WorldWideScience

Sample records for high temperature energy

  1. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    Science.gov (United States)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  2. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  3. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  4. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  5. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  6. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  7. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  8. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  9. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  10. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  11. Is there a temperature? conceptual challenges at high energy, acceleration and complexity

    CERN Document Server

    Sándor Biró, Tamás

    2011-01-01

    Physical bodies can be hot or cold, moving or standing,simple or complex. In all such cases one assumes that their respective temperature is a well defined attribute.  What if, however, the ordinary measurement of temperature by direct body contact is not possible?  One conjectures its value, and yes, its very existence, by reasoning based on basic principles of thermodynamics. Is There a Temperature?  Conceptual Challenges at High Energy, Acceleration and Complexity, by Dr. Tamás Sándor Bíró, begins by asking the questions “Do we understand and can we explain in a unified framework the temperature of distant radiation sources, including event horizons, and that of the quark matter produced in high energy accelerator experiments? Or the astounding fluctuations on financial markets?” The book reviews the concept of temperature from its beginnings through the evolution of classical thermodynamics and atomic statistical physics through contemporary models of high energy particle matter.  Based on the...

  12. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  13. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  14. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  15. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  16. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  17. Temperature and doping dependence of the high-energy kink in cuprates.

    Science.gov (United States)

    Zemljic, M M; Prelovsek, P; Tohyama, T

    2008-01-25

    It is shown that spectral functions within the extended t-J model, evaluated using the finite-temperature diagonalization of small clusters, exhibit the high-energy kink in single-particle dispersion consistent with recent angle-resolved photoemission results on hole-doped cuprates. The kink and waterfall-like features persist up to large doping and to temperatures beyond J; hence, the origin can be generally attributed to strong correlations and incoherent hole propagation at large binding energies. In contrast, our analysis predicts that electron-doped cuprates do not exhibit these phenomena in photoemission.

  18. Corrosion behavior of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel. M GHORANNEVISS1, A SHOKOUHY1,∗, M M LARIJANI1,2,. S H HAJI HOSSEINI 1, M YARI1, A ANVARI4, M GHOLIPUR SHAHRAKI1,3,. A H SARI1 and M R HANTEHZADEH1. 1Plasma Physics Research Center, Science ...

  19. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  20. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    Science.gov (United States)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  1. High temperature energy harvesters utilizing ALN/3C-SiC composite diaphragms

    Science.gov (United States)

    Lai, Yun-Ju; Li, Wei-Chang; Felmetsger, Valery V.; Senesky, Debbie G.; Pisano, Albert P.

    2014-06-01

    Microelectromechanical systems (MEMS) energy harvesting devices aiming at powering wireless sensor systems for structural health monitoring in harsh environments are presented. For harsh environment wireless sensor systems, sensor modules are required to operate at elevated temperatures (> 250°C) with capabilities to resist harsh chemical conditions, thereby the use of battery-based power sources becomes challenging and not economically efficient if considering the required maintenance efforts. To address this issue, energy harvesting technology is proposed to replace batteries and provide a sustainable power source for the sensor systems towards autonomous harsh environment wireless sensor networks. In particular, this work demonstrates a micromachined aluminum nitride/cubic silicon carbide (AlN/3C-SiC) composite diaphragm energy harvester, which enables high temperature energy harvesting from ambient pulsed pressure sources. The fabricated device yields an output power density of 87 μW/cm2 under 1.48-psi pressure pulses at 1 kHz while connected to a 14.6-kΩ load resistor. The effects of pulse profile on output voltage have been studied, showing that the output voltage can be maximized by optimizing the diaphragm resonance frequency based on specific pulse characteristics. In addition, temperature dependence of the diaphragm resonance frequency over the range of 20°C to 600°C has been investigated and the device operation at temperatures as high as 600°C has been verified.

  2. Confinement improvement in high-ion temperature plasmas heated with high-energy negative-NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Ikeda, K.

    2006-10-01

    The increase in the ion temperature due to transport improvement has been observed in plasmas heated with high-energy negative-NBI, in which electrons are dominantly heated, in Large Helical Device (LHD). When the centrally focused ECRH is superposed on the NBI plasma, the ion temperature is observed to rise, accompanied by formation of the electron-ITB. This is ascribed to the ion transport improvement with the transition to the neoclassical electron root with a positive radial electric field. In high-Z plasmas, the ion temperature is increased with an increase in the ion heating power, and reaches 13.5keV. The central ion temperature increases with an increase in a gradient of the electron temperature in an outer plasma region of ρ=0.8, suggesting the ion transport improvement in the outer plasma region induced by the neoclassical electron root. These results indicate the effectiveness of the electron-root scenario for obtaining high-ion temperature plasmas in helical systems. (author)

  3. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  4. Effects of temperature in binary-collision simulations of high-energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1981-10-01

    Several hundred cascades ranging from 1 to 500 keV were generated using the binary collision code MARLOWE for primary knock-on atoms (PKAs) with randomly chosen directions in both a non-thermal copper lattice and one having atomic displacements representative of room temperature. To simulate the recombination occurring during localized quenching of the highly excited cascade region, an effective spontaneous recombination radius was applied to reduce the number of defect pairs to be consistent with values extracted from resistivity measurements at 4 0 K. At room temperature fewer widely separated pairs are produced, thus the recombination radius is smaller, however, the recombination radii were found to be independent of energy over the entire energy range investigated for both the cold and room temperature cases. The sizes and other features of the point defect distributions were determined as a function of energy. Differences between cold and room temperature cascade dimensions are small. The room temperature cascades tend to have a greater number of distinct damage regions per cascade, with about the same frequency of widely separated subcascades

  5. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures

    Science.gov (United States)

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R.; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-01-01

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present. PMID:27551101

  6. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  7. High and very high temperature reactor research for multipurpose energy applications

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Fuetterer, Michael; Groot, Sander de; Ruer, Jacques

    2011-01-01

    Ten years ago, the European High Temperature Reactor (HTR) Technology Network (HTR-TN) launched a programme for developing HTR Technology, which expanded so far through 4 successive Euratom Framework Programmes. Many projects have been performed - in particular the RAPHAEL project in the 6th Euratom Framework Programme and presently ARCHER in the 7th - in line with the Network strategy that identified cogeneration of process heat and power as the main specific mission of HTR. HTR can indeed address the growing energy needs of industry presently fully relying on fossil fuel combustion with a CO 2 -lean generation technology, thanks to its high operating temperature and to its unique flexibility obtained from its large thermal inertia and its low power. Relying on the legacy of the former European leadership in HTR technology, this programme has addressed specific developments required for industrial process heat applications and for increasing HTR performances (higher temperatures and fuel burn-up). Decisive achievements have been obtained concerning fuel manufacturing and irradiation behaviour, key components and their materials, safety, computer code validation and specific HTR waste (fuel and graphite) management. Key experiments have been performed or are still ongoing: irradiation of graphite, fuel and vessel materials and the corresponding post-irradiation examinations, safety tests and isotopic analyses; thermal-hydraulic tests of an Intermediate Heat Exchanger mock-up in helium; air ingress experiments for a block type core, etc. Through Euratom participation in the Generation IV International Forum (GIF), these achievements contribute to international cooperation. HTR-TN strategy has been recently integrated by the 'Sustainable Nuclear Energy Technology Platform' (SNE-TP) as one of the 3 'pillars' of its global nuclear strategy. It is also in line with the orientations and the timing of the 'Strategic Energy Technology Plan (SET-Plan)' for the development

  8. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    Science.gov (United States)

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  9. High temperature semiconductor diode laser pumps for high energy laser applications

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  10. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  11. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    Science.gov (United States)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  12. Extrapolation procedures for calculating high-temperature gibbs free energies of aqueous electrolytes

    International Nuclear Information System (INIS)

    Tremaine, P.R.

    1979-01-01

    Methods for calculating high-temprature Gibbs free energies of mononuclear cations and anions from room-temperature data are reviewed. Emphasis is given to species required for oxide solubility calculations relevant to mass transport situations in the nuclear industry. Free energies predicted by each method are compared to selected values calculated from recently reported solubility studies and other literature data. Values for monatomic ions estimated using the assumption anti C 0 p(T) = anti C 0 p(298) agree best with experiment to 423 K. From 423 K to 523 K, free energies from an electrostatic model for ion hydration are more accurate. Extrapolations for hydrolyzed species are limited by a lack of room-temperature entropy data and expressions for estimating these entropies are discussed. (orig.) [de

  13. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  14. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    Science.gov (United States)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  15. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  16. Evaluation of Dynamic Reversible Chemical Energy Storage with High Temperature Electrolysis

    OpenAIRE

    McVay, Derek Joseph

    2017-01-01

    Renewable power generation is intermittent and non-dispatchable, but is steadily increasing in penetration due to lower costs associated with installation and demand for clean power generation. Without significant energy storage available to a grid with high renewable penetration, a mismatch between the load and the power available can. Furthermore, advanced high temperature nuclear reactors offer clean power generation, but only at a baseload operation scenario due to the significant thermal...

  17. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  18. Solidification of high temperature molten salts for thermal energy storage systems

    Science.gov (United States)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  19. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  20. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  1. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  2. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  3. Dipolon theory of energy gap parameters at finite temperature and transition temperatures Tc and T* in high-temperature superconductors

    International Nuclear Information System (INIS)

    Sharma, R.R.

    2006-01-01

    First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k->,ω), the gap renormalization parameter Z(k->,ω) and energy band renormalization parameter χ(k->,ω) for momentum k-> and frequency ω making use of dipolon propagator and electron Green's function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (''as'') with respect to the exchange of the k x and k y components of vector k-> and the other being symmetric (''s'') with respect to the exchange of k x and k y . Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k->,ω), Z(k->,ω) and χ(k->,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (''reg'') superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(''pse-'') energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2 Sr 2 CaCu 2 O 8+δ as well as Bi 2 Sr 2 CaCu 2 O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental

  4. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  5. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  6. Impacts of convection on high-temperature aquifer thermal energy storage

    Science.gov (United States)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  7. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  8. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  9. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  10. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  11. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  12. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  13. 9th international conference on high-temperature reactors - coal and nuclear energy for electricity and gas generation

    International Nuclear Information System (INIS)

    Kelber, G.

    1987-01-01

    The site of the high-temperatur reactor in the Ruhr region neighbouring on a coal-fired power plant is not accidental. The potential of the high-temperature reactor as a central plant element for the supply of heat for heating purposes and process heat covers also the possibility of coal gasification and liquefaction. Therefore the high-temperature reactor is, in the long term, a ray of hope for the coal region, able to compensate for the production-related competitive disadvantages of local coal. It can contribute to guaranteeing in the long term the task of German hard coal as an essential pillar of our energy supply. The VGB as a technical association of thermal power plant operators is particularly committed to the integration of coal and nuclear energy. Within the bounds of its possibilities, it will contribute to promoting the safe and environmentally beneficial generation of electricity from the two primary energy sources. (orig./DG) [de

  14. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  15. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  16. Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands

    NARCIS (Netherlands)

    Wesselink, Maxim; Liu, Wen; Koornneef, Joris; van den Broek, Machteld

    2018-01-01

    High temperature aquifer thermal energy storage (HT-ATES) can contribute to the integration of renewable energy sources in the energy system, the replacement of fossil fuel-based heat supply and the utilization of surplus heat from industrial sources. However, there is limited understanding on the

  17. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  18. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  19. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  20. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  1. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  2. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. Coal-fired combined plants and power stations with high-temperature reactors for the energy supply of tomorrow

    International Nuclear Information System (INIS)

    Knizia, K.; Simon, M.

    1989-01-01

    Dwindling resources as well as threatening climatic changes caused by CO 2 seem to make it necessary to increase the energy conversion processes which promise a relief with regard to both problematic situations. Promising are the development of the combined gas and steam turbine process for the electricity generation from coal, as well as that of the high-temperature reactor, which enables besides the generation of electric energy the provision of heat at a high temperature range, too. The combination of these two components in a partly modified form allows, moreover, the provision of a number of gaseous energy carriers. The authors present these two components in detail, describe their development stage, as well as their existing development potential. (orig.) [de

  5. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  6. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  7. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  8. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Hamilton, M.L.; Maloy, S.A.

    2003-01-01

    This study examines the effect of tensile test temperatures ranging from 50 to 600 deg. C on the tensile properties of a modified 9Cr-1Mo ferritic steel after high energy proton irradiation at about 35-67 deg. C to doses from 1 to 3 dpa and 9 dpa. For the specimens irradiated to doses between 1 and 3 dpa, it was observed that the yield strength and ultimate strength decreased monotonically as a function of tensile test temperature, whereas the uniform elongation (UE) remained at approximately 1% for tensile test temperatures up to 250 deg. C and then increased for tensile test temperatures up to and including 500 deg. C. At 600 deg. C, the UE was observed to be less than the values at 400 and 500 deg. C. UE of the irradiated material tensile tested at 400-600 deg. C was observed to be greater than the values for the unirradiated material at the same temperatures. Tensile tests on the 9 dpa specimens followed similar trends

  9. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  10. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  11. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  12. Methods for efficient usage of energy and materials in high temperature metallurgical processes; Methoden zur Energie- und Stoffeffizienz in der metallurgischen Hochtemperaturtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Reinhard; Stuermer, Thomas [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Energieverfahrenstechnik

    2012-07-15

    Metallurgy belongs to the most energy intensive industries where the chain of processes, from materials production to materials recycling, proceeds typically at high temperatures. The higher the process temperature, the more valuable is energy recovery. In parallel with the current trends of improving energy efficiencies, one observes an increase of energy conversion costs in conversion processes of both fossil fuels and renewable energy sources. The paper is concerned with methods of improving energy efficiencies, as well as, with establishing their maximum values determined by the thermodynamics of the metallurgical processes considered. In a number of processes, for example in the blast furnace process of pig iron production, these thermodynamic limits have been reached. Then, if the prices of raw materials and/or energy (electricity produced either from fossil fuels or from renewables) are on the rise, the industry does not have any other option but increasing the final product prices which obviously affect competitiveness. (orig.)

  13. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  14. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  15. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  16. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  17. Temperatures of fragment kinetic energy spectra

    International Nuclear Information System (INIS)

    Bauer, W.

    1995-01-01

    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework

  18. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  19. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  20. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  1. A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors -- possible evidence of spinon and holon branches

    International Nuclear Information System (INIS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2006-01-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E 1 approx 0.38eV and E 2 approx 0.8 eV. E 1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Gamma point at approx 0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E 1 and E 2 . Above E 2 , a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T c cuprates

  2. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  3. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  4. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  5. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao; Yamaguchi, Kazuo; Ueno, Seiichi.

