WorldWideScience

Sample records for high temperature fretting

  1. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  2. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  3. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  4. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Science.gov (United States)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  5. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  6. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  7. Steam generator fretting-wear damage: A summary of recent findings

    International Nuclear Information System (INIS)

    Guerout, F.M.; Fisher, N.J.

    1999-01-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time

  8. Aspects of fretting wear of sprayed cermet coatings

    International Nuclear Information System (INIS)

    Chivers, T.C.

    1985-01-01

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (600 0 C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  9. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Directory of Open Access Journals (Sweden)

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura

    2013-01-01

    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  10. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  11. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    Science.gov (United States)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  12. Characteristic of fretting damage in metal material

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Zhi, F.

    1988-10-01

    The fretting fatigue experiment of LC4 high strength aluminum alloy is described. An SEM examination of the fractology and morphology of fretting damage is carried out as well as an EDAX analysis of the chemical composition of fretting particles. The results show that many loose oxide particles were produced and accumulated in the fretting damage region. 10 references.

  13. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  14. Fuel-element vibration and bearing pad to pressure tube fretting

    International Nuclear Information System (INIS)

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  15. Fretting wear damage of steam generator tubes and its prediction modeling

    International Nuclear Information System (INIS)

    Che Honglong; Lei Mingkai

    2013-01-01

    The steam generator is the key equipment used for the energy transition in nuclear power plant. Since the high-temperature and high-pressure fluid flows with high speed, the steam generator tubes will be excited and vibrate, leading to the tremendous fretting wear problem on the tubes, sometimes even leading to tube cracking. This paper introduces typical fretting wear cases, the result of corresponding simulation wear experiment and damage mechanism which combining mechanical wear and erosion-corrosion. Work rate model could give a reasonable life prediction about the steam generator tube, and this predictive model has been used in nuclear power plant safety assessment. (authors)

  16. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  17. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  18. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  19. Mechanisms of fretting-fatigue of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Antoniou, R A; Radtke, T C [Defence Sci. and Technol. Organ., Melbourne, Vic. (Australia). Aeronautical and Maritime Res. Lab.

    1997-09-30

    The effect of continuous fretting in air at 20 C on fatigue performance has been studied for Ti-17 and Ti-6Al-4V, high strength titanium alloys used for gas-turbine fan and compressor disks and blades, respectively. The effect of fretting was to reduce the fatigue stress limit from 700 MPa for plain fatigue to 200 MPa for fretting-fatigue. A number of models, supported by metallographic and fractographic evidence, are proposed which explain (i) how the cyclic loading of individual asperities results in crack initiation; (ii) the formation of multiple cracks; (iii) the existence of non-propagating cracks; and (iv) how fretting influences crack propagation once fatigue cracks have formed. (orig.) 46 refs.

  20. The Leakage determination on corrosion fretting machine

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Hafid, Abdul; Febrianto; Prasetio, Joko; Abtokhi; Sumarno, Edy; Handoyo, Ismu; Hidayati, Nur Rahmah; Histori

    1998-01-01

    Fretting machine is an experimental loop to learn fretting corrosion phenomena wich is caused by loading and vibration. On the steam generator, one of the corrosion process that's occurred, it can be caused by vibration between tubes and bending material. Because of high flow rate inside the tube, the high frequency vibration will appeared so it can make the corrosion on bending material more faster. This process can be simulate by fretting machine. This machine has already damage because of leakage. So it will be repaired by dismantling, radiography testing and redrawing. from the result of radiography, the leakage is caused by cracking on bellows seals of the dynamic main support

  1. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.

    Science.gov (United States)

    Murakoshi, Hideji; Lee, Seok-Jin; Yasuda, Ryohei

    2008-08-01

    Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their "darkness," and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.

  2. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  3. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  4. The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811 Titanium Alloy.

    Science.gov (United States)

    Zhang, Xiaohua; Liu, Daoxin; Li, Xiaoying; Dong, Hanshan; Xi, Yuntao

    2017-05-26

    To improve the fretting damage (fretting wear and fretting fatigue) resistance of Ti-811 titanium alloy, three Cu/Ni multilayer films with the same modulation period thickness (200 nm) and different modulation ratios (3:1, 1:1, 1:3) were deposited on the surface of the alloy via ion-assisted magnetron sputtering deposition (IAD). The bonding strength, micro-hardness, and toughness of the films were evaluated, and the effect of the modulation ratio on the room-temperature fretting wear (FW) and fretting fatigue (FF) resistance of the alloy was determined. The results indicated that the IAD technique can be successfully used to prepare Cu/Ni multilayer films, with high bonding strength, low-friction, and good toughness, which yield improved room-temperature FF and FW resistance of the alloy. For the same modulation period (200 nm), the micro-hardness, friction, and FW resistance of the coated alloy increased, decreased, and improved, respectively, with increasing modulation ratio of the Ni-to-Cu layer thickness. However, the FF resistance of the coated alloy increased non-monotonically with the increasing modulation ratio. Among the three Cu/Ni multilayer films, those with a modulation ratio of 1:1 can confer the highest FF resistance to the Ti-811 alloy, owing mainly to their unique combination of good toughness, high strength, and low-friction.

  5. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Directory of Open Access Journals (Sweden)

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  6. Understanding and modeling Förster-type resonance energy transfer (FRET) introduction to FRET

    CERN Document Server

    Govorov, Alexander; Demir, Hilmi Volkan

    2016-01-01

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  7. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  8. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2015-12-01

    Full Text Available Fretting is now fully identified as a small amplitude oscilatory motion which induces a harmonic tangential force between two surfaces in contact.It is related to three main loadings, i.e. fretting-wear, fretting-fatigue and fretting corrosion.Fretting regimes were first mapped by Vingsbo. In a similar way, three fretting regimes will be considered: stick regime,slip regime and mixed regime. The mixed regime was made up of initial gross slip followed by partial slip condition after a few hundred cycles. Obviously the partial slip transition develops the highest stress levels which can induce fatigue crack nucleation depending on the fatigue properties of the two contacting first bodies. Therefore prediction of the frontier between partial slip and gross slip is required.

  9. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  10. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  11. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  12. Intercalating dye as an acceptor in quantum-dot-mediated FRET

    International Nuclear Information System (INIS)

    Lim, Teck Chuan; Bailey, Vasudev J; Wang, T-H; Ho, Y-P

    2008-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery

  13. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.

  14. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chang-bin, E-mail: tcbtop@126.com [School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055 (China); Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Liu, Dao-xin, E-mail: liudaox@nwpu.edu.cn [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Tang, Bin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Zhang, Xiao-hua [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Qin, Lin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Liu, Cheng-song [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-12-30

    Highlights: • Plasma molybdenizing increases FW resistance of Ti6Al4V, but reduces its FF life. • Shot-peened plasmamolybdenizing surface enhances FW and FF resistance of Ti6Al4V. • Combined treatment yields low surface-roughness & high hardness gradient distribution. • Combined treatment yields beneficial residual compressive stress & good toughness. • Anti-wear & -fatigue performance improvements for surface engineering applications. - Abstract: Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo–Ti solid–solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  15. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Science.gov (United States)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  16. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  17. Fretting wear behaviour of TiC/Ti(C,N)/TiN multi-layer coatings at elevated temperature in gross slip regime

    International Nuclear Information System (INIS)

    Liu Hanwei; Huang Kunpeng; Zhu Minhao; Zhou Zhongrong

    2005-01-01

    Tic/Ti(C,N)/TiN multi-layer coatings are prepared on the 1Cr13 stainless steel substrate by the technique of Chemical Vapour Deposition, and the fretting wear behaviour of 1Cr13 stainless steel and TiC/Ti(C,N)/TiN coatings are investigated and studied controversially from 25 degree C to 400 degree C in the gross slip regime. It shows that the temperature has great influence on the fretting wear in the gross slip regime for the 1Cr13 stainless steel but little for Ti/C/Ti(C,N)/TiN multi-layer coatings. With the temperature increasing, the friction coefficient and the wear volume of the 1Cr13 alloy decreases and the wear volume of TiC/Ti(C, N)/TiN multi-layer coatings is invariant. TiC/Ti(C,N)/TiN multi-layer coatings have better wear-resistant capability than the 1Cr13 stainless steel, but the wear volume of the substrate increases greatly because of the grain-abrasion resulted from hard debris when TiC/Ti(C,N)/TiN multi-layer coatings are ground off. (authors)

  18. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair

    International Nuclear Information System (INIS)

    Hsu, Y.-Y.; Liu, Y.-N.; Wang Wenyen; Kao, Fu-Jen; Kung, S.-H.

    2007-01-01

    An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP 2 )-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2A pro ) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2A pro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research

  19. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots

    International Nuclear Information System (INIS)

    Zekavati, Roya; Bayat, Mansour; Safi, Shahabeddin; Hashemi, Seyed Jamal; Rahmani-Cherati, Tavoos; Tabatabaei, Meisam; Mohsenifar, Afshin

    2013-01-01

    We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immuno reaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL −1 . The limit of detection is 2 × 10 −11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps. (author)

  20. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  1. Fretting wear characteristic tests of X2-GEN midgrid for SMART under a FIV rod trace

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Lee, Kang Hee; Kim, Jae Yong; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The KEPCO Nuclear Fuel Co. requested the fretting wear characteristic tests of a X2-GEN midgrid under a FIV rod trace at room temperature air. The following results were obtained for the fretting wear test. {center_dot} Fretting wear tests under a FIV rod trace Based on the result of the fretting wear tests of the X2-GEN and 17ACE7 1x1 mid-grid under a FIV rod trace, X2-GEN mid-grid showed a slightly severe wear volume rather than 17ACE7 spring. But, maximum wear depth shows an opposite behavior. This is due to spring shape effect. The fretting wear mechanisms at each mid-grid were influenced by each spring shape, that are depended on the different impacting behavior under a FIV rod motion. Up to 5x105 cycles, wear characteristics of each mid-grid shows a relatively similar wear rate. Consequently, it is necessary to further study for examining exact fretting wear behavior under a FIV rod tra

  2. 48-spot single-molecule FRET setup with periodic acceptor excitation

    Science.gov (United States)

    Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier

    2018-03-01

    Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.

  3. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  4. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    Science.gov (United States)

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  6. Development of a Fluorescence Resonance Energy Transfer (FRET-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    Directory of Open Access Journals (Sweden)

    Noremylia Mohd Bakhori

    2013-12-01

    Full Text Available An optical DNA biosensor based on fluorescence resonance energy transfer (FRET utilizing synthesized quantum dot (QD has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  7. Experimental facility design for study of fretting in steam generator tubes

    International Nuclear Information System (INIS)

    Balbiani, J.P.; Bergant, M.; Yawny, A.

    2012-01-01

    The design of an experimental facility for fretting wear testing of steam generator tubes under pressurized water up to 340 o C, is presented. The main component of the device consists in an autoclave which permits to recreate steam generator operating conditions. CAD CATIA V5R18, CAE ABAQUS and ASME Sec. VII Div. 1 (Rules for Construction of Pressure Vessels) were used along the design process. The design of the autoclave included the pressure vessel itself and the necessary flanges and nozzles. In addition, an axial dynamic sealing system was designed to allow for actuation from outside the pressure boundary. Complementary, typical tube - support contact conditions were analyzed and the principal variables affecting their mutual interaction determined. In addition, a simple device which allows performing fretting wear testing on steam generator tubes in air at room temperature was fabricated and the feasibility of a quantitative assessment of different aspects related with the fretting induced damage was explored. Characterization techniques available at Centro Atomico Bariloche, like light microscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and surface damage analysis by optic profilometry were shown to be appropriate for this aim. The designed facility will allow evaluating fretting damage of tubes - support combinations that might be used on the steam generator of the prototype reactor CAREM-25. It is also expected it could be applied to characterize fretting severity in other applications (nuclear fuel elements) (author)

  8. Inferring properties of disordered chains from FRET transfer efficiencies

    Science.gov (United States)

    Zheng, Wenwei; Zerze, Gül H.; Borgia, Alessandro; Mittal, Jeetain; Schuler, Benjamin; Best, Robert B.

    2018-03-01

    Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.

  9. Experimental fretting-wear studies of steam generator materials

    International Nuclear Information System (INIS)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  10. A Study on Corrosion and Fretting Wear Resistance of Alloy 690 Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Min, Su Jung; Kim, Myeong Su; Kim, Kyu Tae [Dongguk Univ., Gyeongju (Korea, Republic of)

    2013-10-15

    In this article, the effects of such failures have on the materials of alloy 690 are assessed. The corroded volume variation and mass decreased continuously with time. However, the oxide volume changes in an irregular pattern since the oxide formed on the alloy 690 metal may be detached due to the flake formation. The amount of the fretting wear increased with time. It can be seen that the wear rate increased with time and reduced at the later time. The test results show that the ductility decreased as corrosion increases. Alloy 690 is broadly used as a material of nuclear power plant's steam generator tubes because of its excellent mechanical strength, corrosion properties, wear properties and stability at a high temperature. However, the tubes for nuclear power plant's steam generators become a major threat for lifetime management and efficient operation of nuclear power plant due to various corrosion and fretting wear failures caused by flow-induced vibration (FIV) that occurs between tubes.

