski, Matthew; Beermann, Oliver; Kegler, Philip; Malcherek, Thomas; Holzheid, Astrid; Depmeier, Wulf; Bosbach, Dirk; Albrecht-Schmitt, Thomas E; Alekseev, Evgeny V


    Three new potassium uranyl borates, K12[(UO2)19(UO4)(B2O5)2(BO3)6(BO2OH)O10] ·nH2O (TPKBUO-1), K4[(UO2)5(BO3)2O4]·H2O (TPKBUO-2), and K15[(UO2)18(BO3)7O15] (TPKBUO-3), were synthesized under high-temperature/high-pressure conditions. In all three compounds, the U/B ratio exceeds 1. Boron exhibits BO3 coordination only, which is different from other uranyl borates prepared at room temperature or under mild hydrothermal conditions. A rare uranium(VI) tetraoxide core UO4O2, which is coordinated by two BO3 groups, is observed in the structure of TPKBUO-1. Both structures of TPKBUO-1 and TPKBUO-3 contain three different coordination environments of uranium, namely, UO4O2, UO2O4, and UO2O5 and UO2O4, UO2O5, and UO2O6 bipyramids in TPKBUO-1 and TPKBUO-3, respectively.

  19. High temperature superconducting fault current limiter (United States)

    Hull, John R.


    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  20. Technological Evolution of High Temperature Superconductors (United States)



  1. Ultrasonic transducer for the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bornmann, Peter; Hemsel, Tobias [University of Paderborn, Paderborn (Germany); Littmann, Walter [ATHENA Technologie Beratung GmbH, Paderborn (Germany); Ageba, Ryo; Kadota, Yoishi; Morita, Takeshi [University of Tokyo, Kashiwa (Japan)


    Direct ultrasound irradiation is advantageous for increasing the efficiency of the hydrothermal method, which can be used to produce piezoelectric thin films and lead-free piezoelectric ceramics. To apply ultrasound directly to the process, transducer prototypes were developed regarding the boundary conditions of the hydrothermal method. LiNbO{sub 3} and PIC 181 were proven to be feasible materials for high-temperature-resistant transducers ({>=} 200 .deg. C). The resistance of the transducer's horn against a corrosive mineralizer was achieved by using Hastelloy C-22. The efficiency of the ultrasound-assisted hydrothermal method depends on the generated sound field.The impedance and the sound field measurements have shown that the sound field depends on the filling level and on the position and design of the transducer.

  2. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme


    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  3. High temperature ferromagnetism in Cu-doped MoS2 nanosheets (United States)

    Xia, Baorui; Guo, Qing; Gao, Daqiang; Shi, Shoupeng; Tao, Kun


    The synthesis of 2D metal chalcogenide based on ferromagnetic nanosheets is in high demand for modern electronics and spintronics applications. Herein, Cu-doped MoS2 nanosheets were successfully prepared by a hydrothermal method. Magnetic measurement results indicate that the doping of Cu ions can introduce ferromagnetism into MoS2 nanosheets, where saturate magnetization increases with increased Cu concentration. Further, the hysteresis curves measured at different temperatures demonstrate a high Curie temperature of 930 K for the Cu-doped MoS2 nanosheets. This result opens a new path to exploring spintronics in pristine 2D nanostructures by non-magnetic atom doping.

  4. The dynamics of a double-cell hydrothermal system in triggering seismicity at Somma-Vesuvius: results from a high-resolution radon survey (revisited) (United States)

    Cigolini, Corrado


    Data collected at Somma-Vesuvius during the 1998-1999 radon surveys have been revisited and reinterpreted in light of recent geophysical and geochemical information. The duration of selected radon anomalies, together with the decay properties of radon, have been used to estimate the permeability and porosity of rocks of the deep hydrothermal system. The current local cyclic seismicity is explained by means of a double convective-cell model. Convective cells are separated by a low-permeability horizon located at about 2-2.5 km below sea level. Fluids convecting within the upper cells show temperatures ranging 300-350°C. Rock permeabilities in this sector are estimated on the order of 10-12 m2, for porosities ( ϕ) of about 10-5 typical of a brittle environment where fluid velocities may reach ˜800 m/day. Fluid temperatures within the lower cells may be as high as 400-450°C, consistent with supercritical regimes. The hydrodynamic parameters for these cells are lower, with permeability k ˜ 10-15 m2, and porosity ranging from 10-6 to 10-7. Here, fluid motion toward the surface is controlled by the fracture network within a porous medium approaching brittle-ductile behaviour, and fluid velocities may reach ˜1,800 m/day. The low-permeability horizon is a layer where upper and lower convecting cells converge. In this region, fluids (convecting both at upper and lower levels) percolate through the wallrock and release their brines. Due to self-sealing processes, permeability within this horizon reaches critical values to keep the fluid pressure near lithostatic pressure (for k ˜ 10-18 m2). Deep fluid pressure buildups precede the onset of hydrothermally induced earthquakes. Permeability distribution and rock strength do not exclude that the next eruption at Somma-Vesuvius could be preceded by a seismic crisis, eventually leading to a precursory phreatic explosion. The coupling of these mechanisms has the potential of inducing pervasive failure within rocks of the

  5. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.


    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  6. A Facile Low-Temperature Hydrothermal Method to Prepare Anatase Titania/Cellulose Aerogels with Strong Photocatalytic Activities for Rhodamine B and Methyl Orange Degradations


    Wan, Caichao; Lu, Yun; Jin, Chunde; Sun, Qingfeng; Li, Jian


    A facile low-temperature hydrothermal method for in situ preparation of anatase titania (TiO2) homogeneously dispersed in cellulose aerogels substrates was described. The formed anatase TiO2 aggregations composed of a mass of evenly dispersed TiO2 nanoparticles with sizes of 2−5 nm were embedded in the interconnected three-dimensional (3D) architecture of the cellulose aerogels matrixes without large-scale reunion phenomenon; meanwhile, the obtained anatase titania/cellulose (ATC) aerogels al...

  7. Effect of pressure on colloidal behavior in hydrothermal water. (United States)

    Ghosh, Swapan K; Tsujii, Kaoru


    The pressure dependence of the colloidal phenomena of nanoparticles in hydrothermal water was investigated by both experiment and theory. Dynamic light scattering experiments show that diamond nanoparticles, which are highly stable in ambient water, easily aggregate in high-temperature and high-pressure water. Although the stability of nanoparticles in ambient pure water does not depend on pressure, it is interestingly found that at constant temperature particles aggregate faster in the hydrothermal regime when the pressure is higher. A theoretical interpretation is proposed to predict the stability of colloids in water as a function of temperature and pressure. Numerical analysis shows that the repulsive interparticle potential barrier, which stabilizes particles in the dispersion, decreases dramatically in high-temperature and high-pressure water. The decrease in the potential barrier arises from the temperature and the pressure dependencies of the dielectric constant (epsilon) and the ion product (p K w) of water. Numerical analysis shows that the pressure dependence of epsilon is negligible in the temperature range of 20-300 degrees C, whereas the pressure dependence of p K w is significant at temperatures of T > 150 degrees C. The theory reveals that the pressure dependence of the rate of size increment in the hydrothermal regime results from the pressure dependence of p K w. An increase in pressure in the hydrothermal water enhances the ionization of water molecules which reduces the surface potential of the particles. This effect lowers the interparticle repulsive potential barrier, which accelerates aggregation of the particles.

  8. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    under high temperatures and calculated the second-order elastic constant (Cij ) and bulk modulus. (KT) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (δT) as temperature-independent and then by treating δT as temperature-dependent parameter. The results obtained when δT is ...

  9. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  10. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  11. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng


    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  12. High-Temperature Test Technology (United States)


    Do any of your facilities have vacuum test capability? YesO No~l If yes, What is the minimum vacuum chamber pressure? What is the maximum allowable...available? YesO N[-- If "yes," please Indicate the following: Vaporizer Superheater Capacity Capacity Max Temperature LH2 LN2 Are gaseous hydrogen...personnel safety? 5. Does the facility have radiant heating capability? YesO NoF- If "yes," please provide the following information: Lamp types Tungsten

  13. Thermodynamics of High Temperature Materials. (United States)


    temperatures In the present range have also been obtained by Krauss and Warncke [8] and by Vollmer et al. [9], using adiabatic calorimetry, and by Kollie [10...value for heat capacity. The electrical resistivity results reported by Kollie [10] and by Powell et al. [13] are respectively about 1 and 1.5% lower...extensive annealing of the specimens used in the measurements: the specimen (>99.89% pure) used by Kollie was annealed at 1100 K for 24 h and Laubitz et al

  14. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.


    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  15. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides. (United States)

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A


    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10-3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  16. High temperature skin friction measurement (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.


    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  17. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.


    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  18. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field (United States)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.


    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  19. High Temperature Solid State Lithium Battery Project (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  20. Copper Alloy For High-Temperature Uses (United States)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary


    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  1. Lightweight, High-Temperature Radiator Panels Project (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  2. High Temperature Rechargeable Battery Development Project (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  3. Homogenization Temperature Measurements in Hydrothermal Diamond-Anvil Cell for Melt and Fluid Inclusions from the Jiajika Pegmatite Deposit, China (United States)

    Li, J.; Chou, I.; Yuan, S.; Burruss, R. C.


    We measured the total homogenization temperatures (Th) of volatile-rich melt and fluid inclusions under elevated external pressures in a hydrothermal diamond-anvil cell (HDAC) to understand fluid evolution in the Jiajika pegmatite deposit in China, the largest spodumene deposit in Asia. Three types of inclusions were investigated: 1. CH4-H2O (~10 vol. %) bearing aluminosilicate melt inclusions hosted in quartz from granite; 2. CO2-NaCl-H2O (~80 vol. %) inclusions with daughter minerals mainly hosted in spodumene from pegmatite dikes; and 3. CO2-NaCl-H2O inclusions mainly hosted in quartz from pegmatite dikes. During normal microthermometric measurements at atmospheric pressure, most of these inclusions decrepitated at ~300°C. Therefore, we extended the method of Schmidt et al. (1998, Am. Mineral. 83, 995) and Darling and Bassett (2002, Am. Mineral., 87, 67) to melt inclusions in HDAC and conducted long-duration experiments with type 1 and 2 inclusions at one kbar Ar pressure in cold-seal pressure vessels (CSPV) as described by Thomas et al. (2006, Chapter 9 in Mineralogical Association of Canada Short Course, 36, 189). Results in both HDAC and CSPV experiments showed that Th's of type 1 and 2 inclusions were between 600 and 700 °C and between 500 and 700 °C, respectively. In HDAC experiments for type 1 inclusions, daughter minerals melted and coexisted with the fluid phase before total homogenization; however, in type 2 inclusions, daughter minerals dissolved completely in the CO2-NaCl-H2O solution at Th. Results obtained for type 3 inclusions showed that the CO2-rich and CO2-poor inclusions homogenized to liquid CO2 and aqueous phases at 260 - 570 and 240 - 350°C, respectively. Also, Th’s decrease linearly as the external pressure increases; the reduction of Th was ~1.5 °C/kbar, which is similar to ~1.2 °C/kbar reported by Darling and Bassett (ibid.) for the same type of natural fluid inclusions, but is much less than ~4.6 °C/kbar reported by Schmidt et

  4. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)


    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  5. The flavoured BFSS model at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yuhma; Filev, Veselin G. [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Kováčik, Samuel [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Faculty of Mathematics, Physics and Informatics,Comenius University Bratislava, Mlynská dolina, Bratislava, 842 48 (Slovakia); O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)


    We study the high-temperature series expansion of the Berkooz-Douglas matrix model, which describes the D0/D4-brane system. At high temperature the model is weakly coupled and we develop the series to second order. We check our results against the high-temperature regime of the bosonic model (without fermions) and find excellent agreement. We track the temperature dependence of the bosonic model and find backreaction of the fundamental fields lifts the zero-temperature adjoint mass degeneracy. In the low-temperature phase the system is well described by a gaussian model with three masses m{sub A}{sup t}=1.964±0.003, m{sub A}{sup l}=2.001±0.003 and m{sub f}=1.463±0.001, the adjoint longitudinal and transverse masses and the mass of the fundamental fields respectively.

  6. Preparation and characterization of titania-deposited silica composite hollow fiber membranes with high hydrothermal stability. (United States)

    Kwon, Young-Nam; Kim, In-Chul


    Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.