    1987-11-01

    The objectives of the systems analysis study on ''The Role of High Temperature Nuclear Heat in Future Energy Systems'' under the cooperative research program between Japan Atomic Energy Research Institute and the Massachusetts Institute of Technology are to analyze the effect and the impact of introduction of high temperature nuclear heat in Japanese long-term energy systems aiming at zero environmental emissions from view points of energy supply/demand, economy progress, and environmental protection, and to show the potentials of involved technologies and to extract the associated problems necessary for research and developments. This report describes the results being obtained in these three years from 1985. The present status of our energy system are explained at first, then, our findings concerning on analytical approach, method for analysis, view points to the future, scenario state space, reference energy systems, evolving technologies in it, and results analyzed are described. (author)

  6. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  7. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  8. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  9. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  10. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  11. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  12. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  13. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  14. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  16. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  17. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  18. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  19. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  20. High Temperature Solid State Lithium Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  1. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  2. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  3. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  4. Fusion energy for alternate applications: the design of a high temperature falling bed as a long-lived blanket

    International Nuclear Information System (INIS)

    Harkness, S.D.; Stevens, H.C.; Hall, M.M.; Gohar, M.Y.A.; de Paz, J.F.

    1979-01-01

    The high temperature falling bed conceptual design work has consisted of a coordinated effort in neutronics, materials science, thermal hydraulics and mechanical design. The neutronics work has been based on a one-dimensional transport analysis and has been used to scope the implication of blanket dimensions, breeding materials, ceramic pebble material and coolant choice on both tritium breeding capabilities and energy deposition into the high temperature region of the blanket. The materials science effort has concentrated on defining the selection of a particular ceramic material. The thermal hydraulic analysis has been concerned with sizing the heat transfer system and defining the temperature gradients in the high temperature blanket. The mechanical design work has evaluated how such a system might be constructed from the point of view of maintainability and structural support

  5. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  6. Study on the erosion of refractory metals in interaction with low energy ions at high temperatures of a target

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.; Feoktistov, L.V.

    1981-01-01

    The experimental study on the erosion of a polycrystalline tungsten by argon ions with 50-100 eV energy in the temperature range 1000-1900 K is carried out and a theoretical analysis of sputtering rate under these conditions is given. It is shown that the sputtering rate is determined not only by ion energy but depends essentially on surface temperature. On the basis of the thermal spot'' model a semiempiric formula is obtained for dependence of sputtering coefficient on ion energy and target temperature. The estimation of cathode specific errosion in high-current discharges due to the sputtering and evaporation is performed. It is shown that depending on cathode temperature, cathode potential jump value as well as on relation of ion and electron current on a cathode the specific erosion due to individual ions shock can be higher and much higher than the specific erosion for account of evaporation [ru

  7. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  8. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  9. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  10. Ion temperature measurement by neutral energy analyzer in high-field tokamak TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The measurement of the ion temperature of the TRIAM-1 tokamak plasma is carried out by using a seven-channel neutral energy analyzer. The temporal and spatial variations of the ion temperature have been obtained with the spatial resolution of +-4.3 mm and the temporal resolution of 100 ..mu..sec. The energy range of the analyzed neutral particles is from 0.2 to 8 keV. The energy spectrum in the TRIAM-1 plasma without the strong gas puffing usually consists of two-component Maxwellian; the one represents the thermal part which is a superposition of the contribution from a hot region (T sub(i) = 100 - 300 eV) and that from an edge region (T sub(i) asymptotically equals 50 eV), and the other represents the superthermal part (T sub(i) asymptotically equals 1 keV). The neutral particle energy spectra at several vertical positions are obtained by scanning the analyzer in the vertical direction. From those spectra, the radial profile of the ion temperature is derived by means of the nonlinear optimization method.

  11. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  12. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  13. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  14. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  15. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  16. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  17. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    Science.gov (United States)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  18. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  19. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  20. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  1. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  2. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  3. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  4. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-01

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  5. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  6. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  7. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  8. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  9. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  11. Japanese HTTR program for demonstration of high temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shiozawa, S.

    1997-01-01

    Construction works of the HTTR started in March 1991 in order to establish and upgrade the HTGR technology basis, to carry out innovative basic researches on high temperature engineering and to demonstrate high temperature heat utilization and application of nuclear heat. This report describes the demonstration program of high temperature heat utilization and application. (author). 2 refs, 4 figs, 3 tabs

  12. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  13. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  14. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  15. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  16. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  17. Investigation on the bisoliton mechanism of high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang Lingyun; Li Bozang; Pu Fucho; Lin Jiatih

    1996-01-01

    Microscopic parameters in the Davydov model are calculated on the basis of the bisoliton idea. The energy gap is obtained from combining the condition for the solution of Davydov's equation with the condensation energy of the superconductive state in zero field, and some characteristic parameters of high-temperature superconductors such as coherence length, penetration depth, and density of critical current for a thin film in weak magnetic field are given. It is also proved that lattice displacement in Davydov's equation satisfies the φ 4 field form. The critical temperature and the coefficient of linear specific heat of high-temperature superconductors are studied from the statistics of lattice kinks. The agreement between theoretical and experimental values for YBaCuO oxide ceramics suggests that the bisoliton model gives a reasonable explanation of high-temperature superconductivity. (orig.)

  18. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  19. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  20. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  1. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  2. Energy saving by hot operating bearings in high temperature kilns. Final report; Energieeinsparung durch Heisslager in Hochtemperaturanlagen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.R.

    2003-07-01

    The project intended to show that ceramic sliding bearings will ensure longer life, energy and cost savings, reduced environmental pollution, and functional improvements. Ceramic sliding bearings were tested at high temperatures of up to 1400 C and low sliding rates, with and without lubrication. High-temperature test stands were constructed in the two partner institutes and adapted to the specifications of the industrial partners concerning the parameters to be investigated. (orig.) [German] Ziel des Forschungsvorhabens 'Energieeinsparung durch Heisslager in Hochtemperaturanlagen' (EHIH) ist nachzuweisen, dass durch den Einsatz von keramischen Gleitlagern im Hochtemperaturbereich Standzeiterhoehungen, Energie- und Kosteneinsparungen, Umweltentlastungen und Funktionsverbesserungen moeglich sind. Auf der Basis der Anforderungsprofile der Industrie- und Forschungspartner waren umfangreiche Verschleisstests keramischer Gleitlager bei hohen Temperaturen (bis 1400 C) sowie niedrigen Gleitgeschwindigkeiten ohne und mit Feststoff-Schmierung vorgesehen. Hierzu wurden an beiden beteiligten Instituten Hochtemperatur-Pruefstaende aufgebaut, die den Anforderungen der jeweiligen Industriepartner hinsichtlich der zu testenden Lagerparameter (Drehzahl, Flaechenpressung, Temperaturprofile, etc.) angepasst wurden. (orig.)

  3. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Sigeru; Mankin, Shuichi; Tadokoro, Yoshihiro; Sato, Osamu; Yamaguchi, Kazuo; Ueno, Seiichi

    1986-11-01

    This report describes the analytical results being made in the study on the role of Very High Temperature Reactor and nuclear process heat utilization in future energy system, which is aimed at zero emission. In the former part of the report, the modeling of the reference energy system, main characteristics of energy technologies, and scenario indicators as well as system behavioral objectives for optimization are explained. In the latter part, analytical results such as the time-period variation of overall energy utilization efficiency, energy supply/demand structure in long-terms, energy contribution and economic competition of new energy technologies, environmental effluents released through verious energy activities, impacts to and from national economy, and some sensitivity analyses, are reviewed. (author)

  4. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  5. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  6. The high temperature behavior of In2O3

    NARCIS (Netherlands)

    Wit, J.H.W. de

    The electrical conductivity of In2O3 has been measured up to 1400°C in air. The temperature dependence of the conductivity at high temperatures yields an activation energy of 1.5 ± 0.1 eV. This activation energy is interpreted in terms of a nonstoichiometric decomposition of the compound. This

  7. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2001-01-01

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H 2 ) may become a significant application. The technology to produce H 2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  8. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)

    OpenAIRE

    Angelo Algieri

    2018-01-01

    This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs) for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca). The investigation illustrates the significant effect of the temperature at the entrance...

  9. High temperature expansions for the free energy of vortices respectively the string tension in lattice gauge theories

    International Nuclear Information System (INIS)

    Muenster, G.

    1980-05-01

    We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)

  10. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  11. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of cold deformation on latent energy value and high-temperature mechanical properties of 12Cr18Ni10Ti steel

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Shiganakov, Sh.B.; Gusev, M.N.

    1997-01-01

    Energetic and magnetic characteristics and also the high-temperature mechanical properties depending on the preliminary cold deformation of 12Cr18Ni10Ti steel are presented. It is shown that the value of storage energy in the steel has being grown with increase of the deformation. The rate of its growth has been increased after beginning of martensitic γ→α'- transformation when value of comparative storage energy at first decreased and then has been stay practically constant. Level of mechanical properties of the steel at 1073 K has been determined not only by value of cold deformation but and structural reconstruction corresponding to deformations 35-45% and accompanying with α'-phase martensite formation and change of energy accumulating rate. Preliminary cold deformation (40-60 %) does not improve high- temperature plasticity of steel samples implanted by helium. refs. 7, figs. 2

  13. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  14. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  15. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  16. The High Field Path to Practical Fusion Energy

    Science.gov (United States)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  17. Heavy quark free energies for three quark systems at finite temperature

    International Nuclear Information System (INIS)

    Huebner, Kay; Karsch, Frithjof; Kaczmarek, Olaf; Vogt, Oliver

    2008-01-01

    We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations.

  18. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  19. Integration of body temperature into the analysis of energy expenditure in the mouse.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L

    2015-06-01

    We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic) was measured using continuous monitoring. Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4-16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3 (-/y) mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  20. Quark self-energy beyond the mean field at finite temperature

    International Nuclear Information System (INIS)

    Zhuang, P.

    1995-01-01

    The Nambu--Jona-Lasinio model, an effective low-energy model of QCD, is extended to the next to the leading order in the 1/N c expansion at finite temperature and density. The contributions to the quark self-energy and the constituent quark mass from the meson dressing are considered in a perturbative approach about the mean field. In particular, the temperature dependence of the quark mass is shown numerically at zero chemical potential. The correction to the quark mass from the meson dressing amounts to 20% compared to the result of the leading order at low temperature, and rapidly approaches zero at high temperature

  1. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  2. Nuclear heat for high temperature fossil fuel processing

    International Nuclear Information System (INIS)

    Walton, G.N.

    1981-01-01

    This is a report of a one-day symposium held at the Royal Institution, London, on 28 April 1981. It was organized by the Institute of Energy (London and Home Counties section) under the chairmanship of Dr A M Brown with the assistance of the Institute of Energy's Nuclear Special Interest Group. The following five papers were presented (available as a booklet, from the Institute of Energy, price Pound12.00): 1) The Dragon project and the High Temperature Reactor (HTR) position. Dr L Shepherd, UKAEA, Winfrith. 2) Coal gasification technology. Dr M St J Arnold, NCB, Stoke Orchard Laboratories. 3) The utilization of nuclear energy for coal gasification. Dr K H van Heek, G Hewing, R Kirchhoff and H J Schroter, Bergbau Forschung, Essen, West Germany. 4) The hydrogen economy. K F Langley, Energy Technology Support Unit, Harwell. 5) Economic perspectives and high temperature reactors. J D Thorn, director, Technical Services and Planning, UKAEA. (author)

  3. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects

    Energy Technology Data Exchange (ETDEWEB)

    Abbene, L., E-mail: leonardo.abbene@unipa.it [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Gerardi, G.; Turturici, A.A.; Raso, G. [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Benassi, G. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, Reggio Emilia 42019 (Italy); Bettelli, M. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Zambelli, N. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, Reggio Emilia 42019 (Italy); Zappettini, A. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Principato, F. [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2016-11-01

    Nowadays, CdZnTe (CZT) is one of the key materials for the development of room temperature X-ray and gamma ray detectors and great efforts have been made on both the device and the crystal growth technologies. In this work, we present the results of spectroscopic investigations on new boron oxide encapsulated vertical Bridgman (B-VB) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Several detectors, with the same electrode layout (gold electroless contacts) and different thicknesses (1 and 2.5 mm), were realized: the cathode is a planar electrode covering the detector surface (4.1×4.1 mm{sup 2}), while the anode is a central electrode (2×2 mm{sup 2}) surrounded by a guard-ring electrode. The detectors are characterized by electron mobility-lifetime product (µ{sub e}τ{sub e}) values ranging between 0.6 and 1·10{sup −3} cm{sup 2}/V and by low leakage currents at room temperature and at high bias voltages (38 nA/cm{sup 2} at 10000 V/cm). The spectroscopic response of the detectors to monochromatic X-ray and gamma ray sources ({sup 109}Cd, {sup 241}Am and {sup 57}Co), at different temperatures and fluxes (up to 1 Mcps), was measured taking into account the mitigation of the effects of incomplete charge collection, pile-up and high flux radiation induced polarization phenomena. A custom-designed digital readout electronics, developed at DiFC of University of Palermo (Italy), able to perform a fine pulse shape and height analysis even at high fluxes, was used. At low rates (200 cps) and at room temperature (T=25 °C), the detectors exhibit an energy resolution FWHM around 4% at 59.5 keV, for comparison an energy resolution of 3% was measured with Al/CdTe/Pt detectors by using the same electronics (A250F/NF charge sensitive preamplifier, Amptek, USA; nominal ENC of 100 electrons RMS). At high rates (750 kcps), energy resolution values of 7% and 9% were measured, with throughputs of 2% and 60% respectively. No radiation polarization phenomena were

  4. Particle energy and Hawking temperature

    International Nuclear Information System (INIS)

    Ding Chikun; Wang Mengjie; Jing Jiliang

    2009-01-01

    Some authors have recently found that the tunneling approach gives a different Hawking temperature for a Schwarzschild black hole in a different coordinate system. In this Letter, we find that to work out the Hawking temperature in a different coordinate system by the tunneling approach, we must use the correct definition of the energy of the radiating particles. By using a new definition of the particle energy, we obtain the correct Hawking temperature for a Schwarzschild black hole in two dynamic coordinate systems, the Kruskal-Szekers and dynamic Lemaitre coordinate systems.

  5. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  6. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  7. High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis -

    International Nuclear Information System (INIS)

    Song, Kee Nam; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$ study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype

  8. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  9. Ion temperature profiles from the plasma center to the edge of ASDEX combining high and low energy CX-diagnostics

    International Nuclear Information System (INIS)

    Verbeek, H.; Heinrich, O.; Schneider, R.; Fahrbach, H.U.; Herrmann, W.; Neuhauser, J.; Stroth, U.; Reiter, D.

    1992-01-01

    The charge exchange (CX) neutral energy distribution from ASDEX measured with the conventional neutral particle analyzers (NPA) at energies >500 eV are combined with the low energy CX spectra from the low energy neutral analyzer (LENA). In the region of overlap their shapes fit each other very well. With the 3D EIRENE code the neutral gas was simulated and ion temperature (T i ) profiles from the center to the edge are obtained. The T i values at the separatrix and the edge based on the LENA data are considerably lower than those suggested earlier from the NPA data. This is attributed to the different energy ranges - high energies for the NPA, low energies for LENA - that are used for the T i evaluation. (orig.)

