Sample records for high temperature homogeneous

  1. SuPer-Homogenization (SPH) Corrected Cross Section Generation for High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hiruta, Hikaru [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy of full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.

  2. Homogeneous temperature and precipitation series for a Peruvian High Andes regions from 1965 to 2009 (United States)

    Acuña, D.; Serpa Lopez, B.; Silvestre, E.; Konzelmann, Th.; Rohrer, M.; Schwarb, M.; Salzmann, N.


    As a basis of a joint Swiss-Peruvian effort focused on water resources, food security and disaster preparedness (Peruvian Climate Adaptation Project, PACC) clean and homogenized meteorological datasets have been elaborated for the Cusco and Apurimac Regions in the Central Andes. Operational and historical data series of more than 100 stations of the Peruvian Meteorological and Hydrological Service (SENAMHI) were available as a data base. Additionally, meteorological data provided by the National Climatic Data Centre (NCDC) or the Meteorological Aerodrome Records (METAR), have been considered. In contrast to many European countries, where most conventional sensors have been replaced by automated sensors during the last decades, instrumentation of climatological stations remained unchanged in Peru. Station records and station history of the Cusco-Apurimac-region are partially fragmentary or lost, mainly because of armed conflicts, particularly in the 1980ies. Moreover, many stations do observe precipitation as only variable. As a consequence, it was only possible so far to elaborate four complete homogenized air temperature series (Curahuasi 2763m a.s.l., Granja Kcayra-Cusco 3219m, Sicuani, 3574m and La Angostura, 4150m) since 1965. For precipitation a larger number of stations was available for elaboration, which is important because of the small scaled characteristics of the mostly convective type precipitation events in these regions. Based on these homogenized series, linear and gaussian low pass filtered trends have been calculated for all series of precipitation and air temperature records.

  3. Quantitative Homogeneity and In-Contact Particles of High Temperature Reactors (htr) Compacts Determination via X-Ray Tomography (United States)

    Lecomte, G.; Tisseur, D.; Létang, J. M.; Banchet, J.; Vitali, M. P.


    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  4. Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts. (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Voce, Sabrina; Zironi, Roberto


    The effects of the number of passes and processing temperature management (controlled vs. uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was more important. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75°C). The two processing variables also affected the volatile composition of the autolysates produced: higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions may allow the compositional characteristics of the products to be modulated, making them suitable for different winemaking applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk. (United States)

    Amador-Espejo, G G; Suàrez-Berencia, A; Juan, B; Bárcenas, M E; Trujillo, A J


    The effect of ultra-high-pressure homogenization (UHPH) on raw whole milk (3.5% fat) was evaluated to obtain processing conditions for the sterilization of milk. Ultra-high-pressure homogenization treatments of 200 and 300 MPa at inlet temperatures (Ti) of 55, 65, 75, and 85 °C were compared with a UHT treatment (138 °C for 4s) in terms of microbial inactivation, particle size and microstructure, viscosity, color, buffering capacity, ethanol stability, propensity to proteolysis, and sensory evaluation. The UHPH-treated milks presented a high level of microbial reduction, under the detection limit, for treatments at 300 MPa with Ti of 55, 65, 75, and 85 °C, and at 200 MPa with Ti = 85 °C, and few survivors in milks treated at 200 MPa with Ti of 55, 65, and 75 °C. Furthermore, UHPH treatments performed at 300 MPa with Ti = 75 and 85 °C produced sterile milk after sample incubation (30 and 45 °C), obtaining similar or better characteristics than UHT milk in color, particle size, viscosity, buffer capacity, ethanol stability, propensity to protein hydrolysis, and lower scores in sensory evaluation for cooked flavor. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of Fungal Growth on Olive-Mill Wastewaters Treated at High Temperature and by High-Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Francesca Cibelli


    Full Text Available Reuse of olive mill wastewaters (OMWWs in agriculture represents a significant challenge for health and safety of our planet. Phytotoxic compounds in OMWW generally prohibit use of untreated OMWWs for agricultural irrigation or direct discharge into surface waters. However, pretreated OMWW can have positive effects on chemical and microbiological soil characteristics, to fight against fungal soil-borne pathogens. Low amounts of OMWW following thermal (TT-OMWW and high-pressure homogenization (HPH-OMWW pretreatments counteracted growth of some of 12 soil-borne and/or pathogenic fungi examined. With fungal growth measured as standardized change in time to half maximum colony diameter, Δτ, overall, HPH-OMWW showed increased bioactivity, as increased mean Δτ from 3.0 to 4.8 days. Principal component analysis highlighted two fungal groups: Colletotrichum gloeosporioides, Alternaria alternata, Sclerotium rolfsii, and Rosellinia necatrix, with growth strongly inhibited by the treated OMWWs; and Aspergillus ochraceus and Phaeoacremonium parasiticum, with stimulated growth by the treated OMWWs. As a non-thermal treatment, HPH-OMWW generally shows improved positive effects, which potentially arise from preservation of the phenols.

  7. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, R. F., E-mail: [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Ligny, D. de [Department of Materials Science, Glass and Ceramics, University of Erlangen Nürnberg, Martensstr. 5, 91058 Erlangen (Germany); Le Floch, S.; Martinet, C.; Guyot, Y. [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Rohling, J. H.; Medina, A. N.; Sandrini, M.; Baesso, M. L. [Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Andrade, L. H. C.; Lima, S. M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C.P. 351, Dourados, MS (Brazil)


    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca{sub 3}Mg(SiO{sub 4}){sub 2}] and diopside [CaMgSi{sub 2}O{sub 6}]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+} was studied in both host systems. Additionally, the {sup 5}D{sub 0} → {sup 7}F{sub J} transition of Eu{sup 3+} was used as an environment probe in the pristine glass and the glass-ceramic.

  8. Investigation of the Influence of Sucrose and Cholesterol on the Phase Transition Temperature of nanoliposomal formulation besides using particle size Reduction Techniques (Ultrasonication/High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Z Malaei-Balasi


    Full Text Available Introduction: The successful application of nanoliposoms as an effective drug delivery system depends on their stability in the medium. In this article, influence of additive materials such as cholesterol and sucrose besides two natural and synthesized phospholipids have been investigated. Methods: In the present study, designing and synthesis of nanoliposomal formulations were prepared using thin film method. This liposomal suspension was downsized by two methods, the high-pressure homogenizer and ultrasound to form small unilamellar vesicles. The size distributions, zeta potentials and phase transition temperature of formulations were all determined by a zetasizer and differential scanning calorimetry(DSC. In addition, the contribution of nanoliposomal formulation has been investigated by HPLC and FTIR methods. Results: Results of the DSC measurments indicated that incorporation of unsaturated phospholipid (SOY PC may cause phase separation with partial miscibility in the liposome bilayer containing of DPPG. The optimal nanoliposomal formulation was composed of (DPPC: CHOL: mPEG2000-DSPE with the mole percents equal to (83:15:2, respectively. In addition, sucrose has been used in the formulation with a total amounts six times greater than that of the lipids. The properties of optimized nanoliposome have been shown as the size average 104nm, zeta potential 8.04mv and phase transition temperature of lipid less than 37°C which were stable enough to be utilized for loading and releasing bioactives in body temperature. Conclusion: Finally the produced nanoliposomes were stable vesicles in the proper size, phase transition temperature and surface charge without any aggregation and fusion.

  9. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.


    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  10. Influence of temperature and homogenization on honey crystallization


    Lucília Carolina Vardenski Costa; Elaine Kaspchak; Marise Bonifácio Queiroz; Mareci Mendes de Almeida; Ernesto Quast; Leda Battestin Quast


    SummaryThis work aimed to verify the influence of prior homogenization and storage temperature on the crystallization of honey. Honeys from Campos Gerais, PR Brazil, were used for the experiments. The samples were subjected to homogenization at 0, 180, 360 and 540 rpm for 15 minutes and stored at 15 °C or 25 °C. Crystallization was monitored by the colour, absorbance at 660 nm and moisture analysis. At the end of the experiment, the crystal sizes were determined by optical microscopy and lase...

  11. Influence of temperature and homogenization on honey crystallization

    Directory of Open Access Journals (Sweden)

    Lucília Carolina Vardenski Costa


    Full Text Available SummaryThis work aimed to verify the influence of prior homogenization and storage temperature on the crystallization of honey. Honeys from Campos Gerais, PR Brazil, were used for the experiments. The samples were subjected to homogenization at 0, 180, 360 and 540 rpm for 15 minutes and stored at 15 °C or 25 °C. Crystallization was monitored by the colour, absorbance at 660 nm and moisture analysis. At the end of the experiment, the crystal sizes were determined by optical microscopy and laser diffraction. It could be observed that the samples kept at 15 °C and homogenized by agitation at 360 or 540 rpm showed crystal formation after 7 days of storage, while all the samples stored at 25 °C showed crystal formation after 20 days. It was also observed that the effect of temperature was much more pronounced than that of mechanical agitation during homogenization. All the samples stored at 15 °C developed crystals that were smaller than 20 μm.

  12. High temperature measuring device (United States)

    Tokarz, Richard D.


    A temperature measuring device for very high design temperatures (to 2, C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. A Majorca case study of daily extreme temperatures homogenization (United States)

    Guijarro, J. A.


    Detecting sudden jumps in daily climatological data is a problematic task due to the low signal/noise ratio. For this reason, usual methodologies begin by the detection of the jumps in annual, seasonal or monthly series at most, followed by the computation of the correction terms or factors, which are then applied to the daily data. However, sometimes it is necessary to detect the jumps directly on the daily series. An example is presented from Majorca, where meta-data indicates that, during an approximate period of three months at the beginning of 1961, a different thermometer was used in a particular station to measure extreme daily temperatures, resulting in a systematic error of around 5°C in these data. As there was no indication neither of the exact amount of the error nor of the precise initial and final days when this anomalous thermometer was used, a homogenization procedure was applied to the daily data to determine this details. The process consisted in comparing one year of extreme daily temperatures of the problem station with contemporary data from the other five available stations in the island at that time. After removing the annual cycle, the R homogenization package "Climatol" was used to detect the timing of the shifts and evaluate their magnitude. Results suggest a correction of -7°C, and show some uncertainty in the first thermometer change, although a more precise date for the replacement of the original instrument can be assessed.

  14. Assessing recent warming using instrumentally homogeneous sea surface temperature records. (United States)

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C; Jacobs, Peter; Richardson, Mark; Rohde, Robert


    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration's Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency's Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets.

  15. Projected changes in rainfall and temperature over homogeneous regions of India (United States)

    Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara


    The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.

  16. Survival of salmonella on dried fruits and in aqueous dried fruit homogenates as affected by temperature. (United States)

    Beuchat, Larry R; Mann, David A


    A study was done to determine the ability of Salmonella to survive on dried cranberries, raisins, and strawberries and in date paste, as affected by storage temperature. Acid-adapted Salmonella, initially at 6.57 to 7.01 log CFU/g, was recovered from mist-inoculated cranberries (water activity [aw] 0.47) and raisins (aw 0.46) stored at 25°C for 21 days but not 42 days, strawberries (aw 0.21) for 42 days but not 84 days, and date paste (aw 0.69) for 84 days but not 126 days. In contrast, the pathogen was detected in strawberries stored at 4°C for 182 days (6 months) but not 242 days (8 months) and in cranberries, date paste, and raisins stored for 242 days. Surface-grown cells survived longer than broth-grown cells in date paste. The order of rate of inactivation at 4°C was cranberry > strawberry > raisin > date paste. Initially at 2.18 to 3.35 log CFU/g, inactivation of Salmonella on dry (sand)&ndash inoculated fruits followed trends similar to those for mist-inoculated fruits. Survival of Salmonella in aqueous homogenates of dried fruits as affected by fruit concentration and temperature was also studied. Growth was not observed in 10% (aw 0.995 to 0.999) and 50% (aw 0.955 to 0.962) homogenates of the four fruits held at 4°C, 50% homogenates at 25°C, and 10% cranberry and strawberry homogenates at 25°C. Growth of the pathogen in 10% date paste and raisin homogenates stored at 25°C was followed by rapid inactivation. Results of these studies suggest the need to subject dried fruits that may be contaminated with Salmonella to a lethal process and prevent postprocess contamination before they are eaten out-of-hand or used as ingredients in ready-to-eat foods. Observations showing that Salmonella can grow in aqueous homogenates of date paste and raisins emphasize the importance of minimizing contact of these fruits with high-moisture environments during handling and storage.

  17. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)


    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  18. The temperature in Bremen since 1803. Embedding data fragments into homogeneous time series

    Energy Technology Data Exchange (ETDEWEB)

    Olbers, Dirk [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)


    Over several decades the physician and astronomer Wilhelm Olbers (1758-1840) has written many manuscripts to meteorological topics. Few of his works were published, most fell into oblivion, so also Olbers' measurements of temperature and pressure from the years 1803-1822, although these meteorological observations are the first continuous and reliable measurements of this kind in Bremen. This article deals with the monthly and annually averaged temperatures from 1803 to 1822, which are taken from the literary legacy of Olbers and are partially reconstructed from his manuscripts. The linkage of this series of measurements to the well-known Bremen temperature series is discussed, which begins in 1829 and is today continued by the German Weather Service (DWD). The method we propose for the adjustment of the combined data (with a gap of 6 years 1823 to 1828) is based on the extremely high correlation which the annually averaged data of the Bremen time series has with corresponding data from other monitoring sites. Data from De Bilt, Berlin, Prague, Hohenpeissenberg and Stockholm are used. The result is a temperature time series for Bremen from 1803 to today, which may be regarded as homogeneous at least to some extent. (orig.)


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  20. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin


    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Directory of Open Access Journals (Sweden)

    Seok-Cheol Cho


    Full Text Available Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v. Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production.

  2. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process (United States)

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong


    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  3. Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling (United States)

    Mazaheri, H.; Baghani, M.; Naghdabadi, R.; Sohrabpour, S.


    In this work, a model is developed to continuously predict homogeneous and inhomogeneous swelling behavior of pH/temperature sensitive PNIPAM hydrogels. Employing the model, homogeneous swelling of the pH/temperature sensitive hydrogel is investigated for free and biaxial constrained swelling cases. Comparing the model results with the experimental data available in the literature, the validity of the model is confirmed. The model is then employed to investigate inhomogeneous swelling of a spherical shell on a hard core both analytically and numerically for pH or temperature variations. In this regard, numerical tools are developed via preparing a user defined subroutine in ABAQUS software. Then, the complicated problem of contact between the hydrogel shell and a micro-channel with rigid walls is also investigated. Considering the results, we can say that the model is applicable for solving engineering boundary value problem of pH/temperature sensitive hydrogels.





    The researches presented in this paper have followed the analysis of the heat transfer mode during joining through vulcanization of the conveyor belts and also the homogeneity of the temperatures in the joint area. The researches were made under laboratory conditions taking into account the process of joining of two conveyor belts of the type ST 2000 with an installation of the type DSLQ. Temperature measurement was conducted using an EX42570 pyrometer in four distinct points c...

  5. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall


    it decreased the oxidative stability of emulsions with α-lactalbumin and β-lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins......The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used...

  6. Homogeneous broadening effect on temperature dependence of green upconversion luminescence in erbium doped fibers

    Energy Technology Data Exchange (ETDEWEB)

    Egatz-Gómez, A. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Calderón, Oscar G., E-mail: [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Melle, Sonia; Carreño, F.; Antón, M.A. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Gort, Elske M. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Department of Biomedical Engineering, University of Groningen, 9700 RB Groningen (Netherlands)


    We study the green upconversion luminescence of Er{sup 3+} ions in an aluminosilicate optical fiber upon near infrared excitation at 787 nm. The dependence of the upconversion luminescence on temperature has been determined. As temperature drops from room to cryogenic temperatures, the upconversion green emission reaches a maximum around 40 K, and then decreases. A nearly quadratic dependence of the upconversion luminescence with excitation power is found, which is consistent with a sequential stepwise two-photon absorption process. These results have been explained with a semiclassical model that considers the inhomogeneous broadening of the optical transitions due to glass imperfections, and the dependence of the homogeneous linewidth broadening on temperature. -- Highlights: ► We study green upconversion luminescence of Er{sup 3+} ions in a fiber excited at 787 nm. ► Upconversion luminescence variation from room to cryogenic temperature is analyzed. ► Upconversion emission consists in a sequential two-photon absorption process. ► A semiclassical model considering inhomogeneous broadening explains the results. ► Homogeneous broadening is responsible for the upconversion temperature dependence.


    Directory of Open Access Journals (Sweden)



    Full Text Available The researches presented in this paper have followed the analysis of the heat transfer mode during joining through vulcanization of the conveyor belts and also the homogeneity of the temperatures in the joint area. The researches were made under laboratory conditions taking into account the process of joining of two conveyor belts of the type ST 2000 with an installation of the type DSLQ. Temperature measurement was conducted using an EX42570 pyrometer in four distinct points corresponding to each end of the two conveyor belts on the both sides of the band, namely the active and inactive side.

  8. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor (United States)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming


    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  9. Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto

    Directory of Open Access Journals (Sweden)

    A. L. Morozova


    Full Text Available Three long-term temperature data series measured in Portugal were studied to detect and correct non-climatic homogeneity breaks and are now available for future studies of climate variability.

    Series of monthly minimum (Tmin and maximum (Tmax temperatures measured in the three Portuguese meteorological stations of Lisbon (from 1856 to 2008, Coimbra (from 1865 to 2005 and Porto (from 1888 to 2001 were studied to detect and correct non-climatic breaks. These series, together with monthly series of average temperature (Taver and temperature range (DTR derived from them, were tested in order to detect breaks, using firstly metadata, secondly a visual analysis, and thirdly four widely used homogeneity tests: von Neumann ratio test, Buishand test, standard normal homogeneity test, and Pettitt test. The homogeneity tests were used in absolute (using temperature series themselves and relative (using sea-surface temperature anomalies series obtained from HadISST2.0.0.0 close to the Portuguese coast or already corrected temperature series as reference series modes. We considered the Tmin, Tmax and DTR series as most informative for the detection of breaks due to the fact that Tmin and Tmax could respond differently to changes in position of a thermometer or other changes in the instrument's environment; Taver series have been used mainly as control.

    The homogeneity tests showed strong inhomogeneity of the original data series, which could have both internal climatic and non-climatic origins. Breaks that were identified by the last three mentioned homogeneity tests were compared with available metadata containing data such as instrument changes, changes in station location and environment, observation procedures, etc. Significant breaks (significance 95% or more that coincided with known dates of

  10. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.


    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  11. High temperature structural silicides

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.


    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  12. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  13. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg


    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  14. High Temperature QCD

    CERN Document Server

    Lombardo, M P


    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  15. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard


    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  16. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas


    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  17. Homogeneously embedded Pt nanoclusters on amorphous titania matrix as highly efficient visible light active photocatalyst material

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vipul; Kumar, Suneel; Krishnan, Venkata, E-mail:


    A novel and facile technique, based on colloidal synthesis route, has been utilized for the preparation of homogeneously embedded Pt nanoclusters on amorphous titania matrix. The material has been thoroughly characterized using high resolution transmission electron microscopy, energy dispersive x-ray analysis, powder x-ray diffraction, optical and Raman spectroscopic techniques to understand the morphology, structure and other physical characteristics. The photocatalytic activity of the material under visible light irradiation was demonstrated by investigations on the degradation of two organic dyes (methylene blue and rhodamine B). In comparison to other Pt−TiO{sub 2} based nanomaterials (core-shell, doped nanostructures, modified nanotubes, decorated nanospheres and binary nanocomposites), the embedded Pt nanoclusters on titania was found to be highly efficient for visible light active photocatalytic applications. The enhanced catalytic performance could be attributed to the efficient charge separation and decreased recombination of the photo generated electrons and holes at the Pt-titania interface and the availability of multiple metal-metal oxide interfaces due to homogeneous embedment of Pt nanoclusters on amorphous titania. In essence, this work illustrates that homogeneous embedment of noble metal nanoparticles/nanoclusters on semiconductor metal oxide matrices can lead to tuning of the photophysical properties of the final material and eventually enhance its photocatalytic activity. - Highlights: • Homogeneously embedded Pt nanoclusters on amorphous titania matrix has been prepared. • Facile low temperature colloidal synthesis technique has been used. • Enhanced catalytic performance could be observed. • Work can pave way for tuning photocatalytic activity of composite materials.

  18. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Campbell


    the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent

  19. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M


    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  20. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.