  11. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  12. A new trend to determine biochemical parameters by quantitative FRET assays.

    Science.gov (United States)

    Liao, Jia-yu; Song, Yang; Liu, Yan

    2015-12-01

    Förster resonance energy transfer (FRET) has been widely used in biological and biomedical research because it can determine molecule or particle interactions within a range of 1-10 nm. The sensitivity and efficiency of FRET strongly depend on the distance between the FRET donor and acceptor. Historically, FRET assays have been used to quantitatively deduce molecular distances. However, another major potential application of the FRET assay has not been fully exploited, that is, the use of FRET signals to quantitatively describe molecular interactive events. In this review, we discuss the use of quantitative FRET assays for the determination of biochemical parameters, such as the protein interaction dissociation constant (K(d)), enzymatic velocity (k(cat)) and K(m). We also describe fluorescent microscopy-based quantitative FRET assays for protein interaction affinity determination in cells as well as fluorimeter-based quantitative FRET assays for protein interaction and enzymatic parameter determination in solution.

  13. Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET

    Science.gov (United States)

    Hammann, Eva; Zappe, Andrea; Keis, Stefanie; Ernst, Stefan; Matthies, Doreen; Meier, Thomas; Cook, Gregory M.; Börsch, Michael

    2012-02-01

    Thermophilic enzymes operate at high temperatures but show reduced activities at room temperature. They are in general more stable during preparation and, accordingly, are considered to be more rigid in structure. Crystallization is often easier compared to proteins from bacteria growing at ambient temperatures, especially for membrane proteins. The ATP-producing enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We applied a single-molecule Förster resonance energy transfer (FRET) approach using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor the expected 13-stepped rotary Fo motor at work. New FRET transition histograms were developed to identify the smaller step sizes compared to the 10-stepped Fo motor of the Escherichia coli enzyme. Dwell time analysis revealed the temperature and the LDAO dependence of the Fo motor activity on the single molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating a high flexibility in the membrane part of this thermophilic enzyme.

  14. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Ganguly, Aniruddha; Karmakar, Saswati; Guchhait, Nikhil

    2013-01-01

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K SV ) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant

  15. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar, E-mail: bijan.paul.chem.cu@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Ganguly, Aniruddha [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Karmakar, Saswati [Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-11-15

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K{sub SV}) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant.

  16. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  17. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Science.gov (United States)

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  18. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    Science.gov (United States)

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  19. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  20. QD-Based FRET Probes at a Glance

    Directory of Open Access Journals (Sweden)

    Armen Shamirian

    2015-06-01

    Full Text Available The unique optoelectronic properties of quantum dots (QDs give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.

  1. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  2. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bing Cai; Jin-Fang Peng; Hao Qian; Li-Chen Tang; Min-Hao Zhu

    2017-01-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration,and it will take potential hazards to the service of the equipment.However,the present study focuses on the tangential fretting wear of alloy 690 tubes.Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent.Therefore,impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated.Deionized water is used to simulate the flow environment of the equipment,and the dry environment is used for comparison.Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear.Characterization results indicate that cracks occur at high impact load in both water and dry equipment;however,the water as a medium can significantly delay the cracking time.The crack propagation behavior shows a jagged shape in the water,but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process.The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation.The effect of medium(water) on fretting wear is revealed,which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  3. Ratiometric FRET-based detection of DNA and micro-RNA in solution

    International Nuclear Information System (INIS)

    Matveeva, Evgenia G.; Gryczynski, Zygmunt; Stewart, Donald R.; Gryczynski, Ignacy

    2009-01-01

    A ratiometric method for detecting DNA oligomers in bulk solution based on Foerster resonance energy transfer (FRET) is described. The two fluorescence signals (green and red), originating from Cy3 (donor, green) and Cy5 (acceptor, red) labels, are simultaneously detected from the pre-hybridized Cy3oligomerY:Cy5oligomerX system. The ratio of red to green intensities is sensitive to the presence of the single-stranded complimentary oligomer, which replaces single-stranded Cy3oligomerY in the donor:acceptor complex and perturbs the FRET. The detection scheme is generally applicable to the detection of DNA and RNA, and particularly micro-RNA. The proposed method is applicable to various double-stranded various lengths targets (manipulation of the sample preparation conditions, such as temperature, incubation time, denaturizing agent, may be needed).

  4. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    Science.gov (United States)

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  5. Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B

    International Nuclear Information System (INIS)

    Saha, Jaba; Dey, Dibyendu; Roy, Arpan Datta; Bhattacharjee, D.; Hussain, Syed Arshad

    2016-01-01

    Fluorescence Resonance Energy Transfer (FRET) system using three dyes has been demonstrated. It has been observed that multi step energy transfer occurred from Pyrene to Rhodamine B via Acriflavine. Here Acriflavine acts as an antenna to receive energy from Pyrene and transfer the same to Rhodamine B. This multi step FRET system is advantageous compared to the conventional FRET as this can be used to study molecular level interaction beyond conventional FRET distance (1–10 nm) as well as studying multi-branched macromolecules. The introduction of clay enhances the FRET efficiencies among the dye pair, which is an advantage to make the multi step system more useful. Similar approach can be used for increasing FRET efficiencies by using other dyes. - Highlights: • Multi-step FRET occurred from Pyrene (Py) to Rhodamine B (RhB) via Acriflavine (Acf). • Acf acts as an antenna to receive energy from Py and to transfer energy to RhB. • Multi-step FRET can be used to study molecular level interaction beyond 1–10 nm. • Incorporation of nanoclay laponite enhances the energy transfer efficiency.

  6. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    Science.gov (United States)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  7. Understanding and modeling Förster-type resonance energy transfer (FRET)

    CERN Document Server

    Hernández Martínez, Pedro Ludwig; Demir, Hilmi Volkan

    2017-01-01

    This Brief presents a complete study of the generalized theory of Förster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate’s distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.

  8. CONSIDERATIONS REGARDING THE FRETTING PHENOMENON USING LEAF SPRINGS

    Directory of Open Access Journals (Sweden)

    Stefan GHIMIȘI

    2015-05-01

    Full Text Available The fretting phenomenon represents particulary and complex form of wear who is; generaly, and/or weary of fretting who is produced on the load contact in a relative oscialatory movement lay small amplitude.A simultaneoustly applied tangential force and normal into contact appears a adhesion force

  9. Prediction of pressure tube fretting-wear damage due to fuel vibration

    International Nuclear Information System (INIS)

    Yetisir, M.; Fisher, N.J.

    1997-01-01

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington Nuclear Generating Station (NGS) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGSs. (orig.)

  10. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  11. Parallel multispot smFRET analysis using an 8-pixel SPAD array

    Science.gov (United States)

    Ingargiola, A.; Colyer, R. A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X.

    2012-02-01

    Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.

  12. Advanced KSNP fuel, plus7 : grid-to-rod fretting wear resistance of the plus7 spacer grids

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Yong Hwan; Jang, Young Ki; Choi, Joon Hyung

    2003-01-01

    Vibration-induced grid-to-rod fretting wear initiates at a certain critical gap correlated with a critical work rate. A critical gap between grid and rod forms due to in-reactor performance of fuel, thermal relaxation of grid spring and irradiation growth of grid strap, etc. A critical work rate may be generated by three vibration mechanisms proposed in this paper. Three vibration mechanisms have been derived with various fretting wear experience in commercial reactors as well as various out-of-pile hydraulic test results. The first active vibration mechanism is high turbulence-induced excessive fuel rod vibration with the combination of excessive grid-to-rod gap. The second active vibration mechanism is self-excited fuel assembly vibration in a low frequency range caused by hydraulically unbalanced mixing vanes of the spacer grid assembly. The third active vibration mechanism is self-excited spacer grid strap vibration in quite a high frequency range caused by some spacer grid designs. In this study, each vibration mechanism on the grid-to-rod fretting wear damage is discussed. On the other hand, the effects of various grid designs on the fretting wear damage in the commercial reactors are predicted using the long-term fretting wear test results. It is found that the larger grid-to-rod initial contact area generates the less fretting wear damage. Consequently the conformal spring of PLUS7 is superior to typical convex shaped spring with regard to fretting wear resistance since the former generates relatively larger contact area than the latter

  13. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  14. FRET-based modified graphene quantum dots for direct trypsin quantification in urine

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Chung-Yan; Li, Qinghua [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Zhang, Jiali; Li, Zhongping [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong, Chuan [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Lee, Albert Wai-Ming; Chan, Wing-Hong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Li, Hung-Wing, E-mail: hwli@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-04-21

    A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening. - Highlights: • A FRET-based biosensor was developed for direct quantification of trypsin. • Fast and sensitive screening of pancreatic disease was facilitated. • The direct quantification of trypsin in urine samples was demonstrated.

  15. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    Science.gov (United States)

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  16. Prediction of pressure tube fretting-wear damage due to fuel vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M; Fisher, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington NGS (nuclear generating station) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGS`s (nuclear generating stations). (author). 12 refs., 2 tabs., 11 figs.

  17. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  18. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    Science.gov (United States)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a

  19. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  20. Application and analysis of palladium vapor deposited on stainless steel for high temperature electrical contacts

    International Nuclear Information System (INIS)

    Jodeh, S.

    2008-01-01

    Using electron beam evaporation. Pd thin films of 300 nm thickness have been deposited on 301 stainless steel for high temperature electrical contact studies. The structure and compost ion of the helms were studied in detail x-ray diffraction (XRD), scanning electron microscopy (Sem), electron probe microanalysis (EPMA), and x-ray photoelectron spectroscopy (XP S) with sputter depth profiling. The contact properties such as contact resistance, fretting wear resistance, and thermal stability have been measured.The contact resistance rem ins low after heat-aging in air for 168 h at 150 and 200 deg., but increases significantly after heat-aging at 340 deg.. This increase in contact resistance is caused by the formation of about a 27 nm (1 μin.) thick Pdo. In contrast, the thickness of the Pdo is too thin to cause measurable contact resistance increases after heat-aging at 150 and 200 deg.. The fretting wear resistance of Pd coated 301 stainless steel is better than that of electroplated Sn of ser veal thousand nm thickness. Thus, vapor deposited Pd coating on 301 stainless steel may replace electroplated Sn for electrical contact application at elevated temperatures.

  1. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  2. Development of device for grid spring fatigue and a cell-based fuel rod fretting wear tests

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-05-01

    As an activity of experimental research on the cause and the remedy of LWR fuel fretting failure, developed is test equipment for fatigue of grid spring and cell-based fuel rod fretting wear test. The equipment enables to perform the fretting wear test in the case of gap existence between spring and cladding, which has not been possible by the previously developed one (KAERI/TR-1570/2000). It can also provide fatigue test capability with the frequency of more than 10 Hz. Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system as was similarly used for the previous equipment. In fretting wear test, up to 2 span-length of a fuel cladding tube can be accommodated. For fatigue test, on the other hand, a device for clamping the spring fixture is installed additionally. As a feature of the present equipment, the gap or the contacting force between a spring and a tube can be adjusted during the fretting wear test, while an initial spring force can be simulated for the fatigue test. Tests will be conducted in air at room temperature. In this report, every part of the equipment is explained with photographs, which will provide an easy understanding. Test procedure such as specimen installation, sequence of operation and program handling is also given. As a performance test of the present equipment, displacement range is measured when the hinge of the lever locates at its maximum and minimum positions. This will be used as basic information when additional eccentric cylinder is necessary for different displacement ranges

  3. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  4. Fuel bundle to pressure tube fretting in Bruce and Darlington

    International Nuclear Information System (INIS)

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  5. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  6. FRET analysis of CP12 structural interplay by GAPDH and PRK.

    Science.gov (United States)

    Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme

    2015-03-13

    CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.

    Directory of Open Access Journals (Sweden)

    Antonino Ingargiola

    Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

  8. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  9. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    2010-08-01

    Full Text Available Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes. Furthermore, the results of our experiments

  10. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    Effect of contact pressure on fretting fatigue of austenitic stainless steel ,” Tribology International, vol. 36, pp. 79-85, 2003. 155 [56] N.K. Naidu...austenitic stainless steel was presented. Like the studies in the previous section, this study investigated how a variably increased contact load...that their stainless steel specimens acted much in the same manner as the aluminum specimens presented in the previous section. It was observed

  11. Turbulence induced Fretting-wear characteristics of steam generator helical tubes

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Kim, Hho Jung; Yune, Young Gill; Yu, Seon Oh

    2005-01-01

    This study addresses safety assessment of the potential for fretting-wear damages on steam generator helical tubes due to turbulence-induced vibration in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are put on the effects of coil diameter and the number of turns on the modal and fretting wear characteristics of tubes. Also, investigated are the effects of external pressure on the tube modal characteristics as well as the effects of turbulence induced vibration on the fretting-wear characteristics of tubes

  12. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    Science.gov (United States)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  13. Roughness Influence on Initiation of Fretting Fatigue Scar of Ti-6Al-4V Alloy

    Science.gov (United States)

    Capitanu, L.; Badita, L. L.; Florescu, V.; Tiganesteanu, C.