  10. New deployment of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Tsuchie, Yasuo; Kunitomi, Kazuhiko; Shiozawa, Shusaku; Konuki, Kaoru; Inagaki, Yoshiyuki; Hayakawa, Hitoshi

    2002-01-01

    The high temperature gas-cooled reactor (HTGR) is now under a condition difficult to know it well, because of considering not only power generation, but also diverse applications of its nuclear heat, of having extremely different safe principle from that of conventional reactors, of having two types of pebble-bed and block which are extremely different types, of promoting its construction plan in South Africa, of including its application to disposition of Russian surplus weapons plutonium of less reporting HTTR in Japan in spite of its full operation, and so on. However, HTGR is expected for an extremely important nuclear reactor aiming at the next coming one of LWR. HTGR which is late started and developed under complete private leading, is strongly conscious at environmental problem since its beginning. Before 30 years when large scale HTGR was expected to operate, it advertised a merit to reduce wasted heat because of its high temperature. As ratio occupied by electricity expands among application of energies, ratio occupied by the other energies are larger. When considering applications except electric power, high temperature thermal energy from HTGR can be thought wider applications than that from LWR and so on. (G.K.)

  11. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    Science.gov (United States)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  12. Contact spectroscopy of high-temperature superconductors. Review

    International Nuclear Information System (INIS)

    Yanson, I.K.

    1991-01-01

    We have attempted to systematize the research of high temperature superconductors by means of tunneling and point-contact spectroscopy. The theoretical grounds of the methods are briefly described. The deviations of current-voltage characteristics from ordinary superconductors are considered. The properties of point contacts with direct energy gap measurfements and the fine structure of derivatives of i(v) curves at the overlap energies are reviewed for the high-T c La 2-x Sr x CuO 4 materials

  13. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  14. High Temperature Reactors for a proposed IAEA Coordinated Research Project on Energy Neutral Mineral Development Processes

    International Nuclear Information System (INIS)

    Haneklaus, Nils; Reitsma, Frederik; Tulsidas, Harikrishnan

    2014-01-01

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used to run the HTR for “energy neutral” processing of the primary ore shall be discussed according to the participants needs. This paper specifically focuses on the aspects that need to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project. (author)

  15. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  16. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    Taketani, K.

    1978-01-01

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  17. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  18. Computer Simulation Studies of Ion Channels at High Temperatures

    Science.gov (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  19. Ultra light weight refractory material for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Finke, V.; Kern, H. [Rath GmbH, Meissen (Germany); Springer, M. [Aug. Rath jun. GmbH, Vienna (Austria)

    2007-07-01

    The requirements on companies running high temperature processes, i.e. at temperatures about 1000 C and above, have increased dramatically within the last few years. For technological, economical and ecological purposes each application has to be checked carefully. As well the political discussion regarding environmental pollution, greenhouse effect and emission trading and the guidelines for climate and environmental protection exert massive influence on thermal process technology and pose an appropriate challenge for the companies. Next to costs of labour and raw materials the costs for energy and environmental costs play a decisive role more and more. The pressure on the management thereby incurred may have a lasting effect on innovations regarding increase of energy efficiency, decrease of CO{sub 2}-emission and often on non negligible increase of productivity. Mainly against the background of the highly scheduled European aims for emission reduction and also in consideration of the still proceeding globalisation the usage of state-of-the-art refractory technics in thermal process technology is of particular importance for business success, for reducing of environmental impact and last but not least for conservation and safeguarding of jobs in Europe and Germany. The applications for products made from high-temperature insulation wool in high temperature applications have strongly increased during the last five years. Especially the production capacities of polycrystalline wool (aluminium oxide wool e.g. Altra B72) have been doubled within the last three years. Primarily ultra light weight products made from HTIW are used in industrial furnaces with application temperatures above 1000 C and / or with high thermo-mechanical (thermal shock) and chemical exposure. The outstanding and essential advantages of these materials are obviously: Ultra light weight material with high resilience and flexibility, Optimised energy consumption (energy saving up to 50% compared

  20. High-temperature vitrification of low-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Kielpinski, A.L.; Bickford, D.F.; Cicero, C.A.; Applewhite-Ramsey, A.; Spatz, T.L.; Marra, J.C.

    1995-01-01

    The US Department of Energy (DOE) weapons complex has numerous radioactive waste streams which cannot be easily treated with joule-heated vitrification systems. However, it appears these streams could be treated With certain robust, high-temperature, melter technologies. These technologies are based on the use of plasma torch, graphite arc, and induction heating sources. The Savannah River Technology Center (SRTC), with financial support from the Department of Energy, Office of Technology Development (OTD) and in conjunction with the sites within the DOE weapons complex, has been investigating high-temperature vitrification technologies for several years. This program has been a cooperative effort between a number of nearby Universities, specific sites within the DOE complex, commercial equipment suppliers and the All-Russian Research Institute of Chemical Technology. These robust vitrification systems appear to have advantages for the waste streams containing inorganic materials in combination with significant quantities of metals, organics, salts, or high temperature materials. Several high-temperature technologies were selected and will be evaluated and employed to develop supporting technology. A general overview of the SRTC ''High-Temperature Program'' will be provided

  1. High-temperature vitrification of low-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Kielpinski, A.L.; Bickford, D.F.; Cicero, C.A.; Applewhite-Ramsey, A.; Spatz, T.L.; Marra, J.C.

    1995-01-01

    The US Department of Energy (DOE) weapons complex has numerous radioactive waste streams which cannot be easily treated with joule-heated vitrification systems. However, it appears that these streams could be treated with certain robust, high-temperature, melter technologies. These technologies are based on the use of plasma torch, graphite arc, and induction heating sources. The Savannah River Technology Center (SRTC), with financial support from the Department of Energy, Office of Technology Development (OTD) and in conjunction with the sites within the DOE weapons complex, has been investigating high-temperature vitrification technologies for several years. This program has been a cooperative effort between a number of nearby Universities, specific sites within the DOE complex, commercial equipment suppliers and the All-Russian Research Institute of Chemical Technology. These robust vitrification systems appear to have advantages for the waste streams containing inorganic materials in combination with significant quantities of metals, organics, salts, or high temperature materials. Several high-temperature technologies were selected and will be evaluated and employed to develop supporting technology. A general overview of the SRTC ''High-Temperature Program'' will be provided

  2. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  3. High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils, E-mail: n.haneklaus@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, 4118 Etcheverry Hall, MC 1730, Berkeley, CA 94720-1730 (United States); Reitsma, Frederik [IAEA, Division of Nuclear Power, Section of Nuclear Power Technology Development, VIC, PO Box 100, Vienna 1400 (Austria); Tulsidas, Harikrishnan [IAEA, Division of Nuclear Fuel Cycle and Waste Technology, Section of Nuclear Fuel Cycle and Materials, VIC, PO Box 100, Vienna 1400 (Austria)

    2016-09-15

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used as raw material for nuclear reactor fuel enabling “energy neutral” processing of the primary ore if the recovered uranium and/or thorium is sufficient to operate the greenhouse gas lean energy source used shall be discussed according to the participants needs. This paper specifically focuses on the aspects to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project.

  4. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  5. Exploitation of the very high temperature capability of the MHTGR to meet national energy needs after the year 2000

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1986-01-01

    This paper addresses potential applications for the modular high-temperature gas-cooled reactor (MHTGR) to meet projected national energy needs early in the 21st century. The MHTGR reactor core is capable of up to 1000 0 C operation, which will evolve from the steam cycle base, together with the development of materials and components for elevated temperature service. The paper highlights roles of the advanced MHTGR for very high efficiency power generation and synthetic fuel production. Particular emphasis is put on the projected role of the MHTGR in the production of synthetic natural gas (SNG) that will be needed in several decades when natural gas resources are depleted

  6. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  7. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  8. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  9. Asymptotic Slavery in the Copper Oxide High Temperature Superconductors

    Science.gov (United States)

    Phillips, Philip

    2004-05-01

    Vast progress in theoretical solid state physics has been made by constructing models which mimic the low-energy properties of solids. Essential to the success of this program is the separability of the high and low energy degrees of freedom. While it is hoped that a high energy reduction can be made to solve the problem of high temperature superconductivity in the copper oxide materials, I will show that no consistent theory is possible if the high energy scale is removed. At the heart of the problem is the mixing of all energy scales (that is, UV-IR mixing) in the copper-oxide materials. Optical experiments demonstrate that the number of low-energy degrees of freedom is derived from a high energy scale. The implications of the inseparability of the high and low energy degrees of freedom on the phase diagram of the cuprates is discussed.

  10. Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases

    Science.gov (United States)

    Bugnet, Matthieu; Radtke, Guillaume; Woo, Steffi Y.; Zhu, Guo-zhen; Botton, Gianluigi A.

    2016-01-01

    Probing the ferroelectricity at the nanometer scale is of particular interest for a wide range of applications. In this Rapid Communication, the structural distortion of BaTiO3 (BTO) is studied in its ferroelectric (rhombohedral and tetragonal), and paraelectric phases from the O K near edge structures in electron energy loss spectroscopy. Modifications of the electronic structure are detected in the lowest energy fine structure (FS) of the O K edge in the ferroelectric phases, and are interpreted by core-hole valence-electron screening geometry. For the paraelectric phase, the lowest energy FS of the O K edge is comparable to the one obtained at room temperature, which is inconsistent with an expected cubic structure. The variations observed in the O K near edge structures, such as a broader and more asymmetric lowest energy FS at low temperature, suggest that the magnitude of the Ti+4 off-centering along increases in lower-temperature phases. These findings demonstrate the sensitivity of the O K near edge structures to the structural distortions of BTO polymorphs, and form a basis for further investigations on defective or strained BTO at the nanoscale.

  11. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  12. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  13. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  14. Practical reasons for investigating ion transport in high temperature insulating materials

    International Nuclear Information System (INIS)

    Sonder, E.

    1976-01-01

    Practical problems encountered in a number of advanced technology appliations, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include: a) ceramic nuclear fuels for high temperature fission reactors, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed

  15. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  16. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  17. Nuclear power for coexistence with nature, high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    Until this century, it is sufficient to aim at the winner of competition in human society to obtain resources, and to entrust waste to natural cleaning action. However, the expansion of social activities has been too fast, and the scale has become too large, consequently, in the next century, the expansion of social activities will be caught by the structure of trilemma that is subjected to the strong restraint and selection from the problems of finite energy and resources and environment preservation. In 21st century, the problems change to those between mankind and nature. Energy supply and population increase, envrionment preservation and human activities, and the matters that human wisdom should bear regarding energy technology are discussed. In Japan, the construction of the high temperature engineering test reactor (HTTR) is in progress. The design of high temperature gas-cooled reactors and their features on the safety are explained. The capability of reducing CO 2 release of high temperature gas-cooled reactors is reported. In future, it is expected that the time of introducing high temperature gas-cooled reactors will come. (K.I.)

  18. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  19. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  20. Application of lithium orthosilicate for high-temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    Takasu, Hiroki; Ryu, Junichi; Kato, Yukitaka

    2017-01-01

    Highlights: • Li_4SiO_4/CO_2 system is proposed for use in chemical heat pump systems at 650 and 700 °C. • Li_4SiO_4/CO_2 system showed an enough cyclic reaction durability for 5 cycles. • The energy storage density of Li_4SiO_4 was estimated to be 750 kJ L"−"1 and 780 kJ kg"−"1. • It was demonstrated that Li_4SiO_4 could be used as a thermal heat storage material. - Abstract: A lithium orthosilicate/carbon dioxide (Li_4SiO_4/CO_2) reaction system is proposed for use in thermochemical energy storage (TcES) and chemical heat pump (CHP) systems at around 700 °C. Carbonation of Li_4SiO_4 exothermically produces lithium carbonate (Li_2CO_3) and lithium metasilicate (Li_2SiO_3). Decarbonation of these products is used for heat storage, and carbonation is used for heat output in a TcES system. A Li_4SiO_4 sample around 20 μm in diameter was prepared from Li_2CO_3 and SiO_2 using a solid-state reaction method. To determine the reactivity of the sample, Li_4SiO_4 carbonation and decarbonation experiments were conducted under CO_2 at several pressures in a closed reactor using thermogravimetric analysis. The Li_4SiO_4 sample’s carbonation and decarbonation performance was sufficient for use as a TcES material at around 700 °C. In addition, both reaction temperatures of Li_4SiO_4 varied with the CO_2 pressure. The durability under repeated Li_4SiO_4 carbonation and decarbonation was tested using temperature swing and pressure swing methods. Both methods showed that the Li_4SiO_4 sample has sufficient durability. These results indicate that the temperature for heat storage and heat output by carbonation and decarbonation, respectively, could be controlled by controlling the CO_2 pressure. Li_4SiO_4/CO_2 can be used not only for TcES but also in CHPs. The volumetric and gravimetric thermal energy densities of Li_4SiO_4 for TcES were found to be 750 kJ L"−"1 and 780 kJ kg"−"1, where the porosity of Li_4SiO_4 was assumed to be 59%. When the reaction system

  1. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  2. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  3. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  4. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  5. Experimental investigation of thermal de-stratification in rock bed TES systems for high temperature applications

    International Nuclear Information System (INIS)

    Okello, Denis; Nydal, Ole J.; Banda, Eldad J.K.

    2014-01-01

    Highlights: • High thermal stratifications exists rock bed TES when charge with high temperature heat. • Faster thermal degradation occurs in highly stratified bed irrespective of the bed length. • Average rate of heat loss as a function of storage time increases with increasing average bed temperature. - Abstract: Solar energy fluctuates so much that it cannot promote continuous use. Integration of Thermal Energy Storage (TES) with solar energy collection devices has the potential of making solar energy available on demand. Thermal energy can be stored in a bed of rocks at temperatures suitable for applications like cooking, boiling space heating, etc. During charging, temperature stratification is observed in the bed. In a stratified system, if the heat is used immediately, then it is possible to extract heat at reasonably high temperature from the top. For cases where the system is to be used after sometime (later at night or the following morning), the high temperature heat at the top is observed to degrade as the system tries to establish thermal equilibrium irrespective of the bed height. The average rate of heat loss from the TES unit to the ambient is found to increase with increasing average bed temperatures

  6. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    Lopez, J.

    2007-07-01

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  7. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  8. High-temperature fusion of a multielectron leviton

    Science.gov (United States)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  9. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  10. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  11. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  12. Energy Saving in an ETC Solar System to Produce High Temperature Water

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2018-04-01

    Full Text Available The use of solar water heating systems (SWHS based on evacuated tube collectors (ETC has experienced rapid growth in the residential sector. In contrast, the implementation of these systems in the industrial sector is very limited, due in part to the demand of a higher temperature in water. Taking into account that the final energy of the industrial sector is similar to the residential sector, to increase the generation of renewable energy and energy saving in cities, efforts in this sector should be redoubled. Therefore, the present work characterises the behaviour of a SWHS-ETC with active circulation to produce hot water at 90 °C, determining its performance, energy saving and profitability in different scenarios in Europe. The annual energy savings generated by the SWHS Range between 741 and 435 kWh m−2 (reduction of emissions between 215 and 88 kg CO2 m−2. The results of the analysis of profitability, studying the variation of the conventional energy price, the cost of the investment, the useful life and the energy supplied, in thousands of scenarios, are a valuable tool for correct decision making, as they can be of great utility to increase the implementation of these systems in the industrial sector.