  7. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A


    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  8. Getting the bigger picture: Using precision Remotely Operated Vehicle (ROV) videography to acquire high-definition mosaic images of newly discovered hydrothermal vents in the Southern Ocean (United States)

    Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Tyler, Paul A.; Isis ROV Facility


    Direct visual observations from submersible vehicles at hydrothermal vents typically only reveal a fraction of the vent environment at any one time. We describe the use of precision Remotely Operated Vehicle (ROV) videography to produce extensive mosaic images of hydrothermal vent chimneys and surrounding seafloor areas (c. 250 m2), with sufficient resolution to determine distributions of macro- and megafauna. Doppler velocity log navigation (DVLNAV) was used to follow overlapping vertical survey lines in a fixed plane facing a vent chimney, while acquiring high-definition video imagery using a forward-looking camera. The DVLNAV also enabled the vehicle to follow overlapping horizontal survey lines while acquiring seafloor imagery from a downward-looking video camera and mapping variations in seawater temperature. Digital stills images extracted from video were used to compile high-resolution composite views of the surveyed areas. Applying these image acquisition techniques at vent fields on the East Scotia Ridge, Southern Ocean, revealed consistent patterns of faunal zonation around vent sources, variations in proportions of faunal assemblage types on different faces of a vent chimney, and differences in proportions of faunal assemblages between two different vent fields. The technique can therefore be used to determine the composition and spatial distribution of fauna across complex areas of topography, such as vent fields, where mosaic images of vertical structures cannot currently be acquired using other platforms such as autonomous underwater vehicles (AUVs). These image acquisition techniques, demonstrated here in the first ROV dives at newly discovered vent fields, may offer an appropriate technology for rapid baseline studies required by the potential mining of seafloor massive sulfides (SMS).

  9. Use of wireline logs at Cerro Prieto in identification of the distribution of hydrothermally altered zones and dike locations, and their correlation with reservoir temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Seamount, D.T. Jr.; Elders, W.A.


    Downhole electrical and gamma-gamma density logs from nine wells weere studed and these wireline log parameters with petrologic, temperature, and petrophysical data were correlated. Here, wells M-43, T-366, and M-107 are discussed in detail as typical cases. Log data for shales show good correlation with four zones of hydrothermal alteration previously recognized on the basis of characteristic mineral assemblages and temperatures. These zones are the unaltered montmorillonite zone (< 150/sup 0/C), the illite zone (150/sup 0/C to 230/sup 0/C to 245/sup 0/C), the chlorite zone (235/sup 0/C to 300/sup 0/C, equivalent to the calc-silicate I zone in sands), and the feldspar zone (> 300/sup 0/C, equivalent to the calc-silicate II zone in sands),

  10. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen


    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  11. High-temperature heat-pump fluids (United States)

    Bertinat, M. P.


    Heat pumps could be immensely useful in many industrial processes, but standard working fluids are unsuitable for the high temperatures involved. The ideal high-temperature heat-pump fluid should have a high (but not too high) critical temperature, a moderate critical pressure ( approximately=5.0 MPa) and a low (but not too low) boiling point. There are many organic fluids that do meet the above thermodynamic criteria The author's list of 250 contained dozens of them including many of the common laboratory solvents such as ethanol, ether and especially acetone. Unfortunately most of them are highly flammable. The ideal work fluid for high-temperature heat pumps will probably always remain elusive and water, despite its drawbacks will continue to be the best choice in most applications

  12. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  13. Study on the effect and mechanism of hydrothermal pretreatment of dewatered sewage sludge cake for dewaterability. (United States)

    Zhu, Ying; Han, Zhe; Liu, Xiuyu; Li, Jing; Liu, Feng; Feng, Suping


    In China, over 17 million tons dewatered sewage sludge cake (DSSC), with about 80% water content, was generated from wastewater treatment plants in 2010. High water content is the bottleneck of sludge treatment and disposal. In this study, the combination of hydrothermal and mechanical treatments has been chosen in order to improve sludge dewaterability. Sludge thermogravimetry analysis was conducted to determine 180 degrees C as the upper-limit hydrothermal temperature. Five temperatures (60, 80, 120, 150, 180 degrees C) were chosen to study the effects of hydrothermal treatment temperature and the holding time on dewaterability. The higher the hydrothermal temperature, the better was the dewaterability character. The water contents of solid products were positively correlated with the hydrothermal holding time at predetermined temperatures in this study. Degradation of macromolecules into acidic compounds could be the reason of pH decrease of separated liquid. Destruction of zoogloe and decomposition of organic matters improved the sludge dewaterability. Sludge dewaterability experiencing hydrothermal processes in this study was negatively correlated with extracellular polymeric substance (EPS) content. With the rising temperature, sludge flocculate disaggregated to small particles generally, this could also be one of the important reasons for sludge dewaterability. High water content is the bottleneck of sludge treatment and disposal. Up to now, only a small amount of research has been conducted to determine whether the dewaterability of dewatered sewage sludge cake can be improved by hydrothermal pretreatment. The mechanism of sludge dewaterability by hydrothermal pretreatment is uncertain. In this study, a new sludge disposal method and corresponding parameters were given. The mechanism of sludge dewaterability was analyzed extensively by extracellular polymeric substances, scanning electron microscope images, element contents, and caloric values, etc. This

  14. Aeronautical applications of high-temperature superconductors (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John


    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  15. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  16. Silicon Carbide Nanotube Oxidation at High Temperatures (United States)

    Ahlborg, Nadia; Zhu, Dongming


    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  17. Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery. (United States)

    Brebu, Mihai; Bhaskar, Thallada; Muto, Akinori; Sakata, Yusaku


    A method to recover both Br and Br-free plastic from brominated flame retardant high impact polystyrene (HIPS-Br) was proposed. HIPS-Br containing 15% Br was treated in autoclave at 280 degrees C using water or KOH solution of various amounts and concentrations. Hydrothermal treatment (30 ml water) leads to 90% debromination of 1g HIPS-Br but plastic is strongly degraded and could not be recovered. Alkaline hydrothermal treatment (45 ml or 60 ml KOH 1M) showed similar debromination for up to 12 g HIPS-Br and plastic was recovered as pellets with molecular weight distribution close to that of the initial material. Debromination occurs at melt plastic/KOH solution interface when liquid/vapour equilibrium is attained inside autoclave (280 degrees C and 7 MPa in our experimental conditions) and depends on the plastic amount/KOH volume ratio. The antimony oxide synergist from HIPS-Br remains in recovered plastic during treatment. A pictorial imagination of the proposed debromination process is presented.

  18. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. (United States)

    Wang, Gang; Guo, Qinglei; Chen, Da; Liu, Zhiduo; Zheng, Xiaohu; Xu, Anli; Yang, Siwei; Ding, Guqiao


    Recently, the biomass "bottom-up" approach for the synthesis of graphene quantum dots have attracted broad interest because of the outstanding features, including low-cost, rapid and environmentally friendly nature. However, the low crystalline quality of products, substitutional doping with heteroatoms in lattice and ambiguous reaction mechanism strongly challenge the further development of this technique. Herein, we proposed a facile and effective strategy to prepare controllable sulfur (S) doping in graphene quantum dots, occurring in a lattice substitution manner, by hydrothermal treatment of durian with platinum catalyst. S atoms in graphene quantum dots are demonstrated to exist in the thiophene structure, resulting good optical and chemical stabilities, as well as ultrahigh quantum yield. Detailed mechanism of the hydrothermal reaction progress was investigated. High-efficiency reforming-cyclization provided by platinum was evidenced by the co-existence of diversified sp2 fused heterocyclic compounds and thiophene derivatives. Moreover, we also demonstrated that saccharides in durian with small molecular weight (graphene quantum dots. Due to the desulfurizing process, controllable photoluminescence properties could be achieved in as-prepared graphene quantum dots via tuning doping concentrations.

  19. High temperature spectral gamma well logging

    Energy Technology Data Exchange (ETDEWEB)

    Normann, R.A.; Henfling, J.A.


    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  20. Hydrothermal dolomite reservoir facies in the Sinian Dengying Fm, central Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yuqiang Jiang


    Full Text Available The Upper Sinian Dengying Fm is the focus of natural gas exploration in the central part of the Sichuan Basin (central Sichuan Basin in recent years. Especially, epigenic karstification and its resulted reservoir-seepage spaces have always been the focal points in researches. Based on the petrographic characteristics of drilling cuttings and core samples, and through experimental analysis by using trace elements, isotopes, and cathodoluminescence, the Dengying Fm dolomite was demonstrated to have matrix recrystallized dolomite (MRD, filled saddle dolomite (FSD (the mean homogenization temperature of inclusion: 178.5 °C, high concentrations of Fe & Mn, slightly positive 87Sr/86Sr value and hydrothermal minerals combination (including sphalerite, galena, pyrite, and quartz, etc.. Thus, it was proposed that hydrothermal dolomite reservoir facies (HDRF exist in the Dengying Fm dolomite, in other words, the dolomite reservoir is composed of hydrothermal dissolved pores, intercrystalline pores of hydrothermal origin, hydrothermal caverns and expanded fractures, and was formed due to the reworking of hydrothermal fluid on tight matrix dolomite. Identification marks are presented in terms of petrography and geochemistry so that hydrothermal dolomite reservoir facies can be effectively recognized and identified. It is concluded that the development of hydrothermal dolomite reservoir facies in this area are preliminary controlled by deep and large basement faults and the strength of hydrothermal fluids.

  1. Comparison of navigation in ROV and AUV surveys with high frequency acoustic systems in deep seafloor hydrothermal environments (United States)

    Le Bas, T.; Murton, B. J.; Webber, A.


    As high frequency acoustic waves are highly attenuated over short distances it is essential that all high resolution surveys must be conducted close to the seafloor. In the deep ocean (over 2500m) this means that the location of a survey vehicle compared to a ship's well constrained position has some significant issues. This paper compares various methods and results of a ROV and AUV multibeam survey over the Mid Cayman Spreading Centre hydrothermal vent sites. The results show the difficulties encountered in processing when navigation uncertainty is considerably higher than the resolution of survey data. For example the best ROV positional accuracy in 5000m water depth is about 10m using USBL, whereas high-frequency multibeam systems used on ROVs and AUVs has a resolution of 50cm or better. AUV location has different navigational challenges. While the continuous movement of an AUV during surveying provides a constant that can be modelled and used to correct any relative locational uncertainty, absolute positioning at sufficient precision and accuracy for swath mapping remains problematic. In response to these uncertainties, we present a method of navigation correction that provides high-precision, internally consistent positioning and external accuracy. Using features identified on overlapping near-bottom multibeam bathymetry swathes, a correlation can be made between adjacent survey tracks. Internal consistency of the survey can be achieved by matching contours of these features by warping adjacent swaths to fit one another. We find that contour matching is extremely effective as the human eye is particularly good at identifying similar feature patterns, and the contours allow control points to be identified at sufficient spatial resolution to match that of the swath data, and then co-located with lower resolution shipboard swath maps. Examples of swath data from a variety of AUV and ROV systems will be presented including those from the deepest hydrothermal vent

  2. Hydrothermal synthesis of nanostructured hybrids based on iron oxide and branched PEI polymers. Influence of high pressure on structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, L.M., E-mail: [National R& D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Pantelimon, Judetul Ilfov (Romania); Piticescu, R.M., E-mail: [National R& D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Pantelimon, Judetul Ilfov (Romania); Petriceanu, M., E-mail: [National R& D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Pantelimon, Judetul Ilfov (Romania); Ottaviani, M.F., E-mail: [University of Urbino “Carlo Bo”, Department of Earth, Life and Environmental Sciences, Urbino (Italy); Cangiotti, M., E-mail: [University of Urbino “Carlo Bo”, Department of Earth, Life and Environmental Sciences, Urbino (Italy); Vasile, E., E-mail: [University Politehnica of Bucharest, Bucharest (Romania); National R& D Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd, Pantelimon, Judetul Ilfov (Romania); Dîrtu, M.M., E-mail: [Institute of Condensed Mater and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Wolff, M., E-mail: [Institute of Condensed Mater and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Garcia, Y., E-mail: [Institute of Condensed Mater and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); and others


    Homogeneous hybrids in which iron oxide nanoparticles are entrapped within polymer structure are of interest for their potential applications in biomedical field, such as diagnostic, therapeutic and theranostic purposes. For this reason, hybrid nanomaterials based on branched polyethyleneimine (PEI) and iron oxide with different ratios were synthesized in a single step by hydrothermal procedure at high pressure and low temperature. Iron oxide is formed in the presence of branched PEI and the interaction between them takes place in the reaction medium. The influence of synthesis parameters on the hybrid formation, as well as chemical and structural properties was studied by means of FTIR, DSC-TG, HRTEM, electron paramagnetic resonance (EPR), magnetic measurements (SQUID) and {sup 57}Fe Mössbauer analyses. It has been shown that synthesis parameters influence thermal stability and morphology of the hybrids. FeO(OH) crystallites of 2–5 nm are formed. Iron oxyhydroxide nanoparticles strongly entrapped in PEI structure are obtained. The low and distributed values of the specific spontaneous magnetisation in samples prepared under the same pressure conditions support the presence of very fine FeO(OH) nanoparticles, which formation and magnetic properties are depending on the mass ratio between iron oxide and PEI. - Highlights: • Polyethyleneimine (PEI) – iron oxide hybrids were synthesized by hydrothermal method. • Synthesis parameters influence thermal stability and morphology of the hybrids. • Small crystallites of FeO(OH) with size between 2 and 5 nm are formed. • Formation of stable hybrid nanostructures in the pressure range 1000–3000 atm. • FeO(OH) nanoparticles are entrapped in PEI structure at low inorganic–organic ratio.