    2018-01-01

    This paper reports on the experimental studies undertaken to detect the early stage when appears the fretting wear of the Ti-6Al-4V alloy used for the hip prostheses. Wear is a critical aspect for estimating the fretting fatigue. Studies were performed on samples of special shape, in order to be able to study the influence of in contact surfaces roughness on the durability to fretting. Fretting buffers, with roughnesses Ra of the contact surface of 0.015 and 0.045 μm, and Ti-6Al-4V samples with roughnesses Ra = 0.045 μm, Ra = 0.075 μm and Ra = 0.19 μm, were used. Testing periods of 3 seconds, 1 minute and 5 minutes were selected to capture the moment of the fretting scar appearance, long before these initiate the eventual fretting cracking. Simultaneously with fretting wear of the surface, the friction coefficient was also measured. From the in time evolution determinations of the fretting wear, it resulted that, under the experimental conditions used, the minimum wear occurs at a certain value of the roughness and not at the minimum roughness. Surprisingly, the minimum friction coefficient does not coincide with the minimum fretting wear.

  14. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Directory of Open Access Journals (Sweden)

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  15. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Science.gov (United States)

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  16. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    International Nuclear Information System (INIS)

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  17. Application of FRET probes in the analysis of neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Yoshibumi eUeda

    2013-10-01

    Full Text Available Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since GFP was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET, which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  18. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Science.gov (United States)

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  19. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2011-10-01

    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  20. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  1. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    International Nuclear Information System (INIS)

    AUKLAND, NEIL R.; HANLON, JAMES T.

    1999-01-01

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions

  2. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Science.gov (United States)

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  3. Influence of Fretting on Flexural Fatigue of 304 Stainless Steel and Mild Steel

    National Research Council Canada - National Science Library

    Bill, Robert

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural-fatigue test arrangement with bolted-on fretting pads have demonstrated that fatigue life is reduced by at least a factor...

  4. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    International Nuclear Information System (INIS)

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-01-01

    Highlights: ► An endothelial cell apoptosis assay using FRET-based biosensor was developed. ► The fluorescence of the cells changed from green to blue during apoptosis. ► This method was developed into a high-throughput assay in 96-well plates. ► This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z′ factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  5. Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane

    Energy Technology Data Exchange (ETDEWEB)

    Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.

  6. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  7. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  8. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-01

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe3+ based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe3+ to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe3+. The association constant was estimated to be 2.72 × 103 M-1 according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field.

  9. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    OpenAIRE

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intra...

  10. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Directory of Open Access Journals (Sweden)

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  11. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    Science.gov (United States)

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  12. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  13. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    Science.gov (United States)

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  14. An ad-hoc fretting wear tribotester design for thin steel wires

    Directory of Open Access Journals (Sweden)

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  15. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  16. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON-DEPENDENCE OF NUMBERS CYCLES

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2014-12-01

    Full Text Available The present paper argues that adhesion forces and elastic deformation in the contact zone may contribute significantly to the relative displacement during fretting of metals. A simultaneously applied tangential force and normal into contact appears a adhesion force. A tangential force whose magnitude is less equal on greater than the force of limiting friction will not give rise on give rise to a sliding motion.It is determined the energy loss dissipated per fretting cycle.

  17. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    Science.gov (United States)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  18. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Science.gov (United States)

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  19. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    International Nuclear Information System (INIS)

    Zhang, P.; Lee, K.H.; Lee, C.H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.

  20. Fretting and Corrosion Damage in Taper Adapter Sleeves for Ceramic Heads: A Retrieval Study.

    Science.gov (United States)

    MacDonald, Daniel W; Chen, Antonia F; Lee, Gwo-Chin; Klein, Gregg R; Mont, Michael A; Kurtz, Steven M; Cates, Harold E; Kraay, Matthew J; Rimnac, Clare M

    2017-09-01

    During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. In vitro testing suggests that corrosion is not a concern in sleeved ceramic heads; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads in retrieved total hip arthroplasties. Thirty-seven sleeved ceramic heads were collected during revision. The femoral heads and sleeves were implanted 0.0-3.3 years. The implants were revised predominantly for instability, infection, and loosening. Fifty percent of the retrievals were implanted during a primary surgery. Fretting corrosion was assessed using the Goldberg-Higgs semiquantitative scoring system. Mild-to-moderate fretting corrosion scores (score = 2-3) were observed in 92% of internal tapers, 19% of external tapers, and 78% of the stems. Severe fretting corrosion was observed in 1 stem trunnion that was previously retained during revision surgery and none of the retrieved sleeves. There was no difference in corrosion damage of sleeves used in primary or revision surgery. The fretting corrosion scores in this study were predominantly mild and lower than reported fretting scores of cobalt-chrome heads in metal-on-polyethylene bearings. Although intended for use in revisions, we found that the short-term in vivo corrosion behavior of the sleeves was similar in both primary and revision surgery applications. From an in vivo corrosion perspective, sleeves are a reasonable solution for restoring the stem taper during revision surgery. Copyright © 2017. Published by Elsevier Inc.

  1. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Directory of Open Access Journals (Sweden)

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  2. Homo-FRET imaging as a tool to quantify protein and lipid clustering.

    Science.gov (United States)

    Bader, Arjen N; Hoetzl, Sandra; Hofman, Erik G; Voortman, Jarno; van Bergen en Henegouwen, Paul M P; van Meer, Gerrit; Gerritsen, Hans C

    2011-02-25

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical proteins and lipids. Homo-FRET imaging has the ability to determine distances between fluorophores. In addition it can be employed to quantify cluster sizes as well as cluster size distributions. The interpretation of homo-FRET signals is complicated by the fact that both the mutual orientations of the fluorophores and the number of fluorophores per cluster affect the fluorescence anisotropy in a similar way. The properties of the fluorescence probes are very important. Taking these properties into account is critical for the correct interpretation of homo-FRET signals in protein- and lipid-clustering studies. This is be exemplified by studies on the clustering of the lipid raft markers GPI and K-ras, as well as for EGF receptor clustering in the plasma membrane. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    Science.gov (United States)

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    Science.gov (United States)

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prévision de l'épaisseur du film passif d'un acier inoxydable 316L soumis au fretting corrosion grâce au Point Defect Model, PDM Predicting the steady state thickness of passive films with the Point Defect Model in fretting corrosion experiments

    Directory of Open Access Journals (Sweden)

    Geringer Jean

    2013-11-01

    . This passive layer of few nanometers, at ambient temperature, is the key of our civilization according to some authors. This work is dedicated to predict the passive layer thicknesses of stainless steel under fretting corrosion with a specific emphasis on the role of proteins. The model is based on the Point Defect Model (micro scale and an update of the model on the friction process (micro-macro scale. Genetic algorithm was used for finding solution of the problem. The major results are, as expected from experimental results, albumin prevents from degradation at the lowest concentration of chlorides; an incubation time is necessary for degrading the passive film; under fretting corrosion and high concentration of chlorides the passive behavior is annihilated.

  6. Rational design of FRET-based sensor proteins

    NARCIS (Netherlands)

    Merkx, M.

    2008-01-01

    Real-time imaging of molecular events inside living cells is important for understanding the basis of physiological processes and diseases. Genetically encoded sensors that use fluorescence resonance energy transfer (FRET) between two fluorescent proteins are attractive in this respect because they

  7. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  8. Calculated and experimental research of WWER-1000 assembly vibration and fretting damage

    International Nuclear Information System (INIS)

    Drozdov, Y.; Afanasyev, A.; Makarov, V.; Tutnov, A.; Tutnov, A.; Alekseev, E.

    2008-01-01

    The report covers the methods and results of the latest analytical and experimental studies of fretting corrosion and natural vibrations of a WWER-1000 reactor fuel assemblies (FA). The process of fretting-corrosion was investigated using a multi-specimen facility that simulated fragments of fuel rod-to-spacer grid and lower support grid mating units. A computational model was developed for vibrations in the mechanical system of a fuel rod fragment and a spacer grid fragment. A calculational and experimental modal analysis of a FA was performed. Natural frequencies, modes and decrements of FA vibrations were determined and a satisfactory coincidence of analytical and experimental results was obtained. The assessment of fretting-corrosion process dynamics was made and its dependences on operational factors were obtained. (authors)

  9. Approximate stresses in 2-D flat elastic contact fretting problems

    Science.gov (United States)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  10. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  12. A study on surface properties and high temperature oxidation behavior of ion nitrided FC-25 gray cast iron

    International Nuclear Information System (INIS)

    Hur, In Chang; Son, Kun Su; Yoon, Jae Hong; Cho, Tong Yul; Park, Bong Gyu; Kim, Hyun Soo; Kim, In Soo

    2005-01-01

    Surface properties and high temperature oxidation behavior were investigated for FC-25 Gray Cast Iron(GCI) and the ion intrided GCI(N-GCI). The GCI was pre-cleaned to improve hardness to the optimum pre-sputtering parameters with an Ar/H 2 ratio of 1/2, working pressure of 3 torr, working temperature of 550 .deg. C and working time of 1hour. The optimum nitriding conditions for the maximum hardness of 560∼575 Hv were an N 2 /H 2 ratio of 3/1, working pressure of 3 torr, and working temperature of 575 deg. C. The thickness of graphite in the GCI was increased by increasing the working temperature from 525 .deg. C to 595 .deg. C for the nitriding time of 6∼18hrs. XRD patterns showed FeO and Fe 2 O 3 peaks for both the oxidized N-GCI and GCI at temperature of 600 .deg. C and 800 .deg. C under atmospheric environment for both 24 and 60hours. At 800 .deg. C, above the Fe 4 N decomposition temperature of 680 .deg. C, the oxidation rate of N-GCI was greater than that of the GCI. The most abundant nitride, Fe 4 N, was decomposed and the nitrogen gas given off by the decomposition made the protective film porous by degassing through the film. But at 600 .deg. C, below the decomposition temperature, the degree of oxidation of N-GCI was lower than that of the GCI because the nitride film worked as protective barrier for oxidation. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of

  13. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  14. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.

    Science.gov (United States)

    Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J; Wimmer, Markus A; Hallab, Nadim J; Mathew, Mathew T

    2018-02-01

    The fretting-corrosion behavior of mixed metal contacts is affected by various mechanical and electrochemical parameters. Crevice conditions at the junction and patient-specific pathologies can affect the pH of the prosthetic environment. The main objective of this study is to understand the effect of pH variation at the stem/head junction of the hip implant under fretting corrosion exposure. We hypothesized that pH will have a significant influence on the fretting-corrosion behavior hip implant modular junctions. A custom-made setup was used to evaluate the fretting corrosion behavior of hip implant modular junctions. A Newborn calf serum solution (30 g/L protein content) was used to simulate the synovial fluid environment. A sinusoidal fretting motion, with a displacement amplitude of +50 µm, was applied to the Ti alloy rod. The effects of pathology driven, periprosthetic pH variation were simulated at four different pH levels (3.0, 4.5, 6.0 and 7.6). Electrochemical and mechanical properties were evaluated before, during, and after the applied fretting motion. The impedance of the system was increased in response to the fretting motion. The hysteresis tangential load/displacement behavior was not affected by pH level. The worn surfaces of CoCrMo pins exhibited the presence of tribolayer or organic deposits, in the pH 4.5 group, which may explain the lower drop in potential and mass loss observed in that group. Mechanically dominated wear mechanisms, namely, adhesive wear was shown in the pH 7.6 group, which may account for a higher potential drop and metal content loss. This study suggests that the fretting-corrosion mechanisms in hip implant are affected by the pH levels of the surrounding environment and patient-specific factors. Copyright © 2017. Published by Elsevier Ltd.

  15. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    Science.gov (United States)

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  16. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    Science.gov (United States)

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  17. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  18. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  19. An experimental study on the key fretting variables for flexible marine risers

    OpenAIRE

    O’Halloran, S.M.; Harte, A.M.; Shipway, P.H.; Leen, S.B.

    2018-01-01

    This paper presents an experimental investigation into the effects of contact conformity, contact pressure and displacement amplitude on the gross-slip fretting behaviour grease-lubricated cylinder-on-flat contacts in the context of flexible marine riser pressure armour wire, and compares behaviour with that observed in unlubricated conditions. Characterisation of friction and wear is critical to fretting fatigue life prediction in flexible risers since friction directly controls trailing-edg...

  20. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  1. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    Science.gov (United States)

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2017-07-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.