    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  1. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)


    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  2. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  3. Effect of high-pressure homogenization on different matrices of food supplements. (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna


    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  4. Detecting climate rationality and homogeneities of sea surface temperature data in Longkou marine station using surface air temperature (United States)

    Li, Yan; Li, Huan; Wang, Qingyuan; Wang, Guosong; Fan, Wenjing


    This study presents a systematic evaluation of the climate rationality and homogeneity of monthly sea surface temperature (SST) in Longkou marine station from 1960 to 2011. The reference series are developed using adjacent surface air temperature (SAT) on a monthly timescale. The results suggest SAT as a viable option for use in evaluating climate rationality and homogeneity in the SST data on the coastal China Seas. According to the large-scale atmospheric circulation patterns and SAT of the adjacent meteorological stations, we confirm that there is no climate shift in 1972/1973 and then the climate shift in 1972/1973 is corrected. Besides, the SST time series has serious problems of inhomogeneity. Three documented break points have been checked using penalized maximum T (PMT) test and metadata. The changes in observation instruments and observation system are the main causes of the break points. For the monthly SST time series, the negative adjustments may be greatly due to the SST decreasing after automation. It is found that the increasing trend of annual mean SST after adjustment is higher than before, about 0.24 °C/10 yr.

  5. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk. (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C


    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. High temperature future

    Energy Technology Data Exchange (ETDEWEB)

    Sheinkopf, K. [Solar Energy Research and Education Foundation, Washington, DC (United States)


    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  7. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.


    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  8. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin


    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  9. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas


    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  10. Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Hedenqvist, M.


    We produced microfibrillated cellulose by passing carboxymethylated sulfite-softwood-dissolving pulp with a relatively low hemicellulose content (4.5%) through a high-shear homogenizer. The resulting gel was subjected to as many as three additional homogenization steps and then used to prepare...

  11. High Temperature Piezoelectric Drill (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom


    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  12. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  13. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans


    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  14. Annual and seasonal analysis of temperature and precipitation in Andorra (Pyrenees) from 1934 to 2008: quality check, homogenization and trends (United States)

    Esteban, Pere; Prohom, Marc; Aguilar, Enric; Mestre, Olivier


    The analysis of temperature and precipitation change and variability in high elevations is a difficult issue due to the lack of long term climatic series in those environments. Nonetheless, it is important to evaluate how much high elevations follow the same climate evolution than low lying sites. In this work, using daily data from three Andorran weather stations (maintained by the power company Forces Elèctriques d'Andorra, FEDA), climate trends of annual and seasonal temperature and precipitation were obtained for the period 1934-2008. The series are complete (99.9%) and are located in a mountainous area ranging from 1110 m to 1600 m asl. As a previous step to the analysis, data rescue, quality control and homogeneity tests were applied to the daily data. For quality control, several procedures were applied to identify and flag suspicious or erroneous data: duplicated days, outliers, excessive differences between consecutive days, flat line checking, days with maximum temperature lower that minimum temperature, and rounding analysis. All the station sites were visited to gather the available metadata. Concerning homogeneity, a homogeneous climate time series is defined as one where variations are caused only by variations in climate and not to non-climatic factors (i.e., changes in site location, instruments, station environment…). As a result, homogeneity of the series was inspected from several methodologies that have been used in a complementary and independent way in order to attain solid results: C3-SNHT (with software developed under the Spanish Government Grant CGL2007-65546-C03-02), and Caussinus-Mestre (C-M) approaches. In both cases, tests were applied to mean annual temperature and precipitation series, using Catalan and French series as references (provided respectively by the Meteorological Service of Catalonia and Météo-France, in the framework of the Action COST-ES0601: Advances in homogenisation methods of climate series: an integrated

  15. High Temperature Aquifer Storage (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas


    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  16. Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts (United States)

    Ciliberto, E.; Condorelli, G. G.; La Delfa, S.; Viscuso, E.


    This paper concerns the synthesis and the characterization of nanometer particles of Sr(OH)2, a moderately high water soluble hydroxide (Ksp= 3.2×10-4 at 25 °C). The reported process yields strontium hydroxide nanoparticles starting from low cost raw materials in aqueous medium (homogeneous phase) at low temperature (below 100 °C) by chemical precipitation from salt solutions, involving very simple operational steps and avoiding the use of organic solvents. Observations by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and Fourier transform infrared spectroscopy (FTIR) indicate that the particles are well-crystallized and have nanometer dimensions (˜ 30 nm in diameter). Moreover, experimental evidence shows the potential use of this material for the protection and the consolidation of wall paintings (frescoes), paper, stone, wood and other artistic artefacts.

  17. High Temperature Hybrid Elastomers (United States)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  18. Homogenization-based topology optimization for high-resolution manufacturable micro-structures

    DEFF Research Database (Denmark)

    Groen, Jeroen Peter; Sigmund, Ole


    This paper presents a projection method to obtain high-resolution, manufacturable structures from efficient and coarse-scale, homogenization-based topology optimization results. The presented approach bridges coarse and fine scale, such that the complex periodic micro-structures can be represented...... designs are almost equal to the homogenization-based solutions. A significant reduction in computational cost is observed compared to conventional topology optimization approaches....

  19. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More? (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  20. Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Hideharu [Battery Materials Laboratory, Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801 (Japan); Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Ogi, Takashi, E-mail: [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Iskandar, Ferry [Department of Physics, Institute of Technology Bandung, Ganesha 10, Bandung 40132, West Java (Indonesia); Aishima, Kana; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan)


    Nano-sized boron carbon oxynitride (BCNO) phosphors around 50 nm containing no rare earth metal and free from color heterogeneity were synthesized from mixtures of boric acid, urea, and citric acid by microwave heating with substantially shorter reaction times and lower temperatures than in the conventional BCNO preparation method such as electric-furnace heating. The emission wavelength of the phosphors varied with the mixing ratio of raw materials and it was found that lowering the proportion of urea to boric acid or citric acid tended to increase the internal quantum yield and shorten the emission wavelength under excitation at 365 nm. It was also found for the first time that a light-emitting polymer could be synthesized from a mixture of the prepared BCNO nanoparticles and a polyvinyl alcohol. This polymer composite exhibited uniform dispersion and stabilization of the luminescence and had a high internal quantum yield of 54%, which was higher than that of the phosphor alone. - Highlights: • Nano-sized BCNO phosphor was synthesized via microwave heating. • BCNO nanophosphor has homogeneous and high luminescence. • Emission wavelength was tunable by changing the ratio of precursor components. • BCNO nanophosphor can be easily dispersed in a polyvinyl alcohol. • BCNO–polymer composite exhibited uniform high internal quantum yield.

  1. 3D transient temperature measurement in homogeneous solid material with THz waves (United States)

    Romano, M.; Sommier, A.; Batsale, J.-C.; Pradere, C.


    The first imaging system that is able to measure transient temperature phenomena taking place inside a bulk by 3D tomography is presented. This novel technique combines the power of terahertz waves and the high sensitivity of infrared imaging. The tomography reconstruction is achieved by the 3D motion of the sample at several angular positions followed by inverse Radon transform processing to retrieve the 3D transient temperatures. The aim of this novel volumetric imaging technique is to locate defects within the whole target body as well as to measure the temperature in the whole volume of the target. This new-fashioned thermal tomography will revolutionize the non-invasive monitoring techniques for volume inspection and in-situ properties estimations.

  2. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. (United States)

    Kang, Kibum; Xie, Saien; Huang, Lujie; Han, Yimo; Huang, Pinshane Y; Mak, Kin Fai; Kim, Cheol-Joo; Muller, David; Park, Jiwoong


    The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three

  3. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  4. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.


    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and

  5. The Effect of pH and High-Pressure Homogenization on Droplet Size

    Directory of Open Access Journals (Sweden)

    Ah Pis Yong


    Full Text Available The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.

  6. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Roselena S. Schuh


    Full Text Available Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm compared with those obtained by spontaneous emulsification (190 to 310 nm. The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.

  7. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang


    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  8. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  9. Life at High Temperatures

    Indian Academy of Sciences (India)


    Sep 15, 2005 ... or more in the vicinity of geothermal vents in the deep sea and the plant Tidestromia oblongifolia (Amaranthaceae) found in Death. Valley in California, where the hottest temperature on earth ever recorded during 43 consecutive days in 1917 was >48 °C. (Guinness Book of W orId Records, 1999).

  10. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi


    Full Text Available This study investigated the use of a high-pressure homogenization process for the production of high shear stress on Chlorella sp. cells in order to effectively degrade their cell walls. The high-pressure homogenization process was conducted by using various pressure conditions in the range of 68.94–275.78 MPa with different numbers of repeated cycles. The optimal high-pressure homogenization pretreatment conditions were found to be two cycles at a pressure of 206.84 MPa, which provided an extraction yield of 20.35% (w/w total cellular lipids. In addition, based on the confocal microscopic images of Chlorella sp. cells stained by using nile red, the walls of Chlorella sp. cells were disrupted more effectively using this process when compared with the disruption achieved by conventional lipid-extraction processes. By using the by-product of Chlorella sp., 47.3% ethanol was obtained from Saccharomyces cerevisiae cultures. These results showed that the high-pressure homogenization process efficiently hydrolysed this marine resource for subsequent bioethanol production by using only water.

  11. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  12. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten


    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  13. High-Order Homogenization Method in Diffusion Theory for Reactor Core Simulation and Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema


    Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs.

  14. The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de; Vries, André H.M. de


    The use of high-throughput experimentation (HTE) in homogeneous catalysis research for the production of fine chemicals is an important breakthrough. Whereas in the past stoichiometric chemistry was often preferred because of time-to-market constraints, HTE allows catalytic solutions to be found

  15. High-Temperature Superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was  significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

  16. High Temperature Electrostrictive Ceramics Project (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  17. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. (United States)

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng


    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food.

  18. High Temperature Surface Interactions (United States)


    oxidation rate of "pure SiC* in air (from compilation of data by Schlichting6). For T < 14001C, partial cristobalite formation; T > 1400"C, decreased...aluminium content is high enough, the beta phase percolates and contains a dispersion of -- Ni particles. Such a tructure is certainly less favourable

  19. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien


    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  20. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying. (United States)

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel


    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  1. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization. (United States)

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong


    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    Snail Research Unit of the SAMRC and Department of Zoology, Potchefstroom University for CHE,. Potchefstroom. The survival of the freshwater snail species Bulinus africanus, Bulinus g/obosus and Biompha/aria pfeifferi at extreme high temperatures was experimentally investigated. Snails were exposed to temperatures ...


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  4. High Temperature Bell Motor Project (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  5. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  6. Homogeneous crystal nucleation in polymers (United States)

    Schick, C.; Androsch, R.; Schmelzer, J. W. P.


    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  7. Radiation of Air-Borne Noise in Non-Homogeneous Wind and Temperature Fields using FEM Analysis

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Krenk, S.


    The paper describes analysis in the time domain of noise propagating in non-homogeneous mean wind or temperature fields. The analysis is based on a field equation for the velocity potential, which contains strong convection terms. In order to circumvent the problem of numerical instability and loss...... by a conventional Galerkin approach. The radiation condition is an impedance condition for wave propagation towards the artificial boundary at an oblique angle. The propagation angle is estimated geometrically with due consideration of the mean wind velocity. The method has been applied to a 2-dimensional point...

  8. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)


    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  9. Preparation and Optimization of 10-Hydroxycamptothecin Nanocolloidal Particles Using Antisolvent Method Combined with High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Bolin Lian


    Full Text Available The aim of this study was to prepare 10-hydroxycamptothecin nanocolloidal particles (HCPTNPs to increase the solubility of drugs, reduce the toxicity, improve the stability of the drug, and so forth. HCPTNPs was prepared by antisolvent precipitation (AP method combined with high pressure homogenization (HPH, followed by lyophilization. The main parameters during antisolvent process including volume ratio of dimethyl sulfoxide (DMSO and H2O and dripping speed were optimized and their effects on mean particle size (MPS and yield of HCPT primary particles were investigated. In the high pressure homogeneous procedure, types of surfactants, amount of surfactants, and homogenization pressure (HP were optimized and their influences on MPS, zeta potential (ZP, and morphology were analyzed. The optimum conditions of HCPTNPs were as follows: 0.2 mg/mL HCPT aqueous suspension, 1% of ASS, 1000 bar of HP, and 20 passes. Finally, the HCPTNPs via lyophilization using glucose as lyoprotectant under optimum conditions had an MPS of 179.6 nm and a ZP of 28.79 ± 1.97 mV. The short-term stability of HCPTNPs indicated that the MPS changed in a small range.

  10. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax (United States)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad


    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  11. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900 (United States)

    Xu, Wenhui; Li, Qingxiang; Jones, Phil; Wang, Xiaolan L.; Trewin, Blair; Yang, Su; Zhu, Chen; Zhai, Panmao; Wang, Jinfeng; Vincent, Lucie; Dai, Aiguo; Gao, Yun; Ding, Yihui


    A new dataset of integrated and homogenized monthly surface air temperature over global land for the period since 1900 [China Meteorological Administration global Land Surface Air Temperature (CMA-LSAT)] is developed. In total, 14 sources have been collected and integrated into the newly developed dataset, including three global (CRUTEM4, GHCN, and BEST), three regional and eight national sources. Duplicate stations are identified, and those with the higher priority are chosen or spliced. Then, a consistency test and a climate outlier test are conducted to ensure that each station series is quality controlled. Next, two steps are adopted to assure the homogeneity of the station series: (1) homogenized station series in existing national datasets (by National Meteorological Services) are directly integrated into the dataset without any changes (50% of all stations), and (2) the inhomogeneities are detected and adjusted for in the remaining data series using a penalized maximal t test (50% of all stations). Based on the dataset, we re-assess the temperature changes in global and regional areas compared with GHCN-V3 and CRUTEM4, as well as the temperature changes during the three periods of 1900-2014, 1979-2014 and 1998-2014. The best estimates of warming trends and there 95% confidence ranges for 1900-2014 are approximately 0.102 ± 0.006 °C/decade for the whole year, and 0.104 ± 0.009, 0.112 ± 0.007, 0.090 ± 0.006, and 0.092 ± 0.007 °C/decade for the DJF (December, January, February), MAM, JJA, and SON seasons, respectively. MAM saw the most significant warming trend in both 1900-2014 and 1979-2014. For an even shorter and more recent period (1998-2014), MAM, JJA and SON show similar warming trends, while DJF shows opposite trends. The results show that the ability of CMA-LAST for describing the global temperature changes is similar with other existing products, while there are some differences when describing regional temperature changes.

  12. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins (United States)

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA


    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  13. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry


    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  14. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R


    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  15. HIgh Temperature Photocatalysis over Semiconductors (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  16. A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Benjamin A., E-mail: [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Fiser, Briana L. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Prins, Willem J.; Rapp, Daniel J. [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Shields, Adam R. [Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, SW Washington, DC 20375 (United States); Glass, Daniel R. [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Superfine, R. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)


    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material that is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite ({gamma}-Fe{sub 2}O{sub 3}) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (<100 nm) and can be crosslinked to form a flexible magnetic material, which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 to 50 wt% without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. - Highlights: > Silicone-magnetite elastomer with nanoscale homogeneity. > Iron content tunable from 0 to 50 wt% without aggregation. > Elastic modulus increases in magnetic field. > Model and experiment show maximal actuation for microstructures near 40 wt% iron.

  17. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  18. High temperature superconductor accelerator magnets


    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is ...

  19. High Temperature Superconductor Accelerator Magnets


    Van Nugteren, Jeroen; ten Kate, Herman; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet ...

  20. Pengaruh Kecepatan Homegenisasi Terhadap Sifat Fisika dan Kimia Krim Nanopartikel dengan Metode High Speed Homogenization (HSH

    Directory of Open Access Journals (Sweden)

    Galuh Suprobo


    Full Text Available Nanoparticle cream is the development of nanotechnology in cosmetics fields for improving the function of cream. High speed homogenization (HSH is one of the methods for creating nanoparticle cream. In this research, the use of natural materials based palm oil derivative  such as stearic acid, cetil alcohol, cetil stearil alcohol was chosen in nanoparticle cream producing by using HSH methods.The speed variable of  homogenization of 1000 rpm, 1500 rpm, 2,000 rpm and 2,500 rpm  intended to find out the influence of speed toward the  properties of cream product. The observation result showed the influence on physical display in term of texture but not in homogeneity , stability and cream color. The pH of the product during two months storage for all variables were still stable. The particle size was increased in the homogeneity of speed at 2000 rpm and 2500 rpm. In this research has produced the cream in particle size from 239.86 to 358.10 nm which enter in nanoparticle category 50 nm to 1000 nm. The stability of nanoparticle cream product in the range of 97,20 to 98%.ABSTRAKKrim nanopartikel merupakan pengembangan nanoteknologi di bidang kosmetik untuk meningkatkan fungsi krim tersebut. High speed homogenization (HSH merupakan salah satu metoda dalam pembuatan krim nanopartikel. Pada penelitian ini, krim nanopartikel dibuat menggunakan bahan baku alami turunan kelapa sawit yaitu asam stearat, setil alkohol, setil stearil alkohol dengan metoda HSH. Variabel kecepatan homogenisasi pada 1000 rpm, 1500 rpm, 2000 rpm dan 2500 rpm dimaksudkan untuk mengetahui pengaruh kecepatan terhadap sifat-sifat krim. Hasil menunjukkan bahwa perubahan kecepatan homogenisasi dalam reaktor berpengaruh terhadap tampilan fisik dari segi tekstur, akan tetapi tidak mempengaruhi terhadap kehomogenan, stabilitas dan warna krim. Dari pengamatan selama 2 bulan penyimpanan diketahui tidak terjadi perubahan pH selama penyimpanan untuk keempat variabel. Ukuran partikel

  1. Monitoring hot mix asphalt temperature to improve homogeneity and pavement quality

    NARCIS (Netherlands)

    ter Huerne, Henderikus L.; Miller, Seirgei Rosario; Doree, Andries G.; Santagata, E.


    This paper describes how controlled compaction practices lead to better quality asphalt. Therefore, it is important that during compaction operations the mixture is at a suitable temperature in order to achieve the specified degree of compaction. The University of Twente’s Asphalt Paving Research

  2. Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

    Energy Technology Data Exchange (ETDEWEB)

    Eltabey, M.M. [Basic Engineering Science Department, Faculty of Engineering, Menoufiya University (Egypt); Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Massoud, A.M., E-mail: [Physics Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo (Egypt); Radu, Cosmin [Lake Shore Cryotronics, Inc., Westerville, OH (United States)


    Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm{sup −1} also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon. - Highlights: • Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1-x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method. • XRD analysis showed that the lattice parameter is decreased with the increase of (Co,Zn) content. • The saturation magnetization is improved with the (Co,Zn) content. • Particle size homogeneity is enhanced with (Co,Zn) content. • The values of blocking temperatures are enhanced with increasing (Co,Zn) content.

  3. High-Temperature Optical Sensor (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.


    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  4. Solute strengthening at high temperatures (United States)

    Leyson, G. P. M.; Curtin, W. A.


    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  5. High temperature superconductor current leads (United States)

    Hull, John R.; Poeppel, Roger B.


    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  6. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Wate Bakker


    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  7. Nonlinear plasmonics at high temperatures (United States)

    Sivan, Yonatan; Chu, Shi-Wei


    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  8. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan


    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  9. Influence of ultra-high-pressure homogenization treatment on the phytosterols, tocopherols, and polyamines of almond beverage. (United States)

    Toro-Funes, Natalia; Bosch-Fusté, Joan; Veciana-Nogués, M Teresa; Vidal-Carou, M Carmen


    Ultra-high-pressure homogenization (UHPH) is an emerging technology based on the dynamic application of high pressure to obtain safe and high-quality liquid foods. The effect of six UHPH treatments at 200 and 300 MPa with different inlet temperatures (T(in)) (55, 65, and 75 °C) on the content of tocopherols, polyamines, and phytosterols of almond beverage was studied in comparison with the base product. Total tocopherol contents decreased about 80-90% as temperature and pressure increased, and whereas both parameters affected the tocopherol content, especially the effect of temperature was noticeable. α-Tocopherol was the most predominant type of tocopherol present and was also the most affected by UHPH treatments. Spermidine was the only polyamine found not to be affected by UHPH treatments. UHPH treatments resulted in an increase of 20-40% in the total phytosterol extractability. The highest extractability was obtained at the most severe conditions (300 MPa, 75 °C T(in)).