  3. Novel High Temperature Strain Gauge Project (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  4. High Temperature Fiberoptic Thermal Imaging System Project (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  5. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  6. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A


    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  7. NASA High Operating Temperature Technology Program Overview (United States)

    Nguyen, Q. V.; Hunter, G. W.


    NASA’s Planetary Science Division has begun the High Operating Temperature Technology (HOTTech) program to address Venus surface technology challenges by investing in new technology development. This presentation reviews this HOTTech program.

  8. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.


    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  9. Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods. (United States)

    Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing


    In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.

  10. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş


    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  11. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S


    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  12. The chemistry of hydrothermal magnetite: a review (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John


    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  13. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.


    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  14. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh


    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  15. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films (United States)

    Liu, Meng; Gong, Yongshuai; Li, Zhilin; Dou, Meiling; Wang, Feng


    High-quality semi-conducting antimony sulfide (Sb2S3) thin films were directly deposited on the indium tin oxide (ITO) substrates by a green and facile one-step approach based on a hydrothermal reaction and post-annealing process without any assistance of complexing agents. The obtained Sb2S3 films possessed a relatively ideal S/Sb atomic ratio and a compact and continuous surface as the grain size of Sb2S3 was increased by high temperature annealing. The Sb2S3 film annealed at 450 °C exhibited the improved optical and electrical performances, with a narrow band gap of 1.63 eV, an electrical resistivity of 1.3 × 104 Ω cm, a carrier concentration of 7.3 × 1013 cm-3 and a carrier mobility of 6.4 cm2 V-1 s-1. This environmentally friendly synthetic route is promising for the preparation of high-quality Sb2S3 films to be used as absorber layer materials for high-performance solar cells.

  16. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  17. Neutron experiments on high-temperature superconductors (United States)

    Mook, H. A., Jr.


    This report details the trip to the ILL to perform neutron scattering research on high-temperature superconductivity. The trip was very successful because of the excellent users' facilities available at the ILL. The data we accumulated were of high quality and will make an impact on our understanding of high-temperature superconductivity. However, we cannot continue to run a research program in this field with the limited beam time available at the ILL. To make substantial progress in this field, we must restart the High Flux Isotope Reactor.

  18. High Temperature, Wireless Seismometer Sensor for Venus (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.


    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  19. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes


    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  20. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret


    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  1. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles (United States)

    Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy


    Hydrothermal systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of hydrothermal deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of hydrothermal activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher hydrothermal deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for hydrothermal activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial hydrothermal peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in hydrothermal activity are followed by relatively high hydrothermal fluxes throughout the ensuing interglacial periods relative to the previous glacial period.

  2. Development of acoustic observation method for seafloor hydrothermal flows (United States)

    Mochizuki, M.; Tamura, H.; Asada, A.; Kinoshita, M.; Tamaki, K.


    In October 2009, we conducted seafloor reconnaissance using a manned deep-sea submersible Shinkai6500 in Central Indian Ridge 18-20deg.S, where hydrothermal plume signatures were previously perceived. Acoustic video camera "DIDSON" was equipped on the top of Shinkai6500 in order to get acoustic video images of hydrothermal plumes. The acoustic video images of the hydrothermal plumes had been captured in three of seven dives. We could identify shadings inside the acoustic video images of the hydrothermal plumes. Silhouettes of the hydrothermal plumes varied from second to second, and the shadings inside them also varied. These variations corresponded to internal structures and flows of the plumes. DIDSON (Dual-Frequency IDentification SONar) is acoustic lens-based sonar. It has sufficiently high resolution and rapid refresh rate that it can substitute for optical system in turbid or dark water where optical systems fail. Ins. of Industrial Science, University of Tokyo has understood DIDSON's superior performance and tried to develop a new observation method based on DIDSON for hydrothermal discharging from seafloor vent. We expected DIDSON to reveal whole image of hydrothermal plume as well as detail inside the plume. The proposed method to observe and measure hydrothermal flow is the one to utilize a sheet-like acoustic beam. Scanning with concentrated acoustic beam gives distances to the edges of the hydrothermal flows. And then, the shapes of the flows can be identified even in low and zero visibility conditions. Tank experiment was conducted. The purposes of this experiment were to make an attempt at proposed method to delineate underwater hydrothermal flows and to understand relationships among acoustic video image, flow rate and water temperature. Water was heated in the hot tub and pumped to the water tank through the silicon tube. We observed water flows discharging from the tip of the tube with DIDSON. Flow rate had been controlled and temperatures of the


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  4. Hydrothermal synthesis, structural analysis and room-temperature ferromagnetism of Y{sub 2}O{sub 3}:Co{sup 2+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Patel, Sandeep K.S.; Kim, Min-Kwan; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail:


    Co{sup 2+}-doped Y{sub 2}O{sub 3} nanorods of 70–100 nm diameters and 0.3–2 µm lengths with different compositions (x=0.00, 0.04, 0.08) in Y{sub 2−x}Co{sub x}O{sub 3} were synthesized by an easy hydrothermal method. The X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy (TEM) results indicated the formation of a pure cubic phase structure of Y{sub 2}O{sub 3} doped with Co{sup 2+} ions without any secondary phase formation. The TEM analysis indicated that the nanorods were grown along the [100] axis. The pure Y{sub 2}O{sub 3} nanorods showed diamagnetism whereas the Co{sup 2+}-doped ones exhibited room-temperature ferromagnetism. The existence of such room-temperature ferromagnetic behavior in Co{sup 2+}-doped Y{sub 2}O{sub 3} nanorods is due mainly to the existence of oxygen vacancies originating after the doping of transition metal ions in the Y{sub 2}O{sub 3} host lattice. Oxygen vacancies act as defect centers in the bound magnetic polaron model to account for this dilute magnetic oxide of medium band gap with low transition-metal-ion concentration. The presence of defect-related oxygen vacancies was further confirmed by photoluminescence spectra analysis of our studied materials. - Highlights: • Hydrothermal synthesis of pure and Co-doped Y{sub 2}O{sub 3} nanorods. • Formation of nanorods without any template. • Pure Y{sub 2}O{sub 3} nanorods exhibited diamagnetism.

  5. Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method (United States)

    Selvakumar, D.; Dharmaraj, N.; Kadirvelu, K.; Kumar, N. S.; Padaki, V. C.


    Indium(III) hydroxide (In(OH)3) powders prepared via Triton X-100 mediated hydrothermal method was sintered at different temperatures (400, 500 and 600 °C) to yield indium(III) oxide nanoparticles (In2O3 NPs). Thermal studies of In(OH)3 confirmed complete conversion to In2O3 around 400 °C. Powder X-ray diffraction (XRD) pattern of sintered In2O3 nanoparticles revealed the formation of phase pure cubic In2O3. The crystallite size of In2O3 NPs was increased from 12 to 26 nm upon increasing the sintering temperature from 400 °C to 600 °C, while the percentage crystallinity was increased up to 90% after sintering at 600 °C. A red shift in the band gap energy was observed with increasing sintering temperature due to the larger size of sintered In2O3 NPs. Room temperature photoluminescence spectra of the indium oxide nanoparticles showed both near band and excitonic emission of In2O3 due to oxygen vacancies.

  6. Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. (United States)

    Selvakumar, D; Dharmaraj, N; Kadirvelu, K; Kumar, N S; Padaki, V C


    Indium(III) hydroxide (In(OH)3) powders prepared via Triton X-100 mediated hydrothermal method was sintered at different temperatures (400, 500 and 600°C) to yield indium(III) oxide nanoparticles (In2O3 NPs). Thermal studies of In(OH)3 confirmed complete conversion to In2O3 around 400°C. Powder X-ray diffraction (XRD) pattern of sintered In2O3 nanoparticles revealed the formation of phase pure cubic In2O3. The crystallite size of In2O3 NPs was increased from 12 to 26nm upon increasing the sintering temperature from 400°C to 600°C, while the percentage crystallinity was increased up to 90% after sintering at 600°C. A red shift in the band gap energy was observed with increasing sintering temperature due to the larger size of sintered In2O3 NPs. Room temperature photoluminescence spectra of the indium oxide nanoparticles showed both near band and excitonic emission of In2O3 due to oxygen vacancies. Copyright © 2014. Published by Elsevier B.V.

  7. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. (United States)

    Jin, Min; Ye, Ting; Zhang, Xiaobo


    The holin-endolysin system is used by double-stranded DNA phages to lyse their bacterial hosts at the terminal stage of the phage reproduction cycle. Endolysins are proteins with one of several muralytic activities able to digest the bacterial cell wall for phage progeny release. However, the functions of thermophilic bacteriophage endolysin in host lysis have not been extensively investigated. In this study, the roles of the endolysin of a thermophilic bacteriophage, GVE2, from a deep-sea hydrothermal vent, which could infect Geobacillus sp. E263 at high temperatures, were characterized. The results showed that GVE2 could lead to lysis of host cells. The confocal microscopy data showed that GFP-endolysin aggregated in GVE2-infected Geobacillus sp. E263 cells, showing the involvement of endolysin in the lysis process at high temperatures. The results revealed that the GVE2 endolysin and holin interacted directly. It was found that the endolysin could interact with the host protein ABC transporter, suggesting that host proteins might participate in the regulation of the lysis process. Therefore, our study presents a novel insight into the mechanism of the lysis process of a thermophilic bacterium by its phage at high temperatures, which should be helpful in revealing the roles of thermophilic bacteriophages in the biosphere of deep-sea hydrothermal vents.

  8. One-pot hydrothermal synthesis of Mn3O4 nanorods grown on Ni foam for high performance supercapacitor applications (United States)

    Li, Dongwei; Meng, Fanhui; Yan, Xiuling; Yang, Lishan; Heng, Hua; Zhu, Ye


    Mn3O4/Ni foam composites were synthesized by a one-step hydrothermal method in an aqueous solution containing only Mn(NO3)2 and C6H12N4. It was found that Mn3O4 nanorods with lengths of 2 to 3 μm and diameters of 100 nm distributed on Ni foam homogeneously. Detailed reaction time-dependent morphological and component evolution was studied to understand the growth process of Mn3O4 nanorods. As cathode material for supercapacitors, Mn3O4 nanorods/composite exhibited superior supercapacitor performances with high specific capacitance (263 F · g-1 at 1A · g-1), which was more than 10 times higher than that of the Mn3O4/Ni plate. The enhanced supercapacitor performance was due to the porous architecture of the Ni foam which provides fast ion and electron transfer, large reaction surface area, and good conductivity.

  9. A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis. (United States)

    Chen, Lu-Ya; Zhang, Wei-De; Xu, Bin; Yu, Yu-Xiang


    In this study, we report a facilely hydrothermal process for synthesizing SnO2 nanorods-graphene (SnO2 nanorods-GR) composite using graphite oxide and SnCl4 as raw materials. The SnO2 nanorods-GR composite was characterized by X-ray diffraction, electron microscopy, Xray photoelectron spectroscopy, and thermogravimetric analysis. Compared to commercial TiO2 nanoparticles P25 and neat SnO2 nanorods, the SnO2 nanorods-GR composite exhibits higher photocatalytic activity under UV light irradiation. The mechanism of its high photocatalytic activity is mainly ascribed to the synergy effect between SnO2 and graphene, in which graphene acts as an adsorbent and electron acceptor due to its large structure of pi-pi conjugation from sp2 hybrid carbon atoms. The results demonstrated in this study provide a promising way to enhance the photocatalytic activity by compounding semiconductive nanocrystals with graphene.