  2. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  3. The Necessity of a New Type Test Rig for the Development of an Evaluation Method in Grid Fretting Problems

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    A grid fretting problem is recognized as one of the most important degradation mechanisms even though the examination results of fretting experiments could be applied to the development and design of spacer grid structures. This is because it is difficult to develop a fretting wear model for a grid fretting problem due to the various wear mechanisms involved according to the mechanical and environmental variables, the contact condition with a spring/dimple and the material properties. A number of spring shapes has been developed in KAERI and their performance tests such as fretting wear, flow-induced vibration (FIV) tests, etc. have been carried out from a part unit to a full assembly scale. From the unit part fretting test results, one of the noticeable results is that the contacting force (normal load) was gradually decreased with increasing number of fretting cycles due to a depth increase and this behavior was closely related to the contacting spring shape. When considering the actual contact condition between a fuel rod and a spring/dimple, if a fretting wear progresses due to a FIV under a specific normal load exerted on the fuel rod by an elastic deformation of the spring, the contacting force between the fuel rod and dimple that are located in the opposite side should be decreased. Consequently, an evaluation of developed spacer grids against fretting wear damage should be performed with the results of 1x1 cell unit experiments because a contacting force is one of the most important variables that influences a fretting wear mechanism. The discussion was focused on the development procedure of a new test rig and its performance by using a 1x1 cell unit test rig. (authors)

  4. Fretting wear damage of HexTOOL{sup TM} composite depending on the different fibre orientations

    Energy Technology Data Exchange (ETDEWEB)

    Terekhina, S; Salvia, M; Fouvry, S [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS ECL ENISE ENSMSE 5513, Ecole Centrale de Lyon, 69134 Ecully cedex (France); Malysheva, G; Tarasova, T, E-mail: svetlana.terekhina@ec-lyon.fr, E-mail: svetlanaterekhina@yandex.ru [Bauman Moscow State Technical University, 105005 Moscow, 5, 2nd Baumanskaya str (Russian Federation)

    2009-09-15

    The composites have drawn considerable interest in the mould processes. The vibrations and fatigue stresses induced in the moulds made evident to characterize the composite HexTOOL{sup TM} under fretting conditions. Fretting is a small-amplitude oscillatory motion between contacting surfaces. The running conditions fretting maps (RCFM) of composite at ambient conditions were established. The influence of different fiber orientations of HexTOOL{sup TM} composite on the wear kinetics was shown. An energy wear approach was developed. According to results of dynamic mechanical analysis (DMA), the viscoelastic properties of composite material were obtained.

  5. An overview of the Canadian program to investigate vibration and fretting in nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Oldaker, I.E.; Lane, A.D.; Forrest, C.F.

    The development of a model that would allow the fuel designer to predict the occurrence of fretting could materially reduce the amount of development testing of a new fuel design. To achieve this, we are working in several areas: to identify and measure the phenomena that excite fuel to vibrate, and to study their relation to reactor design features; to predict the vibratory response of a fuel assembly as a function of its design and environment, and; to study the relationship between vibration and fretting to determine when vibration results in fretting. (author)

  6. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  7. Fluorescence resonance energy transfer (FRET) in chemistry and ...

    Indian Academy of Sciences (India)

    Förster distance dependence of the FRET rate. SANGEETA SAINI,1 HARJINDER SINGH2 and BIMAN BAGCHI1,*. 1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012. 2Permanent address: Department of ...

  8. A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers

    OpenAIRE

    O'Halloran, S.M.; Shipway, P.H.; Connaire, A.D.; Leen, Sean B.; Harte, A.M.

    2017-01-01

    This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface dama...

  9. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation.

    Science.gov (United States)

    Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T

    2016-09-01

    Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical

  10. On the geometry of the fuel rod supports concerning a fretting wear failure

    International Nuclear Information System (INIS)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee

    2008-01-01

    Geometrical conditions of spacer grid springs and dimples of a light water reactor fuel assembly are studied in this paper concerning a fuel rod's fretting wear failure. In this framework, the springs/dimples are categorized from the aspects of their orientation with respect to the fuel axis and the contact types. Possible motions on the contacts between the springs/dimples and fuel rods are estimated by conducting a flow-induced vibration test. Features of the wear scar and depth are investigated by independent fretting wear tests carried out with spring and dimple specimens of typical contact geometries. It is also attempted here to apply the contact mechanics theory to a fuel fretting wear analysis such as the prediction of a wear depth profile and its rate, which is influenced by the contact shape of the springs/dimples. It is shown that the theory can be applied to a dimensional control of a coining for the springs/dimples, which is usually carried out in a thin plate fabrication. From the results, the necessary conditions for a spring/dimple geometry for restraining a fretting wear failure are discussed

  11. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  12. Design improvement for fretting-wear reduction of HANARO fuel assembly

    International Nuclear Information System (INIS)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  13. Theoretical-experimental analysis of the fretting/impact wear in fuel rods

    International Nuclear Information System (INIS)

    Pecos, Luis F.

    2001-01-01

    Nuclear power plant fuel elements are subjected to flow induced vibrations. A consequence of these vibrations is impact/fretting wear in fuel rods or sliding shoes. Because of the difficulties to assert the mechanism of impact/fretting wear phenomenon it is necessary to use semiempirical formulations in order to predict the wear rate of the components. The results of a series of experiments with Zr-4 specimens are presented in this work. A parameter called 'work-rate' was used to normalize the wear rates and interpret the results in terms of wear coefficient. (author) [es

  14. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Science.gov (United States)

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  15. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  16. Application of Influence Function Method to the Fretting Wear Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)

    2006-07-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.

  17. Application of Influence Function Method to the Fretting Wear Problems

    International Nuclear Information System (INIS)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck

    2006-01-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems

  18. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.

    Science.gov (United States)

    Wang, Xuelin; Li, Juanjuan; Yan, Qi; Chen, Yanrui; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-03-01

    Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10 -3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Science.gov (United States)

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  20. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  1. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

    Science.gov (United States)

    Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A

    2011-04-28

    Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded

  2. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Directory of Open Access Journals (Sweden)

    Jakobus van Unen

    Full Text Available G-protein coupled receptors (GPCRs can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  3. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Science.gov (United States)

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  4. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    Science.gov (United States)

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  5. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    Science.gov (United States)

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  6. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Directory of Open Access Journals (Sweden)

    Nidhi Mathur

    2008-01-01

    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  7. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf

    2009-01-01

    We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tCO, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors d...

  8. Burst pressure and leak rate from fretted SG tubes

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  9. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores

    Science.gov (United States)

    Laine, Romain; Stuckey, Daniel W.; Manning, Hugh; Warren, Sean C.; Kennedy, Gordon; Carling, David

    2012-01-01

    We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that m

  10. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    Science.gov (United States)

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  11. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyong; Kwon, Seok Jin [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2008-01-15

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

  12. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    International Nuclear Information System (INIS)

    Lee, Dong Hyong; Kwon, Seok Jin; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits

  13. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    2008-07-01

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  14. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  15. Fretting Corrosion Behavior of Experimental Ti-20Cr Compared to Titanium.

    Science.gov (United States)

    Sawada, Tomofumi; Schille, Christine; Almadani, Atif; Geis-Gerstorfer, Jürgen

    2017-02-17

    Experimental cast titanium alloys containing 20 mass% chromium (Ti-20Cr) show preferable mechanical properties and a good corrosion resistance. This study evaluated the fretting corrosion behavior of Ti-20Cr. Ti-20Cr ( n = 4) and commercially pure titanium (CP-Ti, n = 6) disk specimens were used. The fretting corrosion test was performed by electrochemical corrosion at 0.3 V in 0.9% saline solution and mechanical damage using 10 scratching cycles with three different scratching speeds (10-40 mm/s) at 10 N. After testing, the activation peak, repassivation time and surface morphology of each specimen were analyzed. The differences between the results were tested by parametric tests (α = 0.05). The average activation peaks were significantly higher in CP-Ti than in Ti-20Cr ( p Ti. Slight differences in the repassivation time were observed between the materials at every scratching speed; faster scratching speeds showed shorter repassivation times in both materials ( p Ti showed severe damage and significantly higher wear depth than Ti-20Cr ( p < 0.05). In conclusion, adding chromium to titanium reduced surface damage and improved the fretting corrosion resistance.

  16. Fluorescent protein pair emit intracellular FRET signal suitable for FACS screening

    International Nuclear Information System (INIS)

    Johansson, Daniel X.; Brismar, Hjalmar; Persson, Mats A.A.

    2007-01-01

    The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5 ± 1.5% (mean ± SEM) and 8.0 ± 0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8 ± 2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1 ± 1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals

  17. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  18. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  19. Studying DNA looping by single-molecule FRET.

    Science.gov (United States)

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  20. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.

    Science.gov (United States)

    Loura, Luís M S

    2012-11-19

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit ( = 2/3) is used for computation of R(0) and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of k(2) for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.

  1. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    Science.gov (United States)

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C 3 N 4 ) and transition metal dichalcogenides (e.g. MoS 2 , MnO 2, and WS 2 ). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  3. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  4. FRET-based biosensors for the detection and quantification of AI-2 class of quorum sensing compounds.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard

    2011-01-01

    Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of

  5. FLIM-FRET image analysis of tryptophan in prostate cancer cells

    Science.gov (United States)

    Periasamy, Ammasi; Alam, Shagufta R.; Svindrych, Zdenek; Wallrabe, Horst

    2017-07-01

    A region of interest (ROI) based quantitative FLIM-FRET image analysis is developed to quantitate the autofluorescence signals of the essential amino acid tryptophan as a biomarker to investigate the metabolism in prostate cancer cells.

  6. Failure of fretted steam generator tubes under accident conditions

    International Nuclear Information System (INIS)

    Forrest, C.F.

    1996-10-01

    Tests were carried out with a bank of tubes in a water tunnel to determine the tolerance of flawed nuclear reactor steam generator tubes to accident conditions which would result in high cross-flow velocities. Fourteen specimen tubes were tested, each having one or two types of defect machined into the surface simulating fretting-wear type scars found in some operating steam generators. The tubes were tested at flow velocities sufficient to induce high fluid elastic-type vibrations. Seven of the tubes failed near the thinnest section of the defects during the one-hour tests, due to impacting and/or rubbing between the tube and the support. Strain gauges, displacement transducers, force gauges and an accelerometer were used on the target tube and/or the tube immediately downstream of it to measure their vibrational characteristics

  7. Two-dimensional Forster resonance energy transfer (2-D FRET) and the membrane raft hypothesis

    OpenAIRE

    Acasandrei, Maria; Dale, Robert; VAN DE VEN, Martin; AMELOOT, Marcel

    2006-01-01

    A model for analyzing Forster resonance energy transfer (FRET) data in relation to the cell plasma membrane raft hypothesis is developed to take into account: (a) the distribution of FRET donors and acceptors at the surface of probing antibody fragments specific for a putative raft component; (b) partitioning of the raft component between raft and non-raft areas of the membrane; and (c) the dependence of the raft partition on the expression level of the considered component. Analysis of relev...

  8. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    Science.gov (United States)

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  9. Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2'-α-l-amino-LNA FRET pairs

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Santhosh Kumar, T; Campbell, Meghan A

    2013-01-01

    Novel pyrene-perylene α-l-LNA FRET pairs described herein effectively detect assembly of 2- and 3-way branched DNA nanostructures prepared by postsynthetic microwave-assisted CuAAC click chemistry. The fluorescent signalling of assembly by internally positioned FRET pairs is achieved with low...

  10. Efficient FRET-based fuorescent ratiometric chemosensors for Fe3+ and its application in living cells

    International Nuclear Information System (INIS)

    Wang, Cuicui; Liu, Yaqi; Cheng, Junye; Song, Jianhua; Zhao, Yufen; Ye, Yong

    2015-01-01

    A series of novel FRET-based fluorescent ratiometric chemosensors (L 1 –L 6 ) were designed and synthesized. Sensor L 2 showed reversible and the best selective recognition toward Fe 3+ over other metal ions with a detection limit of 0.418 ppm, which can meet the selective requirements for practical application. Experiment results showed that the response behavior of L 2 toward Fe 3+ is pH independent in weak acid condition (pH 4.0–6.0). In addition, sensor L 2 was successfully applied for ratiometric visualization of Fe 3+ in living cells. - Highlights: • The detection limit of a new FRET probe for Fe 3+ was 0.418 ppm. • The probe exhibited high selectivity and sensitivity detection to Fe 3+ with a pH span of 4.0–6.0. • The significant changes in color could be used for naked-eye detection • The fluorescence imaging experiment demonstrated its value of practical application

  11. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    Science.gov (United States)

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  12. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Science.gov (United States)

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET.

    Science.gov (United States)

    Khadria, Ambalika S; Senes, Alessandro

    2015-07-01

    Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.

  14. Les vicissitudes du fret ferroviaire

    OpenAIRE

    DABLANC, L

    2010-01-01

    Dans beaucoup de pays européens, et plus encore en Amérique du Nord et en Asie, le transport de marchandises par le train a augmenté depuis dix ans. Cette activité réduit la part des marchandises acheminées par la route et contribue ainsi au développement durable : un camion émet 8 à 30 fois plus de dioxyde de carbone que le train, pour une distance et une quantité transportée équivalentes. Pourtant, la France a raté ce renouveau. Filiale du groupe public SNCF, la Société Fret SNCF, qui assur...