  10. Hypolipidemic potential of squid homogenate irrespective of a relatively high content of cholesterol. (United States)

    Nagata, Yasuo; Noguchi, Youhei; Tamaru, Shizuka; Kuwahara, Koichi; Okamoto, Akira; Suruga, Kazuhito; Koba, Kazunori; Tanaka, Kazunari


    Our previous study has shown that regardless of a relatively high amount of cholesterol, squid homogenate lowers serum and hepatic cholesterol in animals. Since this work, we have developed a new method to inhibit autolysis of squid proteins with sodium citrate. This study aims to investigate how squid homogenate prepared with sodium citrate affects lipid metabolism in Sprague-Dawley rats at the molecular level. We prepared squid homogenate with sodium citrate to inhibit autolysis of squid protein. In Experiment 1 (Exp. 1), rats were given a cholesterol-free control diet or a squid diet, with squid homogenate added at the level of 5% as dietary protein for 4 weeks. Blood, the liver and adipose tissue were taken after 6 hours fasting. Serum and hepatic lipids and activities of enzymes related to lipid metabolism were measured. In Experiment 2 (Exp. 2), the above-mentioned diets had cholesterol added at the level of 0.1% and given to rats. Lipid parameters, enzyme activities, and gene expression of proteins involved in lipid metabolism in the liver and the small intestine were determined. In addition, feces were collected for two days at the end of Exp. 2 to measure fecal excretion of steroids. In Exp.1, serum triglyceride and cholesterol were ~50% and ~20% lower, respectively, in the squid diet-fed rats than in the control diet-fed animals while hepatic cholesterol was ~290% higher in the squid diet-fed rats. When cholesterol was included into the diets (Exp. 2), serum lipids were significantly lower in the squid group while no difference of hepatic lipid was seen between two groups. Activities of hepatic lipogenic enzymes were significantly lower in rats on the squid diet while the enzyme responsible for fatty acid oxidation was not modified (Expt. 1 and 2). Hepatic level of mRNA of microsomal triglyceride transfer protein was significantly lower in the squid group. In the small intestine, the squid diet exhibited significantly lower gene expression of proteins

  11. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika


    specificity, even in multiplex, by its dual recognition feature, its proximity requirement, and most importantly by using unique sequence specific reporter fragments on both antibody-based probes. To illustrate the potential of this protein detection technology, a pilot biomarker research project......A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...

  12. Improved Li(+) Storage through Homogeneous N-Doping within Highly Branched Tubular Graphitic Foam. (United States)

    Dong, Jinyang; Xue, Yanming; Zhang, Chao; Weng, Qunhong; Dai, Pengcheng; Yang, Yijun; Zhou, Min; Li, Cuiling; Cui, Qiuhong; Kang, Xiaohong; Tang, Chengchun; Bando, Yoshio; Golberg, Dmitri; Wang, Xi


    A novel carbon structure, highly branched homogeneous-N-doped graphitic (BNG) tubular foam, is designed via a novel N, N-dimethylformamide (DMF)-mediated chemical vapor deposition method. More structural defects are found at the branched portions as compared with the flat tube domains providing abundant active sites and spacious reservoirs for Li(+) storage. An individual BNG branch nanobattery is constructed and tested using in situ transmission electron microscopy and the lithiation process is directly visualized in real time. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Wang Xinwei


    Full Text Available Abstract Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

  14. Extending Applications of High-Pressure Homogenization by Using Simultaneous Emulsification and Mixing (SEM)—An Overview


    Vanessa Gall; Marc Runde; Schuchmann, Heike P.


    Conventional high-pressure homogenization (HPH) is widely used in the pharmaceutical, chemical, and food industries among others. In general, its aim is to produce micron or sub-micron scale emulsions with excellent product characteristics. However, its energy consumption is still very high. Additionally, several limitations and boundaries impede the usage of high-pressure homogenization for special products such as particle loaded or highly concentrated systems. This article gives an overvie...

  15. Chemistry of high temperature superconductors

    CERN Document Server


    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  16. High temperature component life assessment

    CERN Document Server

    Webster, G A


    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  17. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.


    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  18. High-temperature flooding injury (United States)

    This problem, also called scald, is most serious in the hot desert valleys of the southwestern United States, subtropical regions in eastern Australia, and western Asia and northern Africa (Middle East) where fields are established and irrigated under high temperatures. The disorder also occurs to...

  19. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

    Energy Technology Data Exchange (ETDEWEB)

    Duran-Lobato, Matilde, E-mail: [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain); Enguix-Gonzalez, Alicia [Universidad de Sevilla, Dpto. Estadistica e Investigacion Operativa, Facultad de Matematicas (Espana) (Spain); Fernandez-Arevalo, Mercedes; Martin-Banderas, Lucia [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain)


    Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 {mu}m, negative zeta potential under -30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio (R{sub L/S}) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R{sub L/S}, while the number of passes applied mainly determined polydispersion. {alpha}-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

  20. High temperature thermoelectric energy conversion (United States)

    Wood, Charles


    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  1. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  2. High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition (United States)

    Zhang, Tianbao; Wang, Yang; Xu, Jing; Chen, Lin; Zhu, Hao; Sun, Qingqing; Ding, Shijin; Zhang, David Wei


    Wafer-level integration of 2D transition metal disulfide is the key factor for future large-scale integration of the continuously scaling-down devices, and has attracted great attention in recent years. Compared with other ultra-thin film growth methods, atomic layer deposition (ALD) has the advantages of excellent step coverage, uniformity and thickness controllability. In this work, we synthesized large-scale and thickness-controllable MoS2 films on sapphire substrate by ALD at 150 °C with molybdenum hexcarbonyl and hexamethyldisilathiane (HMDST) as precursors followed by high-temperature annealing in sulfur atmosphere. HMDST is introduced for the first time to enable a toxic-free process without hazardous sulfur precursors such as H2S and CH3SSCH3. The synthesized MoS2 retains the inherent benefits from the ALD process, including thickness controllability, reproducibility, wafer-level thickness uniformity, and high conformity. Finally, field-effect transistor (FET) arrays were fabricated based on the large-area ALD MoS2 films. The top-gate FETs exhibited excellent electrical performance such as high on/off current ratio over 103 and peak room-temperature mobility up to 11.56 cm2 V‑1 s‑1. This work opens up an attractive approach to realize the application of high-quality 2D materials with wafer scale homogeneity.

  3. High Temperature Composite Heat Exchangers (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.


    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  4. Low temperature homogenization in nanocrystalline PdCu thin film system (United States)

    Y Molnár, G.; Katona, G. L.; Langer, G. A.; Csík, A.; Chen, Y. C.; Beke, D. L.


    Diffusion and solid state reactions were investigated in Pd-Cu nanocrystalline films by means of secondary neutral mass spectrometry depth profiling technique. The heat treatments were made at low temperatures (where the volume diffusion was frozen in) for long enough annealing times to reach saturation. In the early stage there is a grain boundary interdiffusion. At longer times first a Pd plateau developed inside the Cu layer. Later on the Cu penetration was also more and more extended in the Pd, even the average composition of Cu in Pd became higher than the average Pd composition in Cu. Depending on the ratio of the initial thicknesses, the system (for thickness ratios corresponding to 50/50 Cu/Pd or to 75/25 Cu/Pd) arrived either at the mixture of pure Pd and β-CuPd phase or to the mixture of α‧-Cu3Pd and β-CuPd phases, respectively, as dictated by the phase diagram. The process is interpreted as grain boundary diffusion induced solid state reaction.

  5. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee


    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  6. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  7. High temperature two component explosive (United States)

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles


    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of K. At temperatures on the order of K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  8. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity. (United States)

    Evans, Benjamin A; Fiser, Briana L; Prins, Willem J; Rapp, Daniel J; Shields, Adam R; Glass, Daniel R; Superfine, R


    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe(2)0(3)) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.

  9. High temperature structural sandwich panels (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  10. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.


    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  11. Motor for High Temperature Applications (United States)

    Roopnarine (Inventor)


    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  12. Very High Temperature Sound Absorption Coating Project (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  13. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W


    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  14. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. (United States)

    Pathanibul, Panchalee; Taylor, T Matthew; Davidson, P Michael; Harte, Federico


    High pressure homogenization has been of growing interest as a nonthermal technology for the inactivation of microorganisms in fruit and vegetable juices. Cells of Escherichia coli and Listeria innocua, used as surrogates for foodborne pathogens, were inoculated into apple or carrot juice (approximately 7 log(10) CFU/ml) containing 0 or 10 IU/ml nisin and subjected to 350 to 0 MPa high pressure homogenization. At 50 MPa homogenization pressure intervals, juice samples were collected, immediately cooled to 5 log reduction of cells was achieved following exposure to pressures in excess >250 MPa. In contrast, little inactivation was observed for L. innocua with pressure innocua. Results indicate that high pressure homogenization processing is a promising technology to achieve pathogen decontamination in fruit and vegetable juices.

  15. High temperature PEM fuel cells (United States)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  16. Magnet design with high B(0) homogeneity for fast-field-cycling NMR applications. (United States)

    Lips, O; Privalov, A F; Dvinskikh, S V; Fujara, F


    The design, construction, and performance of a low-inductance solenoidal coil with high B(0) homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B(0) inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B(0) field of 0.95 T at 800 A. The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 microH. Switching times below 200 micros can be achieved. During 6 months of operation the coil has shown good stability and reliability. Copyright 2001 Academic Press.

  17. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.


    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  18. A screening on Specific Learning Disorders in an Italian speaking high genetic homogeneity area. (United States)

    Cappa, Claudia; Giulivi, Sara; Schilirò, Antonino; Bastiani, Luca; Muzio, Carlo; Meloni, Fabrizio


    The aim of the present research is to investigate the prevalence of Specific Learning Disorders (SLD) in Ogliastra, an area of the island of Sardinia, Italy. Having experienced centuries of isolation, Ogliastra has become a high genetic homogeneity area, and is considered particularly interesting for studies on different kinds of pathologies. Here we are going to describe the results of a screening carried out throughout 2 consecutive years in 49 second grade classes (24 considered in the first year and 25 in the second year of the study) of the Ogliastra region. A total of 610 pupils (average age 7.54 years; 293 female, 317 male) corresponding to 68.69% of all pupils who were attending second grade in the area, took part in the study. The tool used for the screening was "RSR-DSA. Questionnaire for the detection of learning difficulties and disorders", which allowed the identification of 83 subjects at risk (13.61% of the whole sample involved in the study). These subjects took part in an enhancement training program of about 6 months. After the program, pupils underwent assessment for reading, writing and calculation abilities, as well as cognitive assessment. According to the results of the assessment, the prevalence of SLDs is 6.06%. For what concerns dyslexia, 4.75% of the total sample manifested this disorder either in isolation or in comorbidity with other disorders. According to the first national epidemiological investigation carried out in Italy, the prevalence of dyslexia is 3.1-3.2%, which is lower than the prevalence obtained in the present study. Given the genetic basis of SLDs, this result, together with the presence of several cases of SLD in isolation (17.14%) and with a 3:1 ratio of males to females diagnosed with a SLD, was to be expected in a sample coming from a high genetic homogeneity area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites. (United States)

    Kluge, Johannes; Mazzotti, Marco


    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground (United States)

    Lin, C.; Chien, C.


    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  1. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. (United States)

    Knapp, Charles W; Dodds, Walter K; Wilson, Kymberly C; O'Brien, Jonathan M; Graham, David W


    Human modification of natural streams by urbanization has led to more homogeneous channel surfaces; however, the influence of channel simplification on in situ microbial distribution and function is poorly characterized. For example, denitrification, a microbial process that reduces soluble nitrogen (N) levels, requires peripheral anoxic zones that might be lost in artificial channels such as those with a concrete lining. To examine how microbial function might be influenced by channel simplification, we quantified denitrification rates and conditions in microbial mats within an urban concrete channel. We quantified spatial and diurnal patterns of nitrate uptake, diurnal dissolved oxygen (DO) levels, and nutrient conditions, along with the spatial distribution of DO, solids, chlorophyll a, and genes associated with denitrification (nirS and nirK), ammonia-oxidizing bacteria (AOB), cyanobacteria, and algal chloroplasts. Despite the channel being superficially homogeneous, nir genes were distributed in a patchy manner. Two types of gene patches were observed: one associated with nirK, which had diurnally variable DO levels and high nocturnal nitrate uptake rates, and the other associated with nirS, which had elevated AOB genes, thicker layers of mud, and an apparent 24 h nitrate uptake. All active nir patches had elevated microbial photosynthetic genes. Results implythat even artificial channels, with reduced macroscale heterogeneity, can sustain significant rates of denitrification, although the responsible communities vary with space and time. This patchiness has significant implications to extending local data to landscape level predictions and field sampling strategies but also suggests alternate channel designs to increase N retention rates.

  2. Dosimetric verification of a high dose rate brachytherapy treatment planning system in homogeneous and heterogeneous media. (United States)

    Uniyal, S C; Sharma, S D; Naithani, U C


    To verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium. Absorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source. Film measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements. The dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Coupling boundary condition for high-intensity electric arc attached on a non-homogeneous refractory cathode (United States)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan; Jasak, Hrvoje


    The boundary coupling high-intensity electric arc and refractory cathode is characterized by three sub-layers: the cathode sheath, the Knudsen layer and the pre-sheath. A self-consistent coupling boundary condition accounting for these three sub-layers is presented; its novel property is to take into account a non-uniform distribution of electron emitters on the surface of the refractory cathode. This non-uniformity is due to cathode non-homogeneity induced by arcing. The computational model is applied to a one-dimensional test case to evaluate the validity of different modeling assumptions. It is also applied coupling a thoriated tungsten cathode with an argon plasma (assumed to be in local thermal equilibrium) to compare the calculation results with uniform and non-uniform distribution of the electron emitters to experimental measurements. The results show that the non-uniformity of the electron emitters' distribution has a significant effect on the calculated properties. It leads to good agreement with the cathode surface temperature, and with the plasma temperature in the hottest region. Some differences are observed in colder plasma regions, where deviation from local thermal equilibrium is known to occur.

  4. Analysis of vascular homogeneity and anisotropy on high-resolution primate brain imaging. (United States)

    Kennel, Pol; Fonta, Caroline; Guibert, Romain; Plouraboué, Franck


    Using a systematic investigation of brain blood volume, in high-resolution synchrotron 3D images of microvascular structures within cortical regions of a primate brain, we challenge several basic questions regarding possible vascular bias in high-resolution functional neuroimaging. We present a bilateral comparison of cortical regions, where we analyze relative vascular volume in voxels from 150 to 1000 μm side lengths in the white and grey matter. We show that, if voxel size reaches a scale smaller than 300 µm, the vascular volume can no longer be considered homogeneous, either within one hemisphere or in bilateral comparison between samples. We demonstrate that voxel size influences the comparison between vessel-relative volume distributions depending on the scale considered (i.e., hemisphere, lobe, or sample). Furthermore, we also investigate how voxel anisotropy and orientation can affect the apparent vascular volume, in accordance with actual fMRI voxel sizes. These findings are discussed from the various perspectives of high-resolution brain functional imaging. Hum Brain Mapp 38:5756-5777, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.


    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study shows that an in situ transparent and conductive Gd nanolayer (with a uniform thickness of ∼1 nm) at the interface between a lattice-matched (11-20) a-sapphire substrate and ZnO is formed during the deposition. This nanolayer significantly induces a relaxation mechanism that controls the dislocation distribution along the growth direction; which consequently improves the formation of homogeneous vertically aligned ZnO NRs. We demonstrate that both the lattice orientation of the substrate and the Gd characteristics are important in enhancing the NR synthesis, and we report precise control of the NR density by changing the oxygen partial pressure. We show that these NRs possess high optical and electrical quality, with a mobility of 177 cm2 (V s)-1, which is comparable to the best-reported mobility of ZnO NRs. Therefore, this new and simple method has significant potential for improving the performance of materials used in a wide range of electronic and optoelectronic applications.

  6. Stability and Biological Activity Evaluation of Chlorantraniliprole Solid Nanodispersions Prepared by High Pressure Homogenization. (United States)

    Cui, Bo; Feng, Lei; Wang, Chunxin; Yang, Dongsheng; Yu, Manli; Zeng, Zhanghua; Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Haixin


    Poorly water-soluble compounds are difficult to develop as pesticide products and face great challenges in water-based and environmentally friendly formulation development. In this study, high pressure homogenization combined with lyophilization was adopted to prepare the solid nanodispersions of chlorantraniliprole with poor solubility and high melting point. The mean particle sizes of the solid nanodispersions with different pesticide contents were all less than 75 nm, even when the content was up to 91.5%. For the 2.5% chlorantraniliprole solid nanodispersion with the mean particle size of 29 nm, the suspensibility and wetting time in water were 97.32% and 13 s, respectively. The re-dispersibility and wettability were superior to those of conventional water dispersible granules. The retention on the rice leaf of 18.7 mg/cm2 was 1.5 and 3 times that of commercial aqueous suspension concentrate and pure water. The bioassay result to diamondback moths indicated that the toxicity of the solid nanodispersion was 3.3 and 2.8 times that of technical and aqueous suspension concentrate, respectively. Moreover, the solid nanodispersion has the advantages of total avoidance of organic solvents, significant reduction of surfactants and feasibility of obtaining high concentration nanoformulations. The solid nanodispersion is an attractive candidate for improving pesticide solubility and efficacy, and its application in crop production will reduce both residues in food and environmental pollution of pesticide.

  7. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I


    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  8. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy


    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  9. High temperature triaxial tests on Rochester shale (United States)

    Bruijn, Rolf; Burlini, Luigi; Misra, Santanu


    Phyllosilicates are one of the major components of the crust, responsible for strength weakening during deformation. High pressure and temperature experiments of natural samples rich in phyllosilicates are needed to test the relevance of proposed weakening mechanisms induced by phyllosilicates, derived from lab experiments on single phase and synthetic polyphase rocks and single crystals. Here, we present the preliminary results of a series of high temperature triaxial tests performed on the illite-rich Rochester Shale (USA - New York) using a Paterson type gas-medium HPT testing machine. Cylindrical samples with homogeneous microstructure and 12-14% porosity were fabricated by cold and hot-isostatically pressing, hot-pressed samples were deformed up to a total shortening of 7.5 to 13%. To study the significance of mica dehydration, iron or copper jackets were used in combination with non-porous or porous spacers. Water content was measured before and after experiments using Karl Fischer Titration (KFT). All experiments show, after yielding at 0.6% strain, rapid hardening in nearly linear fashion until about 4-5% strain, from where stress increases at reducing rates to values at 10% strain, between 400 and 675 MPa, depending on experimental conditions. Neither failure nor steady state however, is achieved within the maximum strain of 13%. Experiments performed under 500 °C and 300 MPa confining pressure show weak strain rate dependence. In addition, iron-jacketed samples appear harder than copper-jacketed ones. At 700 °C samples are 17 to 37% weaker and more sensitive to strain rate than during 500 °C experiments. Although, iron-jacketed samples behave stronger than copper-jacketed ones. By visual inspection, samples appear homogeneously shortened. Preliminary analysis suggests that deformation is mostly accommodated by pore collapse. Although, with finite strain, pore collapse becomes less significant. A temperature, strain rate and jacket material dependent

  10. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures

    KAUST Repository

    Ltaief, Hatem


    This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore architectures. This article is an extension of the high-performance tridiagonal reduction implemented by the same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear algebra due to its broad impact in computational science. The high performance of the BRD described in this article comes from the combination of four important features: (1) tile algorithms with tile data layout, which provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system that efficiently schedules the newly implemented kernels across the processing units and ensures that the data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction of the first stage. The performance results show a significant improvement over currently established alternatives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine with a 12000×12000 matrix size against the state-of-the-art open source and commercial numerical software packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel MKL version 10.2. © 2013 ACM.

  11. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  12. Faraday imaging at high temperatures (United States)

    Hackel, Lloyd A.; Reichert, Patrick


    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  13. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape.

    Directory of Open Access Journals (Sweden)

    Magda Silva Carneiro

    Full Text Available Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha and, classified within 26 reproductive functional types (RFTs. The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity. More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as

  14. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape (United States)


    Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to

  15. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape. (United States)

    Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes


    Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to

  16. High-density carbon nanotube wet-laid buckypapers with enhanced strength and conductivity using a high-pressure homogenization process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun; Jang, Si Hoon; Park, No Hyung; Jeong, Won Young; Lim, Dae Young [Human and Culture Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan (Korea, Republic of); Oh, Jun Young; Yang, Seung Jae [Dept. of Applied Organic Materials Engineering, Inha University, Incheon (Korea, Republic of)


    In this work, we prepared homogeneously dispersed carbon nanotubes in water using a high-pressure homogenizer, while high-density carbon nanotube buckypapers were prepared by wet-laid process. The strength and conductivity of the buckypaper were increased dramatically after the high-pressure homogenization because of the increased density and uniformity of the paper. In addition, the buckypapers containing various additives and treated with SOCl{sub 2} exhibited further increase of strength and conductivity resulting from the binding and the p-type doping effect. The buckypapers with high electrical conductivity exhibited superior electromagnetic interference shielding effectiveness that could be applied for structural shielding materials.

  17. High temperature autoclave vacuum seals (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.


    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  18. Homogenization Temperature Measurements in Hydrothermal Diamond-Anvil Cell for Melt and Fluid Inclusions from the Jiajika Pegmatite Deposit, China (United States)

    Li, J.; Chou, I.; Yuan, S.; Burruss, R. C.