  13. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  14. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K.S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India)

    2011-10-13

    Highlights: > Simple, inexpensive and room temperature chemical synthesis route. > Highly oriented PbSe nanotubes from Cd(OH){sub 2} nanowires through lead hydroxination. > The process was template free without the use of any capping agent. > Reaction kinetics was accomplished due to more negative free energy of formation. > The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd{sup 2+} with Pb{sup 2+} ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  15. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K.; Gupta, V.; Chand, S.

    2011-01-01

    Highlights: → Simple, inexpensive and room temperature chemical synthesis route. → Highly oriented PbSe nanotubes from Cd(OH) 2 nanowires through lead hydroxination. → The process was template free without the use of any capping agent. → Reaction kinetics was accomplished due to more negative free energy of formation. → The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd 2+ with Pb 2+ ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  16. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  17. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  18. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  19. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  20. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Gougar, Hans

    2010-01-01

    This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project. Data acquired from foreign entities by the United States Government is subject to protections and restrictions that depend upon the nature of the data and its intended use. The storage and use of nuclear data is subject to international agreements, federal laws and Department of Energy regulations. Security systems and personnel are deployed at Department of Energy national laboratories in order to ensure that these laws are observed. Laboratory employees undergo extensive training in operational security to protect all sensitive and classified information. This document describes the facilities at which data from the High Temperature Test Reactor will be used. It also described the procedures and policies that ensure that this data is used only by authorized personnel and only for the purposes for which it is intended.

  1. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  2. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    Science.gov (United States)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region

  3. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  4. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  5. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  6. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  7. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  8. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  9. High temperature thermal energy storage in moving sand

    Science.gov (United States)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  10. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  11. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  12. Can high temperature steam electrolysis function with geothermal heat?

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Werkoff, F.; Lovera, P.

    2007-01-01

    It is possible to improve the performance of electrolysis processes by operating at a high temperature. This leads to a reduction in electricity consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. Iceland produces low cost electricity and very low cost geothermal heat. However, the temperature of geothermal heat is considerably lower than the temperature required at the electrolyser's inlet, making heat exchangers necessary to recuperate part of the heat contained in the gases at the electrolyser's outlet. A techno-economic optimisation model devoted to a high-temperature electrolysis (HTE) process which includes electrolysers as well as a high temperature heat exchanger network was created. Concerning the heat exchangers, the unit costs used in the model are based on industrial data. For the electrolyser cells, the unit cost scaling law and the physical sub-model we used were formulated using analogies with solid oxide fuel cells. The method was implemented in a software tool, which performs the optimisation using genetic algorithms. The first application of the method is done by taking into account the prices of electricity and geothermal heat in the Icelandic context. It appears that even with a geothermal temperature as low as 230 degrees C, the HTE could compete with alkaline electrolysis. (authors)

  13. Thermal annealing of high dose radiation induced damage at room temperature in alkaline. Stored energy, thermoluminescence and coloration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminescence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminescence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KC1 samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose.Capacity of alkali halides to store energy by irradiation increases as the cation size decreases. (Author) 51 refs

  14. Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2013-09-01

    Full Text Available The small medium large system (SMLsystem is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs, which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems at the SMLsystem house represent 53:89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%–38:9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.

  15. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  16. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  17. In situ observation of low temperature growth of Ge on Si(1 1 1) by reflection high energy electron diffraction

    International Nuclear Information System (INIS)

    Grimm, Andreas; Fissel, Andreas; Bugiel, Eberhard; Wietler, Tobias F.

    2016-01-01

    Highlights: • Investigation of the initial stages of epitaxial growth of Ge on Si(1 1 1) in situ by RHEED. • Impact of growth temperature on strain evolution for temperatures between 200 °C and 400 °C. • Epitaxy with a high degree of structural perfection already at growth temperature of 200 °C. • Ordered interfacial dislocation networks already at 200 °C. • Tensile strain contribution of Si(1 1 1) 7 × 7-surface reconstruction to strain relaxation process for epitaxial growth of Ge. - Abstract: In this paper we investigate the initial stages of epitaxial growth of Ge on Si(1 1 1) and the impact of growth temperature on strain evolution in situ by reflection high energy electron diffraction (RHEED) for temperatures between 200 °C and 400 °C. The change in surface morphology from a flat wetting layer to subsequent islanding that is characteristic for Stranski–Krastanov growth is monitored by spot intensity analysis. The corresponding critical layer thickness is determined to 3.1 < d c < 3.4 ML. In situ monitoring of the strain relaxation process reveals a contribution of the Si(1 1 1) 7 × 7-surface reconstruction to the strain relaxation process. High resolution transmission electron microscopy confirms that the Ge islands exhibit a high degree of structural perfection and an ordered interfacial misfit dislocation network already at a growth temperature of 200 °C is established. The temperature dependency of island shape, density and height is characterized by atomic force microscopy and compared to the RHEED investigations.

  18. The high temperature reactor - an important tool in meeting the challenge of world energy supply

    International Nuclear Information System (INIS)

    Knizia, K.; Schwarz, D.

    1988-01-01

    A growing and, in its majority, poor mankind will need increasing amounts of energy at moderate prices. At the same time, ecological stresses on our environment, on the forests of the Third World (firewood crisis), and on the climate must be limited. The High Temperature Reactor (HTR) is a well-suited answer to all challenges, as it can supply electricity safely and economically, be built close to process steam and district heat consumers, procure more hydrocarbons from coal relative to a given release of CO 2 , and has the potential of splitting water with high efficiency. At times of affluent fossile fuels, however, and not yet apparent need to restrict their use for reasons of climate, individual companies cannot bear the development and introduction of HTRs all by themselves. Therefore governments are called upon for support. (orig.)

  19. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  20. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  1. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  2. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  3. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  4. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  5. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  6. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  7. Assessment of very high temperature reactors in process applications

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Spiewak, I.; Gambill, W.R.

    1976-01-01

    In April 1974, the United States Energy Research and Development Administration (ERDA) authorized General Atomic Company, General Electric Company, and Westinghouse Astronuclear Laboratory to assess the available technology for producing process heat utilizing a very high temperature nuclear reactor (VHTR). The VHTR is defined as a gas-cooled graphite-moderated reactor. Oak Ridge National Laboratory has been given a lead role in evaluating the VHTR reactor studies and potential applications of the VHTR. Process temperatures up to the 760 to 871 0 C range appear to be achievable with near-term technology. The major development considerations are high temperature materials, the safety questions (especially regarding the need for an intermediate heat exchanger) and the process heat exchanger. The potential advantages of the VHTR over competing fossil energy sources are conservation of fossil fuels and reduced atmospheric impacts. Costs are developed for nuclear process heat supplied from a 3000-MW(th) VHTR. The range of cost in process applications is competitive with current fossil fuel alternatives

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  9. High temperature dielectric function of silicon, germanium and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  10. Proceedings of the conference on numerical methods in high temperature physics

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Holm, D.D.; O'Rourke, P.J.

    1988-11-01

    These proceedings contain full papers presented at the Los Alamos Conference on High Temperature Physics. This conference discussed many aspects of high temperature physics including hydrodynamics, radiation and particle transport and some computational issues important for efficient calculations. The meetings was held between researchers from Los Alamos and the French Commissariat a L'Energy Atomique

  11. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  12. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  13. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  14. High-temperature annealing of graphite: A molecular dynamics study

    Science.gov (United States)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  15. Topics in the numerical simulation of high temperature flows

    International Nuclear Information System (INIS)

    Cheret, R.; Dautray, R.; Desgraz, J.C.; Mercier, B.; Meurant, G.; Ovadia, J.; Sitt, B.

    1984-06-01

    In the fields of inertial confinement fusion, astrophysics, detonation, or other high energy phenomena, one has to deal with multifluid flows involving high temperatures, high speeds and strong shocks initiated e.g. by chemical reactions or even by thermonuclear reactions. The simulation of multifluid flows is reviewed: first are Lagrangian methods which have been successfully applied in the past. Then we describe our experience with newer adaptive mesh methods, originally designed to increase the accuracy of Lagrangian methods. Finally, some facts about Eulerian methods are recalled, with emphasis on the EAD scheme which has been recently extended to the elasto-plastic case. High temperature flows is then considered, described by the equations of radiation hydrodynamics. We show how conservation of energy can be preserved while solving the radiative transfer equation via the Monte Carlo method. For detonation, some models, introduced to describe the initiation of detonation in heterogeneous explosives. Finally we say a few words about instability of these flows

  16. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  17. Proceedings of the conference on numerical methods in high temperature physics

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Holm, D.D.; O' Rourke, P.J. (comps.)

    1988-11-01

    These proceedings contain full papers presented at the Los Alamos Conference on High Temperature Physics. This conference discussed many aspects of high temperature physics including hydrodynamics, radiation and particle transport and some computational issues important for efficient calculations. The meetings was held between researchers from Los Alamos and the French Commissariat a L'Energy Atomique (CEA).

  18. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  19. HIGH-TEMPERATURE VACUUM CEMENTATION – THE RESERVE TO REDUCE THE ENERGY INTENSITY OF MANUFACTURE AND IMPROVE THE QUALITY OF TRANSMISSIONS GEARWHEELS OF HIGH-ENERGY MACHINES

    OpenAIRE

    A. A. Shipko; S. P. Rudenko; A. L. Valko; A. N. Chichin

    2016-01-01

    Results of research of influence of high-temperature vacuum chemical heat treatment on the amount of grain structural steels are presented. The efficiency of hereditary fine-grained steel for high temperature vacuum carburizing are shown.

  20. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  1. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  2. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  3. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  4. Generation, insulated confinement, and heating of ultra-high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.

    1986-01-01

    This invention relates to the production and maintenance in steady state of ultra-high temperature confined plasmas, particularly those created by full ionization of a volume of some hydrogenic gas such as deuterium. The target mass is surrounded with an ambient fluid medium at a predetermined pressure. Pulsed energy is projected upon the target mass to bring it to a predetermined temperature and to fully ionize it; this energy may be pulsed photon energy or pulsed particle-beam kinetic energy. An electrostatic double layer is formed spontaneously between the ionized mass and the ambient medium, providing thermal insulation and leaving the dominant energy loss to be bremmstrahlung losses. The bremmstrahlung losses are compensated for completely by supplying additional radiant energy to the ionized mass to maintain its temperature. The frequency range of the additional radiant energy is selected so as to be absorbable by the ionized mass, and its power level is adjusted to maintain the ionized mass in a substantially steady state. The static pressure of the ambient medium is increased, thereby equally increasing the static pressure of the ionized mass so as to enable the mass to absorb more of the radiant energy and increasing its temperature but also increasing its power losses. Simultaneously the radius and temperature of the mass are monitored and the power level of the radiant energy supply is increased to as to compensate for the power losses. The minimum feasible size of the plasma is less than a centimeter in diameter, while there is no constraint on maximum feasible size. This invention may be practiced with commercially-available lasers and microwave beam generators

  5. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  6. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  7. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  8. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  9. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  10. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  11. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  12. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  13. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  14. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  15. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  16. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  17. HIGH-TEMPERATURE VACUUM CEMENTATION – THE RESERVE TO REDUCE THE ENERGY INTENSITY OF MANUFACTURE AND IMPROVE THE QUALITY OF TRANSMISSIONS GEARWHEELS OF HIGH-ENERGY MACHINES

    Directory of Open Access Journals (Sweden)

    A. A. Shipko

    2016-01-01

    Full Text Available Results of research of influence of high-temperature vacuum chemical heat treatment on the amount of grain structural steels are presented. The efficiency of hereditary fine-grained steel for high temperature vacuum carburizing are shown.

  18. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan Michael [GrafTech International, Brooklyn Heights, OH (United States); Naskar, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-03

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial

  19. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  20. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  1. Kinetic properties of solid yttrium at high temperatures

    International Nuclear Information System (INIS)

    Ivliev, A.D.

    1993-01-01

    Analysis of results of experimental investigation into temperature-diffusivity, specific electroresistance and heat conductivity of yttrium is carried out. Peculiarities of variation of its kinetic characteristics under high temperatures are shown to result from two-band character of energy spectrum of collectivized electrons. In particular, growth of heat conductivity results from reduction of density of heavy electron states under heating. The suggested model describes kinetic characteristics of lutetium, as well. Usage of this model for the rest heavy rare-earth metals enables to make conclusion about reduction of magnetic scattering effcieincy in the rare-earth metals in proportion to approximation to melting temperature

  2. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  3. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  4. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  5. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  6. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  7. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  8. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  9. Optimizing residence time, temperature and speed to improve TMP pulp properties and reduce energy

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Xu, E.; Cort, B.; Boileau, I.; Waller, A.

    1997-04-01

    The concept of reducing energy consumption in pulp mills by increasing the disc speed of refining has been established using single disc and double disc refiners in both pilot plant and mill applications. The RTS study evaluated in this paper reviews the effect of high-speed single disc refining coupled with shortdwell-high pressure retention conditions. Coupling these variables permitted evaluation of an optimum residence time, temperature and speed (RTS) operational window. The objective of the RTS conditions to sufficiently soften the wood chips through high temperature such that the fibre is more receptive to initial defiberization at high intensity. The improved pulp from the primary refiner at high intensity could potentially demonstrate improvements in physical pulp properties at a reduced specific energy requirement. The spruce/fir RTS-TMP described here required significantly less specific energy and produced TMP with slightly improved strength properties and equivalent optical properties compared to conventional TMP pulp. Studies on the radiate pine furnish indicated that the physical pulp property/specific energy relationships could be adjusted by manipulating the residence time. 4 refs., 10 tabs., 10 figs.

  10. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  11. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  12. High-Temperature Test of 800HT Printed Circuit Heat Exchanger in HELP

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Min Hwan; Shim, Jaesool

    2014-01-01

    Korea Atomic Energy Research Institute has developed high-temperature Printed Circuit Heat Exchangers (PCHE) for a Very High Temperature gas-cooled Reactor and operated a very high temperature Helium Experimental LooP (HELP) to verify the performance of the high temperature heat exchanger at the component level environment. PCHE is one of the candidates for the intermediate heat exchanger in a VHTR, because its design temperature and pressure are larger than any other compact heat exchanger types. High temperature PCHEs in HELP consist of an alloy617 PCHE and an 800HT PCHE. This study presents the high temperature test of an 800HT PCHE in HELP. The experimental data include the pressure drops, the overall heat transfer coefficients, and the surface temperature distributions under various operating conditions. The experimental data are compared with the thermo-hydraulic analysis from COMSOL. In addition, the single channel tests are performed to quantify the friction factor under normal nitrogen and helium inlet conditions. (author)

  13. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  14. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  15. Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-03-01

    Full Text Available The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value and between 43 and 49% (based on lower heating value at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

  16. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiyao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jan-Mou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproduced water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.