  15. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel

    OpenAIRE

    Santos,Claudio Teodoro dos; Barbosa,Cássio; Monteiro,Maurício de Jesus; Abud,Ibrahim de Cerqueira; Caminha,Ieda Maria Vieira; Roesler,Carlos Rodrigo de Mello

    2015-01-01

    Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is t...

  16. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    Science.gov (United States)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  17. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  18. FRET microscopy autologous tumor lysate processing in mature dendritic cell vaccine therapy

    Directory of Open Access Journals (Sweden)

    Ridolfi Ruggero

    2010-06-01

    Full Text Available Abstract Background Antigen processing by dendritic cells (DC exposed to specific stimuli has been well characterized in biological studies. Nonetheless, the question of whether autologous whole tumor lysates (as used in clinical trials are similarly processed by these cells has not yet been resolved. Methods In this study, we examined the transfer of peptides from whole tumor lysates to major histocompatibility complex class II molecules (MHC II in mature dendritic cells (mDC from a patient with advanced melanoma. Tumor antigenic peptides-MHC II proximity was revealed by Förster Resonance Energy Transfer (FRET measurements, which effectively extends the application of fluorescence microscopy to the molecular level ( Results We detected significant energy transfer between donor and acceptor-labelled antibodies against HLA-DR at the membrane surface of mDC. FRET data indicated that fluorescent peptide-loaded MHC II molecules start to accumulate on mDC membranes at 16 hr from the maturation stimulus, steeply increasing at 22 hr with sustained higher FRET detected up to 46 hr. Conclusions The results obtained imply that the patient mDC correctly processed the tumor specific antigens and their display on the mDC surface may be effective for several days. These observations support the rationale for immunogenic efficacy of autologous tumor lysates.

  19. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  20. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  1. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  2. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  3. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  4. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  5. Simulation of FRET dyes allows quantitative comparison against experimental data

    Science.gov (United States)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  6. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    Energy Technology Data Exchange (ETDEWEB)

    Gopich, Irina V. [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.

  7. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    Science.gov (United States)

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  8. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Dossena, Silvia; Di Mise, Annarita; Nofziger, Charity; Svelto, Maria; Paulmichl, Markus; Valenti, Giovanna

    2013-01-01

    Human pendrin (SLC26A4, PDS) is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD). Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET), a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor) located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable. © 2014 S. Karger AG, Basel.

  9. Preliminary Study on the Fretting Wear Behaviors of a Duel Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.H.; Lee, K.H.; Kim, H.K. [KAERI, 150 Dukjin-dong Yuseon-gu Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    Based on MIT's concept, an innovative fuel development project was launched by KAERI that a substantial power up-rating could be realized by introducing an internally and externally double cooled annular fuel for current PWR reactors. In order to apply this duel cooled fuel to an OPR 1000 reactor system, geometrical features of structural parts in a fuel assembly should be changed except an overall dimension of a fuel assembly. Typical changes are summarized as fuel rod diameter and weight, shape and position of a spacer grid spring, etc. When considering a duel cooled fuel rod, its vibration characteristic and fretting behavior should be verified because the modified shape and dimension of spacer grid spring, fuel rod diameter and weight, number of spacer grid assembly are closely related to a flow-induced vibration in a duel cooled fuel assembly. In this study, based on FIV test results of 4x4 fuel assembly, fretting wear tests of an outer duel cooled fuel rod were performed by using an embossing type spacer grid spring that could adjust its spring stiffness. The discussion was focused on the evaluation of the optimized spring stiffness and spring position in 1x1 cell by analyzing the fretting wear results. (authors)

  10. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cuiling, E-mail: clzhang@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Ding, Caiping [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Zhou, Guohua [School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048 (China); Xue, Qin [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Xian, Yuezhong, E-mail: yzxian@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China)

    2017-03-08

    DNA functionalized quantum dots (QDs) are promising nanoprobes for the fluorescence resonance energy transfer (FRET)-based biosensing. Herein, cadmium-free DNA functionalized Mn-doped ZnS (DNA-ZnS:Mn{sup 2+}) QDs were successfully synthesized by one-step route. As-synthesized QDs show excellent photo-stability with the help of PAA and DNA. Then, we constructed a novel FRET model based on the QDs and WS{sub 2} nanosheets as the energy donor-acceptor pairs, which was successfully applied for the protein detection through the terminal protection of small molecule-linked DNA assay. This work not only explores the potential bioapplication of the DNA-ZnS:Mn{sup 2+} QDs, but also provides a platform for the investigation of small molecule-protein interaction. - Highlights: • The stable and cadmium-free DNA functionalized ZnS:Mn{sup 2+} QDs were successfully synthesized through a facile one-step route. • We constructed a novel FRET system based on one-step synthesized DNA-ZnS:Mn{sup 2+} QDs (donor) and WS{sub 2} nanosheets (acceptor). • The FRET-based strategy was applied for the detection of streptavidin and folate receptor by combining TPSMLD and Exo III.

  11. A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells

    Directory of Open Access Journals (Sweden)

    Grazia Tamma

    2013-12-01

    Full Text Available Background: Human pendrin (SLC26A4, PDS is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD. Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Methods: Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET, a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. Results: FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Conclusion: Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable.

  12. Stem Migration and Fretting Corrosion of the Antirotation Pin in the K2/Apex Hip System.

    Science.gov (United States)

    Kent, Michael; Edmondson, Mark; Ebert, Jay; Nivbrant, Nils; Kop, Alan; Wood, David; De Steiger, Richard

    2016-03-01

    Many exchangeable neck hip systems have been withdrawn because of fretting corrosion at the neck/stem coupling. Our prospective randomized study evaluating stem stability (Roentgen stereophotogrammetric analysis, dual-energy x-ray absorptiometry) and clinical outcomes between the K2/Apex hip systems was ceased early because of a withdrawal of the stems which had an unfavorably high early revision rate reported in the Australian Orthopaedic Association National Joint Registry (9.3% at 3 years). At 2 years, there are no clinical differences between the stems. Roentgen stereophotogrammetric analysis has identified a high proportion of potentially concerning subsidence and retroversion in both groups, more marked in the K2 stem, although mostly in asymptomatic patients. Dual-energy x-ray absorptiometry has shown similar bone density around the stems. Retrieval analysis of 3 study patients showed fretting corrosion of the antirotation pin and aseptic lymphocyte-dominated vasculitis-associated lesion, with no relationship to bearing type or size. Analysis of 7 further nonstudy K2/Apex stems confirmed similar corrosion. This study shows potentially concerning subsidence of both stems and is the first to describe corrosion at the neck-stem interface and a relationship to metal-related pathology. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Homo-FRET Imaging as a tool to quantify protein and lipid clustering

    NARCIS (Netherlands)

    Bader, A.N.; Hoetzl, S.; Hofman, E.G.; Voortman, J.; van Bergen en Henegouwen, P.M.P.; van Meer, G.; Gerritsen, H.C.

    2010-01-01

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical

  14. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Directory of Open Access Journals (Sweden)

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  15. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  16. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  17. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.

    Science.gov (United States)

    Fuertes, Gustavo; Banterle, Niccolò; Ruff, Kiersten M; Chowdhury, Aritra; Mercadante, Davide; Koehler, Christine; Kachala, Michael; Estrada Girona, Gemma; Milles, Sigrid; Mishra, Ankur; Onck, Patrick R; Gräter, Frauke; Esteban-Martín, Santiago; Pappu, Rohit V; Svergun, Dmitri I; Lemke, Edward A

    2017-08-01

    Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration ( R G ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance ( R E ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values R G and R E For chemically denatured proteins we obtain mutual consistency in our inferences based on R G and R E , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between R E and R G that is amplified in the absence of denaturants. Therefore, joint assessments of R G and R E combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.

  18. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  19. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    International Nuclear Information System (INIS)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  20. Stability Loss of the Cemented Stem of Hip Prosthesis due to Fretting Corrosion Fatigue

    Directory of Open Access Journals (Sweden)

    L. Capitanu

    2017-12-01

    Full Text Available Aim of this project was to study the fretting behaviour of the cemented femoral stem fixation of a total hip prosthesis, trying to capture the loss of contact between the femoral stem and polymetylmethacrilate cement fixation. To have a landmark, studies were performed compared with cementless fixation, where no fretting phenomenon occurs, on real prostheses, under biological 3D loading conditions. A fatigue test device, installed on a servo-hydraulic triaxial dynamic testing machine was used. It allowed monitoring the flexion-extension, abduction-adduction, inner-outer rotation movements, and the variation of the torsional torque, depending on normal loading. The test ends when the sample does not fail after 2000000 cycles, or when it has reached a predetermined number of cycles. Test fluid medium used was NaCl mixed with distilled water, a favourable environment for appearance of fretting corrosion. After the failure of stem fixation at 2450000 cycles, the mantle of bone cement remaining adherent on femoral stem was removed. Microscopic inspection of the femoral stem and of the inner part of the polymetylmethacrilate mantle demonstrated the existence of corrosion of the femoral stem surface beneath the cement mantle, and Fe2O3 deposits on the femoral stem surface and on the inner part of the mantle.

  1. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  2. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    Science.gov (United States)

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  3. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application

    NARCIS (Netherlands)

    Wang, Yu; Liu, Kai; Liu, Xiaomin; Dohnalova, Katerina; Gregorkiewicz, Tom; Kong, Xianggui; Aalders, Maurice C. G.; Buma, Wybren J.; Zhang, Hong

    2011-01-01

    Almost all the luminescence upconversion nanoparticles used for Forster resonant energy transfer (FRET) applications are bare cores based on the consideration that the energy transfer efficiency is optimized because the distance between energy donors and acceptors is minimized. On the other hand, it

  4. Determination of Equilibrium Constant and Relative Brightness in FRET-FCS by Including the Third-Order Correlations.

    Science.gov (United States)

    Meng, Lingyi; He, Shanshan; Zhao, Xin Sheng

    2017-12-21

    Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k + and k - ) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k + and k - , so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.

  5. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Science.gov (United States)

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  6. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  7. Uzawa algorithm to solve elastic and elastic-plastic fretting wear problems within the bipotential framework

    Science.gov (United States)

    Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei

    2018-03-01

    This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.

  8. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    Science.gov (United States)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  9. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement

    NARCIS (Netherlands)

    Bitter, T.; Khan, I.; Marriott, T.; Lovelady, E.; Verdonschot, N.J.; Janssen, D.W.

    2017-01-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental

  10. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits

    Science.gov (United States)

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K. David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J.; Hildebrandt, Niko; Reiss, Peter

    2016-05-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL-1 obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL-1) and demonstrate their direct applicability in clinical diagnostics.A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post

  11. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    Science.gov (United States)

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  12. A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air: (I) Development of a Test Rig and Characteristic Analysis

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2007-01-01

    A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the Flow-Induced Vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail

  13. Correlative FRET: new method improves rigor and reproducibility in determining distances within synaptic nanoscale architecture

    Science.gov (United States)

    Shinogle-Decker, Heather; Martinez-Rivera, Noraida; O'Brien, John; Powell, Richard D.; Joshi, Vishwas N.; Connell, Samuel; Rosa-Molinar, Eduardo

    2018-02-01

    A new correlative Förster Resonance Energy Transfer (FRET) microscopy method using FluoroNanogold™, a fluorescent immunoprobe with a covalently attached Nanogold® particle (1.4nm Au), overcomes resolution limitations in determining distances within synaptic nanoscale architecture. FRET by acceptor photobleaching has long been used as a method to increase fluorescence resolution. The transfer of energy from a donor to an acceptor generally occurs between 10-100Å, which is the relative distance between the donor molecule and the acceptor molecule. For the correlative FRET microscopy method using FluoroNanogold™, we immuno-labeled GFP-tagged-HeLa-expressing Connexin 35 (Cx35) with anti-GFP and with anti-Cx35/36 antibodies, and then photo-bleached the Cx before processing the sample for electron microscopic imaging. Preliminary studies reveal the use of Alexa Fluor® 594 FluoroNanogold™ slightly increases FRET distance to 70Å, in contrast to the 62.5Å using AlexaFluor 594®. Preliminary studies also show that using a FluoroNanogold™ probe inhibits photobleaching. After one photobleaching session, Alexa Fluor 594® fluorescence dropped to 19% of its original fluorescence; in contrast, after one photobleaching session, Alexa Fluor 594® FluoroNanogold™ fluorescence dropped to 53% of its original intensity. This result confirms that Alexa Fluor 594® FluoroNanogold™ is a much better donor probe than is Alexa Fluor 594®. The new method (a) creates a double confirmation method in determining structure and orientation of synaptic architecture, (b) allows development of a two-dimensional in vitro model to be used for precise testing of multiple parameters, and (c) increases throughput. Future work will include development of FluoroNanogold™ probes with different sizes of gold for additional correlative microscopy studies.