    We measured the total homogenization temperatures (Th) of volatile-rich melt and fluid inclusions under elevated external pressures in a hydrothermal diamond-anvil cell (HDAC) to understand fluid evolution in the Jiajika pegmatite deposit in China, the largest spodumene deposit in Asia. Three types of inclusions were investigated: 1. CH4-H2O (~10 vol. %) bearing aluminosilicate melt inclusions hosted in quartz from granite; 2. CO2-NaCl-H2O (~80 vol. %) inclusions with daughter minerals mainly hosted in spodumene from pegmatite dikes; and 3. CO2-NaCl-H2O inclusions mainly hosted in quartz from pegmatite dikes. During normal microthermometric measurements at atmospheric pressure, most of these inclusions decrepitated at ~300°C. Therefore, we extended the method of Schmidt et al. (1998, Am. Mineral. 83, 995) and Darling and Bassett (2002, Am. Mineral., 87, 67) to melt inclusions in HDAC and conducted long-duration experiments with type 1 and 2 inclusions at one kbar Ar pressure in cold-seal pressure vessels (CSPV) as described by Thomas et al. (2006, Chapter 9 in Mineralogical Association of Canada Short Course, 36, 189). Results in both HDAC and CSPV experiments showed that Th's of type 1 and 2 inclusions were between 600 and 700 °C and between 500 and 700 °C, respectively. In HDAC experiments for type 1 inclusions, daughter minerals melted and coexisted with the fluid phase before total homogenization; however, in type 2 inclusions, daughter minerals dissolved completely in the CO2-NaCl-H2O solution at Th. Results obtained for type 3 inclusions showed that the CO2-rich and CO2-poor inclusions homogenized to liquid CO2 and aqueous phases at 260 - 570 and 240 - 350°C, respectively. Also, Th’s decrease linearly as the external pressure increases; the reduction of Th was ~1.5 °C/kbar, which is similar to ~1.2 °C/kbar reported by Darling and Bassett (ibid.) for the same type of natural fluid inclusions, but is much less than ~4.6 °C/kbar reported by Schmidt et

  19. Extraction of Lipids from Chlorella saccharophila Using High-Pressure Homogenization Followed by Three Phase Partitioning. (United States)

    Mulchandani, Ketan; Kar, Jayaranjan R; Singhal, Rekha S


    Commercial exploitation of microalgae for biofuel and food ingredients is hindered due to laborious extraction protocols and use of hazardous chemicals. Production of lipids in the microalga grown in modified BG11 medium was evaluated to arrive at the appropriate harvesting conditions. The use of three phase partitioning (TPP) as a green approach for extraction of lipids from Chlorella saccharophila was investigated. Cells disrupted by probe sonication were used for separation of lipids by TPP. The TPP-optimized conditions of 30 % ammonium sulfate, using slurry/t-butanol of 1:0.75 for 60 min at 25 to 35 °C, showed a lipid recovery of 69.05 ± 3.12 % (w/w) as against 100 % (w/w) by using chloroform-methanol extraction. Subsequently, parameters of high-pressure homogenization for cell disruption were optimized for maximum recovery of lipids by TPP. A final recovery of 89.91 ± 3.69 % (w/w) lipids was obtained along with ∼1.26 % w/w carotenoids of dry biomass in the t-butanol layer and protein content of ∼12 % w/w of dry biomass in the middle protein layer due to ammonium sulfate precipitation, after performing TPP under the optimized conditions.

  20. Apple peel-based edible film development using a high-pressure homogenization. (United States)

    Sablani, Shyam S; Dasse, Florian; Bastarrachea, Luis; Dhawan, Sumeet; Hendrix, Kathleen M; Min, Sea C


    Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [G'], viscous modulus [G''], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The G' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure (P pressures (P > 0.05). The viscosity decreased from 644 to 468 kPa.s as the pressure increased from 138 to 207 MPa at 90 degrees C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.

  1. Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects. (United States)

    Briviba, Karlis; Gräf, Volker; Walz, Elke; Guamis, Buenaventura; Butz, Peter


    Ultra high pressure homogenization (UHPH) of food is a processing technology to improve food safety and shelf life. However, despite very short treatment duration UHPH may lead to changes in chemical and physico-chemical properties including formation of submicro-/nano-particles. This may affect the physiological or toxicological properties of the treated food. Here, we treated raw almond milk (AMr) with UHPH at 350 MPa and 85 °C (AMuhph), known able to inactivate food relevant microorganisms. UHPH-treatment led to about a threefold increase of the mean particle size. There was a nearly complete loss of antigenicity investigated by ELISA for determination of traces of almond proteins. The content of vitamins B1 and B2 remained unchanged, while free exposed sulfhydryl groups decreased. Despite of observed modifications, UHPH-treatment of almond milk did not cause any changes in cyto- or genotoxic effects and antigenotoxic capability of protecting intestinal cells against iron induced DNA damage in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)


    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  3. Feeding of liquid silicon for high performance multicrystalline silicon with increased ingot height and homogenized resistivity (United States)

    Krenckel, Patricia; Riepe, Stephan; Schindler, Florian; Strauch, Theresa


    Feeding of liquid silicon during the directional solidification process is a promising opportunity for cost reduction by increased throughput and improved material homogeneity due to constant resistivity over ingot height. In this work, a liquid feeding apparatus was developed for an industrial type directional solidification furnace. One n-type G2 sized High Performance multicrystalline ingot with liquid feeding of additional 14 kg of undoped silicon feedstock was crystallized. The resistivity was kept within a range of ±0.1 Ω cm of the target resistivity during the feeding sequence. A smaller mean grain area growth was observed during feeding, whereas the area fraction of recombination active dislocation structures was as low as in a reference ingot. Increased interstitial oxygen and substitutional carbon concentrations were measured for the ingot with liquid feeding. The measured mean bulk lifetime of 190 μs for passivated wafers in the feeding sequence can probably be increased by further pre-melting crucible improvements. For this laboratory experiment, energy reductions of 2% per wafer and time savings of 16% per wafer were realized.

  4. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process. (United States)

    Wei, Benxi; Cai, Canxin; Xu, Baoguo; Jin, Zhengyu; Tian, Yaoqi


    The mechanism underlying the fragmentation of waxy maize starch (WMS) granules during high-pressure homogenization (HPH) was studied and the results were interpreted in terms of granular and molecular aspects. The diameter of disrupted starch granules decreased exponentially with increasing HPH pressure, but decreased linearly with increasing of HPH cycles. Scanning electron microscopy revealed a cone-like inside-out disruption pattern through the channels that resulted in separation of blocklets fragments or starch fragments. The Mw of amylopectin was reduced by ∼half following treatment at 150MPa with two cycles, or at 100MPa for eight cycles, and the decrease was in accordance with the disruption of starch granules. This indicated that amylopectin was "protected" by blocklets, and the disruption of WMS granules mainly occurred close to the linkage among blocklets. Increasing the HPH pressure appeared to be more effective for breaking starch granules than increasing the number of HPH cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A homogeneous, high-throughput fluorescence anisotropy-based DNA supercoiling assay. (United States)

    Shapiro, Adam; Jahic, Haris; Prasad, Swati; Ehmann, David; Thresher, Jason; Gao, Ning; Hajec, Laurel


    The degree of supercoiling of DNA is vital for cellular processes, such as replication and transcription. DNA topology is controlled by the action of DNA topoisomerase enzymes. Topoisomerases, because of their importance in cellular replication, are the targets of several anticancer and antibacterial drugs. In the search for new drugs targeting topoisomerases, a biochemical assay compatible with automated high-throughput screening (HTS) would be valuable. Gel electrophoresis is the standard method for measuring changes in the extent of supercoiling of plasmid DNA when acted upon by topoisomerases, but this is a low-throughput and laborious method. A medium-throughput method was described previously that quantitatively distinguishes relaxed and supercoiled plasmids by the difference in their abilities to form triplex structures with an immobilized oligonucleotide. In this article, the authors describe a homogeneous supercoiling assay based on triplex formation in which the oligonucleotide strand is labeled with a fluorescent dye and the readout is fluorescence anisotropy. The new assay requires no immobilization, filtration, or plate washing steps and is therefore well suited to HTS for inhibitors of topoisomerases. The utility of this assay is demonstrated with relaxation of supercoiled plasmid by Escherichia coli topoisomerase I, supercoiling of relaxed plasmid by E. coli DNA gyrase, and inhibition of gyrase by fluoroquinolones and nalidixic acid.

  6. Characterization and Stability Evaluation of Thymoquinone Nanoemulsions Prepared by High-Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Zaki Tubesha


    Full Text Available Despite the pharmacological properties of thymoquinone (TQ, its administration in vivo remains problematic partly due to its poor water solubility, leading to low absorptivity and bioavailability. Hence, the objective of this study is to prepare, characterize, and evaluate the stability of TQ nanoemulsion (TQNE. Conventional emulsion from TQ (TQCE and empty nano- and conventional emulsions from Triolein (TRNE and TRCE are also produced for comparison purposes. The oil-in-water nanoemulsions of TQ and Triolein were produced by high-pressure homogenization. Emulsions were characterized physically by droplet size, polydispersity index, zeta potential, and refractive index. The changes of these parameters in TQNE samples stored for 6 months at 4 and 25°C were not statistically significant (P<0.05. In addition, the initial particle sizes of TQNE and TRNE were 119.6 and 119.5 nm, respectively. Stability studies were also performed for the period of 6 months. At the end of the experiment, the percent of remaining TQ in TQNE at 4, 25, and 40°C was 90.6, 89.1, and 87.4 % respectively. Slower degradation of TQ indicated the chemical stability of TQ in TQNE samples. These results indicated that TQNE is stable over a period of 6 months.

  7. Visualization of the drop deformation and break-up process in a high pressure homogenizer

    Energy Technology Data Exchange (ETDEWEB)

    Innings, F. [Tetra Pak Processing Systems, Ruben Rausings gata, SE-221 86 Lund (Sweden); Traegaardh, C. [Lund University, Box 124, SE-221 00 Lund (Sweden)


    For the creation of sub-micron emulsions in fluids of low viscosity the high pressure homogenizer (HPH) is usually chosen. One way of obtaining deeper knowledge of exactly what happens in the active region is to visualize it. In this work, a drop deformation and break-up visualization system based on a modified Particle Image Velocimetry (PIV) system is described. The system reproduces the gap in a HPH and has been used with pressures up to 18 MPa and drops as small as 5 {mu}m. The optics of the system are analyzed taking into account limiting factors such as the lens resolving power, the focal depth, and the duration of the laser pulses. It is shown that it is possible to resolve drops down to a few {mu}m moving in excess of 100 m/s, and that the main limitations are the resolving power and in the focal depth of the objectives. Examples are shown from capillary drop creation and from the deformation and break-up of drops in a HPH. It can be concluded that in a HPH, the drops are only deformed to a limited extent in the inlet of the gap, and that all drop break-up occurs far downstream of the gap. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility. (United States)

    Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann


    High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.

  9. High Temperature Solid Lubricant Coating for High Temperature Wear Applications (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)


    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  10. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid. (United States)

    Li, Yu; Wang, Yong; Yue, Peng-Fei; Hu, Peng-Yi; Wu, Zhen-Feng; Yang, Ming; Yuan, Hai-Long


    To overcome the limitations of the conventional particle size reduction technologies, a novel combinative particle size reduction method for the effective production of homogeneous nanosuspensions was investigated. Ursodeoxycholic acid, a poorly soluble drug representative, was tried to prepare nanosuspension by homogenization technology and high-pressure precipitation tandem homogenization technology. It was shown that the combinative approach could significantly improve the particle size reduction effectiveness over conventional homogenization approach. The Box-Behnken design analysis for process optimization revealed that the acceptable UDCA-NS was obtained wherein the optimal values of A, B, C and D were 10%, 500 bar, 0.125 and 600 bar, respectively. SEM results demonstrated that no significant aggregation or crystals growth could be observed in the freeze-dried UDCA nanocrystals. The DSC and XRD results showed that UDCA remained in a crystalline state. Dissolution velocities of the freeze-dried UDCA-NS powder were distinctly superior compared to those of the crude powder and physical mixture. The high-pressure precipitation tandem homogenization technology can be a good choice for nanosuspension preparation of poorly soluble UDCA, due to high efficiency of particle size reduction.

  11. High-temperature borehole instrumentation (United States)

    Dennis, B. R.; Koczan, S. P.; Stephani, E. L.


    A new method of extracting natural heat from the Earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320(0)C (610(0)F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resources to develop the necessary downhole instruments to meet programmatic schedules.

  12. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.


    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  13. High Temperature Chemistry at NASA: Hot Topics (United States)

    Jacobson, Nathan S.


    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  14. High temperature vapors science and technology

    CERN Document Server

    Hastie, John


    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  15. Combined effects of high pressure homogenization treatment and citral on microbiological quality of apricot juice. (United States)

    Patrignani, Francesca; Tabanelli, Giulia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba


    High pressure homogenization (HPH) technique is able to significantly reduce spoilage microbiota in fruit juice. On the other hand, aroma compounds and essential oils can have a key role in the microbial stability of these products. For this reason, the aim of this work was to evaluate the combined effects of an aroma compound (citral, used at a concentration of 50 mg/l) and HPH treatments (performed at 100 MPa for 1-8 successive passes) on the inactivation dynamics of Saccharomyces cerevisiae SPA strain inoculated in apricot juices at level of about 4.5 log CFU/ml. Moreover, growth of surviving yeast cells was measured during the storage of the treated juice at 10°C and pH, water activity, viscosity and volatile molecule profile of apricot juice were studied. Since citral had been diluted in ethanol before the addition to juice, also samples with only ethanol added at the same volume used to dissolve citral were considered. The results showed that yeast cell viability decreased with the increases of passes at 100 MPa and the relationship between yeast cell loads and number of passes at 100 MPa followed a linear trend. In addition, the effect of HPH treatment can be notably potentiated throughout the presence of citral and ethanol, increasing the time necessary to reach a spoilage threshold during storage. The volatile profiles of the juices added with citral showed a substitution by yeast metabolism of this aldehyde with molecule characterized by a lower antimicrobial activity such as alcohols. The HPH treatments had also a significant effect on pH and viscosity of apricot juices while did not affect a(w). Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Manufacture of acid gels from skim milk using high-pressure homogenization. (United States)

    Hernández, A; Harte, F M


    The effect of high-pressure homogenization (HPH) alone or in combination with a thermal treatment (TT) was investigated for the manufacture of acid gels from skim milk. Raw skim milk was subjected to HPH (0 to 350 MPa) or a TT (90 degrees C, 5 min), or both, in the following processing combinations: 1) HPH, 2) HPH followed by TT, 3) TT followed by HPH, 4) TT, and 5) raw milk (control). After treatments, L* (lightness) values were measured, and then skim milk was acidified with 3% glucono-delta-lactone and rheological properties (G' and gelation time), and whey holding capacity was evaluated. Treatments in which HPH and TT were combined showed greater L* values than those in which just HPH was applied. In all treatments, the L* values decreased as the pressure was increased up to 300 MPa with little change afterward. Gelation times were lower when HPH was combined with TT compared with the acid skim milk gels that were just pressure treated. The final G' in gels obtained from skim milk subjected to the combined process (HPH and TT) was greater and pressure-dependent compared with all other gels. A maximum G' (~320 Pa) was observed with skim milk subjected to a combination of thermal processing before or after HPH at 350 MPa. Acid gels obtained from HPH milk at 350 MPa showed a linear decrease in whey holding capacity over time, retaining 20% more whey after centrifugation for 25 min compared with samples treated at lower pressures and all other treatments. Our results suggest that HPH in combination with TT can be used to improve the rheological properties and stability of yogurt, thus decreasing the need for additives.

  17. Ultra High Pressure Homogenization of Soy Milk: Effect on Quality Attributes during Storage


    Jaideep S. Sidhu; Rakesh K. Singh


    The present work analyzed soy milk prepared from whole dehulled soybeans. The traditional method of soy milk preparation leads to wastage of about 35% of soybean solids in the form of okara, which gets filtered out. In the current study, soy milk was prepared with practically 100% recovery of soybean solids and treated with continuous flow high pressure processing (207 and 276 MPa pressure, 121 and 145 °C exit temperatures, and 0.75 and 1.25 L/min flow rates), and the changes in the physical,...

  18. Measurement of thermodynamic temperature of high temperature fixed points

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)


    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  19. Measurement of thermodynamic temperature of high temperature fixed points (United States)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.


    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 "Radiation Thermometry". The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  20. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    A number of opinions are held on the relative importance of the various physical ... optimum as well as extreme temperatures on vital functions such as survival, egg ..... solids on the biology of certain freshwater molluscs. D .Sc. thesis,. Potch.

  1. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. (United States)

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo


    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study. (United States)

    Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart


    Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. High temperature superconducting fault current limiter (United States)

    Hull, John R.


    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  4. Technological Evolution of High Temperature Superconductors (United States)



  5. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme


    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  6. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)


    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  7. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.


    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.


    Directory of Open Access Journals (Sweden)

    Jaromir Cais


    Full Text Available The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management.

  9. Low temperature plasma enhanced chemical vapor deposition of thin films combining mechanical stiffness, electrical insulation, and homogeneity in microcavities (United States)

    Peter, S.; Günther, M.; Hauschild, D.; Richter, F.


    The deposition of hydrogenated amorphous carbon (a-C:H) as well as hydrogenated amorphous silicon carbonitride (SiCN:H) films was investigated in view of a simultaneous realization of a minimum Young's modulus (>70 GPa), a high electrical insulation (≥1 MV/cm), a low permittivity and the uniform coverage of microcavities with submillimeter dimensions. For the a-C:H deposition the precursors methane (CH4) and acetylene (C2H2) were used, while SiCN:H films were deposited from mixtures of trimethylsilane [SiH(CH3)3] with nitrogen and argon. To realize the deposition of micrometer thick films with the aforementioned complex requirements at substrate temperatures ≤200 °C, several plasma enhanced chemical vapor deposition methods were investigated: the capacitively coupled rf discharge and the microwave electron cyclotron resonance (ECR) plasma, combined with two types of pulsed substrate bias. SiCN:H films deposited at about 1 Pa from ECR plasmas with pulsed high-voltage bias best met the requirements. Pulsed biasing with pulse periods of about 1 μs and amplitudes of about -2 kV was found to be most advantageous for the conformal low temperature coating of the microtrenches, thereby ensuring the required mechanical and insulating film properties.

  10. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review. (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri


    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  11. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    under high temperatures and calculated the second-order elastic constant (Cij ) and bulk modulus. (KT) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (δT) as temperature-independent and then by treating δT as temperature-dependent parameter. The results obtained when δT is ...

  12. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  13. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  14. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng


    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  15. High-Temperature Test Technology (United States)


    Do any of your facilities have vacuum test capability? YesO No~l If yes, What is the minimum vacuum chamber pressure? What is the maximum allowable...available? YesO N[-- If "yes," please Indicate the following: Vaporizer Superheater Capacity Capacity Max Temperature LH2 LN2 Are gaseous hydrogen...personnel safety? 5. Does the facility have radiant heating capability? YesO NoF- If "yes," please provide the following information: Lamp types Tungsten

  16. Thermodynamics of High Temperature Materials. (United States)


    temperatures In the present range have also been obtained by Krauss and Warncke [8] and by Vollmer et al. [9], using adiabatic calorimetry, and by Kollie [10...value for heat capacity. The electrical resistivity results reported by Kollie [10] and by Powell et al. [13] are respectively about 1 and 1.5% lower...extensive annealing of the specimens used in the measurements: the specimen (>99.89% pure) used by Kollie was annealed at 1100 K for 24 h and Laubitz et al

  17. Highly stable monodisperse PEGylated iron oxide nanoparticle aqueous suspensions: a nontoxic tracer for homogeneous magnetic bioassays (United States)

    Lak, Aidin; Dieckhoff, Jan; Ludwig, Frank; Scholtyssek, Jan M.; Goldmann, Oliver; Lünsdorf, Heinrich; Eberbeck, Dietmar; Kornowski, Andreas; Kraken, Mathias; Litterst, F. J.; Fiege, Kathrin; Mischnick, Petra; Schilling, Meinhard


    Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the particles are superparamagnetic at room temperature. The hydrophobic particles were successfully transferred into water via PEGylation using nitrodopamine as an anchoring group. IR spectroscopy and thermogravimetric analysis showed the success and efficiency of the phase transfer reaction. After PEGylation, the particles retained monodispersity and their magnetic core remained intact as proven by photon cross-correlation spectroscopy, ac susceptibility, and transmission electron microscopy. The particle aqueous suspensions revealed excellent water stability over a month of monitoring and also against temperature up to 40 °C. The particles exhibited a moderate cytotoxic effect on in vitro cultured bone marrow-derived macrophages and no release of inflammatory or anti-inflammatory cytokines. The PEGylated particles were functionalized with Herceptin antibodies via a conjugation chemistry, their response to a rotating magnetic field was studied using a fluxgate-based setup and was compared with the one recorded for hydrophobic and PEGylated particles. The particle phase lag rose after labeling with Herceptin, indicating the successful conjugation of Herceptin antibodies to the particles.Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the

  18. Ultra High Pressure Homogenization of Soy Milk: Effect on Quality Attributes during Storage

    Directory of Open Access Journals (Sweden)

    Jaideep S. Sidhu


    Full Text Available The present work analyzed soy milk prepared from whole dehulled soybeans. The traditional method of soy milk preparation leads to wastage of about 35% of soybean solids in the form of okara, which gets filtered out. In the current study, soy milk was prepared with practically 100% recovery of soybean solids and treated with continuous flow high pressure processing (207 and 276 MPa pressure, 121 and 145 °C exit temperatures, and 0.75 and 1.25 L/min flow rates, and the changes in the physical, chemical, microbial, and sensory properties during 28 days of storage at 4 °C were analyzed. The treated soy milk remained stable for 28 days. There was a significant reduction in the particle size of soybean solids which did not change during storage. The pH of the treated soy milk was significantly lower than the untreated soy milk and it reduced further upon storage. The soy milk was pasteurized with high pressure processing coupled with preheating. No lipoxygenase activity was detected. Compared to commercial samples, there was no significant difference in the astringency, bitterness, or chalkiness of soy milk prepared in the study.