  10. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  11. The 3 Hours-hydrothermal Synthesis of High Surface Area Super Paramagnetic Fe3o4 Core-shell Nano Particles


    Octiana Sari, Esty; Fadli, Ahmad; Amri, Amun


    THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPER PARAMAGNETIC Fe3O4 CORE-SHELL NANO PARTICLES. The monodisperse core-shell Fe3O4 nanoparticles have been successfully synthesized by short times (3 hours) hydrothermal method at 220-oC from FeCl3, citrate, urea and PEG. The as-synthesized samples have been characterized using X-RayDiffraction (XRD), Transmission Electron Microscope (TEM), Bruneur-Emmet-Teller (BET) surface area analyzer, and Vibrating Sample Magnetometer (VSM). The ...

  12. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland (United States)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.


    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  13. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Directory of Open Access Journals (Sweden)

    Cheryl Jaworowski


    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system’s total energy output. Area is a key parameter for calculating the hydrothermal system’s heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.

  14. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. (United States)

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V; Kaco, Hatika


    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.

  15. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  16. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua


    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  17. High temperature thrust chamber for spacecraft (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)


    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  18. Stability projections for high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Laquer, H.L.; Edeskuty, F.J.; Hassenzahl, W.V.; Wipf, S.L.


    The stability of the new high temperature superconducting oxides has been analyzed, using the methodology developed over the last 25 years for conventional Type II superconductors. The results are presented in graphical form for the temperature range from 4 to 100 K. For a 90 K superconductor the first flux jump field peaks above 7 T at 60 K, ( and for a 120 k superconductor it peaks above 12 T at 75 K). The maximum adiabatically stable thickness increases dramatically. The linear dimension of the minimum propagating zone increases by a factor of 3 to 5, and the quench propagation velocity drops by 4 orders of magnitude. The high temperature superconducting materials will, therefore, have much higher stability than conventional Type II superconductors; their high flux jump fields will make ultra-fine multifilamentary conductors unnecessary and improve the outlook for tape conductors; the energy to create a propagating zone is increased; however, methods of coil protection will have to be modified.

  19. α-Fe2O3 cubes with high visible-light-activated photoelectrochemical activity towards glucose: hydrothermal synthesis assisted by a hydrophobic ionic liquid. (United States)

    Xu, Li; Xia, Jiexiang; Wang, Leigang; Qian, Jing; Li, Huaming; Wang, Kun; Sun, Kaiyong; He, Minqiang


    A liquid/liquid interfacial reaction system was designed to fabricate α-Fe2O3 cubes. The reaction system uses a hydrophobic ionic liquid containing iron ions ([(C8H17)2(CH3)2N]FeCl4) for manufacturing α-Fe2O3 cubes by a novel and environmentally friendly hydrothermal method under low-temperature conditions (140 °C). The iron-containing ionic liquid is hydrophobic and can form a liquid/liquid interface with water, which is vital for fabrication of the α-Fe2O3 cubes. Nanomaterials synthesized from hydrophobic iron-containing ionic liquids show good crystallinity, well-developed morphology, and uniform size. The effect of different ionic liquids on the morphology of α-Fe2 O3 was investigated in detail. [(C8H17)2(CH3)2N]FeCl4 is assumed to perform the triple role of forming a liquid/liquid interface with water and acting as reactant and template at the same time. The effect of the reaction temperature on the formation of the α-Fe2O3 cubes was also studied. Temperatures lower or higher than 140 °C are not conducive to formation of the α-Fe2O3 cubes. Their photoelectrochemical properties were tested by means of the transient photocurrent response of electrodes modified with as-prepared α-Fe2O3 cubes. The photocurrent response of an α-Fe2O3 cubes/indium tin oxide electrode is high and stable, and it shows great promise as a photoelectrochemical glucose sensor with high sensitivity and fast response, which are beneficial to practical applications of nanosensors. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi


    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  1. Temperature measurements of high power LEDs (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei


    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  2. Fiber Bragg Grating Filter High Temperature Sensors (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)


    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  3. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max


    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  4. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg


    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  5. Investigating the Effect of Line Dipole Magnetic Field on Hydrothermal Characteristics of a Temperature-Sensitive Magnetic Nanofluid Using Two-Phase Simulation. (United States)

    Bahiraei, Mehdi; Hangi, Morteza


    Hydrothermal characteristics of a temperature-sensitive magnetic nanofluid between two parallel plates are investigated in the presence of magnetic field produced by one or multiple line dipole(s) using the two-phase mixture model. As the nanofluid reaches the region where the magnetic field is applied, a rotation is developed due to the dependency of magnetization on temperature. This can lead to mixing in the flow and more uniform distribution of temperature due to the disturbance caused in the boundary layer, and consequently, enhancement in convective heat transfer. The results indicate that the disturbance in boundary layer adjacent to the lower wall is more significant than the upper wall. By application of the magnetic field, the convective heat transfer increases locally for both walls. Due to the intensified mixing, a sudden pressure drop occurs when the fluid reaches the region where the magnetic field is applied. For greater magnetic field strengths and lower Reynolds numbers, the improvement in convective heat transfer is more significant. For small magnetic field strengths, the effect of applying magnetic field on the upper wall is much smaller than that on the lower wall; however, this effect becomes almost the same for both walls at great magnetic field strengths.

  6. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)


    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  7. On-wafer high temperature characterization system (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.


    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  8. High Temperature Mechanisms for Venus Exploration (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  9. High-Temperature Shape Memory Polymers (United States)

    Yoonessi, Mitra; Weiss, Robert A.


    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  10. High Summer Temperatures and Mortality in Estonia.

    Directory of Open Access Journals (Sweden)

    Daniel Oudin Åström

    Full Text Available On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia.We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia.We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement.We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  11. Measuring nanowire thermal conductivity at high temperatures (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan


    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  12. High Summer Temperatures and Mortality in Estonia. (United States)

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans


    On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  13. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.


    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  14. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  15. Research at Very High Pressures and High Temperatures (United States)

    Bundy, Francis P.


    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  16. Lightweight High-Temperature Thermal Insulation (United States)

    Wagner, W. R.; Fasheh, J. I.


    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  17. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperatureare known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadaldevelopment and sex ratio in amphibians but the mechanism of action is not ...

  18. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.


    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  19. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  20. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.


    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  1. Complex performance during exposure to high temperatures. (United States)


    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  2. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended ...

  3. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of ...

  4. High pressure and high temperature behaviour of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Thakar, Nilesh A. [K. K. Shah Jarodwala Maninagar Science College, Rambaug, Maninagar, Ahmedabad-380008 (India); Bhatt, Apoorva D. [Department of Physics, Gujarat University, Ahmedabad-380009 (India); Pandya, Tushar C., E-mail: [St. Xavier' s College, Navrangpura, Ahmedabad-380009 (India)


    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  5. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V


    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  6. Hydrothermal synthesis of fine oxide powders

    Indian Academy of Sciences (India)

    The authors describe. hydrothermal decomposition,; hydrothermal metal oxidation,; hydrothermal reaction,; hydrothermal precipitation and hydrothermal hydrolysis,; hydrothermal electrochemical,; reactive electrode submerged arc,; hydrothermal microwave,; hydrothermal sonochemical,. etc and also ideal and real powders ...

  7. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Daud Yunus


    Full Text Available Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  8. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia (United States)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza


    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  9. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)


    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  10. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles (United States)

    Fulton, John L.; Hoffmann, Markus M.


    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  11. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products. (United States)

    Tian, Chunyan; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Cao, Wei; Lu, Haifeng; Duan, Na; Zhang, Li; Zhang, Tingting


    Hydrothermal liquefaction (HTL) allows a direct conversion of algal biomass into biocrude oil, not only solving the environmental issues caused by the over-growing algae but also producing renewable energy. This study reports HTL of algae after separation from eutrophicated Dianchi Lake in China. Conversion efficiency was studied under different operational conditions via an orthogonal design, including holding temperature (HT) (260-340 °C), retention time (RT) (30-90 min) and total solid (TS) (10-20%). A highest biocrude oil yield (18.4%, dry ash-free basis, daf) was achieved at 300 °C, 60 min, and 20% (TS), due to the low contents of lipids (1.9%, daf) and proteins (24.8%, daf), and high contents of ash (41.6%, dry basis) and carbohydrates (71.8%, daf). Operational parameters significantly affected the biocrude yields, and chemical distribution of HTL products. The biocrude production also related to other HTL products, and involved chemical reactions, such as deoxygenation and/or denitrogenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sorbents Remove Oxygen At High Temperatures (United States)

    Sharma, Pramod K.


    Cobalt-exchanged, platinized zeolites 13X and L found conveniently reducible in hot gaseous mixture of hydrogen and nitrogen and thereafter useful as sorbents of trace amounts of oxygen at high temperatures. Aided by catalytic action of platinum, sorbents exhibit rapid oxygen-sorption kinetics and, according to thermodynamic properties of O2/CoO system, capable of lowering level of oxygen in otherwise inert gaseous atmosphere to less than 1 part per trillion in temperature range of 400 to 800 degrees C. Inert atmospheres with these oxygen levels required for processing of certain materials in semiconductor industry.

  13. A review of high-temperature adhesives (United States)

    St.clair, A. K.; St.clair, T. L.


    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  14. High temperature dynamic engine seal technology development (United States)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.


    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  15. Synthesis of cerium oxide (CeO{sub 2}) with high surface area through microwave assisted hydrothermal method; Sintese de oxido de cerio (CeO{sub 2}) com alta area superficial por meio do metodo hidrotermico assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.J.C. de; Neiva, L.S.; Gama, L., E-mail: [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Quirino, M.R. [Universidade Federal da Paraiba (UFPB), Bananeiras, PB (Brazil); Oliveira, J.B. [Universidade Federal do Rio Grande do Norte, (UFRN), Natal, RN (Brazil)


    The objective of this research is synthesize nanoparticles with high surface area of Ceria (CeO{sub 2}) catalyst by a microwave hydrothermal method. For that it was used a 5% concentration in weight of [Ce(NO{sub 3}){sub 3.}6H{sub 2}O] and 10 mL of [NaOH (5M)] under processing conditions in the equipment: maximum temperature of 150 deg C for 60 min with heating rate of {sup 15}C /min. The resulting sample was characterized by XRD, SEM and BET method. It was observed that the Ceria particles are presented spatially in cubic structure, with crystallite size of 10 nm and surface area of 112 m²/g. Through the pore size distribution it was possible to observe that these were in mesoporous size, ranging from 3 to 30 nm. The possibility of obtaining catalysts with nanometer scale and high surface area by beans of microwave hydrothermal method, which involves low energy (low temperatures) and short synthesis time, makes this method very interesting and promising. (author)

  16. Fabrication of TiO2 nanorods/nanosheets photoelectrode on Ti mesh by hydrothermal method for degradation of methylene blue:influence of calcination temperature (United States)

    Deng, Xiaoyong; Ma, Qiuling; Cui, Yuqi; Cheng, Xiuwen; Cheng, Qingfeng


    In the study, Using the strategy of hydrothermal reaction followed by annealing at different temperatures, TiO2 nanorods/nanosheets (NRs/NSs) photoelectrodes with diverse microcosmic morphologies and crystal structures were successfully fabricated. Moreover, all samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Meanwhile the photoelectrochemical (PECH) properties were recorded through open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) curves. The photocatalytic (PC) activity of TiO2 NRs/NSs photoelectrodes were further measured by methylene blue (MB) degradation. Results suggest that the nanosheets possessed the width and thickness in the range of 100-400 and 10-20 nm, and the nanorods possessed the diameter in the range of around 10-20 nm, respectively. Also, the TiO2 NRs/NSs photoelectrode calcined at 500 °C exhibited the best proportion of both nanosheets and nanorods and higher photocatalytic activity (73.56%) than those of other TiO2 NRs/NSs photoelectrodes within 150 min under visible light illumination, which was ascribed to higher photoproduction electrons-holes (e/h+) pairs separation and visible light absorption. Therefore, the calcination temperature plays a significant role in altering the morphology and crystal structure of TiO2 NRs/NSs photoelectrode, and then enhanced PC performance.

  17. High temperature aircraft research furnace facilities (United States)

    Smith, James E., Jr.; Cashon, John L.


    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  18. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik


    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  19. Ongoing hydrothermal activities within Enceladus. (United States)

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf


    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  20. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  1. Hydrothermal conversion of biomass


    Knezevic, D.