  14. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    Science.gov (United States)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  15. Förster Resonance Energy Transfer (FRET as a Tool for Dissecting the Molecular Mechanisms for Maturation of the Shigella Type III Secretion Needle Tip Complex

    Directory of Open Access Journals (Sweden)

    William D. Picking

    2012-11-01

    Full Text Available Förster resonance energy transfer (FRET provides a powerful tool for monitoring intermolecular interactions and a sensitive technique for studying Å-level protein conformational changes. One system that has particularly benefited from the sensitivity and diversity of FRET measurements is the maturation of the Shigella type III secretion apparatus (T3SA needle tip complex. The Shigella T3SA delivers effector proteins into intestinal cells to promote bacterial invasion and spread. The T3SA is comprised of a basal body that spans the bacterial envelope and a needle with an exposed tip complex that matures in response to environmental stimuli. FRET measurements demonstrated bile salt binding by the nascent needle tip protein IpaD and also mapped resulting structural changes which led to the recruitment of the translocator IpaB. At the needle tip IpaB acts as a sensor for host cell contact but prior to secretion, it is stored as a heterodimeric complex with the chaperone IpgC. FRET analyses showed that chaperone binding to IpaB’s N-terminal domain causes a conformational change in the latter. These FRET analyses, with other biophysical methods, have been central to understanding T3SA maturation and will be highlighted, focusing on the details of the FRET measurements and the relevance to this particular system.

  16. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  17. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  18. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  19. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  20. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    Directory of Open Access Journals (Sweden)

    Peijian Huang

    2018-01-01

    Full Text Available In order to access the fretting damage of the steam generator tube (SGT, a fast fiber Fabry-Perot (F-P non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  1. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    Science.gov (United States)

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  2. Contribution to the study of atmospheric projection and under partial vacuum of tungsten carbide particles with cobalt or nickel binder. Application to fretting coatings on steel

    International Nuclear Information System (INIS)

    Vinayo, Maria-Elena

    1985-01-01

    This research thesis addresses the plasma spraying (atmospheric, under controlled atmosphere, and under reduced pressure) of tungsten carbides with a metallic binder (WC/Co, WC/Ni; W 2 C/Co). This work comprised an optimisation of the spraying process under reduced pressure, the study of the influence of the powder production process on the physicochemical and micro-structural characteristics as well as on coating fretting properties, and a correlation between spraying parameters in a controlled atmosphere (power and pressure) and coating physico-chemical and micro-structural properties. Results show a high decarburization-oxidation of tungsten carbides during atmospheric spraying, as well as an important evaporation of cobalt. Under reduced pressure, high losses of carbides are noticed. These both phenomena strongly depend on the powder production process. Fretting results highlight remarkable performance of coatings obtained by atmospheric spraying [fr

  3. Electrophoresis- and FRET-Based Measures of Serpin Polymerization.

    Science.gov (United States)

    Faull, Sarah V; Brown, Anwen E; Haq, Imran; Irving, James A

    2017-01-01

    Many serpinopathies, including alpha-1 antitrypsin (A1AT) deficiency, are associated with the formation of unbranched polymer chains of mutant serpins. In vivo, this deficiency is the result of mutations that cause kinetic or thermodynamic destabilization of the molecule. However, polymerization can also be induced in vitro from mutant or wild-type serpins under destabilizing conditions. The characteristics of the resulting polymers are dependent upon induction conditions. Due to their relationship to disease, serpin polymers, mainly those formed from A1AT, have been widely studied. Here, we describe Förster resonance energy transfer (FRET) and gel-based approaches for their characterization.

  4. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  5. Experimental Simulation of Flow-Induced Vibration for Developing a Grid-to-Rod Fretting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngho; Kim, Hyungkyu; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    GTRF margin was calculated based on the fuel reliabilities program of operating power plants. But they have not accumulated sufficient experience under challenging operating conditions to be considered proven solutions. In addition, GTRF behaviors were significantly differed according to the plant types, operating condition and fuel types. So, analytical methods to resolve GTRF degradations are considered as difficult procedures for actual application. One of the most important problems is that it is difficult to evaluate the GTRF resistance of new spacer grid under operating power plant condition. Up to now, as a consequence, compliance with the fretting wear limit (typically 10% of the cladding thickness) is checked a posteriori, through post-irradiation examination. Therefore, in this study, rod simulation method for determining GTRF resistance of new spacer grid was proposed with a specially designed wear tester. This simulator enables us to examine the spacer grid shape effect under relatively short development period. In addition, for developing GTRF model, flow-induced vibration (FIV) was measured with different major variables such as GTR clearance, flow rate, etc. Fretting wear tests of nuclear fuel rods (i. e. grid-to-rod fretting) have been performed to examine the flow rate effect by using a specially designed test section with a simulated primary coolant. Based on above results, developed FIV-wear simulator could be effective to examine the spacer grid shape effect with short development period. Further study will be discussed on the GTR clearance effect with various spacer grid shapes.

  6. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  7. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  8. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  9. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus.

    Science.gov (United States)

    Shi, Jingyu; Chan, Chunyu; Pang, Yukting; Ye, Weiwei; Tian, Feng; Lyu, Jing; Zhang, Yu; Yang, Mo

    2015-05-15

    In this work, a novel fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) pairs was developed for Staphylococcus aureus specific gene sequence detection. This FRET biosensor platform was realized by immobilization of capture probes on GQDs and conjugation of reporter probes on AuNPs. Target oligos then co-hybridized with capture probes and reporter probes to form a sandwich structure which brought GQDs and AuNPs to close proximity to trigger FRET effect. The fluorescence signals before and after addition of targets were measured and the fluorescence quenching efficiency could reach around 87% with 100 nM target oligo. The limit of detection (LOD) of this FRET biosensor was around 1 nM for S.aureus gene detection. Experiments with both single-base mismatched oligos and double-base mismatched oligos demonstrated the good sequence selectivity of this FRET biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  11. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  12. Fretting wear of ZrN and Zr(21% Hf)N coatings

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  13. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew

    2014-01-01

    that retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  14. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  15. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  16. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  17. Fretting-wear damage of heat exchanger tubes: a proposed damage criterion based on tube vibration response

    International Nuclear Information System (INIS)

    Yetisir, M.; McKerrow, E.; Pettigrew, M.J.

    1997-01-01

    A simple criterion is proposed to estimate fretting-wear damage in heat exchanger tubes with clearance supports. The criterion is based on parameters such as vibration frequency, mid-span vibration amplitude, span length, tube mass and an empirical wear coefficient. It is generally accepted that fretting-wear damage is proportional to a parameter called work-rate. Work-rate is a measure of the dynamic interaction between a vibrating tube and its supports. Due to the complexity of the impact-sliding behavior at the clearance-supports, work-rate calculations for heat exchanger tubes require specialized non-linear finite element codes. These codes include contact models for various clearance-support geometries. Such non-linear finite element analyses are complex, expensive and time consuming. The proposed criterion uses the results of linear vibration analysis (i.e., vibration frequency and mid-span vibration amplitude due to turbulence) and does not require a non-linear analysis. It can be used by non-specialists for a quick evaluation of the expected work-rate, and hence, the fretting-wear damage of heat exchanger tubes. The proposed criterion was obtained from an extensive parametric study that was conducted using a non-linear finite element program. It is shown that, by using the proposed work-rate criteria, work-rate can be estimated within a factor of two. This result, however, requires further testing with more complicated flow patterns. (author)

  18. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  19. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    Science.gov (United States)

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  20. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Directory of Open Access Journals (Sweden)

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  1. Maximum likelihood-based analysis of photon arrival trajectories in single-molecule FRET

    Energy Technology Data Exchange (ETDEWEB)

    Waligorska, Marta [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Molski, Andrzej, E-mail: amolski@amu.edu.pl [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer We study model selection and parameter recovery from single-molecule FRET experiments. Black-Right-Pointing-Pointer We examine the maximum likelihood-based analysis of two-color photon trajectories. Black-Right-Pointing-Pointer The number of observed photons determines the performance of the method. Black-Right-Pointing-Pointer For long trajectories, one can extract mean dwell times that are comparable to inter-photon times. -- Abstract: When two fluorophores (donor and acceptor) are attached to an immobilized biomolecule, anti-correlated fluctuations of the donor and acceptor fluorescence caused by Foerster resonance energy transfer (FRET) report on the conformational kinetics of the molecule. Here we assess the maximum likelihood-based analysis of donor and acceptor photon arrival trajectories as a method for extracting the conformational kinetics. Using computer generated data we quantify the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in selecting the true kinetic model. We find that the number of observed photons is the key parameter determining parameter estimation and model selection. For long trajectories, one can extract mean dwell times that are comparable to inter-photon times.

  2. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  3. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  4. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  5. Unlubricated Gross Slip Fretting Wear of Metallic Plasma Sprayed Coatings for Ti6A14V Surfaces

    National Research Council Canada - National Science Library

    Hager, Jr., Carl H; Sanders, Jeffrey H; Sharma, Shashi K

    2006-01-01

    ... to simulate cold engine startup. Alternative coatings such as plasma sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions...

  6. Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A.

    Science.gov (United States)

    Prokopowicz, Małgorzata; Greń, Bartosz; Cieśla, Joanna; Kierdaszuk, Borys

    2017-11-01

    The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λ ex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET.

    Science.gov (United States)

    Lee, Jay-Ron; Shieh, Ru-Chi

    2009-03-06

    Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.

  8. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application

    Science.gov (United States)

    Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2018-04-01

    Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.

  9. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  10. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  11. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)

    NARCIS (Netherlands)

    Lidke, D.S.; Nagy, P.; Barisas, B.G.; Heintzmann, R.; Post, Janine Nicole; Lidke, K.A.; Clayton, A.H.A.; Arndt-jovin, D.J.; Jovin, T.M.

    2003-01-01

    We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow

  12. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  13. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    International Nuclear Information System (INIS)

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  14. The role of specimen temperature difference in the elevated temperature pitting/transfer of PE16 and 20/25/Nb SS during impact wear

    International Nuclear Information System (INIS)

    Morri, J.

    1989-01-01

    A previous study of the impact fretting wear characteristics of PE16 + impacting 20/25 Nb SS (carried out on the BNL twin vibrator rig) identified a pitting-transfer form of wear at 480 0 C. This behaviour was thought to be dependent upon the temperature difference ΔT(ΔT = T 20/25 -T PE 16 ) between the two specimens. In that series of tests, however, no localised temperature control over the specimens was possible and specimen temperature effects could only be assessed by interchanging their positions in the rig. The introduction of locally positioned auxilliary heaters permitted a degree of control over the specimen temperature difference. The effect of ΔT upon pitting and transfer of the PE16 and 20/25 was then assessed and is reported in this paper. The study confirmed that the pitting transfer process was dependent on the temperature difference between the two surfaces. The direction and size of the transfer/pitting effect was independent of the material. Under the particular set of conditions employed in the test, pitting occurred only when the magnitude of ΔT exceeded 20 0 C. At high ΔT the initial period of high friction was extended and was associated with the tendency for gross transfer and pitting. (author)

  15. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    Science.gov (United States)

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  17. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen; Stahl, Yvonne; Weidtkamp-Peters, Stefanie; Smet, Wouter; Du, Yujuan; Gadella, Theodorus W. J.; Goedhart, Joachim; Scheres, Ben; Blilou, Ikram

    2018-01-01

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living

  18. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.

    Directory of Open Access Journals (Sweden)

    Bram Wallace

    Full Text Available Förster resonance energy transfer (FRET is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching.

  19. Investigation on ionic states of 1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) using organic laser dyes: A FRET study

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Arpan Datta; Saha, Jaba; Dey, D.; Bhattacharjee, D.; Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com

    2017-05-15

    Fluorescence Resonance Energy Transfer (FRET) between two organic dyes Fluorescein and Rhodamine 6G were successfully investigated in aqueous solution in presence and absence of 1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) at different pH. Spectroscopic studies suggest that both the dyes were present mainly as monomer in solution. FRET occurred from Fluorescein to Rhodamine 6G in solutions. Energy transfer efficiency increases in presence of DPPC and the maximum efficiency was 59.3% when the concentration of DPPC was 1.4×10{sup −4} M at ambient condition. pH plays a crucial role in this investigation as the energy transfer efficiency was found to change in presence of DPPC at different pH. It has been demonstrated that with proper calibration it is possible to use the present system under investigation to realize various ionic states of DPPC by observing the change in FRET efficiency between these two dyes. - Graphical abstract: Electrostatic interaction between anionic Flu and cationic R6G molecules in presence and absence of DPPC at different pH. Here pH of DPPC was changed, not the pH of individual dyes.

  20. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  1. Development of a pan-Babesia FRET-qPCR and a survey of livestock from five Caribbean islands.