  19. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper


    present a homogenous, proximity-based assay for detection of peptide binding to HLA class I molecules. It uses a conformation-dependent anti-HLA class I antibody, W6/32, as one tag and a biotinylated recombinant HLA class I molecule as the other tag, and a proximity-based signal is generated through...... the luminescent oxygen channeling immunoassay technology (abbreviated LOCI and commercialized as AlphaScreen (TM)). Compared with an enzyme-linked immunosorbent assay-based peptide-HLA class I binding assay, the LOCI assay yields virtually identical affinity measurements, although having a broader dynamic range...

  20. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.


    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  1. High temperature skin friction measurement (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.


    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  2. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma


    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  3. Homogeneous generation of iDA neurons with high similarity to bona fide DA neurons using a drug inducible system. (United States)

    Park, Hanseul; Kim, Hongwon; Yoo, Junsang; Lee, Jaekwang; Choi, Hwan; Baek, Soonbong; Lee, C Justin; Kim, Janghwan; Lengner, Christopher J; Sung, Jung-Suk; Kim, Jongpil


    Recent work generating induced dopaminergic (iDA) neurons using direct lineage reprogramming potentially provides a novel platform for the study and treatment Parkinson's disease (PD). However, one of the most important issues for iDA-based applications is the degree to which iDA neurons resemble the molecular and functional properties of their endogenous DA neuron counterparts. Here we report that the homogeneity of the reprogramming gene expression system is critical for the generation of iDA neuron cultures that are highly similar to endogenous DA neurons. We employed an inducible system that carries iDA-inducing factors as defined transgenes for direct lineage reprogramming to iDA neurons. This system circumvents the need for viral transduction, enabling a more efficient and reproducible reprogramming process for the generation of genetically homogenous iDA neurons. We showed that this inducible system generates iDA neurons with high similarity to their bona fide in vivo counterparts in comparison to direct infection methods. Thus, our results suggest that homogenous expression of exogenous genes in direct lineage reprogramming is critical for the generation of high quality iDA neuron cultures, making such culture systems a valuable resource for iDA-based drug screening and, ultimately, potential therapeutic intervention in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Tunable giant exchange bias in the single-phase rare-earth-transition-metal intermetallics YM n12 -xF ex with highly homogenous intersublattice exchange coupling (United States)

    Xia, Yuanhua; Wu, Rui; Zhang, Yinfeng; Liu, Shunquan; Du, Honglin; Han, Jingzhi; Wang, Changsheng; Chen, Xiping; Xie, Lei; Yang, Yingchang; Yang, Jinbo


    A tunable giant exchange bias effect is discovered in a family of bulk intermetallic compounds YM n12 -xF ex . Experimental data demonstrate that the exchange bias effect originates from global interactions among ferromagnetic and antiferromagnetic sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift of up to 6.1 kOe has been observed in YM n4.4F e7.6 compound. In a narrow temperature range, the exchange bias field shows a sudden switching-off whereas the coercivity shows a sudden switching-on with increasing temperature. This unique feature indicates that the intersublattice exchange coupling is highly homogenous. Our theoretical calculations reveal this switching feature, which agrees very well with the experiments and provides insights into the physical underpinnings of the observed exchange bias and coercivity.

  5. High Temperature Solid State Lithium Battery Project (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  6. Copper Alloy For High-Temperature Uses (United States)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary


    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  7. Lightweight, High-Temperature Radiator Panels Project (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  8. High Temperature Rechargeable Battery Development Project (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  9. A high-throughput, homogeneous microplate assay for agents that kill mammalian tissue culture cells. (United States)

    Pierce, Michael; Wang, Chunwei; Rebentisch, Matt; Endo, Mark; Stump, Mark; Kamb, Alexander


    Screens for cytostasis/cytoxicity have considerable value for the discovery of therapeutic agents and the investigation of the biology of apoptosis. For instance, genetic screens for proteins, protein fragments, peptides, RNAs, or chemicals that kill tissue culture cells may aid in identifying new cancer therapeutic targets. A microplate assay for cell death is needed to achieve throughputs sufficient to sift through thousands of agents from expression or chemical libraries. The authors describe a homogeneous assay for cell death in tissue culture cells compatible with 96- or 384-well plates. In combination with a previously described system for retroviral packaging and transduction, nearly 6000 expression library clones could be screened per week in a 96-well plate format. The screening system may also prove useful for chemical screens.

  10. The flavoured BFSS model at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yuhma; Filev, Veselin G. [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Kováčik, Samuel [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Faculty of Mathematics, Physics and Informatics,Comenius University Bratislava, Mlynská dolina, Bratislava, 842 48 (Slovakia); O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)


    We study the high-temperature series expansion of the Berkooz-Douglas matrix model, which describes the D0/D4-brane system. At high temperature the model is weakly coupled and we develop the series to second order. We check our results against the high-temperature regime of the bosonic model (without fermions) and find excellent agreement. We track the temperature dependence of the bosonic model and find backreaction of the fundamental fields lifts the zero-temperature adjoint mass degeneracy. In the low-temperature phase the system is well described by a gaussian model with three masses m{sub A}{sup t}=1.964±0.003, m{sub A}{sup l}=2.001±0.003 and m{sub f}=1.463±0.001, the adjoint longitudinal and transverse masses and the mass of the fundamental fields respectively.

  11. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. (United States)

    Fernandez-Avila, C; Trujillo, A J


    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A


    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  13. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen


    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  14. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong


    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  15. High-temperature heat-pump fluids (United States)

    Bertinat, M. P.


    Heat pumps could be immensely useful in many industrial processes, but standard working fluids are unsuitable for the high temperatures involved. The ideal high-temperature heat-pump fluid should have a high (but not too high) critical temperature, a moderate critical pressure ( approximately=5.0 MPa) and a low (but not too low) boiling point. There are many organic fluids that do meet the above thermodynamic criteria The author's list of 250 contained dozens of them including many of the common laboratory solvents such as ethanol, ether and especially acetone. Unfortunately most of them are highly flammable. The ideal work fluid for high-temperature heat pumps will probably always remain elusive and water, despite its drawbacks will continue to be the best choice in most applications

  16. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  17. High interpopulation homogeneity in Central Argentina as assessed by Ancestry Informative Markers (AIMs

    Directory of Open Access Journals (Sweden)

    Angelina García


    Full Text Available The population of Argentina has already been studied with regard to several genetic markers, but much more data are needed for the appropriate definition of its genetic profile. This study aimed at investigating the admixture patterns and genetic structure in Central Argentina, using biparental markers and comparing the results with those previously obtained by us with mitochondrial DNA (mtDNA in the same samples. A total of 521 healthy unrelated individuals living in 13 villages of the Córdoba and San Luis provinces were tested. The individuals were genotyped for ten autosomal ancestry informative markers (AIMs. Allele frequencies were compared with those of African, European and Native American populations, chosen to represent parental contributions. The AIM estimates indicated a greater influence of the Native American ancestry as compared to previous studies in the same or other Argentinean regions, but smaller than that observed with the mtDNA tests. These differences can be explained, respectively, by different genetic contributions between rural and urban areas, and asymmetric gene flow occurred in the past. But a most unexpected finding was the marked interpopulation genetic homogeneity found in villages located in diverse geographic environments across a wide territory, suggesting considerable gene flow.

  18. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection

    Directory of Open Access Journals (Sweden)

    Ingeborg Hospach


    Full Text Available Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα and Interleukin 6 (IL-6 were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D. The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established.

  19. Aeronautical applications of high-temperature superconductors (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John


    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  20. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  1. Silicon Carbide Nanotube Oxidation at High Temperatures (United States)

    Ahlborg, Nadia; Zhu, Dongming


    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  2. High temperature spectral gamma well logging

    Energy Technology Data Exchange (ETDEWEB)

    Normann, R.A.; Henfling, J.A.


    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  3. PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation (United States)

    Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui


    Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.

  4. Microbiological stabilization of tiger nuts' milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. (United States)

    Codina-Torrella, I; Guamis, B; Zamora, A; Quevedo, J M; Trujillo, A J


    Tiger nuts' milk beverages are highly perishable products. For this reason, the interest of food industry for their commercialization makes necessary the application of preservation treatments to prolong their shelf-life. In the current study, the effect of ultra-high pressure homogenization (UHPH) on the microbiological and sensory qualities of tiger nuts' milk beverage was evaluated. Characteristics of UHPH-treated products (at 200 and 300 MPa, with inlet temperature of 40 °C) were compared with those of raw (RP) and conventionally homogenized-pasteurized (H-P) beverages, after treatment and during cold storage at 4 °C. Microbiological quality of beverages was studied by enumerating total counts, psychrotrophic bacteria, lactobacilli, enterobacteria, molds and yeasts, and mesophilic spores. Evolution of color and sensory characteristics of beverages were also determined. Microbiological shelf-life of the tiger nuts' milk beverages was extended from 3 to 25, 30 and 57 days by applying H-P and UHPH treatments at 200 and 300 MPa, respectively. Color of beverages was the only attribute that differentiated UHPH samples from the others, with greater luminosity and whiteness. Hence, UHPH treatments showed to be an alternative to the conventional H-P for obtaining tiger nuts' milk beverages with an improved microbiological shelf-life and good sensorial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Novel High Temperature Strain Gauge Project (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  6. High Temperature Fiberoptic Thermal Imaging System Project (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  7. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  8. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A


    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  9. NASA High Operating Temperature Technology Program Overview (United States)

    Nguyen, Q. V.; Hunter, G. W.


    NASA’s Planetary Science Division has begun the High Operating Temperature Technology (HOTTech) program to address Venus surface technology challenges by investing in new technology development. This presentation reviews this HOTTech program.

  10. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.


    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  11. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail:


    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  12. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş


    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  13. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S


    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  14. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.


    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  15. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh


    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  16. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  17. Neutron experiments on high-temperature superconductors (United States)

    Mook, H. A., Jr.


    This report details the trip to the ILL to perform neutron scattering research on high-temperature superconductivity. The trip was very successful because of the excellent users' facilities available at the ILL. The data we accumulated were of high quality and will make an impact on our understanding of high-temperature superconductivity. However, we cannot continue to run a research program in this field with the limited beam time available at the ILL. To make substantial progress in this field, we must restart the High Flux Isotope Reactor.

  18. High Temperature, Wireless Seismometer Sensor for Venus (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.


    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  19. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret


    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  20. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima


    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  2. Temperature measurement by IR camera of heated device to high temperature during a short time (United States)

    Sonneck-Museux, Nathanaëlle; Vergé, Philippe; Judic, Jean-Pierre; Edard, Pierrick


    A device allowing heating a liquid to high temperatures during a very short time has been conceived in our laboratory. The goal of this survey is to find the suitable experimental configurations, so that tested material affected by the temperatures coved between 200 and 750°C. This study is achieved to the Solar Furnace of the DGA in Odeillo. The cavity containing the liquid is a thermocouple sleeve (capillary) in Inconel 600. Its extremity is closed tightly by a removable steel plug permitting the tightness after replenishment. An electromagnet associated to a generator of delay permit to make fall the whole after the solar irradiation in liquid nitrogen in order to stop the reaction of "deterioration" of the tested product. According to capillary dimensions and to heating time, the temperature measurement using a pyrometer is not possible. A second possibility is using thermocouple, but it is not easy to join this captor on Inconel 600. Using by infrared camera allows observing the presence or the absence of inflammation during the solar irradiation and the sleeve fall too. The measures of temperatures by thermocouple show a lot of variability. The measures comparison with those by infrared camera shows a phenomenon of "heat well". Several score of tests to the solar furnace have been achieved in different experimental configurations. Nine experimental configurations have been validated, for variable flux of 100 to 500W/cm². The observation by infrared camera permitted to validate the conceived system and to verify the homogeneity of the sleeve heated.

  3. [Experimental study of optical characteristics of homogeneous highly-dispersive biological medium]. (United States)

    Danilov, A A; Dolgushin, S A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A


    Specific features of the process of short laser pulse propagation through a highly-dispersive biological medium are considered. Two models are used for the theoretical description of propagation of optical radiation through a highly-dispersive medium: diffusion approximation and non-stationary axial model. Physical characteristics of the dispersive medium are determined in both models. The obtained theoretical dependences are found to be in qualitative agreement with the results of experimental study.

  4. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  5. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren


    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  6. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail:, E-mail: [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)


    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  7. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability

    DEFF Research Database (Denmark)

    Assarsson, Erika; Lundberg, Martin; Holmquist, Göran


    Medical research is developing an ever greater need for comprehensive high-quality data generation to realize the promises of personalized health care based on molecular biomarkers. The nucleic acid proximity-based methods proximity ligation and proximity extension assays have, with their dual...

  8. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.


    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  9. High temperature thrust chamber for spacecraft (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)


    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  10. Stability projections for high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Laquer, H.L.; Edeskuty, F.J.; Hassenzahl, W.V.; Wipf, S.L.


    The stability of the new high temperature superconducting oxides has been analyzed, using the methodology developed over the last 25 years for conventional Type II superconductors. The results are presented in graphical form for the temperature range from 4 to 100 K. For a 90 K superconductor the first flux jump field peaks above 7 T at 60 K, ( and for a 120 k superconductor it peaks above 12 T at 75 K). The maximum adiabatically stable thickness increases dramatically. The linear dimension of the minimum propagating zone increases by a factor of 3 to 5, and the quench propagation velocity drops by 4 orders of magnitude. The high temperature superconducting materials will, therefore, have much higher stability than conventional Type II superconductors; their high flux jump fields will make ultra-fine multifilamentary conductors unnecessary and improve the outlook for tape conductors; the energy to create a propagating zone is increased; however, methods of coil protection will have to be modified.

  11. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi


    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  12. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. (United States)

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman


    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  13. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge (United States)


    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  14. Temperature measurements of high power LEDs (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei


    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  15. Fiber Bragg Grating Filter High Temperature Sensors (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)


    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  16. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max


    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  17. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg


    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  18. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)


    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  19. On-wafer high temperature characterization system (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.


    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  20. High Temperature Mechanisms for Venus Exploration (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  1. High-Temperature Shape Memory Polymers (United States)

    Yoonessi, Mitra; Weiss, Robert A.


    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  2. High Summer Temperatures and Mortality in Estonia.

    Directory of Open Access Journals (Sweden)

    Daniel Oudin Åström

    Full Text Available On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia.We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia.We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement.We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  3. Measuring nanowire thermal conductivity at high temperatures (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan


    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  4. High Summer Temperatures and Mortality in Estonia. (United States)

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans


    On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  5. Adoption of a High-Impact Innovation in a Homogeneous Population (United States)

    Weiss, Curtis H.; Poncela-Casasnovas, Julia; Glaser, Joshua I.; Pah, Adam R.; Persell, Stephen D.; Baker, David W.; Wunderink, Richard G.; Nunes Amaral, Luís A.


    Adoption of innovations, whether new ideas, technologies, or products, is crucially important to knowledge societies. The landmark studies of adoption dealt with innovations having great societal impact (such as antibiotics or hybrid crops) but where determining the utility of the innovation was straightforward (such as fewer side effects or greater yield). Recent large-scale studies of adoption were conducted within heterogeneous populations and focused on products with little societal impact. Here, we focus on a case with great practical significance: adoption by small groups of highly trained individuals of innovations with large societal impact but for which it is impractical to determine the true utility of the innovation. Specifically, we study experimentally the adoption by critical care physicians of a diagnostic assay that complements current protocols for the diagnosis of life-threatening bacterial infections and for which a physician cannot estimate the true accuracy of the assay based on personal experience. We show through computational modeling of the experiment that infection-spreading models—which have been formalized as generalized contagion processes—are not consistent with the experimental data, while a model inspired by opinion models is able to reproduce the empirical data. Our modeling approach enables us to investigate the efficacy of different intervention schemes on the rate and robustness of innovation adoption in the real world. While our study is focused on critical care physicians, our findings have implications for other settings in education, research, and business, where small groups of highly qualified peers make decisions about the adoption of innovations whose utility is difficult if not impossible to gauge.

  6. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.


    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  7. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.


    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  8. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  9. Research at Very High Pressures and High Temperatures (United States)

    Bundy, Francis P.


    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  10. Aqueous Geochemistry at High Pressures and High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Jay D. [Univ. of Illinois, Urbana-Champaign, IL (United States)


    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  11. Modelling stock order flows with non-homogeneous intensities from high-frequency data (United States)

    Gorshenin, Andrey K.; Korolev, Victor Yu.; Zeifman, Alexander I.; Shorgin, Sergey Ya.; Chertok, Andrey V.; Evstafyev, Artem I.; Korchagin, Alexander Yu.


    A micro-scale model is proposed for the evolution of such information system as the limit order book in financial markets. Within this model, the flows of orders (claims) are described by doubly stochastic Poisson processes taking account of the stochastic character of intensities of buy and sell orders that determine the price discovery mechanism. The proposed multiplicative model of stochastic intensities makes it possible to analyze the characteristics of the order flows as well as the instantaneous proportion of the forces of buyers and sellers, that is, the imbalance process, without modelling the external information background. The proposed model gives the opportunity to link the micro-scale (high-frequency) dynamics of the limit order book with the macro-scale models of stock price processes of the form of subordinated Wiener processes by means of limit theorems of probability theory and hence, to use the normal variance-mean mixture models of the corresponding heavy-tailed distributions. The approach can be useful in different areas with similar properties (e.g., in plasma physics).

  12. Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number (United States)

    Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui


    To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.

  13. Lightweight High-Temperature Thermal Insulation (United States)

    Wagner, W. R.; Fasheh, J. I.


    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  14. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperatureare known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadaldevelopment and sex ratio in amphibians but the mechanism of action is not ...

  15. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.


    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  16. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  17. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.


    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  18. Complex performance during exposure to high temperatures. (United States)


    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  19. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended ...

  20. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of ...

  1. High temperature catalyst combustion method and catalyst material; Koonshokubai nenshoho to shokubai zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Koichi [Kyushu University, Fukuoka (Japan)


    The high temperature catalyst combustion has not yet come to the practical stage. However, the application to gas turbine combustion machine, etc. is expected. The high temperature catalyst combustion has next features further than the combustion reaction of homogeneous system, which generates present flame. (1) The burning rate is big, and the combustion efficiency is also high. Stabilized combustion is obtained, because it not becomes partially a high temperature. (2) Thermal The generation of NOx is dependent on the temperature resistant, and over 1500 degrees C , the speed of the NOx generation consists in the anther. (3) It can be correspondent to air and fuel ratio such as the exhaust gas including thin organic compounds. (4) Since the reaction progresses in the catalyst surface, the surface is maintained in comparison with the gas phase reaction in high temperature. Therefore, the furnace volume can be miniaturized. (5) In case of the adiabatic reactor, heat recovery and energy recovery as a power become possible. (NEDO)

  2. High pressure and high temperature behaviour of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Thakar, Nilesh A. [K. K. Shah Jarodwala Maninagar Science College, Rambaug, Maninagar, Ahmedabad-380008 (India); Bhatt, Apoorva D. [Department of Physics, Gujarat University, Ahmedabad-380009 (India); Pandya, Tushar C., E-mail: [St. Xavier' s College, Navrangpura, Ahmedabad-380009 (India)


    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  3. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V


    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  4. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)


    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  5. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F. [Centro de Investigaciones Opticas, La Plata (Argentina); Borges, F.O., E-mail: [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica. Lab. de Plasma e Espectroscopia; Di Rocco, H.O. [Instituto de Fisica Arroyo Seco (IFAS), Universidad Nacional del Centro, Tandil (Argentina); Mercado, R.S. [Grupo de Espectroscopia Optica de Emision y Laser (GEOEL), Universidad del Atlantico, Barranquilla (Colombia); Villagran-Muniz, M. [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (Mexico); Palleschi, V. [Applied Laser Spectroscopy Laboratory, ICCOM-CNR, Pisa (Italy)


    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  6. Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential. (United States)

    Grills, David C; Matsubara, Yasuo; Kuwahara, Yutaka; Golisz, Suzanne R; Kurtz, Daniel A; Mello, Barbara A


    We describe a new strategy for enhancing the efficiency of electrocatalytic CO2 reduction with a homogeneous catalyst, using a room-temperature ionic liquid as both the solvent and electrolyte. The electrochemical behavior of fac-ReCl(2,2'-bipyridine)(CO)3 in neat 1-ethyl-3-methylimidazolium tetracyanoborate ([emim][TCB]) was compared with that in acetonitrile containing 0.1 M [Bu4N][PF6]. Two separate one-electron reductions occur in acetonitrile (-1.74 and -2.11 V vs Fc(+/0)), with a modest catalytic current appearing at the second reduction wave under CO2. However, in [emim][TCB], a two-electron reduction wave appears at -1.66 V, resulting in a ∼0.45 V lower overpotential for catalytic reduction of CO2 to CO. Furthermore, the apparent CO2 reduction rate constant, kapp, in [emim][TCB] exceeds that in acetonitrile by over one order of magnitude (kapp = 4000 vs 100 M(-1) s(-1)) at 25 ± 3 °C. Supported by time-resolved infrared measurements, a mechanism is proposed in which an interaction between [emim](+) and the two-electron reduced catalyst results in rapid dissociation of chloride and a decrease in the activation energy for CO2 reduction.