    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  2. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  3. Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value. (United States)

    Ciccoritti, Roberto; Terracciano, Giovanna; Cammerata, Alessandro; Sgrulletta, Daniela; Del Frate, Viviana; Gazza, Laura; Nocente, Francesca


    This work describes a process for producing durum wheat flour fractions with high potential nutritional value using grain pre-milling hydrothermal treatment and ultra-fine grinding (micronization), coupled with air classification. The difference of bioactive value of the flour fractions in relation to dietary fibre and phenolic compounds was monitored on four durum wheat cultivars by analysing total arabinoxylans, water extractable arabinoxylans and 5- n-alkylresorcinols. The extractability of the analysed compounds was most significantly affected by hydrothermal treatment. On average, the hydrothermally treated kernels compared with the untreated ones presented a marked increase of water extractable arabinoxylans and alkylresorcinols (about 25 and 48%, respectively), whereas slightly lower total arabinoxylans content (about 9%) was detected. The air classification applied on micronized kernels produced two flour fractions, coarse and fine, with the last showing, irrespective of the hydrothermal treatment, an increment of alkylresorcinols (24 and 22% in untreated and treated samples) and of total arabinoxylans (13 and 20% in untreated and treated samples) in comparison with the coarse one. The fine fraction (particles ≤ 120 µm), resulting richer in bioactive compounds, provides an interesting raw material to enrich traditional semolina in which, due to the removal of the external layers, the losses of total arabinoxylans and of alkylresorcinols were more than 60 and 90% alkylresorcinols, respectively, if compared with whole wheat grain.

  4. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.


    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  5. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)


    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  6. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)


    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  7. Gasification of high ash, high ash fusion temperature bituminous coals (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang


    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in C. to C. range as well as in excess of C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  8. Electrochemical high-temperature gas sensors (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.


    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  9. Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation. (United States)

    Yuan, Wenyi; Meng, Wen; Li, Jinhui; Zhang, Chenglong; Song, Qingbin; Bai, Jianfeng; Wang, Jingwei; Li, Yingshun


    This research focused on the application of the hydrothermal sulphidisation method to separate lead from scrap cathode ray tube funnel glass. Prior to hydrothermal treatment, the cathode ray tube funnel glass was pretreated by mechanical activation. Under hydrothermal conditions, hydroxyl ions (OH(-)) were generated through an ion exchange reaction between metal ions in mechanically activated funnel glass and water, to accelerate sulphur disproportionation; no additional alkaline compound was needed. Lead contained in funnel glass was converted to lead sulphide with high efficiency. Temperature had a significant effect on the sulphidisation rate of lead in funnel glass, which increased from 25% to 90% as the temperature increased from 100 °C to 300 °C. A sulphidisation rate of 100% was achieved at a duration of 8 h at 300 °C. This process of mechanical activation and hydrothermal sulphidisation is efficient and promising for the treatment of leaded glass. © The Author(s) 2015.

  10. Vapor phase lubrication of high temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)


    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  11. Medium Deep High Temperature Heat Storage (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo


    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  12. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method (United States)

    Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.


    Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.

  13. High temperature superconductors for magnetic suspension applications (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.


    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  14. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico


    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  15. High Temperature Phenomena in Shock Waves

    CERN Document Server


    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  16. Trends in Surface Temperature at High Latitudes (United States)

    Comiso, Josefino C.


    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  17. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  18. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  19. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a high-temperature solid-state reac- tion technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: a = (4·1158 ± 0·0003) Å. The synthesized powder was characterized using X-ray diffraction ...

  20. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.


    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  1. Fundamental aspects of high-temperature corrosion


    Rapp, Robert


    Some recent considerations in three widely different aspects of high-temperature corrosion are summarized: 1) reactions at the metal/scale interface in support of scale growth; 2) mass transfer effects in the control of evaporation of volatile reaction products; and 3) the codeposition of multiple elements for diffusion coatings using halide-activated cementation packs. The climb of misfit edge dislocations from the metal/scale interface can achieve the annihilation of vacancies associated wi...

  2. Thermal fuse for high-temperature batteries (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.


    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately C. and C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  3. High-Temperature Thermoelectric Energy Conversion (United States)

    Wood, C.


    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  4. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)


    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  5. High-temperature technological processes: Thermophysical principles (United States)

    Rykalin, N. N.; Uglov, A. A.; Anishchenko, L. M.

    The book is concerned with the principles of thermodynamics and heat transfer theory underlying high-temperature technological processes. Some characteristics of electromagnetic radiation and heat transfer in solids, liquids, and gases are reviewed, and boundary layer theory, surface phenomena, and phase transitions are examined. The discussion includes an analysis of a number of specific processes, such as treatment by concentrated energy fluxes (electron-beam and laser processing) and plasma machining.

  6. Brittle Materials Design, High Temperature Gas Turbine (United States)


    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  7. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)


    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  8. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments. (United States)

    Kitadai, Norio


    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  9. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)


    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  10. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2.3 A cm-2 were obtained....

  11. High temperature superconducting digital circuits and subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L. [Conductus, Sunnyvale, CA (United States); Hietala, V.M.; Wendt, J.R. [Sandia National Labs., Albuquerque, NM (United States); Hou, S.Y.; Phillips, J. [AT and T Bell Labs., Murray Hill, NJ (United States)


    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  12. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. (United States)

    Wang, Liping; Li, Aimin; Chang, Yuzhi


    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.


    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  14. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.


    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  15. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan


    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  16. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment. (United States)

    Tran, Hai Nguyen; Lee, Chung-Kung; Nguyen, Tien Vinh; Chao, Huan-Ping


    Three saccharides (glucose, sucrose, and xylose) were used as pure precursors for synthesizing spherical biochars (GB, SB, and XB), respectively. The two-stage synthesis process comprised: (1) the hydrothermal carbonization of saccharides to produce spherical hydrochar' and (2) pyrolysis of the hydrochar at different temperatures from 300°C to 1200°C. The results demonstrated that the pyrolysis temperatures insignificantly affected the spherical morphology and surface chemistry of biochar. The biochar' isoelectric point ranged from 2.64 to 3.90 (abundant oxygen-containing functionalities). The Brunauer-Emmett-Teller (BET)-specific surface areas (SBET) and total pore volumes (Vtotal) of biochar increased with the increasing pyrolysis temperatures. The highest SBET and Vtotal were obtained at a pyrolysis temperature of 900°C for GB (775 m2/g and 0.392 cm3/g), 500°C for SB (410 m2/g and 0.212 cm3/g), and 600°C for XB (426 m2/g and 0.225 cm3/g), respectively. The spherical biochar was a microporous material with approximately 71-98% micropore volume. X-ray diffraction results indicated that the biochar' structure was predominantly amorphous. The spherical biochar possessed the graphite structure when the pyrolysis temperature was higher than 600°C. The adsorption capacity of GB depended strongly on the pyrolysis temperature. The maximum Langmuir adsorption capacities ([Formula: see text]) of 900GB exhibited the following selective order: phenol (2.332 mmol/g) > Pb2+ (1.052 mmol/g) > Cu2+ (0.825 mmol/g) > methylene green 5 (0.426 mmol/g) > acid red 1 (0.076 mmol/g). This study provides a simple method to prepare spherical biochar - a new and potential adsorbent for adsorbing heavy metals and aromatic contaminants.

  17. High Pressure and Temperature Effects in Polymers (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  18. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T


    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  19. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures. (United States)

    Zheng, Hui; Chen, Baojiu; Yu, Hongquan; Zhang, Jinsu; Sun, Jiashi; Li, Xiangping; Sun, Min; Tian, Bining; Fu, Shaobo; Zhong, Hua; Dong, Bin; Hua, Ruinian; Xia, Haiping


    Laurustinus shaped NaY(WO4)2 micro-particles assembled by nanosheets were synthesized via a microwave-assisted hydrothermal (MH) route. The growing mechanisms for the obtained resultants with various morphologies were proposed based on the observation of scanning electron microscopic (SEM) images. It was found that Na3Cit added into the reaction solution greatly influenced the formation and size dimension of the nano-sheets, furthermore determined assembling of the laurustinus shaped micro-particles. The temperature sensing performance of NaY(WO4)2:Er(3+)/Yb(3+) was evaluated. Thermal effect induced by the 980nm laser irradiation in laurustinus-shaped NaY(WO4)2:Er(3+)/Yb(3+) phosphor was studied. It was found that the green upconversion luminescence intensity increased in the first stage of laser irradiation, and then decreased after reaching a maximum. Based on the thermal sensing technology the laurustinus NaY(WO4)2:Er(3+)/Yb(3+) microparticles were used as thermal probe to discover thermal effect of upconversion luminescence in laurustinus NaY(WO4)2:Tm(3+)/Yb(3+) micro-particles. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    . Different particle shapes of beechwood and leached wheat straw chars produced in the drop tube reactor which have similar potassium content suggested a stronger influence of the major biomass cell wall compounds (cellulose, hemicellulose, lignin and extractives) and silicates on the char morphology than...... multi core structures compared to pinewood soot generated at 1400°C, combining both single and multi core particles.Beechwood and wheat straw soot samples had multi and single core particles at both temperatures.In thermogravimetric analysis, the maximal reaction rate of pinewood soot was shifted...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...

  1. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja


    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  2. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  3. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  4. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)


    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  5. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others


    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  6. Electrical Conductivity of Micas at High Temperatures (United States)

    Watanabe, T.


    Electrical conductivity, along with seismic velocity, gives us clues to infer constituent materials and temperatures in the Earth's interior. Dry rocks have been considered to be electrically insulating at crustal temperatures. Observed high conductivity has been ascribed to the existence of fluids. However, Fuji-ta et al. (2007) recently reported that a dry gneiss shows relatively high conductivity (10-4-10-3 S/m) at the temperature of 300-400°C, and that it is strongly anisotropic in conductivity. They suggested that the alignment of biotite grains governs conductivity of the gneiss sample. Electrical properties of rock forming minerals are still poorly understood. We thus have measured electrical properties of biotite single crystals up to 700°C. In order to get a good understanding of conduction mechanisms, measurements have been also made on phlogopite and muscovite, which are common micas with similar crystallographic structures. Thin plates parallel to cleavages (thickness~0.1mm) were prepared from mica single crystals. Electrical impedance was measured by 2-electrode method. The specimen was kept in nitrogen or argon atmosphere. The conductivity measured parallel to cleavages is higher than that measured perpendicular to cleavages by 3-4 orders of magnitude. However, no significant difference in the activation energy of conductivity was observed between two directions. The activation energy of conductivity is ~50 kJ/mol for biotite and ~100 kJ/mol for phlogopite and muscovite. The conductivity of biotite is higher than those of phlogopite and muscovite by several orders of magnitude at the same temperature. The conductivity of biotite parallel to cleavages is ~10-1 S/m at 400°C. The conductivity of biotite increases irreversibly by heating. The irreversible change was not significant below 450°C. Remarkable increase is observed at the temperature of 450-550°C. No significant change was observed in the second heating. Such an increase in conductivity

  7. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li


    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)


    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  9. Impact-generated Hydrothermal Activity at the Chicxulub Crater (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.


    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  10. The hydrothermal exploration system on the 'Qianlong2' AUV (United States)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.


    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  11. Diamond based detectors for high temperature, high radiation environments (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.


    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  12. Selected data for hydrothermal-convection systems in the United States with estimated temperatures greater than or equal to 90/sup 0/C: back-up data for US Geological Survey Circular 790

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Brook, C.A.; Swanson, J.R.; Mabey, D.R.


    A compilation of data used in determining the accessible resource base for identified hydrothermal convection systems greater than or equal to 90/sup 0/C in the United States are presented. Geographic, geologic, chemical, isotopic, volumetric, and bibliographic data and calculated thermal energy contents are listed for all vapor-dominated and hot-water systems with estimated reservoir temperatures greater than or equal to 90/sup 0/C and reservoir depths less than 3 km known to the authors in mid 1978. Data presented here is stored in the US Geological Survey's geothermal computer file GEOTHERM. Data for individual hydrothermal convection systems in each state are arranged geographically from north to south and west to east without regard to the type or temperature of the system. Locations of the systems and corresponding reference numbers are shown on map 1 accompanying US Geological Survey Circular 790.

  13. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    With dwindling easily accessible oil and gas resources, more and more exploration and production activities in the oil industry are driven to technically challenging environments such as unconventional resources and deeper formations. The temperature and pressure can become extremely high, e.g., up...