    Science.gov (United States)

    Li, Jing; Kelly, Patrick; Zhang, Jilei; Xu, Chuanling; Wang, Chengming

    2015-09-30

    Babesia spp. are tick-borne protozoan hemoparasites and the second most common blood-borne parasites of mammals, in particular domestic animals. We used the Clustal Multiple Alignment program and 18S rRNA gene sequences of 22 Babesia species from GenBank to develop a PCR that could detect a wide variety of Babesia spp. in a single reaction. The pan-Babesia FRET-qPCR we developed reliably detected B. gibsoni, B. canis, B. vogeli, B. microti, B. bovis, and B. divergens under controlled conditions but did not react with closely related species, mainly Hepatozoon americanum, Theileria equi, and Toxoplasma gondii. When we tested the pan-Babesia FRET-qPCR on DNA of whole blood from 752 cattle, sheep, goats, donkeys and horses from five Caribbean islands, we detected Babesia spp. expected to be present in the animals, mainly B. bovis and B. bigemina in cattle and B. caballi in horses and donkeys. Further, we found that animals were not uncommonly infected with species of Babesia usually associated with other hosts, mainly B. vogeli and B. gibsoni in cattle, sheep and goats, B. rossi in goats, and B. caballi in goats and sheep. Finally, the pan-Babesia FRET-qPCR enabled us to identify unknown species of Babesia in cattle, goats, sheep and donkeys. Overall, 70 % (525/752) of the animals we tested were positive confirming earlier limited studies that infections with Babesia spp. are common in livestock in the Caribbean.

  2. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  3. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2

    NARCIS (Netherlands)

    Mastop, M.; Bindels, D.S.; Shaner, N.C.; Postma, M.; Gadella, T.W.J.; Goedhart, J.

    2017-01-01

    The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching

  4. Inter-Dye Distance Distributions Studied by a Combination of Single-Molecule FRET-Filtered Lifetime Measurements and a Weighted Accessible Volume (wAV Algorithm

    Directory of Open Access Journals (Sweden)

    Henning Höfig

    2014-11-01

    Full Text Available Förster resonance energy transfer (FRET is an important tool for studying the structural and dynamical properties of biomolecules. The fact that both the internal dynamics of the biomolecule and the movements of the biomolecule-attached dyes can occur on similar timescales of nanoseconds is an inherent problem in FRET studies. By performing single-molecule FRET-filtered lifetime measurements, we are able to characterize the amplitude of the motions of fluorescent probes attached to double-stranded DNA standards by means of flexible linkers. With respect to previously proposed experimental approaches, we improved the precision and the accuracy of the inter-dye distance distribution parameters by filtering out the donor-only population with pulsed interleaved excitation. A coarse-grained model is employed to reproduce the experimentally determined inter-dye distance distributions. This approach can easily be extended to intrinsically flexible proteins allowing, under certain conditions, to decouple the macromolecule amplitude of motions from the contribution of the dye linkers.

  5. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  6. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  7. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Science.gov (United States)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  8. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  9. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  10. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching.

    Science.gov (United States)

    Loura, Luís M S

    2012-11-08

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.

  11. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    Science.gov (United States)

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  12. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein.

    Directory of Open Access Journals (Sweden)

    Michael S Rogers

    Full Text Available Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA, a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2 protein and tumor endothelial marker 8 (TEM8. Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein-protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.

  13. A rhodamine–dansyl conjugate as a FRET based sensor for Fe{sup 3+} in the red spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Puhui, E-mail: pxie2007@yahoo.com.cn [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Guo, Fengqi, E-mail: fqguo@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xia, Ruirui; Wang, Yao [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Yao, Denghui [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yang, Guoyu; Xie, Lixia [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China)

    2014-01-15

    A new fluorescent resonance energy transfer (FRET) based fluorescent probe (compound 1) containing a dansyl unit as a donor and rhodamine 101 as an acceptor was developed to detect Fe{sup 3+} from other transition metal ions through ratiometric sensing in organic-aqueous solutions. Fe{sup 3+} induced a ring-opening reaction of the spirolactam rhodamine moiety of 1 resulting in the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Fe{sup 3+} was accomplished by plotting the fluorescence intensity ratio at 605 nm and 515 nm versus ferric ion concentration. The probe displayed a linear response to Fe{sup 3+} in the range of 5.5–25 μM with a detection limit of 0.64 μM. A 1:1 stoichiometry for the 1–Fe{sup 3+} complex was formed with an association constant of 1.74×10{sup 4} M{sup −1}. The probe also exhibited a large Stokes shift (225 nm) which can eliminate backscattering effects of excitation light. -- Highlights: • A new colorimetric and fluorescent “off–on” chemosensor for Fe{sup 3+} was synthesized. • It can respond to Fe{sup 3+} in the red spectral region based on a FRET mechanism. • Its ratiometric sensing for Fe{sup 3+} can be accomplished with a signal to noise ratio of 214. • The large Stokes shift (225 nm) can rule out the excitation backscattering effects.

  14. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  15. Förster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores

    Czech Academy of Sciences Publication Activity Database

    Šachl, Radek; Johansson, L. B. A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 12 (2012), s. 16141-16156 E-ISSN 1422-0067 R&D Projects: GA ČR GAP208/10/1090; GA ČR GAP208/10/0376 Institutional support: RVO:61388955 Keywords : FRET * lipid domains * pores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  16. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  17. Theoretical-experimental assessment of the variables affecting fretting of Atucha I nuclear power plant utility steam generators tubes

    International Nuclear Information System (INIS)

    Kulichevsky, Raul M.

    1995-01-01

    Fretting wear of Steam Generator tubes caused by flow induced vibrations generates uncertainty on their integrity. The knowledge of the controlling variables of the wear process may give a criterion to evaluate the tubes residual life. Information on vibratory response and dynamic interaction between tubes and their supports are prerequisites for understanding the relationship between fretting wear and tube vibration. Experimental results of the vibratory response of an Atucha-I nuclear power plant type U-tube, the influence of tube/support clearance on this response and a study of tube/support dynamic interaction, which allow the verification of a finite element model of this type of tubes, are presented in this work. Also wear results for the Incoloy 800/DIN 1.4550 austenitic stainless steel pair of materials and a first evaluation of the wear constant of this pair are presented. (author)

  18. A QM-MD simulation approach to the analysis of FRET processes in (bio)molecular systems. A case study: complexes of E. coli purine nucleoside phosphorylase and its mutants with formycin A.

    Science.gov (United States)

    Sobieraj, M; Krzyśko, K A; Jarmuła, A; Kalinowski, M W; Lesyng, B; Prokopowicz, M; Cieśla, J; Gojdź, A; Kierdaszuk, B

    2015-04-01

    Predicting FRET pathways in proteins using computer simulation techniques is very important for reliable interpretation of experimental data. A novel and relatively simple methodology has been developed and applied to purine nucleoside phosphorylase (PNP) complexed with a fluorescent ligand - formycin A (FA). FRET occurs between an excited Tyr residue (D*) and FA (A). This study aims to interpret experimental data that, among others, suggests the absence of FRET for the PNPF159A mutant in complex with FA, based on novel theoretical methodology. MD simulations for the protein molecule containing D*, and complexed with A, are carried out. Interactions of D* with its molecular environment are accounted by including changes of the ESP charges in S1, compared to S0, and computed at the SCF-CI level. FRET probability W F depends on the inverse six-power of the D*-A distance, R da . The orientational factor 0 < k(2) < 4 between D* and A is computed and included in the analysis. Finally W F is time-averaged over the MD trajectories resulting in its mean value. The red-shift of the tyrosinate anion emission and thus lack of spectral overlap integral and thermal energy dissipation are the reasons for the FRET absence in the studied mutants at pH 7 and above. The presence of the tyrosinate anion results in a competitive energy dissipation channel and red-shifted emission, thus in consequence in the absence of FRET. These studies also indicate an important role of the phenyl ring of Phe159 for FRET in the wild-type PNP, which does not exist in the Ala159 mutant, and for the effective association of PNP with FA. In a more general context, our observations point out very interesting and biologically important properties of the tyrosine residue in its excited state, which may undergo spontaneous deprotonation in the biomolecular systems, resulting further in unexpected physical and/or biological phenomena. Until now, this observation has not been widely discussed in the

  19. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  20. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...

  1. TECHNIQUE OF TESTING ON FRETTING AT THE SPHERE-TO-PLANE CONTACT

    Directory of Open Access Journals (Sweden)

    А. Khimko

    2012-12-01

    Full Text Available  The methodology of conducting tests on fretting at the sphere-to-plane contact was developed for the wing mechanization unit, namely for screw-nut pair with intermediate balls. Wearability tests were conducted on a modified installation МФК-1, the feature of which is the designed holder that allows testing with real balls. It was found that at the dry contact of ШХ-15 and 30Х2НВФA materials, surface microcracks are formed due to welding of microasperities areas and their rupture under the influence of vibration.

  2. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  3. Probing nucleic acid interactions and pre-mRNA splicing by Förster resonance energy transfer (FRET) microscopy

    Czech Academy of Sciences Publication Activity Database

    Šimková, Eva; Staněk, David

    2012-01-01

    Roč. 13, č. 11 (2012), s. 14929-14945 E-ISSN 1422-0067 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : FRET * FLIM * acceptor photobleaching * RNA interactions * spliceosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.464, year: 2012

  4. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  5. Fretting fatigue cracking of a center guide bolt supporting the combustion chamber in a heavy-duty gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Fischer, Boromir; Gaedicke, Tobias [Siemens AG, Energy Sector, Gasturbinenwerk Berlin (Germany). Werkstoffprueflabor

    2018-04-01

    The slotted center guide bolt of the center guide feature of the lower part of the outer shell of an annular combustion chamber was found fractured in a heavy-duty gas turbine engine used for power generation, after approximately 5.500 operating hours. The incident was a one-off event and not a recurring incident. No similar events were reported from the fleet; hence the failure was not considered a field issue. The metallurgical root cause investigation that was ordered to determine the failure mechanism revealed that the incident center guide bolt failed by fretting fatigue cracking, a high cycle fatigue (HCF) phenomenon.

  6. FRET based integrated pyrene-AgNPs system for detection of Hg (II) and pyrene dimer: Applications to environmental analysis

    Science.gov (United States)

    Walekar, Laxman S.; Hu, Peidong; Vafaei Molamahmood, Hamed; Long, Mingce

    2018-06-01

    The integrated system of pyrene and cetyltrimethyl ammonium bromide (CTAB) capped silver nanoparticles (AgNPs) with a distance (r) of 2.78 nm has been developed for the detection of Hg (II) and pyrene dimer. The interaction between pyrene and AgNPs results in the fluorescence quenching of pyrene due to the energy transfer, whose mechanism can be attributed to the Forster Resonance Energy Transfer (FRET) supported by experimental observation and theoretical calculations. The developed probe shows a highly selective and sensitive response towards Hg (II) probably due to the amalgam formation, which results in the fluorescence recovery (90%) of pyrene and color change of solution from yellowish brown to colorless. The addition of Hg (II) may increase the distance between pyrene and AgNPs undergoes the 'FRET OFF' process. This system gives a selective response towards Hg (II) over other competing metal ions. Under the optimal condition, the system offers good linearity between 0.1 and 0.6 μg mL-1 with a detection limit of 62 ng mL-1. In addition, the system also provides an effective platform for detection of pyrene in its dimer form even at very low concentrations (10 ng mL-1) on the surface of AgNPs. Therefore, it could be used as effective alternatives for the detection of Hg (II) as well as pyrene simultaneously.

  7. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  8. The role of two-phase coolant in moderating fretting in nuclear steam generators

    International Nuclear Information System (INIS)

    Dyke, J.M.

    2004-01-01

    This paper expands the principal of coolant-cushioning in Nuclear Steam Generators whereby the two-phase coolant, especially the bubble film on the tube surface, moderates the vibration of coolant tubes against their supports. The current paper addresses tube bundle and anti-vibration bars (AVB) geometry issues; examines the tube bundle-coolant-AVB interfaces and examines implications for recirculation flow, AVB design and boiler size. In a T(sat) fluid, the tube surface is uniformly coating with growing bubbles whose momentum is perpendicular to the surface at first, then they are swept away by the bulk flow. The combination of this momentum, the phase change and the water film remaining on the surface, counteract the vibration energy of the tube-AVB system, reducing the likelihood of metal-to-metal contact and consequent fretting. To maximize the benefit of the cushioning effect, the following design inputs are needed: 1) the AVB-tube interface should have sufficient clearance for the T(sat) solution to operate, 2) The AVB should be wide enough to generate the necessary cushioning force, and 3) the AVB should be thin enough to be flexible and absorb some of the transferred vibration energy. Furthermore, fretting and crude deposition at the AVB-tube interface can be reduced or eliminated by reducing the number of AVBs, increasing clearances and making the AVBs limber

  9. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  10. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  11. Subunit rotation in a single FoF1-ATP synthase in a living bacterium monitored by FRET

    Science.gov (United States)

    Seyfert, K.; Oosaka, T.; Yaginuma, H.; Ernst, S.; Noji, H.; Iino, R.; Börsch, M.