  7. Sorbents Remove Oxygen At High Temperatures (United States)

    Sharma, Pramod K.


    Cobalt-exchanged, platinized zeolites 13X and L found conveniently reducible in hot gaseous mixture of hydrogen and nitrogen and thereafter useful as sorbents of trace amounts of oxygen at high temperatures. Aided by catalytic action of platinum, sorbents exhibit rapid oxygen-sorption kinetics and, according to thermodynamic properties of O2/CoO system, capable of lowering level of oxygen in otherwise inert gaseous atmosphere to less than 1 part per trillion in temperature range of 400 to 800 degrees C. Inert atmospheres with these oxygen levels required for processing of certain materials in semiconductor industry.

  8. A review of high-temperature adhesives (United States)

    St.clair, A. K.; St.clair, T. L.


    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  9. High temperature dynamic engine seal technology development (United States)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.


    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  10. High temperature aircraft research furnace facilities (United States)

    Smith, James E., Jr.; Cashon, John L.


    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  11. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik


    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  12. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  13. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  14. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.


    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  15. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)


    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  16. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)


    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  17. Gasification of high ash, high ash fusion temperature bituminous coals (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang


    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in C. to C. range as well as in excess of C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  18. Electrochemical high-temperature gas sensors (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.


    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  19. Vapor phase lubrication of high temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)


    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  20. Medium Deep High Temperature Heat Storage (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo


    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  1. Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions. (United States)

    Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A


    Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.

  2. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method

    Directory of Open Access Journals (Sweden)

    U. N. Roy


    Full Text Available We obtained high-quality CdTexSe1−x (CdTeSe crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1−xTe (CdZnTe or CZT.

  3. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal


    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  4. Evaluating the Ultra-High Pressure Homogenization (UHPH and Pasteurization effects on the quality and shelf life of donkey milk

    Directory of Open Access Journals (Sweden)

    Cephas Nii Akwei Addo


    Full Text Available Donkey milk has functional properties of great interest to human nutrition. The effects of ultra-high pressure homogenization (UHPH at 100 MPa, 200 MPa and 300 MPa in comparison with different pasteurization treatments of 70 °C for 1 min and 85 °C for 1 min on the physicochemical quality and shelf-life of treated and raw (untreated donkey milk were studied. Gross composition and pH, total mesophilic counts, lysozyme activity and physical stability were studied during storage at 4 °C for 28 days. The compositional profile showed resemblance to that of human milk characterized by high lactose, low fat and low protein content and was least affected by the treatments. UHPH treatments at 200 MPa, 300 MPa and 85 °C were able to maintain steady pH during storage whereas the low intensity treatments showed a significant decrease. The observed lysozyme activity in the samples was generally high and appeared to have been enhanced by the applied UHPH and pasteurization treatments with no significant change during storage. Although the raw milk showed good initial microbial quality, extensive growth of mesophilic microorganisms occurred after 7 days of storage, unlike the treated samples which were able to maintain significantly low counts throughout the storage period. The physical stability of milk was negatively influenced by the higher UHPH treatments of 200 MPa and 300 MPa which exhibited sedimentation phenomenon, while creaming was insignificant.

  5. High temperature superconductors for magnetic suspension applications (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.


    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  6. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico


    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  7. High Temperature Phenomena in Shock Waves

    CERN Document Server


    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  8. Trends in Surface Temperature at High Latitudes (United States)

    Comiso, Josefino C.


    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  9. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  10. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  11. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a high-temperature solid-state reac- tion technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: a = (4·1158 ± 0·0003) Å. The synthesized powder was characterized using X-ray diffraction ...

  12. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.


    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  13. Fundamental aspects of high-temperature corrosion


    Rapp, Robert


    Some recent considerations in three widely different aspects of high-temperature corrosion are summarized: 1) reactions at the metal/scale interface in support of scale growth; 2) mass transfer effects in the control of evaporation of volatile reaction products; and 3) the codeposition of multiple elements for diffusion coatings using halide-activated cementation packs. The climb of misfit edge dislocations from the metal/scale interface can achieve the annihilation of vacancies associated wi...

  14. Thermal fuse for high-temperature batteries (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.


    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately C. and C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  15. High-Temperature Thermoelectric Energy Conversion (United States)

    Wood, C.


    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  16. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)


    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  17. High-temperature technological processes: Thermophysical principles (United States)

    Rykalin, N. N.; Uglov, A. A.; Anishchenko, L. M.

    The book is concerned with the principles of thermodynamics and heat transfer theory underlying high-temperature technological processes. Some characteristics of electromagnetic radiation and heat transfer in solids, liquids, and gases are reviewed, and boundary layer theory, surface phenomena, and phase transitions are examined. The discussion includes an analysis of a number of specific processes, such as treatment by concentrated energy fluxes (electron-beam and laser processing) and plasma machining.

  18. Brittle Materials Design, High Temperature Gas Turbine (United States)


    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  19. Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. (United States)

    Knockaert, Griet; Pulissery, Sudheer K; Colle, Ines; Van Buggenhout, Sandy; Hendrickx, Marc; Loey, Ann Van


    In the present study, the effect of equivalent thermal and high pressure processes at pasteurization and sterilization intensities on some health related properties of high pressure homogenized tomato puree containing oil were investigated. Total lycopene concentration, cis-lycopene content and in vitro lycopene bioaccessibility were examined as health related properties. Results showed that pasteurization hardly affected the health related properties of tomato puree. Only the formation of cis-lycopene during intense thermal pasteurization was observed. Sterilization processes on the other hand had a significant effect on the health related properties. A significant decrease in total lycopene concentration was found after the sterilization processes. Next to degradation, significant isomerization was also observed: all-trans-lycopene was mainly converted to 9-cis- and 13-cis-lycopene. High pressure sterilization limited the overall lycopene isomerization, when compared to the equivalent thermal sterilization processes. The formation of 5-cis-lycopene on the other hand seemed to be favoured by high pressure. The in vitro lycopene bioaccessibility of high pressure homogenized tomato puree containing oil was decreased during subsequent thermal or high pressure processing, whereby significant changes were observed for all the sterilization processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)


    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  1. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)


    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  2. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2.3 A cm-2 were obtained....

  3. High temperature superconducting digital circuits and subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L. [Conductus, Sunnyvale, CA (United States); Hietala, V.M.; Wendt, J.R. [Sandia National Labs., Albuquerque, NM (United States); Hou, S.Y.; Phillips, J. [AT and T Bell Labs., Murray Hill, NJ (United States)


    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  4. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.


    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  5. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.


    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  6. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan


    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  7. High Pressure and Temperature Effects in Polymers (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  8. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T


    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  9. One-step synthesis of a highly homogeneous SBA-NHC hybrid material: en route to single-site NHC-metal heterogeneous catalysts with high loadings. (United States)

    Rocquin, Mansuy; Henrion, Mickaël; Willinger, Marc-Georg; Bertani, Philippe; Chetcuti, Michael J; Louis, Benoît; Ritleng, Vincent


    The one-step synthesis of a mesoporous silica of SBA type, functionalized with a 1-(2,6-diisopropylphenyl)-3-propyl-imidazolium (iPr2Ar-NHC-propyl) cation located in the pore channels, is described. This material was obtained by the direct hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 1-(2,6-diisopropylphenyl)-3-[3-(triethoxysilyl)propyl]-imidazolium iodide in the presence of Pluronic P123 as a non-ionic structure-directing agent and aqueous HCl (37%) as an acid catalyst. Small-angle X-ray diffraction measurements, scanning and transmission electron microscopies, as well as dinitrogen sorption analyses revealed that the synthesized material is highly mesoporous with a 2D hexagonal arrangement of the porous network. (13)C and (29)Si CP-MAS NMR spectroscopy confirmed that the material contains intact iPr2Ar-NHC-propyl cations, which are covalently anchored via silicon atoms fused into the silica matrix. Moreover, comparison of the latter data with those of an analogous post-synthetic grafted SBA-NHC material allowed us to establish that, as expected, (i) it is most probably more homogeneous and (ii) it shows a more robust anchoring of the organic units. Finally, elemental mapping by energy dispersive X-ray spectroscopy in the scanning electron microscope demonstrated a very homogeneous distribution of the imidazolium units within the one-pot material, moreover with a high content. This study thus demonstrates that a relatively bulky and hydrophilic imidazolium unit can be directly co-condensed with TEOS in the presence of a structure-directing agent to provide in a single step a highly ordered and homogeneous mesoporous hybrid SBA-NHC material, possessing a significant number of cationic NHC sites.

  10. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    . Different particle shapes of beechwood and leached wheat straw chars produced in the drop tube reactor which have similar potassium content suggested a stronger influence of the major biomass cell wall compounds (cellulose, hemicellulose, lignin and extractives) and silicates on the char morphology than...... multi core structures compared to pinewood soot generated at 1400°C, combining both single and multi core particles.Beechwood and wheat straw soot samples had multi and single core particles at both temperatures.In thermogravimetric analysis, the maximal reaction rate of pinewood soot was shifted...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...

  11. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja


    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  12. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  13. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  14. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)


    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  15. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others


    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  16. Electrical Conductivity of Micas at High Temperatures (United States)

    Watanabe, T.


    Electrical conductivity, along with seismic velocity, gives us clues to infer constituent materials and temperatures in the Earth's interior. Dry rocks have been considered to be electrically insulating at crustal temperatures. Observed high conductivity has been ascribed to the existence of fluids. However, Fuji-ta et al. (2007) recently reported that a dry gneiss shows relatively high conductivity (10-4-10-3 S/m) at the temperature of 300-400°C, and that it is strongly anisotropic in conductivity. They suggested that the alignment of biotite grains governs conductivity of the gneiss sample. Electrical properties of rock forming minerals are still poorly understood. We thus have measured electrical properties of biotite single crystals up to 700°C. In order to get a good understanding of conduction mechanisms, measurements have been also made on phlogopite and muscovite, which are common micas with similar crystallographic structures. Thin plates parallel to cleavages (thickness~0.1mm) were prepared from mica single crystals. Electrical impedance was measured by 2-electrode method. The specimen was kept in nitrogen or argon atmosphere. The conductivity measured parallel to cleavages is higher than that measured perpendicular to cleavages by 3-4 orders of magnitude. However, no significant difference in the activation energy of conductivity was observed between two directions. The activation energy of conductivity is ~50 kJ/mol for biotite and ~100 kJ/mol for phlogopite and muscovite. The conductivity of biotite is higher than those of phlogopite and muscovite by several orders of magnitude at the same temperature. The conductivity of biotite parallel to cleavages is ~10-1 S/m at 400°C. The conductivity of biotite increases irreversibly by heating. The irreversible change was not significant below 450°C. Remarkable increase is observed at the temperature of 450-550°C. No significant change was observed in the second heating. Such an increase in conductivity

  17. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li


    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  18. Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization

    Directory of Open Access Journals (Sweden)

    Trujillo-Cayado, L. A.


    Full Text Available The goal of this work was to investigate the influence of the emulsification method on the rheological properties, droplet size distribution and physical stability of O/W green emulsions formulated with an eco-friendly surfactant derived from cocoa oil. The methodology used can be applied to other emulsions. Polyoxyethylene glycerol esters are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. In the same way, N,NDimethyloctanamide and α-Pinene (solvents used as oil phase could be considered green solvents. Emulsions with submicron mean diameters and slight shear thinning behavior were obtained regardless of the homogenizer, pressure or number of passes used. All emulsions exhibited destabilization by creaming and a further coalescence process which was applied to the coarse emulsion prepared with a rotor-stator homogenizer. The emulsion obtained with high pressure at 15000 psi and 1-pass was the most stable.El objetivo de este trabajo fue estudiar la influencia del método de emulsificación sobre las propiedades reológicas, la distribución de tamaños de gota y la estabilidad física de emulsiones verdes O/W formuladas con un tensioactivo derivado del aceite de coco respetuoso con el medioambiente. La metodología empleada puede ser aplicada a cualquier otro tipo de emulsiones. Los ésteres polietoxilados de glicerina son tensioactivos no iónicos obtenidos de fuentes renovables que cumplen requisitos medioambientales y toxicológicos para ser usados como agentes emulsionantes ecológicos. Del mismo modo, la N,N-dimetil octanamida y el α-Pineno (disolventes usados como fase oleosa pueden ser considerados como disolventes verdes. Se han obtenido emulsiones con diámetros medio submicrónicos y comportamiento ligeramente pseudoplástico independientemente del equipo, la presión o el número de pasadas empleados. Todas las

  19. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)


    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  20. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    Directory of Open Access Journals (Sweden)

    Bruno Ricardo de Castro Leite Júnior

    Full Text Available This study investigated the effect of high pressure homogenization (HPH (up to 190 MPa on porcine pepsin (proteolytic and milk-clotting activities, and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure. Although the proteolytic activity (PA was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network and lower porosity (evidenced by confocal microscopy. These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  1. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development. (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo


    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  2. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.


    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  3. Diamond based detectors for high temperature, high radiation environments (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.


    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  4. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    With dwindling easily accessible oil and gas resources, more and more exploration and production activities in the oil industry are driven to technically challenging environments such as unconventional resources and deeper formations. The temperature and pressure can become extremely high, e.g., up...

  5. Assessment of high-temperature filtering elements

    Energy Technology Data Exchange (ETDEWEB)

    Monica Lupion; Francisco J. Gutierrez Ortiz; Benito Navarrete; Vicente J. Cortes [University of Seville, Seville (Spain). E.T.S. Ingenieros


    A complete experimental campaign has been carried out in a hot gas filtration test facility so as to test several filtering elements and configurations, particularly, three different types of bag filters and one ceramic candle. The facility was designed to operate under a wide range of conditions, thus providing an excellent tool for the investigation of hot gas filtration applications for the advanced electrical power generation industry such as IGCC, PFBC or fuel cell technologies. Relevant parameters for the characterization and optimization of the performance of the filters have been studied for a variety of operation conditions such as filtration velocity, particle concentration, pressure and temperature among others. Pressure drop across the filter, cleaning pulse interval, baseline pressure drop, filtration efficiency and durability of the filter have been investigated for each type considered and dependences on parameters have been established. On top of that, optimal operating conditions and cleaning strategies were determined. The tests results show that bag filters are a suitable alternative for the hot gas filtration due to the better performance and the high efficiency observed, which makes them suitable for industrial applications operating under high temperature high pressure conditions considered within the study (200-370{degree}C and 4-7.5 barg respectively). 7 refs., 7 figs., 10 tabs.

  6. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin


    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  7. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud


    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...... to a temperature of 220°C. An activation energy of 9 kJ·mol−1 (2.2 kcal·mol−1) has been determined and the spectrum of the transient formed in the reaction has been determined at different temperatures....

  8. High temperature behaviour of a zircon ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMMPM; Hamidouche, M. [Lab. Science des Materiaux, Univ. de Setif (Algeria); Torrecillas, R. [Inst. Nacional del Carbon, Oviedo (Spain)


    The high temperature properties of a sintered zircon material has been tested up to 1200 C. A significant creep rate is observed, mainly attributed to the presence of glassy phase. The sub-critical crack growth measured in double torsion showed that above 1000 C, the crack velocity is reduced either by stress relaxation or by crack healing. The thermal shock analysis under a heat exchange coefficient of 600 W/m{sup 2}/K showed a regular decrease rather that a sudden fall off of properties. (orig.) 3 refs.

  9. Encapsulation of high temperature molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, James D.; Mathur, Anoop Kumar


    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  10. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.


    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  11. High point for CERN and high-temperature superconductors

    CERN Multimedia


    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  12. High temperature deformation of 6061 Al

    Energy Technology Data Exchange (ETDEWEB)

    Kyungtae Park; Lavernia, E.J.; Mohamed, F.A. (Univ. of California, Irvine (United States). Dept. of Mechanical and Aerospace Engineering)


    The creep behavior of powder metallurgy (PM) 6061 Al, which has been used as a metal matrix alloy in the development of discontinuous silicon carbide reinforced aluminum (SiC-Al) composites, has been studied over six orders of magnitude of strain rate. The experimental data show that the steady-state stage of the creep curve is of short duration; that the stress dependence of creep rate is high and variable; and that the temperature dependence of creep rate is much higher than that for self-diffusion in aluminum. The above creep characteristics are different from those documented for aluminum based solid-solution alloys but are similar to those reported for discontinuous SiC-Al composites and dispersion-strengthened (DS) alloys. Analysis of the experimental data shows that while the high stress dependence of creep rate in 6061 Al, like that in DS alloys, can be explained in terms of a threshold stress for creep, the strong temperature dependence of creep rate in the alloy is incompatible with the predictions of available threshold stress models and theoretical treatments proposed for DS alloys.

  13. Development of High Temperature Gas Sensor Technology (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun


    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  14. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.


    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  15. High-temperature ordered intermetallic alloys V

    Energy Technology Data Exchange (ETDEWEB)

    Baker, I. (ed.) (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering); Darolia, R. (ed.) (GE Aircraft Engines, Cincinnati, OH (United States)); Whittenberger, J.D. (ed.) (NASA, Cleveland, OH (United States). Lewis Research Center); Yoo, M.H. (ed.) (Oak Ridge National Lab., TN (United States))


    These proceedings represent the written record of the High-Temperature Ordered Intermetallic Alloys 5 Symposium which was held in conjunction with the 1992 Fall Materials Research Society meeting in Boston, Massachusetts. This symposium, which was the fifth in the series originated by C.C Koch, C.T. Liu and N.S. Stoloff in 1984, was very successful with 86 oral presentations over four days, and approximately 140 posters given during two lively evening sessions. Such a response, in view of the increasing number of conferences being held on intermetallics each year, reveals the continued high regard for this series of symposia. Individual papers have been processed separately for inclusion in the appropriate data bases.

  16. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I


    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  17. Cast Aluminum Alloy for High Temperature Applications (United States)

    Lee, Jonathan A.


    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  18. Apparatus for accurately measuring high temperatures (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  19. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson's disease: genetic and clinical homogeneity.

    Directory of Open Access Journals (Sweden)

    Relu Cocoş

    Full Text Available Wilson's disease is an autosomal recessive disorder caused by more than 500 mutations in ATP7B gene presenting considerably clinical manifestations heterogeneity even in patients with a particular mutation. Previous findings suggested a potential role of additional genetic modifiers and environment factors on phenotypic expression among the affected patients. We conducted clinical and genetic investigations to perform genotype-phenotype correlation in two large families living in a socio-culturally isolated community with the highest prevalence of Wilson's disease ever reported of 1 ∶ 1130. Sequencing of ATP7B gene in seven affected individuals and 43 family members identified a common compound heterozygous genotype, H1069Q/M769H-fs, in five symptomatic and two asymptomatic patients and detected the presence of two out of seven identified single nucleotide polymorphisms in all affected patients. Symptomatic patients had similar clinical phenotype and age at onset (18 ± 1 years showing dysarthria and dysphagia as common clinical features at the time of diagnosis. Moreover, all symptomatic patients presented Kayser-Fleischer rings and lack of dystonia accompanied by unfavourable clinical outcomes. Our findings add value for understanding of genotype-phenotype correlations in Wilson's disease based on a multifamily study in an isolated population with high extent of genetic and environmental homogeneity as opposed to majority of reports. We observed an equal influence of presumed other genetic modifiers and environmental factors on clinical presentation and age at onset of Wilson's disease in patients with a particular genotype. These data provide valuable inferences that could be applied for predicting clinical management in asymptomatic patients in such communities.