  14. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong


    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  15. Assessment of high-temperature filtering elements

    Energy Technology Data Exchange (ETDEWEB)

    Monica Lupion; Francisco J. Gutierrez Ortiz; Benito Navarrete; Vicente J. Cortes [University of Seville, Seville (Spain). E.T.S. Ingenieros


    A complete experimental campaign has been carried out in a hot gas filtration test facility so as to test several filtering elements and configurations, particularly, three different types of bag filters and one ceramic candle. The facility was designed to operate under a wide range of conditions, thus providing an excellent tool for the investigation of hot gas filtration applications for the advanced electrical power generation industry such as IGCC, PFBC or fuel cell technologies. Relevant parameters for the characterization and optimization of the performance of the filters have been studied for a variety of operation conditions such as filtration velocity, particle concentration, pressure and temperature among others. Pressure drop across the filter, cleaning pulse interval, baseline pressure drop, filtration efficiency and durability of the filter have been investigated for each type considered and dependences on parameters have been established. On top of that, optimal operating conditions and cleaning strategies were determined. The tests results show that bag filters are a suitable alternative for the hot gas filtration due to the better performance and the high efficiency observed, which makes them suitable for industrial applications operating under high temperature high pressure conditions considered within the study (200-370{degree}C and 4-7.5 barg respectively). 7 refs., 7 figs., 10 tabs.

  16. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin


    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  17. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud


    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...... to a temperature of 220°C. An activation energy of 9 kJ·mol−1 (2.2 kcal·mol−1) has been determined and the spectrum of the transient formed in the reaction has been determined at different temperatures....

  18. High temperature behaviour of a zircon ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMMPM; Hamidouche, M. [Lab. Science des Materiaux, Univ. de Setif (Algeria); Torrecillas, R. [Inst. Nacional del Carbon, Oviedo (Spain)


    The high temperature properties of a sintered zircon material has been tested up to 1200 C. A significant creep rate is observed, mainly attributed to the presence of glassy phase. The sub-critical crack growth measured in double torsion showed that above 1000 C, the crack velocity is reduced either by stress relaxation or by crack healing. The thermal shock analysis under a heat exchange coefficient of 600 W/m{sup 2}/K showed a regular decrease rather that a sudden fall off of properties. (orig.) 3 refs.

  19. Encapsulation of high temperature molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, James D.; Mathur, Anoop Kumar


    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  20. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.


    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  1. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan


    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  2. Identifying bubble collapse in a hydrothermal system using hiddden Markov models (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.


    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  3. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao


    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  4. Hydrothermal mixing: Fuel for life in the deep-sea (United States)

    Hentscher, M.; Bach, W.; Amend, J.; McCollom, T.


    Deep-sea hydrothermal vent systems show a wide range of fluid compositions and temperatures. They reach from highly alkaline and reducing, like the Lost City hydrothermal field, to acidic and reducing conditions, (e. g., the Logatchev hydrothermal field) to acidic and oxidizing conditions (e. g., island arc hosted systems). These apparently hostile vent systems are generally accompanied by high microbial activity forming the base of a food-web that often includes higher organisms like mussels, snails, or shrimp. The primary production is boosted by mixing of chemically reduced hydrothermal vent fluids with ambient seawater, which generates redox disequilibria that serve as energy source for chemolithoautotrophic microbial life. We used geochemical reaction path models to compute the affinities of catabolic (energy-harvesting) and anabolic (biosynthesis) reactions along trajectories of batch mixing between vent fluids and 2 °C seawater. Geochemical data of endmember hydrothermal fluids from 12 different vent fields (Lost City, Rainbow, Logatchev, TAG, EPR 21 °N, Manus Basin, Mariana Arc, etc.) were included in this reconnaissance study of the variability in metabolic energetics in global submarine vent systems. The results show a distinction between ultramafic-hosted and basalt-hosted hydrothermal systems. The highest energy yield for chemolithotrophic catabolism in ultramafic-hosted hydrothermal systems is reached at low temperature and under slightly aerobic to aerobic conditions. The dominant reactions, for example at Rainbow or Lost City, are the oxidation of H2, Fe2+ and methane. At temperatures >60 °C, anaerobic metabolic reactions, e. g., sulphate reduction and methanogenesis, become more profitable. In contrast, basalt-hosted systems, such as TAG and 21 °N EPR uniformly indicate H2S oxidation to be the catabolically dominant reaction over the entire microbial-relevant temperature range. Affinities were calculated for the formation of individual cellular

  5. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.


    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  6. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.


    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  7. High point for CERN and high-temperature superconductors

    CERN Multimedia


    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  8. Structural reconstruction: a milestone in the hydrothermal synthesis of highly active Sn-Beta zeolites. (United States)

    Zhu, Zhiguo; Xu, Hao; Jiang, Jingang; Wu, Haihong; Wu, Peng


    A novel structural reconstruction strategy is proposed to prepare an active Sn-Beta catalyst with high Sn contents and a hydrophobic nature. Compared with post-synthesized Sn-Beta and state-of-the-art classic fluoride-mediated Sn-Beta-F, this Sn-Beta zeolite exhibits unparalleled active site-based turnover frequency for desirable products and in particular catalyst weight-based space-time-yields in various redox reactions of ketones.

  9. Numerical simulation of magmatic hydrothermal systems (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.


    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  10. One-Step Hydrothermal Fabrication of TiO2/Reduced Graphene Oxide for High-Efficiency Dye-Sensitized Solar Cells (United States)

    Zhang, Heng; Lv, Yanqi; Yang, Chao; Chen, Huanhuan; Zhou, Xingfu


    A facile one-step hydrothermal method was developed to prepare TiO2/reduced graphene oxide (TiO2/RGO) composite, which contains TiO2 microspheres and two-dimensional RGO with dispersed TiO2 nanoparticles. During the hydrothermal process, reduction of graphene oxide (GO) and hydrolysis of the titanium source were both obtained. Highly electronically conductive RGO was incorporated into TiO2 photoanodes of dye-sensitized solar cells (DSSCs), which facilitated a faster electron transfer efficiency and a lower reduction in electron recombination, together with enhanced light scattering and dye adsorption. The performance measurement of the DSSCs showed that incorporation of RGO can significantly improve the photovoltaic performance of DSSCs; the short-circuit current density showed a 45.5% increase and a total conversion efficiency of 7.57% was obtained.

  11. High temperature deformation of 6061 Al

    Energy Technology Data Exchange (ETDEWEB)

    Kyungtae Park; Lavernia, E.J.; Mohamed, F.A. (Univ. of California, Irvine (United States). Dept. of Mechanical and Aerospace Engineering)


    The creep behavior of powder metallurgy (PM) 6061 Al, which has been used as a metal matrix alloy in the development of discontinuous silicon carbide reinforced aluminum (SiC-Al) composites, has been studied over six orders of magnitude of strain rate. The experimental data show that the steady-state stage of the creep curve is of short duration; that the stress dependence of creep rate is high and variable; and that the temperature dependence of creep rate is much higher than that for self-diffusion in aluminum. The above creep characteristics are different from those documented for aluminum based solid-solution alloys but are similar to those reported for discontinuous SiC-Al composites and dispersion-strengthened (DS) alloys. Analysis of the experimental data shows that while the high stress dependence of creep rate in 6061 Al, like that in DS alloys, can be explained in terms of a threshold stress for creep, the strong temperature dependence of creep rate in the alloy is incompatible with the predictions of available threshold stress models and theoretical treatments proposed for DS alloys.

  12. Development of High Temperature Gas Sensor Technology (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun


    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  13. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.


    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  14. High-temperature ordered intermetallic alloys V

    Energy Technology Data Exchange (ETDEWEB)

    Baker, I. (ed.) (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering); Darolia, R. (ed.) (GE Aircraft Engines, Cincinnati, OH (United States)); Whittenberger, J.D. (ed.) (NASA, Cleveland, OH (United States). Lewis Research Center); Yoo, M.H. (ed.) (Oak Ridge National Lab., TN (United States))


    These proceedings represent the written record of the High-Temperature Ordered Intermetallic Alloys 5 Symposium which was held in conjunction with the 1992 Fall Materials Research Society meeting in Boston, Massachusetts. This symposium, which was the fifth in the series originated by C.C Koch, C.T. Liu and N.S. Stoloff in 1984, was very successful with 86 oral presentations over four days, and approximately 140 posters given during two lively evening sessions. Such a response, in view of the increasing number of conferences being held on intermetallics each year, reveals the continued high regard for this series of symposia. Individual papers have been processed separately for inclusion in the appropriate data bases.

  15. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I


    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  16. Cast Aluminum Alloy for High Temperature Applications (United States)

    Lee, Jonathan A.


    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  17. Apparatus for accurately measuring high temperatures (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  18. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. (United States)

    Lewis, Lev; Derakhshandeh, Maziar; Hatzikiriakos, Savvas G; Hamad, Wadood Y; MacLachlan, Mark J


    We report the facile preparation of gels from the hydrothermal treatment of suspensions of cellulose nanocrystals (CNCs). The properties of the hydrogels have been investigated by rheology, electron microscopy, and spectroscopy with respect to variation in the temperature, time, and CNC concentration used in preparation. Desulfation of the CNCs at high temperature appears to be responsible for the gelation of the CNCs, giving highly porous networks. The viscosity and storage modulus of the gels was shown to increase when samples were prepared at higher treatment temperature. Considering the wide natural abundance and biocompatibility of CNCs, this simple, green approach to CNC-based hydrogels is attractive for producing materials that can be used in drug delivery, insulation, and as tissue scaffolds.

  19. An Integrative Genomic Island Affects the Adaptations of Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Zhen Li


    Full Text Available Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ∆PYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature and hydrostatic pressure. The ∆PYG1 mutant strain showed reduced growth when grown at 100 °C, while the biomass of ∆PYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module Ⅲ of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.

  20. Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl{sub 2}O{sub 4} as catalyst support

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xin, E-mail: [Department of Chemical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 299, Xi' an 710069, Shaanxi (China)


    MgAl{sub 2}O{sub 4} was respectively synthesized by the hydrothermal method (MgAl{sub 2}O{sub 4}-HT) and the co-precipitation method (MgAl{sub 2}O{sub 4}-CP). The as-synthesized MgAl{sub 2}O{sub 4} was used as support to prepare CoO{sub x}/MgAl{sub 2}O{sub 4} catalyst for oxidative dehydrogenation of ethane (ODE) with CO{sub 2}. The properties of these samples were characterized by X-ray diffraction (XRD), N{sub 2} isothermal adsorption-desorption, transmission electron microscopy (TEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) techniques. In addition, the catalytic performance of these samples in ODE with CO{sub 2} was comparatively investigated. Comparing with MgAl{sub 2}O{sub 4}-CP, MgAl{sub 2}O{sub 4}-HT is high-surface-area (S{sub BET} = 230.6 m{sup 2} g{sup -1}) mesostructure (D{sub pore} = 5 nm) nanocrystallite (ca. 10 nm) MgAl{sub 2}O{sub 4} spinel. MgAl{sub 2}O{sub 4}-HT as support can supply a large quantity of reducible active sites on the catalyst and enhance the diffusion of reactant and product in the reaction. Therefore, CoO{sub x}/MgAl{sub 2}O{sub 4}-HT exhibited the stronger reducible property and the higher catalytic activity as well as the lower apparent activity energy in ODE with CO{sub 2} than CoO{sub x}/MgAl{sub 2}O{sub 4}-CP.

  1. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. (United States)

    Kaye, Jonathan Z; Baross, John A


    Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.

  2. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  3. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)


    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  4. High-temperature enzymatic breakdown of cellulose. (United States)

    Wang, Hongliang; Squina, Fabio; Segato, Fernando; Mort, Andrew; Lee, David; Pappan, Kirk; Prade, Rolf


    Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.

  5. High temperature chemically resistant polymer concrete (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  6. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    reaction kinetics. At oxygen partial pressures below 10-6 bar at 700 C, the mass transport processes dominated the response time. The response time increased with decreasing oxygen partial pressure and inlet gas flow rate. A series of porous platinum electrodes were impregnated with the ionically...... conducting gadolinium-doped cerium oxide (CGO). The addition of CGO was found to decrease the polarisation resistance of the oxygen reaction by up to an order of magnitude compared with a single phase platinum electrode by increasing the effective triple phase boundary (TPB) length. It did not have any......Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...

  7. Filter unit for use at high temperatures (United States)

    Ciliberti, David F.; Lippert, Thomas E.