    2011-03-01

    FoF1-ATP synthase is the ubiquitous membrane-bound enzyme in mitochondria, chloroplasts and bacteria which provides the 'chemical energy currency' adenosine triphosphate (ATP) for cellular processes. In Escherichia coli ATP synthesis is driven by a proton motive force (PMF) comprising a proton concentration difference ΔpH plus an electric potential ΔΨ across the lipid membrane. Single-molecule in vitro experiments have confirmed that proton-driven subunit rotation within FoF1-ATP synthase is associated with ATP synthesis. Based on intramolecular distance measurements by single-molecule fluorescence resonance energy transfer (FRET) the kinetics of subunit rotation and the step sizes of the different rotor parts have been unraveled. However, these experiments were accomplished in the presence of a PMF consisting of a maximum ΔpH ~ 4 and an unknown ΔΨ. In contrast, in living bacteria the maximum ΔpH across the plasma membrane is likely 0.75, and ΔΨ has been measured between -80 and -140 mV. Thus the problem of in vivo catalytic turnover rates, or the in vivo rotational speed in single FoF1-ATP synthases, respectively, has to be solved. In addition, the absolute number of functional enzymes in a single bacterium required to maintain the high ATP levels has to be determined. We report our progress of measuring subunit rotation in single FoF1-ATP synthases in vitro and in vivo, which was enabled by a new labeling approach for single-molecule FRET measurements.

  12. Intonation and compensation of fretted string instruments

    Science.gov (United States)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  13. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  14. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    Science.gov (United States)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  15. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  16. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  17. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  18. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  19. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity.

    Science.gov (United States)

    Shi, Jingyu; Guo, Jiubiao; Bai, Gongxun; Chan, Chunyu; Liu, Xuan; Ye, Weiwei; Hao, Jianhua; Chen, Sheng; Yang, Mo

    2015-03-15

    Botulinum neurotoxins (BoNTs) are among the most potent toxic bacterial proteins for humans, which make them potential agents for bioterrorism. Therefore, an ultrasensitive detection of BoNTs and their active states is in great need as field-deployable systems for anti-terrorism applications. We report the construction of a novel graphene oxide (GO)-peptide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of the BoNT serotype A light chain (BoNT-LcA) protease activity. A green fluorescence protein (GFP) modified SNAP-25 peptide substrate (SNAP-25-GFP) was optimally designed and synthesized with the centralized recognition/cleavage sites. This FRET platform was constructed by covalent immobilization of peptide substrate on GO with BSA passivation which have advantages of low non-specific adsorption and high stability in protein abundant solution. BoNT-LcA can specifically cleave SNAP-25-GFP substrate covalently immobilized on GO to release the fragment with GFP. Based on fluorescence signal recovery measurement, the target BoNT-LcA was detected sensitively and selectively with the linear detection range from 1fg/mL to 1pg/mL. The limit of detection (LOD) for BoNT-LcA is around 1fg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  1. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  2. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    Science.gov (United States)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  3. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  4. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  5. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  6. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET

    Czech Academy of Sciences Publication Activity Database

    Fessl, Tomáš; Adamec, František; Polívka, Tomáš; Foldynová-Trantírková, Silvie; Vácha, František; Trantírek, L.

    2012-01-01

    Roč. 40, č. 16 (2012), s. 10 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60220518 Keywords : in-cell FRET * fluorescence * DNA * nucleic acid * ATTO * in vivo Subject RIV: BO - Biophysics Impact factor: 8.278, year: 2012

  7. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    International Nuclear Information System (INIS)

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  8. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  9. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  10. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  11. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  12. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  13. Fretting-wear characteristics of steam generator tubes contacting with foreign object

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    Fretting-wear characteristics of steam generator tubes contacting with foreign object has been investigated in this study. The operating steam generator shell-side flow field conditions are obtained from three-dimensional steam generator flow calculation using a well-validated steam generator thermal-hydraulic analysis computer code. Modal analyses are performed for the finite element modelings of tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of a steam generator tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. In addition, the effects of internal pressure and flow velocity on the remaining life of the tube are discussed in this paper

  14. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  15. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  16. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  17. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  18. Assessment of fretting wear in Hanaro fuel

    International Nuclear Information System (INIS)

    Chae, Hee Taek; Lim, Kyeong Hwan; Kim, Hark Rho

    1999-06-01

    Since the first fuel loading on Feb. 1995, various zero-power tests were performed in HANARO and power ascending tests followed. After the initial fuel loading, Hanaro operation staffs inspected only two fuel bundles which were evaluated to have the highest power at the end of each cycle and they did not recognize anything peculiar in the inspected bundles. At the end of 1996, Hanaro staffs found severe wear damages in the fuel components. After that, the 4th cycle core was re-arranged with fresh fuels only to investigate wear phenomena on the fuel components. The fuel inspections have been performed 25 times periodically since the core re-configuration. In this report, fretting wear characteristics of the fuel assemblies were evaluated and summarized. Wear damages of the improved fuel assembly to resolve the wear problem were compared with those of the original fuel assembly. Based on the results of the fuel inspections, we suggest that fuel inspection need not be done for the first 60 pump operation days in order to reduce the potential of damage by a fuel handling error and an operator's burden of the fuel inspection. (author). 6 refs., 10 tabs., 5 figs

  19. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  20. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  1. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    Science.gov (United States)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  3. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  4. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    International Nuclear Information System (INIS)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-01-01

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  5. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqi; Sun, Li [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Qian, Jing [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Chengke [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Liu, Qian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Han, En [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Hao, Nan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Zhang, Liuping [Sinograin Zhenjiang Grains & Oils Quality Testing Center Co., Ltd., Zhenjiang, 212013 (China); Cai, Jianrong, E-mail: jrcai@ujs.edu.cn [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  6. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  7. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  8. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  9. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Science.gov (United States)

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  11. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  12. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  13. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  14. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  15. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  16. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  17. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  18. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors

    Science.gov (United States)

    Jones, Alexander M; Danielson, Jonas ÅH; ManojKumar, Shruti N; Lanquar, Viviane; Grossmann, Guido; Frommer, Wolf B

    2014-01-01

    Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001 PMID:24737862

  19. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  20. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  1. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  2. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  3. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  4. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  5. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  6. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  7. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  9. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  10. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Science.gov (United States)

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  12. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  13. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  14. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  15. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  16. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  17. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  18. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  19. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  20. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry.

    Science.gov (United States)

    Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff

    2010-03-23

    As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."

  1. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  2. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  3. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  4. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  5. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein

    NARCIS (Netherlands)

    Nazarov, P.V.; Koehorst, R.B.M.; Vos, W.L.; Apanasovich, V.V.; Hemminga, M.A.

    2007-01-01

    A formalism for membrane protein structure determination was developed. This method is based on steady-state FRET data and information about the position of the fluorescence maxima on site-directed fluorescent labeled proteins in combination with global data analysis utilizing simulation-based

  6. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    Science.gov (United States)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  7. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  8. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Directory of Open Access Journals (Sweden)

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  9. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  10. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  11. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  12. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  13. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  14. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  15. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  16. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  17. Conformational Analysis of Misfolded Protein Aggregation by FRET and Live-Cell Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2015-03-01

    Full Text Available Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS and Huntington’s disease (HD. A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET, fluorescence correlation spectroscopy (FCS, and bimolecular fluorescence complementation (BiFC have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes, and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.

  18. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  19. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  20. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  1. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  2. Time resolved amplified FRET identifies protein kinase B activation state as a marker for poor prognosis in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    James Miles

    2017-12-01

    General significance: The quantitative imaging technology based on Amplified-FRET can rapidly analyse protein activation states and molecular interactions. It could be used for prognosis and assess drug function during the early cycles of chemotherapy. It enables evaluation of clinical efficiency of personalised cancer treatment.

  3. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  4. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  5. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  6. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  7. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  9. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  10. A Series of Fluorescent and Colorimetric Chemodosimeters for Selective Recognition of Cyanide Based on the FRET Mechanism.

    Science.gov (United States)

    Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu

    2017-06-16

    A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.

  11. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  12. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  13. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  14. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  15. Metallurgical Changes in the High Temperature Fretting of Ni and Ti Alloys.

    Science.gov (United States)

    1976-10-01

    a layerstructure on the surface. DO , ~~~~~~~~~~~ 1473 porno .. OP V ~~v ss is o soi..ETE - ; •ECVAITY CLAUIF1CATIOf, Or ThiS PAGE (Nba. D.ta —a-~~S~?~~~~~~~w3 ~~~~~~ Y~*.S 4- - ~~ %..flCt

  16. The use of Fluorescence Resonance Energy Transfer (FRET peptidesfor measurement of clinically important proteolytic enzymes

    Directory of Open Access Journals (Sweden)

    Adriana K. Carmona

    2009-09-01

    Full Text Available Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple pathological conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing a rapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme. The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz as fluorescent group and 2, 4-dinitrophenyl (Dnp or N-(2, 4-dinitrophenylethylenediamine (EDDnp as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo. Recently, Abz/Dnp FRET peptide libraries were developed allowing high-throughput screening of peptidases substrate specificity. This review presents the consolidation of our research activities undertaken between 1993 and 2008 on the synthesis of peptides and study of peptidases specificities.As enzimas proteolíticas têm um papel fundamental em muitos processos biológicos e estão associadas a vários estados patológicos. Por isso, o estudo da especificidade das peptidases pode ser importante para uma melhor compreensão da função destas enzimas e para o desenvolvimento de inibidores. Os substratos com supressão intramolecular de fluorescência constituem uma excelente ferramenta, pois permitem o monitoramento da reação de forma contínua, proporcionando um método prático e rápido para a determinação da

  17. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  18. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  19. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  20. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  1. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  2. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  3. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  4. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  5. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  6. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  7. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  8. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  9. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  10. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  11. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  12. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  13. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  14. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  15. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  16. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  17. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    Science.gov (United States)

    van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke

    2015-01-01

    The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980

  18. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    Directory of Open Access Journals (Sweden)

    René van der Ploeg

    2015-07-01

    Full Text Available The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl isothiourea (A22 or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors.

  19. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  20. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  1. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  2. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  3. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  4. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  5. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  6. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  7. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  8. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles.

    Science.gov (United States)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1-500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  10. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  11. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  12. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

    Science.gov (United States)

    Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho

    2014-01-01

    Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

  13. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  14. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  15. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  16. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  17. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  18. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  19. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  20. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  1. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  2. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  3. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    Science.gov (United States)

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  4. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  5. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  6. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  7. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  8. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Science.gov (United States)

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  10. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  11. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  12. High-temperature fusion of a multielectron leviton

    Science.gov (United States)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  13. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  14. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  15. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  16. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  17. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  18. Short steel and concrete columns under high temperatures

    Directory of Open Access Journals (Sweden)

    A. E. P. G. A. Jacintho

    Full Text Available The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

  19. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  20. Room-temperature luminescence decay of colloidal semiconductor quantum dots: Nonexponentiality revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bodunov, Evgeny N. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Danilov, Vladimir V. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Vavilov State Optical Institute, St. Petersburg (Russian Federation); Panfutova, Anastasia S. [Vavilov State Optical Institute, St. Petersburg (Russian Federation); Simoes Gamboa, A.L. [Center of Information Optical Technologies, ITMO University, St. Petersburg (Russian Federation)

    2016-04-15

    While time-resolved luminescence spectroscopy is commonly used as a quantitative tool for the analysis of the dynamics of photoexcitation in colloidal semiconductor quantum dots, the interpretation of the virtually ubiquitous nonexponential decay profiles is frequently ambiguous, because the assumption of multiple discrete exponential components with distinct lifetimes for resolving the decays is often arbitrary. Here, an interpretation of the room-temperature luminescence decay of CdSe/ZnS semiconductor quantum dots in colloidal solutions is presented based on the Kohlrausch relaxation function. It is proposed that the decay can be understood by using the concept of Foerster resonance energy transfer (FRET) assuming that the role of acceptors of photoexcitation energy is played by high-frequency anharmonic molecular vibrations in the environment of the quantum dots. The term EVFRET (Electronic - Vibrational Foerster Resonance Energy Transfer) is introduced in order to unequivocally refer to this energy transfer process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  2. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  3. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  4. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  5. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  6. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  7. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  8. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  9. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  10. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  11. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  12. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  13. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  14. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  15. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  16. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  17. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  18. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  19. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  20. High-temperature morphology of stepped gold surfaces

    International Nuclear Information System (INIS)

    Bilalbegovic, G.; Tosatti, E.; Ercolessi, F.

    1992-04-01

    Molecular dynamics simulations with a classical many-body potential are used to study the high-temperature stability of stepped non-melting metal surfaces. We have studied in particular the Au(111) vicinal surfaces in the (M+1, M-1, M) family and the Au(100) vicinals in the (M, 1, 1) family. Some vicinal orientations close to the non-melting Au(111) surface become unstable close to the bulk melting temperature and facet into a mixture of crystalline (111) regions and localized surface-melted regions. On the contrary, we do not find high-temperature faceting for vicinals close to Au(100), also a non-melting surface. These (100) vicinal surfaces gradually disorder with disappearance of individual steps well below the bulk melting temperature. We have also studied the high-temperature stability of ledges formed by pairs of monoatomic steps of opposite sign on the Au(111) surface. It is found that these ledges attract each other, so that several of them merge into one larger ledge, whose edge steps then act as a nucleation site for surface melting. (author). 43 refs, 8 figs