  17. Secondary heat exchanger design and comparison for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-01-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  18. Experimental study of rapid brown coal pyrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lin; Sun, Shaozeng; Meng, Shun; Meng, Xianyu; Guo, Yangzhou [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.

    2013-07-01

    Rapid coal pyrolysis is a very important step in the early stage of combustion. Rapid pyrolysis experiments of a brown coal at high temperature have been studied on a laminar drop tube furnace. The volatile mass release measured in this study is high for low rank coal. The activation energy and pre-exponential factor of pyrolysis are 19901.22 kJ/mol and 102.71, respectively. The nitrogen distribution between volatile and char is 0.54. With the increase of temperature, the yields of NH{sub 3} decreases, while those of HCN increases, leading the value of HCN/NH{sub 3} to become larger. At high temperature, the main nitrogen- containing species of pyrolysis in volatile is HCN.

  19. High Temperature Materials Laboratory Thirteenth Annual Report: October 1999 Through September 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pasto, AE

    2001-01-01

    The High Temperature Materials Laboratory (HTML) is designed to assist American industries, universities, and governmental agencies develop advanced materials by providing a skilled staff and numerous sophisticated, often one-of-a-kind pieces of materials characterization equipment. It is a nationally designated user facility sponsored by the U.S. Department of Energy's (DOE's) office of Transportation Technologies, Energy Efficiency and Renewable Energy. Physically, it is a 64,500-ft(sup 2) building at the Oak Ridge National Laboratory (ORNL). The HTML houses six ''user centers,'' which are clusters of specialized equipment designed for specific types of properties measurements. The HTML was conceived and built in the mid-1980s in response to the oil embargoes of the 1970s. The concept was to build a facility that would allow direct work with American industry, academia, and government laboratories in providing advanced high-temperature materials such as structural ceramics for energy-efficient engines. The HTML's scope of work has since expanded to include other, non-high-temperature materials of interest to transportation and other industries

  20. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  1. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  2. Thermal annealing of high dose radiation induced damage at room temperature in alkali halides. Stored energy, thermoluminiscence and colouration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminiscence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminiscence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KCl samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose. Capacity of alkali halides to sotore energy by irradiation increases as the cation size decreases. It appears that most of the observed release is not related to annealing processes of the radiation induced anion Frenkel pairs. The existence of damage in the cation sublattice with which this energy release might be related is considered. (auth.)

  3. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    Science.gov (United States)

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  4. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  5. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  6. High-temperature reactors for underground liquid-fuels production with direct carbon sequestration

    International Nuclear Information System (INIS)

    Forsberg, C. W.

    2008-01-01

    The world faces two major challenges: (1) reducing dependence on oil from unstable parts of the world and (2) minimizing greenhouse gas emissions. Oil provides 39% of the energy needs of the United States, and oil refineries consume over 7% of the total energy. The world is running out of light crude oil and is increasingly using heavier fossil feedstocks such as heavy oils, tar sands, oil shale, and coal for the production of liquid fuels (gasoline, diesel, and jet fuel). With heavier feedstocks, more energy is needed to convert the feedstocks into liquid fuels. In the extreme case of coal liquefaction, the energy consumed in the liquefaction process is almost twice the energy value of the liquid fuel. This trend implies large increases in carbon dioxide releases per liter of liquid transport fuel that is produced. It is proposed that high-temperature nuclear heat be used to refine hydrocarbon feedstocks (heavy oil, tar sands, oil shale, and coal) 'in situ ', i.e., underground. Using these resources for liquid fuel production would potentially enable the United States to become an exporter of oil while sequestering carbon from the refining process underground as carbon. This option has become potentially viable because of three technical developments: precision drilling, underground isolation of geological formations with freeze walls, and the understanding that the slow heating of heavy hydrocarbons (versus fast heating) increases the yield of light oils while producing a high-carbon solid residue. Required peak reactor temperatures are near 700 deg. C-temperatures within the current capabilities of high-temperature reactors. (authors)

  7. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  8. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  9. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  10. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  11. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Studies on high temperature research reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuanhui; Zuo Kanfen [Institute of Nuclear Energy Technology, Tsinghua Univ., Beijing (China)

    1999-08-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  13. Studies on high temperature research reactor in China

    International Nuclear Information System (INIS)

    Xu Yuanhui; Zuo Kanfen

    1999-01-01

    China recognises the advantages of Modular HTGRs and has chosen Modular HTGRs as one of advanced reactors to be developed for the further intensive utilisation of nuclear power in the next century. In energy supply systems of the next century, HTGR is supposed to serve: 1. as supplement to water-cooled reactors for electricity generation and 2. as environmentally friendly heat source providing process heat at different temperatures for various applications like heavy oil recovery, coal gasification and liquefaction, etc.. The 10 MW High Temperature Gas-cooled Reactor (HTR-10) is a major project in the energy sector of the Chinese National High Technology Programme as the first step of development of Modular HTGRs in China. Its main objectives are: 1. to acquire know-how in the design, construction and operation of HTGRs, 2. to establish an irradiation and experimental facility, 3. to demonstrate the inherent safety features of Modular HTGR, 4. to test electricity and heat co-generation and closed cycle gas turbine technology and 5. to do research and development work on the nuclear process heat application. Now the HTR-10 is being constructed at the site of Institute of Nuclear Energy Technology (INET). The HTR-10 project is to be carried out in two phases. In the first phase, the reactor with an coolant outlet temperature of 700degC will be coupled with a steam generator providing steam for a steam turbine cycle which works on an electricity and heat co-generation basis. In the second phase, the reactor coolant outlet temperature is planned to be raised to 900degC. As gas turbine cycle and a steam reformer will be coupled to the reactor in addition to the steam turbine cycle. (author)

  14. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  15. Evolution of sputtered tungsten coatings at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 μm thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 μm sample and 0.26% to 0.20% for the 5 μm sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 μm sample and 50 to 100 nm for the 5 μm sample, as deposited. Finally, the 5 μm thick layer was found to be rougher than the 1 μm thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 μm sample at 900 °C for 1 h, its reflectance exceeded that of the 1 μm sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  16. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  17. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  18. Thermodynamic properties of OsB under high temperature and high pressure

    Science.gov (United States)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  19. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  20. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  1. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  2. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  3. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  4. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  5. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  6. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  7. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  8. Cloud Impacts on Pavement Temperature in Energy Balance Models

    Science.gov (United States)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  9. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  10. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  11. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  12. Temperature and Voltage Offsets in High- ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2018-06-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.

  13. Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An

    2007-01-01

    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's

  14. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  15. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  16. High-energy tail distributions and resonant wave particle interaction

    Science.gov (United States)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  17. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  18. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  19. Using high temperature gas-cooled reactors for energy neutral mineral development processes – A proposed IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Haneklaus, N.; Reitsma, F.; Tulsidas, H.; Dyck, G.; Koshy, T.; Tyobeka, B.; Schnug, E.; Allelein, H-J.; Birky, B.

    2014-01-01

    Today, uranium mined from various regions is the predominant reactor fuel of the present generation of nuclear power plants. The anticipated growth in nuclear energy may require introducing uranium/thorium from unconventional resources (e.g. phosphates, coal ash or sea water) as a future nuclear reactor fuel. The demand for mineral commodities is growing exponentially and high-grade, easily-extractable resources are being depleted rapidly. This shifts the global production to low-grade, or in certain cases unconventional mineral resources, the production of which is constrained by the availability of large amounts of energy. Numerous mining processes can benefit from the use of so-called “thermal processing”. This is in particular beneficial for (1) low grade deposits that cannot be treated using the presently dominant chemical processing techniques; (2) the extraction of high purity end products; and (3) the separation of high value or unwanted impurities (e.g. uranium, thorium, rare earths, etc.) that could be used/sold, when extracted, which will result in cleaner final products. The considerably lower waste products also make it attractive compared to chemical processing. In the future, we may need to extract nuclear fuel and minerals from the same unconventional resources to make nuclear fuel- and low grade ore processing feasible and cost-effective. These processes could be sustainable only if low-cost, carbon free, reliable energy is available for comprehensive extraction of all valuable commodities, for the entire life of the project. Nuclear power plants and specifically High Temperature Gas-cooled Reactors (HTGRs) can produce this energy and heat in a sustainable way, especially if enough uranium/thorium can be extracted to fuel these reactors.

  20. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  1. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  2. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  3. Part-load performance of a high temperature Kalina cycle

    International Nuclear Information System (INIS)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl; Haglind, Fredrik

    2015-01-01

    Highlights: • Detailed algorithm to solve high temperature Kalina cycle in part load. • A central receiver concentrating solar power plant with direct vapour generation considered as case study. • Part-load performance curves and fitted equations presented. - Abstract: The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine bottoming cycle, and solar power plants. The high temperature cycle layouts are inherently more complex than the low temperature layouts due to the presence of a distillation-condensation subsystem, three pressure levels, and several heat exchangers. This paper presents a detailed approach to solve the Kalina cycle in part-load operating conditions for high temperature (a turbine inlet temperature of 500 °C) and high pressure (100 bar) applications. A central receiver concentrating solar power plant with direct vapour generation is considered as a case study where the part-load conditions are simulated by changing the solar heat input to the receiver. Compared with the steam Rankine cycle, the Kalina cycle has an additional degree of freedom in terms of the ammonia mass fraction which can be varied in order to maximize the part-load efficiency of the cycle. The results include the part-load curves for various turbine inlet ammonia mass fractions and the fitted equations for these curves.

  4. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  5. Thermoelectric energy harvesting from small ambient temperature transients

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Andre

    2012-07-01

    Wireless sensor networks (WSNs) represent a key technology, used, for instance, in structural health monitoring, building automation systems, or traffic surveillance. Supplying power to a network of spatially distributed sensor nodes, especially at remote locations, is a large challenge: power grids are reliable but costly to install, whereas batteries provide a high flexibility in the installation but have a limited lifetime. This dilemma can be overcome by micro energy harvesting which offers both: reliability and flexibility. Micro energy harvesters are able to convert low grade ambient energy into useful electrical energy and thus provide power for wireless sensor networks or other electronic devices - in-situ, off-grid, and with an almost unlimited lifetime. Thermal energy is an omnipresent source of ambient energy: The day-night-cycle of the sun causes a temperature variation in the ambient air as well as arbitrary solids (soil, building walls, etc.). Unlike the air, solids have a large thermal inertia which dampens the temperature variation. This physical process leads to a temperature difference {Delta}T = T{sub air} - T{sub solid} between air and solid that can be converted directly into electrical energy by a thermoelectric generator (TEG). Thermal and electrical interfaces are necessary to connect the TEG to the thermal energy source (T{sub air}, T{sub solid}) and the electrical load (WSN). Reliable operation of the WSN may only be ensured if the harvester provides sufficient electrical energy, i.e. operates at its maximum power point. The goal of this thesis is to study, design, and test thermoelectric harvesters generating electrical energy from small ambient temperature transients in order to self-sufficiently power a WSN. Current research into thermoelectric energy harvesting, especially analytical modeling and application in the field are treated insufficiently. Therefore, a time-dependent analytical model of the harvester's output power is set

  6. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  7. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Paolo, E-mail: vale0142@umn.edu; Norman, Paul, E-mail: norma198@umn.edu; Zhang, Chonglin, E-mail: zhang993@umn.edu; Schwartzentruber, Thomas E., E-mail: schwart@aem.umn.edu [Department of Aerospace Engineering and Mechanics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-15

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N{sub 2}; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N{sub 2} bond determines the strength of the rovibrational coupling. Although neglecting N{sub 2} dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  8. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    International Nuclear Information System (INIS)

    Valentini, Paolo; Norman, Paul; Zhang, Chonglin; Schwartzentruber, Thomas E.

    2014-01-01

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N 2 ; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N 2 bond determines the strength of the rovibrational coupling. Although neglecting N 2 dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  9. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, R. Panneer; Hale, Micah; Strasser, Matt

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES

  10. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  11. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    International Nuclear Information System (INIS)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000 0 C for high efficiency. The design put forth in this study details a system that can accomplish that end

  12. Memory effect in the high-temperature superconducting bulks

    International Nuclear Information System (INIS)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He

    2013-01-01

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T 1 ) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T 1 , the sample temperature was regulated at T 2 , and there were two cases of the experiments, ΔT = T 2 − T 1 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively

  13. Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects

    International Nuclear Information System (INIS)

    Kongkasawan, Jinjuta; Nam, Hyungseok; Capareda, Sergio C.

    2016-01-01

    As an alternative energy source, Jatropha is a promising biomass resource due to its high content of oil contained in the seed. However, after the oil extraction process, more than 50% of initial weight remained as residue. This Jatropha de-oiled cake was considered a valuable feedstock for thermochemical conversion process due to its high volatile matter (73%) and energy content (20.5 MJ/kg). Pyrolysis turned biomass into solid product of biochar, liquid product (bio-oil and aqueous phase), and pyrolysis gas. The effects of pyrolysis temperature under the pressure of 0.69 MPa on the product yields and characteristics were investigated using a bench-scale batch reactor. The gross calorific value of pyrolytic oil was measured to be 35 MJ/kg with high carbon content (71%) and low oxygen content (10%). Phenols and hydrocarbons were the main compounds present in the pyrolytic oil. The heating value of the biochar was also high (28 MJ/kg), which was comparable to the fuel coke. More combustible gases were released at high pyrolysis temperature with methane as a main constituent. Pyrolysis temperature of 500 °C, was determined to be an optimum condition for the mass and energy conversions with 89% of the mass and 77% of the energy recovered. - Highlights: • Pressurized pyrolysis of Jatropha wastes at different temperatures was studied. • Full analysis of biochar, bio-oil and pyro gas at different temperatures were done. • Highest aromatics (32%) and HHV (35 MJ/kg) found in bio-oil at 500 °C. • Large amount of paraffins (C 13 –C 16 range) was found in bio-oil.

  14. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  15. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  16. Production of energy in a high temperature reactor

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The cooling gas having left the reactor core is fed to a generator for direct production of current from the kinetic energy. Afterwards the gas is fed to a heat exchanger for cooling, then compressed and refed to the reactor core. The method further comprises that one part of the energy of the fission material is directly converted to electric energy in the reactor core, whereas the other part of the energy of the fission material is impressed upon the cooling gas. According to the invention the cooling gas when entering the reactor is first fed to that part of the reactor core which serves as a thermoionic or thermoelectric transducer. Afterwards the cooling gas is fed to the remaining part of the reactor gas. (P.K.)