    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  8. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)


    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  9. High temperature triaxial tests on Rochester shale (United States)

    Bruijn, Rolf; Burlini, Luigi; Misra, Santanu


    Phyllosilicates are one of the major components of the crust, responsible for strength weakening during deformation. High pressure and temperature experiments of natural samples rich in phyllosilicates are needed to test the relevance of proposed weakening mechanisms induced by phyllosilicates, derived from lab experiments on single phase and synthetic polyphase rocks and single crystals. Here, we present the preliminary results of a series of high temperature triaxial tests performed on the illite-rich Rochester Shale (USA - New York) using a Paterson type gas-medium HPT testing machine. Cylindrical samples with homogeneous microstructure and 12-14% porosity were fabricated by cold and hot-isostatically pressing, hot-pressed samples were deformed up to a total shortening of 7.5 to 13%. To study the significance of mica dehydration, iron or copper jackets were used in combination with non-porous or porous spacers. Water content was measured before and after experiments using Karl Fischer Titration (KFT). All experiments show, after yielding at 0.6% strain, rapid hardening in nearly linear fashion until about 4-5% strain, from where stress increases at reducing rates to values at 10% strain, between 400 and 675 MPa, depending on experimental conditions. Neither failure nor steady state however, is achieved within the maximum strain of 13%. Experiments performed under 500 °C and 300 MPa confining pressure show weak strain rate dependence. In addition, iron-jacketed samples appear harder than copper-jacketed ones. At 700 °C samples are 17 to 37% weaker and more sensitive to strain rate than during 500 °C experiments. Although, iron-jacketed samples behave stronger than copper-jacketed ones. By visual inspection, samples appear homogeneously shortened. Preliminary analysis suggests that deformation is mostly accommodated by pore collapse. Although, with finite strain, pore collapse becomes less significant. A temperature, strain rate and jacket material dependent

  10. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.


    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k......Da with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes...


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  12. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor (United States)

    Chen, Xiangxiang; Shen, Yanbai; Zhang, Wei; Zhang, Jin; Wei, Dezhou; Lu, Rui; Zhu, Lijia; Li, Hansen; Shen, Yansong


    ZnO nanowire (ZNW) arrays were in-situ grown on the sensing electrode via a facile hydrothermal route for NO2 sensing application. ZNW arrays were prepared by a seed layer deposition on the surface of the sensing electrode using a dipping process in a Zn(CH3COO)2·2H2O ethanol solution followed by a seed growth using a hydrothermal route in the Zn(NO3)2·6H2O-HMTA (C6H12N4) system. The microstructural characterizations of the ZNW arrays by means of XRD, FESEM, TEM, FTIR and XPS showed that ZnO nanowires with the diameters of 80-90 nm and the lengths of 0.6-1 μm had a single crystal hexagonal wurtzite structure. Gas sensing properties demonstrated the response of the sensor based on the ZNW arrays was linearly proportional to the NO2 concentration in the range of 1-30 ppm with good reproducibility and selectivity. The maximum sensor response to NO2 was obtained at an operating temperature of 250 °C. The response and recovery times reduced rapidly with increasing the operating temperature. The growth mechanism and sensing mechanism of the ZNW arrays were discussed in accordance with the deposition of the seed layer and the modulation of the depletion layer, respectively.

  13. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo


    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer

  14. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu


    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  15. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications (United States)

    Fischer, Fabian; Laevemann, Eberhard


    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan.

  16. Fiber Optic Temperature Sensor Insert for High Temperature Environments (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)


    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  17. Study Progress of Physiological Responses in High Temperature Environment (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.


    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  18. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Vinayak N. Kabadi


    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  19. Rapid sulfur capture studies at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Lawson, W.F.; Maloney, D.J.; Shaw, D.W.


    Determine conditions that would reproduce optimum sulfur capture ( super-equilibrium'') behavior. No attempt was made to extract kinetic data for calcination or sulfur capture, as might be done in a comprehensive study of sorbent behavior. While some interesting anomalies are present in the calcination data and in the limited surface area data, no attempt was made to pursue those issues. Since little sulfur capture was observed at operating conditions where super-equilibrium'' might be expected to occur, tests were stopped when the wide range of parameters that were studied failed to produce significant sulfur capture via the super-equilibrium mechanism. Considerable space in this report is devoted to a description of the experiment, including details of the GTRC construction. This description is included because we have received requests for a detailed description of the GTRC itself, as well as the pressurized dry powder feed system. In addition, many questions about accurately sampling the sulfur species from a high-temperature, high-pressure reactor were raised during the course of this investigation. A full account of the development of the gas and particulate sampling train in thus provided. 8 refs., 17 figs., 2 tabs.

  20. High temperature superconductors in electromagnetic applications

    CERN Document Server

    Richens, P E


    powder-in-tube and dip-coated, have been made using a novel single loop tensometer that enables the insertion of a reasonably long length of conductor into the bore of a high-field magnet. The design, construction, and characterization of a High Temperature Superconducting (HTS) magnet is described. The design stage has involved the development of computer software for the calculation of the critical current of a solenoid wound from anisotropic HTS conductor. This calculation can be performed for a variety of problems including those involving magnetic materials such as iron by the incorporation of finite element electromagnetic analysis software. This has enabled the optimization of the magnet's performance. The HTS magnet is wound from 190 m of silver-matrix Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 1 sub 0 powder-in-tube tape conductor supplied by Intermagnetics General Corporation. The dimensions are 70 mm bore and 70 mm length, and it consists of 728 turns. Iron end-plates were utilized in order to reduc...

  1. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett


    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  2. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.


    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  3. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada (United States)

    Lavoie, Denis; Jackson, Simon; Girard, Isabelle


    Mg isotopes are used to better understand the genesis of hydrothermal saddle dolomite cements in Lower Paleozoic successions in Canada. These cements occur in fault-bounded dolostones that overlay lithologically diverse basement rocks; Ordovician dolomite lies over the Precambrian craton, whereas the Silurian and Devonian dolomites overlay a succession of tectonically accreted sedimentary, volcanic and ultramafic units of Cambrian to Ordovician age. Lower Silurian saddle dolomites have the most negative δ26MgDSM3 values of our dataset (- 3.25 to - 1.13‰), and plot in two distinct groups: a strongly negative subset that characterizes higher temperature (175 °C) dolomites, and a less negative subset for lower temperature (153 °C) dolomites. Upper Ordovician saddle dolomites precipitated at significantly lower temperatures (102 °C), and their δ26MgDSM3 values range from - 1.26 to - 0.71‰. Lower Devonian saddle dolomites formed at very high temperature (350 °C) and have δ26MgDSM3 values ranging from - 1.29 to - 0.78‰. No experimental data on high temperature (100-350 °C) fluid-dolomite Mg isotope fractionation factors have been published, and recent research suggests that no significant fractionation occurs between diagenetic fluids and dolomites at high temperatures in closed to semi-closed diagenetic systems. Our results indicate that the isotopic signature of diagenetic fluid is the primary control for the δ26MgDSM3 values in these high-temperature dolomites.

  4. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R., E-mail:; García-Granda, Santiago


    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  5. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela


    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  6. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T


    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analytic Models of High-Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.


    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

  8. High Temperature Electrical Insulation Materials for Space Applications Project (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  9. High Temperature Fatigue Life Evaluation Using Small Specimen

    National Research Council Canada - National Science Library

    NOGAMI, Shuhei; HISAKA, Chiaki; FUJIWARA, Masaharu; WAKAI, Eichi; HASEGAWA, Akira


    For developing the high temperature fatigue life evaluation method using small specimen, the effect of specimen size and test environment on the high temperature fatigue life of the reduced activation...

  10. Laser Brazing of High Temperature Braze Alloy (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.


    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  11. Metagenome and Metatranscriptome Revealed a Highly Active Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe


    Full Text Available The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem.

  12. Measuring Specific Heats at High Temperatures (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles


    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  13. Thermoelectric Powered High Temperature Wireless Sensing (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  14. Are there significant hydrothermal resources in the US part of the Cascade Range?

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L.J. Patrick; Guffanti, Marianne


    The Cascade Range is a geothermal dichotomy. On the one hand, it is an active volcanic arc above a subducting plate and is demonstrably an area of high heat flow. On the other hand, the distribution of hydrothermal manifestations compared to other volcanic arcs is sparse, and the hydrothermal outflow calculated from stream chemistry is low. Several large estimates of undiscovered geothermal resources in the U.S. part of the Cascade Range prepared in the 1970s and early 1980s were based fundamentally on two models of the upper crust. One model assumed that large, partly molten, intrusive bodies exist in the upper 10 km beneath major volcanic centers and serve as the thermal engines driving overlying hydrothermal systems. The other model interpreted the coincident heat-flow and gravity gradients west of the Cascade crest in central Oregon to indicate a partly molten heat source at 10 {+-} 2 km depth extending {approx}30 km west from the axis of the range. Investigations of the past ten years have called both models into question. Large long-lived high-temperature hydrothermal systems at depths <3 km in the U.S. part of the Cascade Range appear to be restricted to silicic domefields at the Lassen volcanic center, Medicine Lake volcano, Newberry volcano, and possibly the Three Sisters. Federal land-use restrictions further reduce this list to Medicine Lake and Newberry. Dominantly andesitic stratocones appear to support only small transitory hydrothermal systems related to small intrusive bodies along the volcanic conduits. The only young caldera, at Crater Lake, supports only low- to intermediate-temperature hydrothermal systems. Most of the Cascade Range comprises basaltic andesites and has little likelihood for high-level silicic intrusions and virtually no potential for resultant large high-temperature hydrothermal systems. Undiscovered hydrothermal resources of the Cascade Range of the United States are substantially lower than previous estimates. The range does

  15. High-temperature archeointensity measurements from Mesopotamia (United States)

    Gallet, Yves; Le Goff, Maxime


    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  16. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)


    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  17. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.


    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  18. Antarctic marine biodiversity and deep-sea hydrothermal vents. (United States)

    Chown, Steven L


    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining.

  19. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  20. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Samadhan Krushna Phuge


    Jun 20, 2017 ... temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis ..... Table 1. Effect of rearing water temperature on gonadal differentiation and sex ratio of Euphlyctis cyanophlyctis .... tures (28, 30 and 32°C) induced female to male sex reversal.

  1. Problem aspects of high temperature referral metrology (United States)

    Khodunkov, V. P.


    The main problematic aspects of the reproduction and transmission of a unit of temperature by a direct method are considered. The methodology and hardware for its implementation are considered. An estimate of the expected uncertainty in the measurement of the thermodynamic temperature is given.


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  3. High performance internal reforming unit for high temperature fuel cells (United States)

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT


    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  4. Vortices in high-performance high-temperature superconductors (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E.; Kihlstrom, Karen J.; Crabtree, George W.


    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  5. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures : A new numerical scheme and benchmarks for code comparison

    NARCIS (Netherlands)

    Weis, P.; Driesner, T.; Coumou, D.; Geiger, S.


    Thermohaline convection of subsurface fluids strongly influences heat and mass fluxes within the Earth's crust. The most effective hydrothermal systems develop in the vicinity of magmatic activity and can be important for geothermal energy production and ore formation. As most parts of these systems

  6. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes

    Directory of Open Access Journals (Sweden)

    Aishu Yin


    Full Text Available Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m2·g−1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35–45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  7. Dissolved Fe and Fe binding ligand concentrations at the hydrothermal vent fields in the Coriolis Troughs, New Hebrides Island Arc (United States)

    Kleint, C.; Hawkes, J. A.; Sander, S. G.; Koschinsky, A.


    It is globally accepted that hydrothermal vent fluids are highly enriched in Fe compared to the surrounding seawater and for long it was believed that the majority of the dissolved Fe is precipitated either directly out of the fluid with seawater contact or from the plume within a short distance. Recent research at other deep-sea hydrothermal vents has shown, however, that organic ligands are able to keep Fe soluble and therefore facilitating its transport into the open ocean. This is important since Fe is also considered a limiting factor for primary production in large parts of the world`s surface ocean. The New Hebrides Island Arc is not studied well with respect to the fluid chemistry of its numerous vents. Up until now, no data is published for the crucial micronutrient Fe in these fluids. Several hydrothermal vent fluids, divided into mixing zone, outlet and pure fluid as well as one hydrothermal plume from the Coriolis Troughs have been analyzed with respect to total dissolved Fe (dFe) and Fe binding ligands (FeL), using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE - AdCSV) with Salicylaldoxime as the artificial ligand. Our dFe data for the hydrothermal plume show concentrations ranging from 9.6 nM to 30.1 nM, being highly enriched compared to the surrounding seawater. Good correlation is observed between dFe and turbidity, which can be used as a proxy for hydrothermal plumes. Hydrothermal fluid samples collected near and directly from the vent outlet show total dissolved Fe concentrations varying from 0.46 µM up to 380 µM, respectively. We find enriched organic ligand concentrations in the plume samples as well as in the samples taken near the hydrothermal vent outlets. Pure hydrothermal fluid samples with an in-situ temperature of up to 370 °C show different ligand properties than low to mid temperature samples.