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)


    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  2. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation (United States)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  3. High-temperature enzymatic breakdown of cellulose. (United States)

    Wang, Hongliang; Squina, Fabio; Segato, Fernando; Mort, Andrew; Lee, David; Pappan, Kirk; Prade, Rolf


    Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.

  4. Ideological Homogeneity, School Leadership, and Political Intolerance in Secondary Education: A Study of Three High Schools during the 2008 Presidential Election (United States)

    Journell, Wayne


    This study reports findings from a qualitative case study of three high schools during the 2008 presidential election. The schools appeared to promote the political ideologies of their corresponding populations, and in the two predominately ideologically homogenous schools, political intolerance often appeared to affect teachers' instruction and…

  5. High temperature chemically resistant polymer concrete (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  6. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    reaction kinetics. At oxygen partial pressures below 10-6 bar at 700 C, the mass transport processes dominated the response time. The response time increased with decreasing oxygen partial pressure and inlet gas flow rate. A series of porous platinum electrodes were impregnated with the ionically...... conducting gadolinium-doped cerium oxide (CGO). The addition of CGO was found to decrease the polarisation resistance of the oxygen reaction by up to an order of magnitude compared with a single phase platinum electrode by increasing the effective triple phase boundary (TPB) length. It did not have any......Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...

  7. Filter unit for use at high temperatures (United States)

    Ciliberti, David F.; Lippert, Thomas E.


    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  8. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)


    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  9. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.


    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k......Da with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes...


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  11. [Obtaining ribosome crystals in homogenates]. (United States)

    Bersani, F; Longo, I; Fanti, M; Pettazzoni, P


    Chick embryos are homogenized in order to analyse ribosome crystallization. Ribosome crystallization has been induced by hypothermic treatment in chick embryos homogenate. Tetramers and crystals were produced by gradually inducing the temperature over a span of 10 h to 4 degrees C. It has been observed that the concentration of KCl in the buffer is a critical point. It is suggested that the nuclear fraction is engaged in ribosome crystallization.


    King, L.D.P.


    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  13. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu


    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  14. Fiber Optic Temperature Sensor Insert for High Temperature Environments (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)


    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  15. Study Progress of Physiological Responses in High Temperature Environment (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.


    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  16. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Vinayak N. Kabadi


    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  17. Rapid sulfur capture studies at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Lawson, W.F.; Maloney, D.J.; Shaw, D.W.


    Determine conditions that would reproduce optimum sulfur capture ( super-equilibrium'') behavior. No attempt was made to extract kinetic data for calcination or sulfur capture, as might be done in a comprehensive study of sorbent behavior. While some interesting anomalies are present in the calcination data and in the limited surface area data, no attempt was made to pursue those issues. Since little sulfur capture was observed at operating conditions where super-equilibrium'' might be expected to occur, tests were stopped when the wide range of parameters that were studied failed to produce significant sulfur capture via the super-equilibrium mechanism. Considerable space in this report is devoted to a description of the experiment, including details of the GTRC construction. This description is included because we have received requests for a detailed description of the GTRC itself, as well as the pressurized dry powder feed system. In addition, many questions about accurately sampling the sulfur species from a high-temperature, high-pressure reactor were raised during the course of this investigation. A full account of the development of the gas and particulate sampling train in thus provided. 8 refs., 17 figs., 2 tabs.

  18. High temperature superconductors in electromagnetic applications

    CERN Document Server

    Richens, P E


    powder-in-tube and dip-coated, have been made using a novel single loop tensometer that enables the insertion of a reasonably long length of conductor into the bore of a high-field magnet. The design, construction, and characterization of a High Temperature Superconducting (HTS) magnet is described. The design stage has involved the development of computer software for the calculation of the critical current of a solenoid wound from anisotropic HTS conductor. This calculation can be performed for a variety of problems including those involving magnetic materials such as iron by the incorporation of finite element electromagnetic analysis software. This has enabled the optimization of the magnet's performance. The HTS magnet is wound from 190 m of silver-matrix Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 1 sub 0 powder-in-tube tape conductor supplied by Intermagnetics General Corporation. The dimensions are 70 mm bore and 70 mm length, and it consists of 728 turns. Iron end-plates were utilized in order to reduc...

  19. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett


    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  20. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.


    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  1. Hot deformation behavior and microstructural evolution of as-homogenized Al–6Mg–0.4Mn–0.25Sc–0.1Zr alloy during compression at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongfeng, E-mail: [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Jiang, Feng, E-mail: [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zhou, Jiang [Aluminum Corporation of China, Haidian District, Beijing 100082 (China); Wei, Lili; Zhong, Muchun; Liu, Xingtao [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)


    Highlights: • Hot compression test were conducted under different deformation conditions. • Processing maps were established to optimize deformation parameters. • Mn-containing particles and Al{sub 3}(Sc,Zr) impede dislocation motion and retard recrystallization. • β-phases would precipitate along the grain boundary and induce instable deformation. - Abstract: Hot compression tests of homogenized Al–6Mg–0.4Mn–0.25Sc–0.1Zr alloy were carried out on Gleeble-3500 testing system in the temperatures range from 300 °C to 450 °C and strain rates range from 0.001 s{sup −1} to 10 s{sup −1}. To evaluate the hot workability of this alloy, the processing maps at strains of 0.3 and 0.5 were established on the basis of dynamic material model and Prasad’s instability criterion. The related microstructures were studied by optical microscopy, scanning electron microscopy and transmission electron microscopy. The results show that flow behavior and microstructural evolution of the alloy are significantly affected by deformation temperature and strain rate. The peak flow stress decreases with increasing deformation temperature, but increases with increasing strain rate. Stable deformation mainly occurs at high temperature with low strain rate due to the softening effect of dynamic recovery and dynamic recrystallization. The volume fraction of new dynamic recrystallized grains increases with increasing temperature and/or decreasing strain rate. These grains are prone to coarsen at elevated deformation temperatures. But thanks to the resistance of Mn-containing particles and nano-scale Al{sub 3}(Sc,Zr) dispersoids, the coarsening of grains are restrained efficiently. Flow instability mainly occurs at high strain rates because of shear bands, brittle β-phases and initiation of micro-cracks along grain boundaries. According to the processing map at strain of 0.5 and microstructural observation, the optimum processing parameters of the alloy are deformation

  2. Combustion of diesel spray injected into reacting atmosphere of propane-air homogeneous mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.-H.; Iida, N. [Keio Univ., Yokohama (Japan)


    The effects of each reaction stage (low-temperature reaction, high temperature reaction and post-combustion) of a homogeneous mixture (propane/air) on the ignition and combustion of a diesel spray were investigated using a rapid compression machine (RCM). The concentrations of formaldehyde (HCHO) and hydrogen peroxide (H{sub 2}O{sub 2}) were calculated in the low-temperature reaction using CHEMKIN. The correlation between soot formation and fuel injection timing was investigated in each reaction stage of the homogeneous mixture. When diesel fuel was injected during the low-temperature reactions, soot formation was more restrained than at any other reaction stage of the homogeneous mixture. (Author)

  3. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela


    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  4. Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1: Bubble dynamics


    Bouche, Emmanuella; Roig, Véronique; Risso, Frédéric; Billet, Anne-Marie


    The spatial distribution, the velocity statistics and the dispersion of the gas phase have been investigated experimentally in a homogeneous swarm of bubbles confined within a thin gap. In the considered flow regime, the bubbles rise on oscillatory paths while keeping a constant shape. They are followed by unstable wakes which are strongly attenuated due to wall friction. According to the direction that is considered, the physical mechanisms are totally different. In the vertical direction, t...

  5. Analytic Models of High-Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.


    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

  6. High Temperature Electrical Insulation Materials for Space Applications Project (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  7. High Temperature Fatigue Life Evaluation Using Small Specimen

    National Research Council Canada - National Science Library

    NOGAMI, Shuhei; HISAKA, Chiaki; FUJIWARA, Masaharu; WAKAI, Eichi; HASEGAWA, Akira


    For developing the high temperature fatigue life evaluation method using small specimen, the effect of specimen size and test environment on the high temperature fatigue life of the reduced activation...

  8. Laser Brazing of High Temperature Braze Alloy (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.


    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  9. Measuring Specific Heats at High Temperatures (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles


    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  10. Thermoelectric Powered High Temperature Wireless Sensing (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  11. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk. (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J


    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  12. High-temperature archeointensity measurements from Mesopotamia (United States)

    Gallet, Yves; Le Goff, Maxime


    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  13. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)


    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  14. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.


    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  15. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  16. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Samadhan Krushna Phuge


    Jun 20, 2017 ... temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis ..... Table 1. Effect of rearing water temperature on gonadal differentiation and sex ratio of Euphlyctis cyanophlyctis .... tures (28, 30 and 32°C) induced female to male sex reversal.

  17. Problem aspects of high temperature referral metrology (United States)

    Khodunkov, V. P.


    The main problematic aspects of the reproduction and transmission of a unit of temperature by a direct method are considered. The methodology and hardware for its implementation are considered. An estimate of the expected uncertainty in the measurement of the thermodynamic temperature is given.


    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi


    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  19. High performance internal reforming unit for high temperature fuel cells (United States)

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT


    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  20. Vortices in high-performance high-temperature superconductors (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E.; Kihlstrom, Karen J.; Crabtree, George W.


    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  1. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail:; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  2. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment (United States)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  3. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter


    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  4. Packaging Technology for SiC High Temperature Electronics (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.


    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  5. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim


    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  6. Extreme Environment High Temperature Communication Systems Project (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  7. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G


    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  8. High Temperature Acoustic Noise Reduction Materials Project (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....


    Directory of Open Access Journals (Sweden)

    A. N. Krutilin


    Full Text Available The results of investigations of physical-mechanical characteristics of cast iron slugs, received by semicontinuos way of casting, at temperatures from 850 up to 1100^ С are given. 

  10. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)


    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  11. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhi, E-mail: [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Senkov, Oleg N. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States); Parish, Chad M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, Chuan; Zhang, Fan [CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 (United States); Santodonato, Louis J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Gongyao [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Zhao, Guangfeng; Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Liaw, Peter K., E-mail: [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)


    The microstructure and phase composition of an AlCoCrFeNi high-entropy alloy (HEA) were studied in as-cast (AlCoCrFeNi-AC, AC represents as-cast) and homogenized (AlCoCrFeNi-HP, HP signifies hot isostatic pressed and homogenized) conditions. The AlCoCrFeNi-AC ally has a dendritric structure in the consisting primarily of a nano-lamellar mixture of A2 (disordered body-centered-cubic (BCC)) and B2 (ordered BCC) phases, formed by an eutectic reaction. The homogenization heat treatment, consisting of hot isostatic pressed for 1 h at 1100 °C, 207 MPa and annealing at 1150 °C for 50 h, resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma (σ) phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. The ultimate tensile strength was virtually unaffected by heat treatment, and was 396±4 MPa at 700 °C. However, homogenization produced a noticeable increase in ductility. The AlCoCrFeNi-AC alloy showed a tensile elongation of only 1.0%, while after the heat-treatment, the elongation of AlCoCrFeNi-HP was 11.7%. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents in the AlCoCrFeNi-AC and AlCoCrFeNi-HP. The reasons for the improvement of ductility after the heat treatment and the crack initiation subjected to tensile loading were discussed.

  12. Base metal catalyzed graphitization of cellulose : A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Hoekstra, Jacco; Beale, Andrew M.; Soulimani, Fouad; Versluijs-Helder, Marjan; Geus, John W.; Jenneskens, Leonardus W.


    Microcrystalline cellulose (MCC) spheres homogeneously loaded with the nitrate salts of copper, nickel, cobalt, or iron are excellent model systems to establish the temperature at which highly dispersed base metal nanoparticles are formed as well as to establish the temperature at which catalytic

  13. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.


    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  14. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  15. 46 CFR 56.60-5 - Steel (High temperature applications). (United States)


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2.A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon...

  16. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  17. Pargasite at high pressure and temperature (United States)

    Comboni, Davide; Lotti, Paolo; Gatta, G. Diego; Merlini, Marco; Liermann, Hanns-Peter; Frost, Daniel J.


    The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10-5 K-1 and α1 = 1.4(6)·10-9 K-2 [with α0(a) = 0.47(6)·10-5 K-1, α0(b) = 1.07(4)·10-5 K-1, and α0(c) = 0.97(7)·10-5 K-1]. The petrological implications for the experimental

  18. Transport Processes in High Temperature QCD Plasmas (United States)

    Hong, Juhee

    The transport properties of high temperature QCD plasmas can be described by kinetic theory based on the Boltzmann equation. At a leading-log approximation, the Boltzmann equation is reformulated as a Fokker-Planck equation. First, we compute the spectral densities of Tµν and Jµ by perturbing the system with weak gravitational and electromagnetic fields. The spectral densities exhibit a smooth transition from free-streaming quasi-particles to hydrodynamics. This transition is analyzed with hydrodynamics and diffusion equation up to second order. We determine all of the first and second order transport coefficients which characterize the linear response in the hydrodynamic regime. Second, we simulate the wake of a heavy quark moving through the plasmas. At long distances, the energy density and flux distributions show sound waves and a diffusion wake. The kinetic theory calculations based on the Boltzmann equation at weak coupling are compared to the strong coupling results given by the AdS/CFT correspondence. By using the hard-thermal-loop effective theory, we determine the photon emission rate at next-to-leading order (NLO), i.e., at order g2mD /T. There are three mechanisms which contribute to the leading-order photon emission: (2 ↔ 2) elastic scatterings, (1 ↔ 2) collinear bremsstrahlung, and (1 ↔ 1) quark-photon conversion due to soft fermion exchange. At NLO, these three mechanisms are not completely independent. When the transverse momentum between quark and photon becomes soft, the Compton scattering with a soft gluon reduces to wide-angle bremsstrahlung. Similarly, bremsstrahlung reduces to the quark-photon conversion process when the photon carries most of the incoming momentum. Therefore, the rates should be matched to determine the wide-angle NLO correction. Collinear bremsstrahlung can be accounted for by solving an integral equation which corresponds to summing ladder diagrams. With O(g) corrections in the collision kernel and the asymptotic

  19. Homogenization of CZ Si wafers by Tabula Rasa annealing

    Energy Technology Data Exchange (ETDEWEB)

    Meduna, M., E-mail: mjme@physics.muni.c [Department of Condensed Matter Physics, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic); Caha, O.; Kubena, J.; Kubena, A. [Department of Condensed Matter Physics, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic); Bursik, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic)


    The precipitation of interstitial oxygen in Czochralski grown silicon has been investigated by infrared absorption spectroscopy, chemical etching, transmission electron microscopy and X-ray diffraction after application of homogenization annealing process called Tabula Rasa. The influence of this homogenization step consisting in short time annealing at high temperature has been observed for various temperatures and times. The experimental results involving the interstitial oxygen decay in Si wafers and absorption spectra of SiO{sub x} precipitates during precipitation annealing at 1000 deg. C were compared with other techniques for various Tabula Rasa temperatures. The differences in oxygen precipitation, precipitate morphology and evolution of point defects in samples with and without Tabula Rasa applied is evident from all used experimental techniques. The results qualitatively correlate with prediction of homogenization annealing process based on classical nucleation theory.

  20. Magnesium Diecasting Alloys for High Temperature Applications (United States)

    Pekguleryuz, Mihriban O.; Kaya, A. Arslan

    New growth area for automotive use of magnesium is powertrain applications such as the transmission case and engine block. These applications see service conditions in the temperature range of 150-200C under 50-70 MPa of tensile and compressive loads. In addition, metallurgical stability, fatigue resistance, corrosion resistance and castability requirements need to be met. A decade of research and development has resulted in a number of creep- resistant magnesium alloys that are potential candidates for elevated-temperature automotive applications. These alloys are mostly based on rare-earth and alkaline earth element additions to magnesium. This paper gives an overview of the various magnesium alloy systems for use in elevated-temperature applications.

  1. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    temperatures and pressures. Aqueous potassium hydroxide immobilized electrolyte in porous SrTiO3 was used in those cells. Electrolysis cells with metal foam based gas diffusion electrodes and the immobilized electrolyte were successfully demonstrated at temperatures up to 250 °C and 40 bar. Different electro-catalysts...... were tested in order to reduce the oxygen and hydrogen overpotentials. Current densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without using expensive noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2...... against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1...


    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.


    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  3. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos. (United States)

    Sun, Bao-Jun; Li, Teng; Gao, Jing; Ma, Liang; Du, Wei-Guo


    Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development.

  4. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server



    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  5. Maintenance in Service of High Temperature Parts (United States)


    program activities. io4 6-1 DEFECTS AND THEIR EFFECT ON THE BEHAVIOUR OF GAS TIURBNE DISCS Robert H Jeal Head of Materials Engineering Rolls-Royce Limited...temperature sulphidatien and hot forrosal. m 5.• ACKNOWLEDGEMENT The author wishes to thank N. Swindells of the University of Livernool for his efforts in

  6. Micromechanics of high temperature hydrogen attack

    NARCIS (Netherlands)

    Schlögl, Sabine M.; Giessen, Erik van der


    Hydrogen attack is a material degradation process that occurs at elevated temperatures in hydrogen-rich environments, such as found in petro-chemical installations. Weldments in components such as reactor vessels are particularly susceptible to hydrogen attack. This paper discusses a multi-scale

  7. Improving the high performance concrete (HPC behaviour in high temperatures

    Directory of Open Access Journals (Sweden)

    Cattelan Antocheves De Lima, R.


    Full Text Available High performance concrete (HPC is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.

    El hormigón de alta resistencia (HAR es un material de gran interés para la comunidad científica y técnica, debido a las claras ventajas obtenidas en término de resistencia mecánica y durabilidad. A causa de estas características, el HAR, en sus diversas formas, en algunas aplicaciones está reemplazando gradualmente al hormigón de resistencia normal, especialmente en estructuras expuestas a ambientes severos. Sin embargo, la microestructura muy densa y la baja permeabilidad t

  8. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)


    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  9. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach. (United States)

    Levitt, Michael R; Barbour, Michael C; Rolland du Roscoat, Sabine; Geindreau, Christian; Chivukula, Venkat K; McGah, Patrick M; Nerva, John D; Morton, Ryan P; Kim, Louis J; Aliseda, Alberto


    Computational modeling of intracranial aneurysms provides insights into the influence of hemodynamics on aneurysm growth, rupture, and treatment outcome. Standard modeling of coiled aneurysms simplifies the complex geometry of the coil mass into a homogeneous porous medium that fills the aneurysmal sac. We compare hemodynamics of coiled aneurysms modeled from high-resolution imaging with those from the same aneurysms modeled following the standard technique, in an effort to characterize sources of error from the simplified model. Physical models of two unruptured aneurysms were created using three-dimensional printing. The models were treated with coil embolization using the same coils as those used in actual patient treatment and then scanned by synchrotron X-ray microtomography to obtain high-resolution imaging of the coil mass. Computational modeling of each aneurysm was performed using patient-specific boundary conditions. The coils were modeled using the simplified porous medium or by incorporating the X-ray imaged coil surface, and the differences in hemodynamic variables were assessed. X-ray microtomographic imaging of coils and incorporation into computational models were successful for both aneurysms. Porous medium calculations of coiled aneurysm hemodynamics overestimated intra-aneurysmal flow, underestimated oscillatory shear index and viscous dissipation, and over- or underpredicted wall shear stress (WSS) and WSS gradient compared with X-ray-based coiled computational fluid dynamics models. Computational modeling of coiled intracranial aneurysms using the porous medium approach may inaccurately estimate key hemodynamic variables compared with models incorporating high-resolution synchrotron X-ray microtomographic imaging of complex aneurysm coil geometry. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  10. Probing thermodynamic fluctuations in high temperature superconductors (United States)

    Vidal, Felix; Veira, J. A.; Maza, J.; Miguélez, F.; Morán, E.; Alario, M. A.


    We probe thermodynamic fluctuations in HTSC by measuring the excess electrical conductivity, Δσ, abovr T c in single-phase (within 4%) Ba 2LnCu 3O 7-δ compounds, with LnY, Ho and Sm. As expected, the measured relative effect, Δσ / σ (300 K), is much more important in HTSC than for low-temperature superconductors (at least one order of magnitude). In the reduced temperature region -5=-0.47 ± 0.06. This result confirms an universal critical behaviour of Δσ in HTSC, and the value of agrees with that predicted by the Aslamazov-Larkin (AL) theory for three-dimensional BCS superconductivity. However, A shows a normal conductivity dependence which is not accounted for by the AL theory.