  17. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  18. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  19. High-frequency fluctuations of surface temperatures in an urban environment

    Science.gov (United States)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  20. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  1. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  2. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  3. Present state and future prospect of development of high temperature gas-cooled reactors in Japan

    International Nuclear Information System (INIS)

    Sanokawa, Konomo

    1994-01-01

    High temperature gas-cooled reactors can supply the heat of about 1000degC, and the high efficiency and the high rate of heat utilization can be attained. Also they have the features of excellent inherent safety, the easiness of operation, the high burnup of fuel and so on. The heat utilization of atomic energy in addition to electric power generation is very important in view of the protection of global environment and the diversification of energy supply. Japan Atomic Energy Research Institute has advanced the construction of the high temperature engineering test and research reactor (HTTR) of 30 MW thermal output, aiming at attaining the criticality in 1998. The progress of the development of a high temperature gas-cooled reactor is described. For 18 years, the design study of the reactor was advanced together with the research and development of the reactor physics, fuel and materials, high temperature machinery and equipment and others, and the decision of the design standard and the development of computation codes. The main specification and the construction schedule are shown. The reactor building was almost completed, and the reactor containment vessel was installed. The plan of the research and development by using the HTTR is investigated. (K.I.)

  4. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  5. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  6. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  7. Present status and prospects of high-temperature engineering test reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1995-01-01

    It is essentially important in Japan, which has limited amount of natural resources, to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors. Hence, efforts are to be continuously devoted to establish and upgrade High Temperature Gas-cooled Reactor (HTGR) technologies and to make much of research resources accumulated so far. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950degC at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). The construction of the HTTR started in March 1991, with first criticality in 1998 to be followed after commissioning testing. At present the HTTR reactor building and its containment vessel have been nearly completed and its main components, such as a reactor pressure vessel, an intermediate heat exchanger, hot gas pipings and core support structures, have been manufactured at their factories and delivered to the Oarai Research Establishment of the JAERI for their installation in the middle of 1994. Fuel fabrication will be started as well. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. The IAEA Coordinated Research Programme on Design and Evaluation of Heat Utilization Systems for the HTTR, such as steam reforming of methane and thermochemical water splitting for hydrogen production, was launched successfully in January 1994. Some heat utilization system is planned to be connected to the HTTR and demonstrated at the former stage of the second core. At present, steam-reforming of methane is the first candidate. The JAERI also plans to conduct material

  8. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  9. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    Science.gov (United States)

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  10. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  11. AC measurements on uranium doped high temperature superconductors

    International Nuclear Information System (INIS)

    Eisterer, M.

    1999-11-01

    The subject of this thesis is the influence of fission tracks on the superconducting properties of melt textured Y-123. The critical current densities, the irreversibility lines and the transition temperature were determined by means of ac measurements. The corresponding ac techniques are explored in detail. Deviations of the ac signal from the expectations according to the Bean model were explained by the dependence of the shielding currents on the electric field. This explanation is supported by the influence of the ac amplitude and frequency on the critical current density but also by a comparison of the obtained data with other experimental techniques. Y-123 has to be doped with uranium in order to induce fission tracks. Uranium forms normal conducting clusters, which are nearly spherical, with a diameter of about 300 nm. Fission of uranium-235 by thermal neutrons creates two high energy ions with a total energy of about 160 MeV. Each of these fission products induces a linear defect with a diameter of about 10 nm. The length of one fission track is 2-4 μm. At 77 K the critical current density is enhanced by the pinning action of the uranium clusters, compared to undoped samples. With decreasing temperature this influence becomes negligible. The critical current densities are strongly enhanced due to the irradiation. At low magnetic fields we find extremely high values for melt textured materials, e.g. 2.5x10 9 Am -2 at 77 K and 0.25 T or 6x10 10 Am -2 at 5 K. Since the critical current was found to be inverse proportional to the square root of the applied magnetic field it decreases rapidly as the field increases. This behavior is predicted by simple theoretical considerations, but is only valid at low temperatures as well as in low magnetic fields at high temperatures. At high fields the critical current drops more rapidly. The irreversibility lines are only slightly changed by this irradiation technique. Only a small shift to higher fields and temperatures

  12. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2017-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  13. Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation

    Science.gov (United States)

    Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the

  14. Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.

    Science.gov (United States)

    Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M

    2017-12-20

    In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.

  15. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  16. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  17. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  18. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  19. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  20. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  1. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  2. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  3. Mottness in high-temperature copper-oxide superconductors

    International Nuclear Information System (INIS)

    Phillips, Philip; Choy, T.-P.; Leigh, Robert G

    2009-01-01

    The standard theory of metals, Fermi liquid theory, hinges on the key assumption that although the electrons interact, the low-energy excitation spectrum stands in a one-to-one correspondence with that of a non-interacting system. In the normal state of the copper-oxide high-temperature superconductors, drastic deviations from the Fermi liquid picture are obtained, highlighted by a pseudogap, broad spectral features and T-linear resistivity. A successful theory in this context must confront the highly constraining scaling argument which establishes that all 4-Fermi interactions are irrelevant (except for pairing) at a Fermi surface. This argument lays plain that new low-energy degrees of freedom are necessary. This paper focuses on the series of experiments on copper-oxide superconductors which reveal that the number of low-energy addition states per electron per spin exceeds unity, in direct violation of the key Fermi liquid tenet. These experiments point to new degrees of freedom, not made out of the elemental excitations, as the key mechanism by which Fermi liquid theory breaks down in the cuprates. A recent theoretical advance which permits an explicit integration of the high-energy scale in the standard model for the cuprates reveals the source of the new dynamical degrees of freedom at low energies, a charge 2e bosonic field which has nothing to do with pairing but rather represents the mixing with the high-energy scales. We demonstrate explicitly that at half-filling, this new degree of freedom provides a dynamical mechanism for the generation of the charge gap and antiferromagnetism in the insulating phase. At finite doping, many of the anomalies of the normal state of the cuprates including the pseudogap, T-linear resistivity and the mid-infrared band are reproduced. A possible route to superconductivity is explored

  4. High-Temperature Coatings Offer Energy Savings

    Science.gov (United States)

    2012-01-01

    The U.S. X-Plane Program included the first-of-its-kind research in aerodynamics and astronautics with experimental vehicles, including the first aircraft to break the sound barrier; the first aircraft to fly in excess of 100,000, then 200,000, and then 300,000 feet; and the first aircraft to fly at three, four, five, and then six times the speed of sound. During the 1990s, NASA started developing a new thermal protection material to test on the X-33 and X-34 supersonic aircraft. The X-33 was intended to demonstrate the technologies needed for a new reusable launch vehicle and was projected to reach an altitude of approximately 50 miles and speeds of more than Mach 11. The X-34, a small, reusable technology demonstrator for a launch vehicle, was intended to reach an altitude of 250,000 feet and fly at speeds of Mach 8. As a result of its research and development efforts, NASA s Ames Research Center invented the Protective Ceramic Coating Material (PCCM). Applied to a surface, the thin, lightweight coating could protect the material underneath from extreme temperatures. The capability of the technology came from its emissivity, which radiated heat away from the surface it covered, thereby decreasing the amount of heat transferred to the underlying material. PCCM not only increased the capability of materials to withstand higher temperatures, it also exhibited impressive thermal shock, vibration, and acoustic performance. In addition, it proved to be resistant to abrasion and mechanical damage and was also environmentally safe, due to it being water-based and containing no solvents. Even though funding for the X-33 and X-34 ended in 2001, PCCM continued on a path of innovation.

  5. High-energy electron beam irradiation of Al-doped ZnO thin films deposited at room temperature

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Hwang, Jong-Ha; Lee, Byung-Cheol; Jung, Myung-Hee

    2011-01-01

    In this research, we demonstrated the effects of high-energy electron beam irradiation (HEEBI) on the optical and structural properties of Al-doped ZnO (AZO) films grown on transparent corning glass substrates at room temperature (RT) by using a radio-frequency magnetron sputtering technique. The AZO thin films were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and doses of 1 x 10 14 - 1 x 10 16 electrons/cm 2 . The photoluminescence (PL) measurements revealed that the dominant peak at 2.77 eV was a blue emission originating from donor-like defects, oxygen vacancies (V o ), suggesting that the n-type conductivity was preserved in HEEBI-treated films. On the basis of PL, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results, we suggest that the density of V o donor defects is decreased due to in-diffusion of oxygen from the ambient into the films after HEEBI treatment at low doses up to 10 15 electrons/cm 2 while the opposite phenomenon can occur with further increase in the dose. We also found from the XRD analysis that the worse crystallinity with a smaller grain size was observed in HEEBI-treated AZO films at a higher dose, corresponding to a higher oxygen fraction in the films. We believe that our results will contribute to developing high-quality AZO-based materials and devices for space applications.

  6. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  7. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  8. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  9. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    Brey, H.L.

    2001-01-01

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  10. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  11. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  12. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  13. An investigation of methods for neutron dose measurement in high temperature irradiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Kosako, Toshisou; Sugiura, Nobuyuki [Tokyo Univ. (Japan); Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan)] [and others

    2000-10-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting the innovative basic research on high temperature since 1994, which is a series of high temperature irradiation studies using the High Temperature Engineering Test Reactor (HTTR). 'The Task Group for Evaluation of Irradiation Dose under High Temperature Radiation' was founded in the HTTR Utilization Research Committee, which is the promoting body of the innovative basic research. The present report is a summary of investigation which has been made by the Task Group on the present status and subjects of research and development of neutron detectors in high temperature irradiation fields, in view of contributing to high temperature irradiation research using the HTTR. Detectors investigated here in the domestic survey are the following five kinds of in-core detectors: 1) small fission counter, 2) small fission chamber, 3) self-powered detector, 4) activation detector, and 5) optical fiber. In addition, the research and development status in Russia has been investigated. The present report will also be useful as nuclear instrumentation of high temperature gas-cooled reactors. (author)

  14. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Science.gov (United States)

    Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.

    2016-10-01

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  16. Perspectives on deployment of modular high temperature gas-cooled power plants

    International Nuclear Information System (INIS)

    Northup, T.E.; Penfield, S.

    1988-01-01

    Energy needs and energy options are undergoing re-evaluation by almost every country of the world. Energy issues such as safety, public perceptions, load growth, air pollution, acid rain, construction schedules, waste management, capital financing, project cancellations, and energy mix are but a few of those problems that are plaguing planners. This paper examines some of the key elements of the energy re-evaluation and transition that are in progress and the potential for the Modular High Temperature Gas-Cooled Reactor (Modular HTGR) to have a major impact on energy planning and its favorable prospects for deployment. (orig.)

  17. Black hole emission process in the high energy limit

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B [Observatoire de Paris, Section de Meudon, 92 (France). Groupe d' Astrophysique Relativiste; Gibbons, G W; Lin, D N.C.; Perry, M J [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics; Cambridge Univ. (UK). Inst. of Astronomy)

    1976-11-01

    The ultimate outcome of the Hawking process of particle emission by small black holes is discussed in terms of the various conceivable theories of the behaviour of matter in the ultra-high temperature limit. It is shown that if high temperature matter is described by a relatively hard equation of state with an adiabatic index GAMMA greater than 6/5 then interactions between particles can probably be ignored so that the rate of creation will continue to be describable by Hawking's method. On the other hand for softer equations of state (including those of the ultra soft Hagedorn type) the created matter will almost certainly be highly opaque and a hydrodynamic model of the emission process will be more appropriate. Actual astronomical detection of the final emission products might in principle have provided valuable information about the correct theory of ultra high energy physics but it is shown that in practice the black hole death rate is so low that observational distinction of the resulting high energy decay products from the background would require high resolution detectors.

  18. Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis

    International Nuclear Information System (INIS)

    Baccanelli, Margaret; Langé, Stefano; Rocco, Matteo V.; Pellegrini, Laura A.; Colombo, Emanuela

    2016-01-01

    Highlights: • Low-temperature processes for of high CO_2 content natural gas have been modelled. • Energy and exergy analyses have been performed. • The Dual Pressure distillation scheme has the best thermodynamic performances. • There is a synergy between cryogenic natural gas purification and LNG production. - Abstract: Due to the rapid increase of the World’s primary energy demand of the last decades, low-temperature processes for the purification of natural gas streams with high carbon dioxide content has gained interest, since they allow to make profitable exploitation of low-quality gas reserves. Low temperature purification processes allow the direct production of a methane stream at high purity and at low-temperature, suitable conditions for the direct synergistic integration with natural gas cryogenic liquefaction processes, while CO_2 is obtained in liquid phase and under pressure. In this way, it can be pumped for transportation, avoiding significant compression costs as for classical CO_2 capture units (where carbon dioxide is discharged in gas phase and at atmospheric pressure), and further uses such as Enhanced Oil Recovery (EOR) or underground storage. In this paper, the three most common natural gas low-temperature purification techniques have been modelled and their performances have been evaluated through energy and exergy analyses. Specifically, the dual pressure low-temperature distillation process, the anti-sublimation process and a hybrid configuration have been considered. It is found that the dual pressure low-temperature distillation scheme reach the highest thermodynamic performances, resulting in the best values of exergy efficiency and equivalent methane requirements with respect to the other configurations. This is mainly due to the distributed temperature profile along a distillation column, resulting in a less irreversible heat exchanging process.

  19. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  20. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  1. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  2. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  3. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  4. Temperatures and heating energy in New Zealand houses from a nationally representative study - HEEP

    Energy Technology Data Exchange (ETDEWEB)

    French, L.J.; Camilleri, M.J.; Isaacs, N.P.; Pollard, A.R. [BRANZ Ltd., Private Bag 50 908, Porirua City (New Zealand)

    2007-07-15

    The household energy end-use project (HEEP) has collected energy and temperature data from a randomly selected, nationally representative sample of about 400 houses throughout New Zealand. This database has been used to explore the drivers of indoor temperatures and heating energy. Initial analysis of the winter living room temperatures shows that heating type, climate and house age are the key drivers. On average, houses heated by solid fuel are the warmest, with houses heated by portable LPG and electric heaters the coldest. Over the three winter months, living rooms are below 20 {sup o}C for 83% of the time - and the living room is typically the warmest room. Central heating is in only 5% of houses. Solid fuel is the dominant heating fuel in houses. The lack of air conditioning means that summer temperatures are affected by passive influences (e.g. house design, construction). Summer temperatures are strongly influenced by the house age and the local climate - together these variables explain 69% of the variation in daytime (9 a.m. to 5 p.m.) living room temperatures. In both summer and winter newer (post-1978) houses are warmer - this is beneficial in winter, but the high temperatures in summer are potentially uncomfortable. (author)

  5. Measured energy savings from using night temperature setback

    International Nuclear Information System (INIS)

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J.