  8. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail:; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  9. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment (United States)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  10. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter


    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  11. Failure Mechanical Behavior of Australian Strathbogie Granite at High Temperatures: Insights from Particle Flow Modeling

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Yang


    Full Text Available Thermally induced damage has an important influence on rock mechanics and engineering, especially for high-level radioactive waste repositories, geological carbon storage, underground coal gasification, and hydrothermal systems. Additionally, the wide application of geothermal heat requires knowledge of the geothermal conditions of reservoir rocks at elevated temperature. However, few methods to date have been reported for investigating the micro-mechanics of specimens at elevated temperatures. Therefore, this paper uses a cluster model in particle flow code in two dimensions (PFC2D to simulate the uniaxial compressive testing of Australian Strathbogie granite at various elevated temperatures. The peak strength and ultimate failure mode of the granite specimens at different elevated temperatures obtained by the numerical methods are consistent with those obtained by experimentation. Since the tensile force is always concentrated around the boundary of the crystal, cracks easily occur at the intergranular contacts, especially between the b-b and b-k boundaries where less intragranular contact is observed. The intergranular and intragranular cracking of the specimens is almost constant with increasing temperature at low temperature, and then it rapidly and linearly increases. However, the inflection point of intergranular micro-cracking is less than that of intragranular cracking. Intergranular cracking is more easily induced by a high temperature than intragranular cracking. At an elevated temperature, the cumulative micro-crack counts curve propagates in a stable way during the active period, and it has no unstable crack propagation stage. The micro-cracks and parallel bond forces in the specimens with elevated temperature evolution and axial strain have different characteristics than those at lower temperature. More branch fractures and isolated wider micro-cracks are generated with increasing temperature when the temperature is over 400

  12. Packaging Technology for SiC High Temperature Electronics (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.


    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  13. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.


    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  14. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim


    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  15. Extreme Environment High Temperature Communication Systems Project (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  16. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G


    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  17. High Temperature Acoustic Noise Reduction Materials Project (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....


    Directory of Open Access Journals (Sweden)

    A. N. Krutilin


    Full Text Available The results of investigations of physical-mechanical characteristics of cast iron slugs, received by semicontinuos way of casting, at temperatures from 850 up to 1100^ С are given. 

  19. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis (United States)

    Hong, Seok Yong; Chun, Dong Hyun; Yang, Jung-Il; Jung, Heon; Lee, Ho-Tae; Hong, Sungjun; Jang, Sanha; Lim, Jung Tae; Kim, Chul Sung; Park, Ji Chan


    Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability.Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability. Electronic supplementary information (ESI) available: Details of experimental procedures, SEM images of FeNi and FeCo oxalate hydrate particles, particle size and pore size distributions, FT activity and selectivity, hydrocarbon product distribution, ASF plot, and Mössbauer parameters of the Fe5C2@C catalyst. See DOI: 10.1039/c5nr05787f

  20. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)


    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  1. Hydrothermal industrialization: direct heat development. Final report

    Energy Technology Data Exchange (ETDEWEB)


    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  2. The behaviour of monazite at high temperature and high stress in the lower crust (United States)

    Clark, Chris; Taylor, Richard; Erickson, Timmons; Reddy, Steven; Fougerouse, Denis; Fitzsimons, Ian; Hand, Martin


    Monazite is fast becoming the go to geochronometer for establishing the timing of metamorphic, deformational and hydrothermal events in crustal rocks. This is principally due to monazite forming in rocks that are petrologically useful (e.g. metapelites), it's susceptibility to recrystallization (both fluid and deformation driven) and the suite of trace elements it incorporates during growth. In dry conditions (i.e. the melt-depleted lower crust) monazite has a high closure temperature. It therefore has the ability to record the timing of prograde to peak metamorphic conditions. The reactivity of monazite in the presence of fluid allows the timing of post-peak fluid and melt crystallisation events to be constrained. Under high-stress monazite will recrystallise, forming new crystals that can be used to constrain the age of deformational events - this feature is particularly useful as high-grade reworking of lower crustal rocks often leave no geochronological record within other accessory minerals (e.g. zircon). However, it has long been recognised that monazite can record a cryptic range and/or distribution of ages that are difficult reconcile with how we traditionally believe the lower crust responds to deformational events - e.g. the anhydrous nature of lower crustal rocks and the preservation of granulite facies mineral assemblages. Here we present datasets collected by a suite of microanalytical techniques on monazite grains from lower-crustal rocks that have experienced deformation, fluid-rock interaction and ultrahigh temperature metamorphism. To better understand how monazite behaves in these environments we integrate electron probe, electron backscatter diffraction, laser ablation split stream petrochronology, transmission electron microscopy and Atom Probe Tomography datasets to image and quantify behaviour of key elements from the micro- to the nanoscale. When used sequentially, these techniques provide a detailed view of the processes that re-distribute U

  3. Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite (United States)

    Xiong, Ting; Yuan, Xingzhong; Chen, Xiaohong; Wu, Zhibin; Wang, Hou; Leng, Lijian; Wang, Hui; Jiang, Longbo; Zeng, Guangming


    Water pollution is one of the forefront environmental problems. Due to the simplification, flexibility and low cost, the adsorption becomes one of the most fashionable technology and the exploitation of adsorbents has drawn greatly attention. In this study, a novel magnesium silicate-hydrothermal carbon composite (MS-C) was synthesized by facile hydrothermal carbonization and used to remove the cadmium (Cd(II)) and methylene blue (MB) from wastewater. It was shown that the porous and lump-like magnesium silicate (MS) was decorated with multiple hydrothermal carbon (HC) via the Csbnd Osbnd Si covalent bonding. Further, the adsorption behavior of Cd(II) and MB based on the MS, HC, and MS-C were systematically investigated. The equilibrium data of both Cd(II) and MB were fitted well with Langmuir model. Compared to pure MS and HC, the adsorption capacity of composite was significantly improved, accompanied by the maximum adsorption capacity of 108 mg/g for Cd(II) and 418 mg/g for MB, respectively. In the Cd(II)-MB binary system, the adsorption of Cd(II) was favored in comparison with that of MB. The removal of Cd(II) was mainly ascribed to electrostatic attraction and the ion exchange interaction. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction, π-π interaction and hydrogen bond. In view of these empirical results and real water treatment, the environmental friendly and low-cost MS-C holds a potential for separate or simultaneous removal of Cd(II) and MB in practical applications.

  4. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.; Wang, Chong M.; Exarhos, Gregory J.; Choi, Wonyong; Liu, Jun


    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  5. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.


    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  6. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  7. 46 CFR 56.60-5 - Steel (High temperature applications). (United States)


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2.A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon...

  8. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  9. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States (United States)

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.


    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  10. Pargasite at high pressure and temperature (United States)

    Comboni, Davide; Lotti, Paolo; Gatta, G. Diego; Merlini, Marco; Liermann, Hanns-Peter; Frost, Daniel J.


    The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10-5 K-1 and α1 = 1.4(6)·10-9 K-2 [with α0(a) = 0.47(6)·10-5 K-1, α0(b) = 1.07(4)·10-5 K-1, and α0(c) = 0.97(7)·10-5 K-1]. The petrological implications for the experimental

  11. Transport Processes in High Temperature QCD Plasmas (United States)

    Hong, Juhee

    The transport properties of high temperature QCD plasmas can be described by kinetic theory based on the Boltzmann equation. At a leading-log approximation, the Boltzmann equation is reformulated as a Fokker-Planck equation. First, we compute the spectral densities of Tµν and Jµ by perturbing the system with weak gravitational and electromagnetic fields. The spectral densities exhibit a smooth transition from free-streaming quasi-particles to hydrodynamics. This transition is analyzed with hydrodynamics and diffusion equation up to second order. We determine all of the first and second order transport coefficients which characterize the linear response in the hydrodynamic regime. Second, we simulate the wake of a heavy quark moving through the plasmas. At long distances, the energy density and flux distributions show sound waves and a diffusion wake. The kinetic theory calculations based on the Boltzmann equation at weak coupling are compared to the strong coupling results given by the AdS/CFT correspondence. By using the hard-thermal-loop effective theory, we determine the photon emission rate at next-to-leading order (NLO), i.e., at order g2mD /T. There are three mechanisms which contribute to the leading-order photon emission: (2 ↔ 2) elastic scatterings, (1 ↔ 2) collinear bremsstrahlung, and (1 ↔ 1) quark-photon conversion due to soft fermion exchange. At NLO, these three mechanisms are not completely independent. When the transverse momentum between quark and photon becomes soft, the Compton scattering with a soft gluon reduces to wide-angle bremsstrahlung. Similarly, bremsstrahlung reduces to the quark-photon conversion process when the photon carries most of the incoming momentum. Therefore, the rates should be matched to determine the wide-angle NLO correction. Collinear bremsstrahlung can be accounted for by solving an integral equation which corresponds to summing ladder diagrams. With O(g) corrections in the collision kernel and the asymptotic

  12. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. (United States)

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A


    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Magnesium Diecasting Alloys for High Temperature Applications (United States)

    Pekguleryuz, Mihriban O.; Kaya, A. Arslan

    New growth area for automotive use of magnesium is powertrain applications such as the transmission case and engine block. These applications see service conditions in the temperature range of 150-200C under 50-70 MPa of tensile and compressive loads. In addition, metallurgical stability, fatigue resistance, corrosion resistance and castability requirements need to be met. A decade of research and development has resulted in a number of creep- resistant magnesium alloys that are potential candidates for elevated-temperature automotive applications. These alloys are mostly based on rare-earth and alkaline earth element additions to magnesium. This paper gives an overview of the various magnesium alloy systems for use in elevated-temperature applications.

  14. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    temperatures and pressures. Aqueous potassium hydroxide immobilized electrolyte in porous SrTiO3 was used in those cells. Electrolysis cells with metal foam based gas diffusion electrodes and the immobilized electrolyte were successfully demonstrated at temperatures up to 250 °C and 40 bar. Different electro-catalysts...... were tested in order to reduce the oxygen and hydrogen overpotentials. Current densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without using expensive noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2...... against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1...

  15. Drilling the Snake Pit hydrothermal sulfide deposit on the Mid-Atlantic Ridge, lat 23/sup 0/22'N

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, R.S.; Honnorez, J.; Adamson, A.C.; Brass, G.; Gillis, K.M.; Humphris, S.E.; Mevel, C.; Meyer, P.; Petersen, N.; Rautenschlein, M.; Shibata, T.; Staudigel, H.; Yamamoto, K.


    A major high-temperature hydrothermal area has been discovered in the Mid-Atlantic Ridge rift valley about 25 km south of the Kane Fracture Zone. The vent field consists of a wide area (> 40,000 m/sup 2/) of dark hydrothermal deposits, numerous sulfide chimneys and mounds, some up to 11 m high, and high-temperature black-smoker vents. Ten shallow holes, the first ever drilled in an active submarine hydrothermal area, recovered friable, unconsolidated Fe, Cu-Fe, and Zn sulfides and several large fragments of massive sulfide (mainly chalcopyrite) from the locally thick (> 13 m) hydrothermal deposits. The vents are also associated with an unusual biological community of smaller, more mobile organisms than reported from the East Pacific Rise.


    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.


    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  17. Thermal insulation at high temperatures - possibilities for microporous construction materials; Waermedaemmung bei hohen Temperaturen - Moeglichkeiten mikroporoeser Baustoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schulle, W.; Melzer, D. [TU Bergakademie Freiberg (Germany). Inst. fuer Silikattechnik


    The heat transfer of porous high-temperature materials is governed primarily by internal thermal conduction and internal thermal radiation which, for their part, depend on the porosity of the insulating material and its service temperature. A special technique - controlled hydrothermal synthesis - allows the manufacture of microporous heat-insulating materials that are also suitable for service temperatures of well over 1000 C. (orig.) [Deutsch] Der Waermetransport poroeser Hochtemperaturwerkstoffe wird vor allem durch innere Waermeleitung und innere Waermestrahlung bestimmt, die ihrerseits von der Porositaet des Daemmstoffes und seiner Einsatztemperatur abhaengen. Durch ein spezielles Verfahren - die gezielte Hydrothermalsynthese - koennen mikroporoese Waermedaemmstoffe hergestellt werden, die auch fuer Einstztemperaturen von weit ueber 1 000 C geeignet sind. (orig.)

  18. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos. (United States)

    Sun, Bao-Jun; Li, Teng; Gao, Jing; Ma, Liang; Du, Wei-Guo


    Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development.

  19. Dynamics of the Yellowstone hydrothermal system (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.


    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  20. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye


    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.