  11. Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities (United States)

    Thomas, John C.; Van der Ven, Anton


    The crystal structures of many technologically important high-temperature phases are predicted to have lattice instabilities at low temperature, making their thermodynamic and mechanical properties inaccessible to standard first principles approaches that rely on the (quasi) harmonic approximation. Here, we use the recently developed anharmonic potential cluster expansion within Monte Carlo simulations to predict the effect of temperature and anisotropic stress on the elastic properties of ZrH2, a material that undergoes diffusionless transitions among cubic, tetragonal, and orthorhombic phases. Our analysis shows that the mechanical properties of high-temperature phases with low-temperature vibrational instabilities are very sensitive to temperature and stress state. These findings have important implications for materials characterization and multi-scale simulations and suggest opportunities for enhanced strain engineering of high-temperature phases exhibiting soft-mode instabilities.

  12. Double Bag VARTM for High Temperature Composites Project (United States)

    National Aeronautics and Space Administration — Cost and size are limiting factors in efforts to produce high strength, high stiffness, and high temperature composite parts. To address these issues, new processes...

  13. Confinement Studies in High Temperature Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Mclean, H S; Wood, R D; Casper, T A; Cohen, B I; Hooper, E B; LoDestro, L L; Pearlstein, L D; Romero-Talamas, C


    Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a completely self-organized toroidal plasma. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Addition of a new capacitor bank has produced 60% higher magnetic fields and almost tripled the pulse length to 11ms. For plasmas with T{sub e} > 300eV, it becomes feasible to use modest (1.8MW) neutral beam injection (NBI) heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX so that we can simulate the effect of adding NBI; initial results predict that such heating can raise the electron temperature and total plasma pressure in the core by a factor of two.

  14. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods


    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  15. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen


    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  16. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    We have presented a model of evaluating the pseudogap temperature for high temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions. The pseudogap temperature T ∗ is found to depend on dimension and is ...

  17. Predicting High Temperature Dislocation Physics in HCP Crystal Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Abigail [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carpenter, John S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report applies models and experiments to answer key questions about the way materials deform; specifics regarding phase field dislocations dynamics; as well as high temperature rolling experiments.

  18. Gallium Oxide Nanostructures for High Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)


    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  19. High temperature lithium cells with solid polymer electrolytes (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit


    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  20. The homogeneity testing of EtG in hair reference materials: a high-throughput procedure using GC-NCI-MS. (United States)

    Mönch, Bettina; Becker, Roland; Jung, Christian; Nehls, Irene


    The validation of a robust quantification procedure for EtG in hair using GC-NCI-MS is presented. Aqueous extraction is followed by complete lyophylization of the extract and derivatization with pentafluoropropionic anhydride (PFPA) under controlled temperature and duration. Clean-up of extracts was dispensable and standard single quadrupole MS displayed sufficient selectivity and sensitivity. The method displayed a wide linearity range and enabled LOD of 0.68 pg/mg, LOQ of 2.4 pg/mg, and precision below 8.12%. Since EtG was seen to display prolonged stability in the aqueous extracts and after derivatization with PFPA this straightforward procedure allows a routine throughput of large quantities of samples with little proneness to procedural scatter of results. The method was applied to demonstrate the homogeneity of two hair reference materials with mean EtG contents of 8.48 pg/mg and 22.0 pg/mg. Aside from the application in homogeneity studies of hair reference materials predominantly in the concentration range of 10-50 pg/mg the method was also designed for daily routine quantification of real-world sample with regard to drinking behavior assessment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)


    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  2. Spectroscopic diagnostics of high temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moos, W.


    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  3. High Temperature Processable Flexible Polymer Films (United States)

    Sundar, D. Shanmuga; Raja, A. Sivanantha; Sanjeeviraja, C.; Jeyakumar, D.

    Recent developments in the field of flexible electronics motivated the researchers to start working in verdict of new flexible substrate for replacing the existing rigid glass and flexible plastics. Flexible substrates offer significant rewards in terms of being able to fabricate flexible electronic devices that are robust, thinner, conformable, lighter and can be rolled away when needed. In this work, a new flexible and transparent substrate with the help of organic materials such as Polydimethylsiloxane (PDMS) and tetra ethoxy orthosilicate (TEOS) is synthesized. Transmittance of about 90-95% is acquired in the visible region (400-700nm) and the synthesized substrate shows better thermal characteristics and withstands temperature up to 200∘C without any significant degradation. Characteristics such as transmittance (T), absorption (A), reflectance (R), refractive index (n) and extinction coefficient (k) are also reported.

  4. High Temperature Superconductivity in Cuprates: a model

    CERN Document Server

    Silva, P R


    A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permitti...

  5. Study of High Temperature Insulation Materials

    Directory of Open Access Journals (Sweden)

    Vaclav Mentlik


    Full Text Available One of current objectives of the electro insulating technology is the development of the material for extreme conditions. There is a need to operate some devices in extreme temperatures, for example the propulsion of the nuclear fuel bars. In these cases there is necessary to provide not just insulating property, but also the thermal endurance with the required durability of the insulating materials. Critical is the determination of the limit stress for the irreversible structure modification with relation to material property changes. For this purpose there is necessary to conduct lot of test on chosen materials to determine the limits mentioned above. Content of this article is the definition of diagnostic mode, including the definition of the exposure factors, definitions of the diagnostic system for data acquisition and first result of examinations.

  6. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas


    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  7. High-Temperature Coatings Offer Energy Savings (United States)


    The U.S. X-Plane Program included the first-of-its-kind research in aerodynamics and astronautics with experimental vehicles, including the first aircraft to break the sound barrier; the first aircraft to fly in excess of 100,000, then 200,000, and then 300,000 feet; and the first aircraft to fly at three, four, five, and then six times the speed of sound. During the 1990s, NASA started developing a new thermal protection material to test on the X-33 and X-34 supersonic aircraft. The X-33 was intended to demonstrate the technologies needed for a new reusable launch vehicle and was projected to reach an altitude of approximately 50 miles and speeds of more than Mach 11. The X-34, a small, reusable technology demonstrator for a launch vehicle, was intended to reach an altitude of 250,000 feet and fly at speeds of Mach 8. As a result of its research and development efforts, NASA s Ames Research Center invented the Protective Ceramic Coating Material (PCCM). Applied to a surface, the thin, lightweight coating could protect the material underneath from extreme temperatures. The capability of the technology came from its emissivity, which radiated heat away from the surface it covered, thereby decreasing the amount of heat transferred to the underlying material. PCCM not only increased the capability of materials to withstand higher temperatures, it also exhibited impressive thermal shock, vibration, and acoustic performance. In addition, it proved to be resistant to abrasion and mechanical damage and was also environmentally safe, due to it being water-based and containing no solvents. Even though funding for the X-33 and X-34 ended in 2001, PCCM continued on a path of innovation.

  8. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael Swanson; Daniel Laudal


    . Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  9. Photochemistry at high temperatures - potential of ZnO as a high temperature photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, M.; Beaud, P.; Kamber, I. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Direct conversion of solar radiation into useful, storeable and transportable chemical products is the primary goal of solar chemistry. In this paper we discuss some fundamental aspects of photochemistry at elevated temperatures. We show that luminescence can serve as an indicator of the potential use of a system as a photoconverter. As an example we present experimental data on the chemical potential and on the lifetime of the excited states of ZnO. The low luminescence quantum yield together with a lifetime of about 200 ps indicate that an efficient photochemical conversion on ZnO is highly improbable. We believe this to be a general feature of chemical systems based on a semiconductor photocatalyst, in particular of photoreactions at a solid/gas interface. (author) 3 figs., 6 refs

  10. High Temperature Superconductor Resonator Detectors Project (United States)

    National Aeronautics and Space Administration — There is a well-established need for more sensitive detectors in the 10 - 200 um wavelength range with high detectivity, D*>1010 cm-Hz1/2/W to increase the...

  11. Dynamic mechanical response and a constitutive model of Fe-based high temperature alloy at high temperatures and strain rates. (United States)

    Su, Xiang; Wang, Gang; Li, Jianfeng; Rong, Yiming


    The effects of strain rate and temperature on the dynamic behavior of Fe-based high temperature alloy was studied. The strain rates were 0.001-12,000 s(-1), at temperatures ranging from room temperature to 800 °C. A phenomenological constitutive model (Power-Law constitutive model) was proposed considering adiabatic temperature rise and accurate material thermal physical properties. During which, the effects of the specific heat capacity on the adiabatic temperature rise was studied. The constitutive model was verified to be accurate by comparison between predicted and experimental results.

  12. SiC device development for high temperature sensor applications (United States)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.


    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  13. Dynamic high-temperature Kolsky tension bar techniques


    Song Bo; Nelson Kevin; Lipinski Ronald; Bignell John; Ulrich G.B.; George E.P.


    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was appl...

  14. Orange oil/water nanoemulsions prepared by high pressure homogenizer; Nanoemulsoes oleo de laranja/agua preparadas em homogeneizador de alta pressao

    Energy Technology Data Exchange (ETDEWEB)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano; Gonzalez, Gaspar [Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)


    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  15. Extruded Self-Lubricating Solid For High-Temperature Use (United States)

    Sliney, H. E.; Waters, W. J.; Soltis, R. F.; Bemis, K.


    "EX-212" denotes high-density extruded form of composite solid material self-lubricating over wide range of temperatures. Properties equal or exceed those of powder-metallurgy version of this material. Developed for use in advanced engines at high temperatures at which ordinary lubricants destroyed.

  16. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.


    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  17. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))


    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  18. InGaN High Temperature Photovoltaic Cells Project (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  19. Grain boundaries in high temperature superconductors

    NARCIS (Netherlands)

    Hilgenkamp, Johannes W.M.; Mannhart, J.


    Since the first days of high-Tc superconductivity, the materials science and the physics of grain boundaries in superconducting compounds have developed into fascinating fields of research. Unique electronic properties, different from those of the grain boundaries in conventional metallic

  20. Proteolytic activity of protease produced by Pseudomonas fluorescens IB 2312 in skimmed milk subject to the process of high pressure homogenization

    Directory of Open Access Journals (Sweden)

    Claudia Regina Gonçalves Pinho


    Full Text Available The presence of thermoresistant proteases produced by psychrotrophic microorganisms have been identified as a limiting factor of the UHT milk shelflife, causing undesirable changes in milk products. High pressure homogenization (HPH processing is a non-thermal method of food preservation, able to promotes the microbiological safety and inactivation of some enzymes. Thus, this work assessed the proteolytic activity of protease produced by Pseudomonas fluorescens in skim milk subjected to high pressure homogenization process. The milk samples were added by the protease enzymatic extract (10% v/v and subjected to pressures up to 300 MPa. The assays showed that pressures on the order of 300 MPa caused a 72.5% reduction in proteolytic activity. Therefore, the process at high pressures resulted in significant inactivation of this thermoresistent enzyme, which possibly favors the shelf-life extension of the UHT milk and also limits the yield and quality loss of cheeses due to undesirable sensory changes in flavor and texture caused by this enzyme.

  1. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program


    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  2. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse


    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  3. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)


    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  4. Analysis of the high-temperature particulate collection problem

    Energy Technology Data Exchange (ETDEWEB)

    Razgaitis, R.


    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  5. High Temperature Protonic Conductors by Melt Growth (United States)


    electrolyzers, solid state fuel cells, gas separation membranes, moisture sensors and high-density energy storage applications, among others (1-5...A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  6. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids. (United States)

    Serrazanetti, Diana I; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba


    The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml(-1)). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.

  7. Temperature and Voltage Offsets in High-ZT Thermoelectrics (United States)

    Levy, George S.


    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  8. High Temperature Corrosion on Biodust Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi

    The high content of alkali metals and chlorine in biomass gives rise to fouling/slagging and corrosion of heat exchange components, such as superheaters, in biomass fired power plants. Increasing the lifetime of these components, and in addition, preventing unwarranted plant shutdowns due...... to their failure, requires understanding of the complex corrosion mechanisms, as well as development of materials that are resistant to corrosion under biomass firing conditions, thereby motivating the current work. To understand the mechanisms of corrosion attack, comprehensive analysis of corrosion products...... was necessary. In the present work, two complementary methodologies based on analysis of cross sections and plan views were applied to achieve comprehensive characterization of corrosion products. The suitability of these methods for both laboratory scale and full scale corrosion investigations was demonstrated...

  9. High Temperature Superconductor Josephson Weak Links (United States)

    Hunt, B. D.; Barner, J. B.; Foote, M. C.; Vasquez, R. C.


    High T_c edge-geometry SNS microbridges have been fabricated using ion-damaged YBa_2Cu_3O_(7-x) (YBCO) and a nonsuperconducting phase of YBCO (N-YBCO) as normal metals. Optimization of the ion milling process used for YBCO edge formation and cleaning has resulted in ion-damage barrier devices which exhibit I-V characteristics consistent with the Resistively-Shunted-Junction (RSJ) model, with typical current densities (J_c) of approximately 5 x 10^6 A/cm^2 at 4.2 K. Characterization of N-YBCO films suggests that N-YBCO is the orthorhombic YBCO phase with oxygen disorder suppressing T_c...

  10. High skin temperature and hypohydration impair aerobic performance. (United States)

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W


    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  11. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida


    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  12. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing


    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  13. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)


    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  14. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures


    Ke-cheng He; Rong-xin Guo; Qian-min Ma; Feng Yan; Zhi-wei Lin; Yan-Lin Sun


    In order to improve the spalling resistance of lightweight aggregate concrete at high temperature, two types of modified materials were used to modify clay ceramsite lightweight aggregates by adopting the surface coating modification method. Spalling of the concrete specimens manufactured by using the modified aggregates was observed during a temperature elevation. Mass loss and residual axial compressive strength of the modified concrete specimens after exposure to elevated temperatures were...

  15. Test plans of the high temperature test operation at HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakagawa, Shigeaki; Takada, Eiji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others


    HTTR plans a high temperature test operation as the fifth step of the rise-to-power tests to achieve a reactor outlet coolant temperature of 950 degrees centigrade in the 2003 fiscal year. Since HTTR is the first HTGR in Japan which uses coated particle fuel as its fuel and helium gas as its coolant, it is necessary that the plan of the high temperature test operation is based on the previous rise-to-power tests with a thermal power of 30 MW and a reactor outlet coolant temperature at 850 degrees centigrade. During the high temperature test operation, reactor characteristics, reactor performances and reactor operations are confirmed for the safety and stability of operations. This report describes the evaluation result of the safety confirmations of the fuel, the control rods and the intermediate heat exchanger for the high temperature test operation. Also, problems which were identified during the previous operations are shown with their solution methods. Additionally, there is a discussion on the contents of the high temperature test operation. As a result of this study, it is shown that the HTTR can safely achieve a thermal power of 30 MW with the reactor outlet coolant temperature at 950 degrees centigrade. (author)

  16. Heat conductivity of high-temperature thermal insulators (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  17. Combustion and Plasma Synthesis of High-Temperature Materials (United States)

    Munir, Z. A.; Holt, J. B.


    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  18. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud


    A cell for pulse radiolytic measurements up to temperatures of 320°C and pressures of 14 MPa is constructed. The activation energy of the reaction OH + Cu2+ is determined to 13.3 kJ × mol−1 (3.2 kcal × mol−1). A preliminary study of the reaction e−aq + e−aq yields an activation energy of 22 k...

  19. Physical characteristics of the coastal waters between Navapur and Umbharat, West coast of India. Part 2. Vertical homogeneity of temperature and salinity

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Vertical distribution of temperature and salinity at five stations in the coastal waters off Navapur-Umbharat (Maharashtra-Gujarat coast, India) was studied over different seasons during 1978. The results showed that inspite of large tidal...

  20. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail:


    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  1. Proteomics of Rice Grain under High Temperature Stress

    Directory of Open Access Journals (Sweden)

    Toshiaki eMitsui


    Full Text Available Recent proteomic analyses revealed dynamic changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature stress in rice ripening period causes damaged (chalky grains which have loosely packed round shape starch granules. The high temperature stress response on protein expression is complicated, and the molecular mechanism of the chalking of grain is obscure yet. Here, the current state on the proteomics research of rice grain grown under high temperature stress is briefly overviewed.

  2. Processing of extraterrestrial materials by high temperature vacuum vaporization (United States)

    Grimley, R. T.; Lipschutz, M. E.


    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  3. Solar Power for Near Sun, High-Temperature Missions (United States)

    Landis, Geoffrey A.


    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  4. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar


    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  5. [Experimental determination of radiation scattering and absorption coefficients in a homogeneous layer of highly-dispersive biological medium]. (United States)

    Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A


    A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.

  6. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan


    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  7. genetic analysis for high temperature tolerance in bread wheat ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    selection (Reynolds et al., 1994). A number of high temperature stress-related traits have received considerable attention, in particular membrane thermostability (Saadalla et al., 1990), canopy temperature depression (Blum et al., 1982), proline content and chlorophyll content. Information on the genetic control of ...

  8. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  9. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    DOI: 10.1007/s12043-015-1088-3; ePublication: 30 September 2015. Abstract. We have presented a model of evaluating the pseudogap temperature for high- temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions.

  10. Influence of temperature on denitrification of an industrial high ...

    African Journals Online (AJOL)

    The temperature effect on denitrification rate of a two-sludge system has been studied. An industrial high-strength wastewater and an industrial by-product containing mainly methanol, as external carbon source, were used in this study. The maximum denitrification rate (MDR) was determined at six different temperatures: 6, ...

  11. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz


    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed...

  12. Adaptation of microorganisms and their transport systems to high temperatures

    NARCIS (Netherlands)

    Tolner, B; Poolman, B.; Konings, W.N


    Growth of Bacteria and Archaea has been observed at temperatures up to 95 and 110 degrees C, respectively. These thermophiles are adapted to environments of high temperature by changes in the membrane lipid composition, higher thermostabilities of the (membrane) proteins, higher turnover rates of

  13. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography. (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi


    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Sanchez Sanchez, Juan Jose; Barbaro, Anna


    BACKGROUND: Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached...... of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza...... and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean...

  15. Miniature High Stability High Temperature Space Rated Blackbody Radiance Source (United States)

    Jones, J. A.; Beswick, A. G.


    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment (HALOE) on the NASA Upper Atmospheric Research Satellite program (UARS). Since a radiance source meeting the requirements of this experiment was unavailable in the commercial market, a development effort was undertaken by the HALOE Project. The blackbody radiance source operates in vacuum at 1300 K + 0.5 K over any 15-minute interval, uses less than 7.5 watts of power, maintains a 49°C outer case temperature, and fits within the 2.5 x 2.5 x 3.0 inch envelope allocated inside the HALOE instrument. Also, the unit operates in air, during ground testing of the HALOE instrument, where it uses 17 watts of power with an outer case temperature of 66°C. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail in this paper.

  16. High-temperature transport in the Hubbard Model (United States)

    Shastry, B. Sriram; Perepelitsky, Edward; Galatas, Andrew; Khatami, Ehsan; Mravlje, Jernej; Georges, Antoine

    We examine the general behavior of the frequency and momentum dependent single-particle scattering rate and the transport coefficients, of many-body systems in the high-temperature limit. We find that the single-particle scattering rate always saturates in temperature, while the transport coefficients always decay like 1/T, where T is the temperature. A consequence of this is a resistivity which is ubiquitously linear in T at high temperatures. For the Hubbard model, by using the high-temperature series, we are able to calculate the first few moments of the single particle scattering rate Σ (k --> , ω) and the conductivity σ (k --> , ω) in the high-temperature regime in d spatial dimensions. Further in the case of d --> ∞ , we are able to calculate a large number of moments using symbolic computation. We make a direct comparison between these moments and those obtained through Dynamical Mean Field Theory (DMFT). Finally, we use the moments to reconstruct the ω-dependent optical conductivity σ (ω) =limk-->0 σ (k --> , ω) in the high-temperature regime. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.

  17. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.


    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  18. Properties of thin films for high temperature flow sensors (United States)

    Albin, Sacharia


    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.


    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Spross


    The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

  20. A new heating stage for high Temperature/low fO2 conditions (United States)

    Tissandier, L.; Florentin, L.; Lequin, D.; Baillot, P.; Faure, F.


    Understanding the processes involved in the formation of intracrystalline inclusions can be valuable for both geological studies and industrial production. In view of this, we developed a new heating stage that can operate in extreme conditions. The use of tungsten as the heating material allows temperatures of over 2000 °C to be reached and also requires that experiments are run under reducing atmospheres. Small samples of metal are needed to calibrate the temperature for each experiment and the fO2 is achieved by a flow of mixed gases (CO, Ar, He). The first experiments run on this device highlight the good agreement between the different ways of estimating the temperature (by the amount of power delivered, the use of a thermocouple or by chemical composition), and a precision of ±20 °C is obtained for temperature determinations. As well as the homogenization of magmatic inclusions in ultramafic rocks, processes such as whisker crystal formation or transcrystalline migration of inclusions can be investigated using the new stage thanks to its very high maximum temperature and to the thermal gradients observed close to the heating wires. This new device looks to be a very promising tool that could easily be adapted for a range of studies by changing the nature and shape of the heating filaments.