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building

  6. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  7. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors

  8. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  9. Dosimetry of x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Takayoshi; Abe, Nobuyuki; Kawanishi, Masaharu

    1980-01-01

    Study on the dosimetry of ionizing radiations, especially of X-rays, emitted from high-temperature plasms has been made. As to the unpolarized Bremsstrahlung, a brief method to estimate electron temperatures with TLD is described and evaluation of average energy and current of the run-away electrons in the turbulent heating Tokamak is made by observing the half-value layer of the emitted X-rays and the total exposure per one shot of the Tokamak discharge. As to the polarized one, it is shown that the anisotropic electron temperature is related to the degree of polarization of the X-rays. Furthermore, reference is made to the possibility of developing such X-ray generators as can emit nearly monochromatic X-rays (characteristic X-rays) or polarized ones arbitrarily. (author)

  10. Room-temperature vertically-aligned copper oxide nanoblades synthesized by electrochemical restructuring of copper hydroxide nanorods: An electrode for high energy density hybrid device

    Science.gov (United States)

    Zhang, Xuetao; Zhou, Jinyuan; Dou, Wei; Wang, Junya; Mu, Xuemei; Zhang, Yue; Abas, Asim; Su, Qing; Lan, Wei; Xie, Erqing; Zhang, Chuanfang (John)

    2018-04-01

    The fast growing of portable electronics has greatly stimulated the development of energy storage materials, such as transition metal oxides (TMOs). However, TMOs usually involve harsh synthesis conditions, such as high temperature. Here we take advantage of the metastable nature of Cu(OH)2 and grow CuO nanoblades (NBs) on Cu foam under the electric field at room temperature. The electrochemical polarization accelerates the dissolution of Cu(OH)2 nanorods, guides the deposition of the as-dissolved Cu(OH)42- species and eventually leads to the phase transformation of CuO NBs. The unique materials architecture render the vertically-aligned CuO NBs with enhanced electronic and ionic diffusion kinetics, high charge storage (∼779 mC cm-2 at 1 mA cm-2), excellent rate capability and long-term cycling performances. Further matching with activated carbon electrode results in high-performance hybrid device, which displays a wide voltage window (1.7 V) in aqueous electrolyte, high energy density (0.17 mWh cm-2) and power density (34 mW cm-2) coupled with long lifetime, surpassing the best CuO based device known. The hybrid device can be randomly connected and power several light-emitting diodes. Importantly, such an electrochemical restructuring approach is cost-effective, environmentally green and universal, and can be extended to synthesize other metastable hydroxides to in-situ grow corresponding oxides.

  11. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  12. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  13. Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.

    Science.gov (United States)

    Ha, Jang Ho; Kim, Han Soo

    2013-11-01

    The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  15. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  16. Corrosion of silicon nitride in high temperature alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liyan, E-mail: liyan.qiu@cnl.ca; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si{sub 3}N{sub 4}) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si{sub 3}N{sub 4} experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  17. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  18. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  19. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  20. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  1. Features, present condition of development and future scope on the high temperature gas reactor as an innovative one

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2001-01-01

    The high temperature gas reactor has some features without previous reactors such as high temperature capable of taking-out, high specific safety, feasibility adaptable to versatile fuel cycle, and so on. Then, it is expected to be an innovative reactor to contribute to diversification of energy supply and expansion of energy application field. In Japan, under the HTTR (high temperature engineering test reactor) plan, construction of HTTR, which is the first high temperature gas reactor in Japan, was finished and its output upgrading test has been promoted. And, on the HTTR plan, together with promotion of full power operation, reactor performance tests, safety proof test, and so on, it is planned to carry out study on application of the high temperature heat such as hydrogen production and so on to aim to practise establishment and upgrading of technologies on high temperature gas reactor in Japan. Here were introduced features and present condition of development of the high temperature gas reactor as an innovative type reactor and described role and future scope in Japan. (G.K.)

  2. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  3. On the non-linear nature of the variation, with intensity, of high energy cathode sputtering, and the variation of the latter with temperature (1960)

    International Nuclear Information System (INIS)

    Cassignol, C.; Ranc, G.

    1960-01-01

    A new cathode sputtering theory at high energy is presented which has been elaborated in taking in account the non-linearity of this phenomenon with the density of the impinging ions. This theory allows to predict the influence of target temperature on the rate of cathode sputtering. This influence is experimentally demonstrated. (author) [fr

  4. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  5. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  6. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  7. Temperature effects on future energy demand in Sub-Saharan Africa

    Science.gov (United States)

    Shivakumar, Abhishek

    2016-04-01

    Climate change is projected to adversely impact different parts of the world to varying extents. Preliminary studies show that Sub-Saharan Africa is particularly vulnerable to climate change impacts, including changes to precipitation levels and temperatures. This work will analyse the effect of changes in temperature on critical systems such as energy supply and demand. Factors that determine energy demand include income, population, temperature (represented by cooling and heating degree days), and household structures. With many countries in Sub-Saharan Africa projected to experience rapid growth in both income and population levels, this study aims to quantify the amplified effects of these factors - coupled with temperature changes - on energy demand. The temperature effects will be studied across a range of scenarios for each of the factors mentioned above, and identify which of the factors is likely to have the most significant impact on energy demand in Sub-Saharan Africa. Results of this study can help set priorities for decision-makers to enhance the climate resilience of critical infrastructure in Sub-Saharan Africa.

  8. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    Science.gov (United States)

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  10. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2008-01-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  11. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  12. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  13. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  14. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  15. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  16. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  17. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  18. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  19. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Energy Technology Data Exchange (ETDEWEB)

    Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St Paul Lez Durance Cedex (France); Lambrinou, K. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Morgan, T.W. [FOM Institute DIFFER, De Zaale 20, 5612 AJ, Eindhoven (Netherlands); Dubinko, A.; Grigorev, P. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Verbeken, K. [Department of Materials Science and Engineerin, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Noterdaeme, J.M. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium)

    2016-10-15

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼10{sup 24} m{sup −2} s{sup −1}, energy ∼50 eV and fluence up to 5 × 10{sup 25} D/m{sup 2}) was studied experimentally in a wide temperature range (460–1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in “shallow” and “deep” traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from “trapping sites” to “diffusion channels” above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  20. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  1. Comparison of high-temperature flare models with observations and implications for the low-temperature flare

    International Nuclear Information System (INIS)

    Machado, M.E.; Emslie, A.G.

    1979-01-01

    We analyze EUV data from the Harvard College Observatory and Naval Research Laboratory instruments on board the Skylab Apollo Telescope Mount, together with SOLRAD 9 X-ray data, in order to empirically deduce the variation of emission measure with temperature in the atmosphere of a number of solar flares. From these data we construct a ''mean'' differential emission measure profile Q (T) for a flare, which we find to be characterized by a low-lying plateau at temperatures of a few hundred thousand K, representative of a thin transition zone at these temperatures.We then compare this empirical profile with that predicted by a number of theoretical models, each of which represents a solution of the energy equation for the flare under various simplifying assumptions. In this way we not only deduce estimates of various flare parameters, such as gas pressure, but also gain insight into the validity of the various modeling assumptions employed.We find that realistic flare models must include both conductive and radiative terms in the energy equation, and that hydrodynamic terms may be important at low temperatures. Considering only models which neglect this hydrodynamic term, we compute conductive fluxes at various levels in the high-temperature plasma and compare them to the observed radiated power throughout the atmosphere, with particular reference to the 1973 September 5 event, which is rich in observations throughout most of the electromagnetic spectrum. This comparison yields results which reinforce our belief in the dominance of the conduction and radiation terms in the flare energy balance.The implications of this result for flare models in general is discussed; in particular, it is shown that the inclusion of the conductive term into models which have hitherto neglected it can perhaps resolve some of the observational difficulties with such models

  2. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  3. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  4. High-temperature superconductors induced by ion implantation. Final report

    International Nuclear Information System (INIS)

    Greenwald, A.C.; Johnson, E.

    1988-08-01

    High dose oxygen ion implantation (10 to the 17th power ions per sq. cm.) at elevated temperatures (300 C) has been shown to adjust the critical temperature of gamma-Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O materials. These results are in marked contrast to earlier work which showed complete destruction of superconducting properties for similar radiation doses, and marked reduction in superconducting properties at one-tenth this dose in the 1-2-3- compound only. Experiments also showed that the superconducting materials can be patterned into conducting and nonconducting areas without etching by ion implantation, allowing maintenance of planar geometries required for microcircuit fabrication. Experiments on deposition of thin films of high temperature superconductors for use with the ion implantation experiments showed that ion beam sputtering from a single target could achieve the correct stoichiometry. Variations of composition with ion beam energy and angle of sputtered ions were studied

  5. Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 wee investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application

  6. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  7. Electron energy-loss spectroscopy on n-type doped high-temperature superconductors and related systems

    International Nuclear Information System (INIS)

    Alexander, M.

    1992-08-01

    Electron-enery loss spectroscopy measurements on n-type doped high temperature superconductors, their undoped parent compounds, Y-doped Bi 2 Sr 2 CaCu 2 O 8 and some rare earth oxides are presented. The undoped parent compounds Ln 2 CuO 4 (Ln = Pr, Nd, Sm) are charge transfer insulators with a charge transfer energy gap of 1.4 eV. The conduction band lies in the CuO 2 plane and has mainly Cu3d x 2 -y 2 character. O2p x,y states are slightly hybridized with this band. Upon partially substituting the trivalent Ln ions by tetravalent Ce or Th and monovalent F for the O ions, electron doping of the CuO 2 plane occurs with the electrons having mainly Cu3d character. A rigid band behaviour is proposed by several band structure calculations could be ruled out, as well as the occurence of so called 'mid-gap' states appearing inside the band gap between the valence and conduction bands. The position of the Fermi level was found to be at the bottom of the conduction bands. No measurable influence of the reduction process, necessary to obtain superconductivity, was detected in the unoccupied density of states. Characteristics shifts of the measured oxygen and copper edges were correlated with crossing the metal-insulator transition. These shifts are most probably caused by an improved screening capacity of the free charge carriers. A similar effect was also observed in Y-doped Bi 2 Sr 2 CaCu 2 O 8 . Thus, it was possible to show that the disappearance of the valence band hole states upon doping did not occur in a rigid-band-like manner. The low energy excitations in Nd 1.85 Ce 0.15 CuO 4-δ showed a plasmon like excitation at about 1 eV as well as a reduction and an energy shift of the charge transfer excitation. The dispersion of this plasmon excitation was determined. (orig.)

  8. Geological exploration for a high-temperature aquifer thermal energy storage (HT-ATES) system: a case study from Oman

    Science.gov (United States)

    Winterleitner, Gerd; Schütz, Felina; Huenges, Ernst

    2017-04-01

    A collaborative research programme between the German Research Centre for Geoscience, Potsdam (GFZ) and The Research Council of Oman (TRC) is underway, which aims to develop and implement an innovative concept of a sustainable thermally driven cooling system in combination with a HT-ATES in northern Oman. The system will use an absorption chiller for cold supply, which nominally requires water of around 100°C as energy source. Solar collectors will provide this thermal energy and energy surpluses during daytimes will be stored to ensure a continuous operation of the cooling system. An integral part of this project is, therefore, the development of an efficient HT-ATES (100°C), which is based on temporary storage and recovery of thermal energy through hot water injection in subsurface aquifer horizons. Thus, an accurate thermal and fluid flow characterisation of potential reservoir horizons is essential to ensure optimal efficiency of the cooling system. The study area is located in the Al Khwad area, approximately 40 km to the west of Muscat. The area is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We use a multidisciplinary approach for the initial ATES exploration and development phase, including traditional geological fieldwork dovetailed with virtual outcrop geology, thin-section analyses, geological modelling and reservoir fluid flow forecasting analyses. Our first results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate-dominated sequence. The alluvial fan system is characterised by a more than 300 m thick, coarse-clastic succession of coalesced individual fans. Thermal and hydraulic parameters are favourable for gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates

  9. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  10. Design of a high-temperature superconductor current lead for electric utility SMES

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Rey, C.M.; Dixon, K.D.

    1995-01-01

    Current leads that rely on high-temperature superconductors (HTSs) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. The design of HTS current leads suitable for use in near-term superconducting magnetic energy storage (SMES) is in progress. The SMES system has an 0.5 MWh energy capacity and a discharge power of 30 MW. Lead-design considerations include safety and reliability, electrical and thermal performance, structural integrity, manufacturability, and cost. Available details of the design, including materials, configuration, and performance predictions, are presented

  11. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  12. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  13. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  14. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  15. Analysis and description of high temperature alloy data and their representation in the high temperature materials data bank of the Joint Research Centre

    International Nuclear Information System (INIS)

    Krefeld, R.; Kroeckel, H.; Fattori, G.; Maurandy, C.

    1985-01-01

    In the frame of the high temperature materials programme the JRC has set up a pilot data bank for mechanical and corrosion properties of materials for high temperature application in energy conversion and chemical systems. The scope of the data bank content embraces mechanical properties and corrosion tests with emphasis on 600 to 1000 0 C test temperature and C-O-H type test environments. The basic information on materials properties obtained by test is analysed and the data items and their structure are described. The logical structure of the 250 data items involved and their organization in the data bank by file and record using ADABAS dbms is presented. The design is discussed with respect to its adaptability to changes in the scope of data content and to its versatile data access resulting in easy handling of complex structured queries which represent the interest of materials scientists and engineers as well as those of non-specialist users. (orig.)

  16. High-temperature reaction of ''anisotropic'' pyrolitic graphite with oxygen

    International Nuclear Information System (INIS)

    Lavrenko, V.A.; Pomytkin, A.P.; Neshpor, V.S.; Vinokur, F.L.

    1980-01-01

    Investigated is the kinetics of initial interaction stages of highly dense crystalloorientated pyrographite with oxygen. Oxidation was carried out in pure oxygen within 0.1-740 mm Hg pressure range and 500-1100 deg C temperature range. It is stated, that at the temperatures below 700 deg C pyrographite oxidation is subjected to a linear law. Above 700-800 deg C the linear law is preserved only at the initial oxidation stage, then the process is described by a parabolic law. Extension of the linear site is decreased in time with the reduction of oxygen pressure. The reaction has apparent fractional order. Activation energy of pyrogrpahite oxidation by the linear low constitutes approximately 58 kcal/mol within 600-800 deg C range and 14 kcal/mol within 800-1100 deg C range. The apparent activation energy constitutes approximately 13 kcal/mol in the region of correspondence to the parabolic law

  17. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  18. Hydration of Rhyolitic Glasses: Comparison Between High- and Low-Temperature Processes

    Science.gov (United States)

    Anovitz, L.; Fayek, M.; Cole, D. R.; Carter, T.

    2012-12-01

    While a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is more obscure. Comparisons between high- and low-temperature diffusive studies suggest that several factors play an important role under lower-temperatures conditions that are not significant at higher temperatures. Surface concentrations, which equilibrate quickly at high temperature, change far more slowly as temperatures decrease, and may not equilibrate at room temperature for hundreds or thousands of years. Coupled with temperature-dependent diffusion coefficients this complicates calculation of diffusion profiles as a function of time. A key factor in this process appears to be the inability of "self-stress", caused by the in-diffusing species, to relax at lower temperatures, a result expected below the glass transition. Regions of the glass hydrated at low temperatures are strongly optically anisotropic, and preliminary calculations suggest that the magnitude of stress involved may be very high. On the microstuctural scale, extrapolations of high-temperature FTIR data to lower temperatures suggests there should be little or no hydroxyl present in glasses "hydrated" at low temperatures. Analyses of both block and powder samples suggest that this is generally true in the bulk of the hydrated glass, excluding hydroxyl groups that formed during the initial cooling of the melt. However, hydroxyl do groups appear to be present at the glass surface, where both SIMS and neutron reflectometry data suggest hydration levels may be higher than projected from the bulk of the glass. Isotopic exchange experiments also suggest that bonding is relatively weak, as hydration water exchanges readily with the enviroment. All of these observations lead to the conclusion that the observed stress is due to the presence of interstructural, rather than bonded, water. This likely explains the

  19. Characterization and Aging Test Methodology for Power Electronic Devices at High Temperature

    International Nuclear Information System (INIS)

    Ibrahim, A.; Khatir, Z.; Dupont, L.

    2011-01-01

    Power electronic modules are key elements in the chain of power conversion. The application areas include aerospace, aviation, railway, electrical distribution, automotive, home automation, oil industry ... But the use of power electronics in high temperature environments is a major strategic issue in the coming years especially in transport. However, the active components based on silicon are limited in their applications and not suitable for those require both high voltages and high ambient temperatures. The materials with wide energy gap like SiC, GaN and diamond, have the advantage of being able to exceed these limits [1,2]. These materials seem adequate to extremely harsh temperature environments and allow the reduction of cooling systems, but also the increasing of switching frequency. (author)

  20. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  1. High speed machining of aluminium gear box without temperature stabilization

    Directory of Open Access Journals (Sweden)

    Abilio P. SILVA

    2010-01-01

    Full Text Available At the present time both clutch and mechanism housings, which are the main components from automotive gear boxes, are made of special aluminium alloys. These alloys are extremely light when compared with steel, making them a perfect choice to mitigate the cars weight and machining costs. Nonetheless they possess a high thermal expansion coefficient, which can be considered a major disadvantage since it makes necessary to pay extraordinary attention to dimensional variations during the production cycle due to temperature deviations. High speed machining of precision components made of aluminium requests thus their temperature to become previously stable. This procedure is the only way to force dimensions to stay inside its tolerance intervals. The main purpose of the present work was to assess the possibility to avoid the use of special ovens to make the clutch housing temperature become stable prior to machining. The dimensional stabilization of 40 sample parts, pre-heated at three temperature levels, was accomplished through the use of this system. The achieved results were made possible by analysing the part’s temperature at the machine’s entrance, the machine’s interior temperature, 35 measured dimensions and their tolerance intervals as well as the average temperature deviations of each of the five considered batches. By analysing the obtained results in detail it was possible to determine which dimensions show high sensitiveness to temperature (high correlation between dimension’s variation and temperature. Among these dimensions we can point out the ones related with depth, since they display the highest deviations due to temperature. Being a work with practical application it was possible to confirm the benefit of using this methodology by achieving significant enhancements on production efficiency, energy savings and reduction on maintenance costs, through the application of small adjustments to the machining sequence and by

  2. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  3. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  4. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  6. An unusual isotope effect in a high-transition-temperature superconductor

    International Nuclear Information System (INIS)

    Gweon, G.-H.; Sasagawa, T.; Zhou, S.Y.; Graf, J.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2004-01-01

    In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-Tc) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in Tc of optimally doped Bi2Sr2CaCu2O8 (Bi2212) upon oxygen isotope substitution (16O to 18O leads to Tc decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as ''incoherent peaks''. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other

  7. Pumping liquid metal at high temperatures up to 1,673 kelvin

    Science.gov (United States)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  8. Low to moderate temperature nanolaminate heater

    Science.gov (United States)

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  9. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  10. Dynamics of the vortex state in high temperature superconductors

    International Nuclear Information System (INIS)

    Kapitulnik, A.

    1991-01-01

    The large thermal energy available, the strong anisotropy, and short coherence lengths of high temperature superconductors give rise to new phenomena in the mixed state. The author discusses transport and thermodynamic measurements of high-Tc materials and of model systems. In particular, he uses experiments on two dimensional films to compare and isolate two dimensional effects in the cuprates. By using multilayer systems with similar parameters, he identifies decoupling of the superconducting planes in magnetic fields at temperatures much above the irreversibility line. He shows that if the irreversibility line is to be considered a melting transition line, it implies melting of the solid state into a liquid of three dimensional flux lines. He further uses Monte Carlo simulations to study the structure of the vortex state as well as melting

  11. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  12. Free energy landscapes of electron transfer system in dipolar environment below and above the rotational freezing temperature

    International Nuclear Information System (INIS)

    Suzuki, Yohichi; Tanimura, Yoshitaka

    2007-01-01

    Electron transfer reaction in a polar solvent is modeled by a solute dipole surrounded by dipolar molecules with simple rotational dynamics posted on the three-dimensional distorted lattice sites. The interaction energy between the solute and solvent dipoles as a reaction coordinate is adopted and free energy landscapes are calculated by generating all possible states for a 26 dipolar system and by employing Wang-Landau sampling algorithm for a 92 dipolar system. For temperatures higher than the energy scale of dipole-dipole interactions, the free energy landscapes for the small reaction coordinate region have quadratic shape as predicted by Marcus [Rev. Mod. Phys. 65, 599 (1993)] whereas for the large reaction coordinate region, the landscapes exhibit a nonquadratic shape. When the temperature drops, small notched structures appear on the free energy profiles because of the frustrated interactions among dipoles. The formation of notched structure is analyzed with statistical approach and it is shown that the amplitude of notched structure depend upon the segment size of the reaction coordinate and is characterized by the interaction energy among the dipoles. Using simulated free energy landscapes, the authors calculate the reaction rates as a function of the energy gap for various temperatures. At high temperature, the reactions rates follow a bell shaped (inverted parabolic) energy gap law in the small energy gap regions, while it becomes steeper than the parabolic shape in a large energy gap regions due to the nonquadratic shape of the free energy landscape. The peak position of parabola also changes as the function of temperature. At low temperature, the profile of the reaction rates is no longer smooth because of the many local minima of the free energy landscape

  13. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  14. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  15. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  16. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  17. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  18. Results and future plans for the innovative basic research on high temperature engineering

    International Nuclear Information System (INIS)

    2001-05-01

    The High Temperature Engineering Test Reactor (HTTR) is under the rise-to-power stage at the Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). This reactor is aimed not only at establishment of the infrastructural technology on high temperature gas-cooled reactor and its upgrading, but also at promotion of the innovative basic research on high temperature engineering. The research is a series of innovative high-temperature irradiation studies, making the best use of the characteristic of the HTTR that it provides a very wide irradiation space at high temperatures. The JAERI has been conducting preliminary tests of the innovative research since 1994, in collaboration with universities and other research institutes, in the fields of 1) new materials development, 2) high temperature radiation chemistry and fusion-related research, and 3) high temperature irradiation techniques and other nuclear research. The HTTR Utilization Research Committee has been examining the results and methodology of the preliminary tests and the future plans, as well as examining the preparatory arrangements of facilities for the HTTR irradiation and post-irradiation examinations. This report presents a summary of results of the preliminary tests and preparatory arrangements for about seven years, together with an outline of the future plans. (author)

  19. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  20. Energy and Heat Fluctuations in a Temperature Quench

    Energy Technology Data Exchange (ETDEWEB)

    Zannetti, M.; Corberi, F. [Dipartimento di Fisica “E. Caianiello”, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Gonnella, G. [Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Piscitelli, A., E-mail: mrc.zannetti@gmail.com, E-mail: corberi@sa.infn.it, E-mail: gonnella@ba.infn.it, E-mail: antps@hotmial.it [Division of Physical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 (Singapore)

    2014-10-15

    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large N model quenched below the critical temperature T{sub c}. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose—Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction. (general)

  1. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  2. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  3. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  4. Fabrication processes of C/Sic composites for high temperature components in energy systems and investigation of their oxidation behavior

    International Nuclear Information System (INIS)

    El-Hakim, E.

    2004-01-01

    Carbon fibre-reinforced ceramic matrix composite are promising candidate materials for high temperature applications such as structural components in energy systems, fusion reactors and advanced gas turbine engines. C/C composites has low oxidation resistance at temperatures above 500degree. To overcome this low oxidation resistance a coating should be applied. Tenax HTA 5131 carbon fibres impregnated with phenolic resin and reinforced silicon carbide were modified by the addition of a coating layer of boron oxide, (suspended in Dyansil-40) for improving anti-oxidation properties of the composites.The oxidation behavior of carbon-silicon carbide composites coated with B 2 O 3 , as an protective layer former, in dry air has been studied in the temperature range 800- 1000 degree for 8 hrs and 16 hrs. The results show that the oxidation rates of the uncoated composites samples are higher than those of the coated composites. The uncoated samples exhibit the highest oxidation rate during the initial stages of oxidation. The composite coated with B 2 O 3 had a significantly improved oxidation resistance due to the formation of a barrier layer for oxygen diffusion. This improvement in the oxidation resistance is attributed to the blocking of the active sites for oxygen diffusion. The oxidation resistance of the coated composite is highly improved; the weight loss percentage of casted samples is 4.5-16% after 16-hrs oxidation in air while the weight loss of uncoated samples is about 60%. The results are supported by scanning electron microscopy

  5. The modular high-temperature gas-cooled reactor (MHTGR) in the US

    International Nuclear Information System (INIS)

    Neylan, A.J.; Graf, D.F.; Millunzi, A.C.

    1987-01-01

    GA Technologies Inc. and other U.S. corporations, in a cooperative program with the U.S. Department of Energy, is developing a Modular High-Temperature Gas-Cooled Reactor (MHTGR) that will provide highly reliable, economic, nuclear power. The MHTGR system assures maximum safety to the public, the owner/operator, and the environment. The MHTGR is being designed to meet and exceed rigorous requirements established by the user industry for availability, operation and maintenance, plant investment protection, safety and licensing, siting flexibility and economics. The plant will be equally attractive for deployment and operation in the U.S., other major industrialized nations including Korea, Japan, and the Republic of China, as well as the developing nations. The High-Temperature Gas-Cooled Reactor (HTGR) is an advanced, third generation nuclear power system which incorporates distinctive technical features, including the use of pressurized helium as a coolant, graphite as the moderator and core structural material, and fuel in the form of ceramic coated uranium particles. The modular HTGR builds upon generic gas-cooled reactor experience and specific HTGR programs and projects. The MHTGR offers unique technological features and the opportunity for the cooperative international development of an advanced energy system that will help assure adaquate world energy resources for the future. Such international joint venturing of energy development can offer significant benefits to participating industries and governments and also provides a long term solution to the complex problems of the international balance of payments

  6. Room-temperature ballistic energy transport in molecules with repeating units

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  7. Room-temperature ballistic energy transport in molecules with repeating units

    International Nuclear Information System (INIS)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-01-01

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators

  8. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  9. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  10. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  11. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  12. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  13. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  14. Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Low-temperature drying is important for heat-sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The

  15. Mechanism of high-temperature background of internal friction in metals

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Arzhavitin, V.M.

    1988-01-01

    Data of theoretical and experimental studies on energy dissipation in vibrating metal at small amplitudes and elevated temperatures (high temperature background of internal friction) are generalized and systematized. Evolution of knowledge of the background as a phenomenon influenced mainly by crystal structure defects - their form, quantity, mobility and interaction is followed. Considered is a wide range of investigated metal states and measurement conditions, and interrelations with other characteristics, for instance, strength ones. On the basis of the data obtained by authors and other investigations a concept of an additional third stage of the background increase with the temperature - the stage of deviation from exponential dependence at premelting point, is introduced. 107 refs.; 32 figs.; 3 tabs

  16. Temperature dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Schuurmans, J.J.; Veerman, E.C.I.; Francke, J.A.; Torres-Pereira, J.M.G.; Kraayenhof, R.

    1984-01-01

    A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19/sup 0/C and around 12/sup 0/C. Activities that show transitions around 19/sup 0/C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12/sup 0/C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e/sub 3/) varied with temperature and was optimal around 10/sup 0/C.

  17. Verification of SIGACE code for generating ACE format cross-section files with continuous energy at high temperature

    International Nuclear Information System (INIS)

    Li Zhifeng; Yu Tao; Xie Jinsen; Qin Mian

    2012-01-01

    Based on the recently released ENDF/B-VII. 1 library, high temperature neutron cross-section files are generated through SIGACE code using low temperature ACE format files. To verify the processed ACE file of SIGACE, benchmark calculations are performed in this paper. The calculated results of selected ICT, standard CANDU assembly, LWR Doppler coefficient and SEFOR benchmarks are well conformed with reference value, which indicates that high temperature ACE files processed by SIGACE can be used in related neutronics calculations. (authors)

  18. High temperature GaAs X-ray detectors

    Science.gov (United States)

    Lioliou, G.; Whitaker, M. D. C.; Barnett, A. M.

    2017-12-01

    Two GaAs p+-i-n+ mesa X-ray photodiodes were characterized for their electrical and photon counting X-ray spectroscopic performance over the temperature range of 100 °C to -20 °C. The devices had 10 μm thick i layers with different diameters: 200 μm (D1) and 400 μm (D2). The electrical characterization included dark current and capacitance measurements at internal electric field strengths of up to 50 kV/cm. The determined properties of the two devices were compared with previously reported results that were made with a view to informing the future development of photon counting X-ray spectrometers for harsh environments, e.g., X-ray fluorescence spectroscopy of planetary surfaces in high temperature environments. The best energy resolution obtained (Full Width at Half Maximum at 5.9 keV) decreased from 2.00 keV at 100 °C to 0.66 keV at -20 °C for the spectrometer with D1, and from 2.71 keV at 100 °C to 0.71 keV at -20 °C for the spectrometer with D2. Dielectric noise was found to be the dominant source of noise in the spectra, apart from at high temperatures and long shaping times, where the main source of photopeak broadening was found to be the white parallel noise.

  19. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  20. Low-temperature brown rice storage by using renewable energy from snow

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S.; Kawamura, S.; Fujita, H.; Doi, T.; Okada, K. [Hokkaido Univ., Sapporo, Hokkaido (Japan). Graduate School of Agricultural Science; Homma, K. [Itogumi Construction Co. Ltd, Sapporo, Hokkaido (Japan); Tsuchiya, F. [Obihiro Univ. of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan)

    2010-07-01

    This paper reported on a study that was conducted in Japan to determine whether renewable energy generated from snow can be used to replace the cooling system and electricity used for cooling a rice storehouse that maintained the grain temperature below 15 degrees C. However, the low-temperature storage system required a cooling system and electricity to cool rice in summer. In this study, a snow pile using 890 t of snow was made at the beginning of March next to the rice storehouse. The shape of the snow pile was a trapezium, 17 x 23 m at the bottom and 4 x 10 m at the top and 5 m in height. The snow pile was covered with 200 to 300 mm of wood chips to act as an insulation layer. Approximately 27 per cent of the energy for cooling the rice storehouse could be replaced by using the snow pile in summer. The quality of stored rice was almost similar to that of freshly harvested rice. The study showed that renewable energy generated from snow piles can be used for cooling a high-quality rice storehouse without using electricity.