WorldWideScience

Sample records for high temperature creep

  1. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  2. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  3. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  4. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  5. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  6. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  7. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  8. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  9. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  10. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  11. Creep behavior of materials for high-temperature reactor application

    International Nuclear Information System (INIS)

    Schneider, K.; Hartnagel, W.; Iischner, B.; Schepp, P.

    1984-01-01

    Materials for high-temperature gas-cooled reactor (HTGR) application are selected according to their creep behavior. For two alloys--Incoloy-800 used for the live steam tubing of the thorium high-temperature reactor and Inconel-617 evaluated for tubings in advanced HTGRs--creep curves are measured and described by equations. A microstructural interpretation is given. An essential result is that nonstable microstructures determine the creep behavior

  12. Development of evaluation technique of high temperature creep characteristics by small punch-creep test method (I)

    International Nuclear Information System (INIS)

    Baek, Seung Se; Na, Sung Hun; Yu, Hyo Sun; Na, Eui Gyun

    2001-01-01

    In this study, a Small Punch Creep(SP-Creep) test using miniaturized specimen(10 x 10 x 0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-1Mo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600 .deg. C. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decrease with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation of SP-Creep rate for 2.25Cr-1Mo steel is suggested, and a good agreement between experimental and calculated data has been found

  13. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  14. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  15. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  16. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  17. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  18. Microstructural evolution in a Ti-Ta high-temperature shape memory alloy during creep

    International Nuclear Information System (INIS)

    Rynko, Ramona; Marquardt, Axel; Pauksen, Alexander; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2015-01-01

    Alloys based on the titanium-tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti 70 Ta 30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol -1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

  19. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  20. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  1. Correlation of creep rate with microstructural changes during high temperature creep

    Science.gov (United States)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  2. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  3. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  4. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  5. Improved Creep Measurements for Ultra-High Temperature Materials

    Science.gov (United States)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  6. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  7. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    Science.gov (United States)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  8. A contribution to the question of creep and relaxation of concrete under high temperatures

    International Nuclear Information System (INIS)

    Schneider, U.

    1979-01-01

    It was initially shown that, in dealing with the high temperature problem, it is expedient to distinguish certain material properties in terms of isothermal and non-isothermal conditions. A general equation of state could be derived to describe the key question complex relating to deformation behaviour of concrete under high temperatures. For the case of an isothermal temperature load under 100 0 C numerous measurement results are available from the literature. The creep behaviour of light and normal concrete up to 450 0 C was investigated and discussed. Pre-storage, concrete utilization, inelastic deformation and the influence of conditions of stress in the heat-up phase on high-temperature creep were treated. It could be shown on the basis of numerous evaluations and computer studies that also under high temperature conditions the creep behaviour of concrete is best described in terms of exponential functions. Preliminary experimental results on creep behaviour under transient temperature conditions have already been published within the framework of the sub-project ''fire properties of components''. These results, together with new measurement values have been subjected to theoretical analysis. The creep functions (phi-functions) for light and normal concrete developed for the transient temperature state constitute an important part of this work. Various suggestions have been made for criteria of failure for concrete at high tempratures. For the transient state a critical concrete temperature can be specified. Investigations on rates of deformation at the time of failure have shown that a so-called high level and low level is possible. The question of high temperature relaxation of conrete was studied both experimentally and theoretically. The constraining force problem was considered in detail in this research for comparison purposes since it offers a number of possibilities for new approaches and solutions particularly from a theoretical viewpoint. (orig

  9. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  10. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  11. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  12. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  13. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  14. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  15. Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Hong, Sung-Deok; Kim, Yong-Wan; Park, Jae-Young; Kim, Seon-Jin

    2012-01-01

    This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

  16. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  17. High temperature graphite irradiation creep experiment in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Manzel, R.; Everett, M. R.; Graham, L. W.

    1971-05-15

    The irradiation induced creep of pressed Gilsocarbon graphite under constant tensile stress has been investigated in an experiment carried out in FE 317 of the OECD High Temperature Gass Cooled Reactor ''Dragon'' at Winfrith (England). The experiment covered a temperature range of 850 dec C to 1240 deg C and reached a maximum fast neutron dose of 1.19 x 1021 n cm-2 NDE (Nickel Dose DIDO Equivalent). Irradiation induced dimensional changes of a string of unrestrained graphite specimens are compared with the dimensional changes of three strings of restrained graphite specimens stressed to 40%, 58%, and 70% of the initial ultimate tensile strength of pressed Gilsocarbon graphite. Total creep strains ranging from 0.18% to 1.25% have been measured and a linear dependence of creep strain on applied stress was observed. Mechanical property measurements carried out before and after irradiation demonstrate that Gilsocarbon graphite can accommodate significant creep strains without failure or structural deterioration. Total creep strains are in excellent agreement with other data, however the results indicate a relatively large temperature dependent primary creep component which at 1200 deg C approaches a value which is three times larger than the normally assumed initial elastic strain. Secondary creep constants derived from the experiment show a temperature dependence and are in fair agreement with data reported elsewhere. A possible determination of the results is given.

  18. NIRVANA, a high-temperature creep model for Zircaloy fuel sheathing

    International Nuclear Information System (INIS)

    Sills, H.E.; Holt, R.A.

    1979-05-01

    We have developed a multi-component model to describe the transient plastic deformation of Zircaloy fuel sheathing during high-temperature transients. From deformation maps we identify three deformation mechanisms which, in principle, occur in all three phase fields of Zircaloy (α, α+β, β): diffusional creep, dislocation creep, and athermal strian. A strain component occurring during the α → β transformation is also identified. Microstructural changes which alter deformation rates -grain structure, recrystallization, phase transformation -are accounted for. The individual components of the model represent known metallurgical phenomena. The combined model gives excellent agreement with transient test data from 700-1800 K, a range of heating rates from 0-100 K.s -1 , and a range of strain rates from 10 -5 to 10 -1 .s -1 . To enable comparison with available data the transient creep model was combined with an axially uniform, thin-walled tube representation having anisotropic material properties. The resulting computer code, NIRVANA provides facilities for simulating uniaxial and biaxial tube tests over specified stress/temperature histories. (author)

  19. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Kyung Yong

    2003-01-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W c t p = B (where W c = σ ε is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W c - log t showed a good linear relation up to 10 5 hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials

  20. Effect of the hydro-thermal load history on the high-temperature creep of HTR-concrete

    International Nuclear Information System (INIS)

    Diederichs, U.; Rostasy, F.S.; Becker, G.

    1991-01-01

    In the research and development works for the prestressed concrete vessel for the HTR-500 high temperature reactor, the comprehensive tests concerning mix design, manufacture as well as mechanical and thermal behavior of the concrete have been carried out. The concrete was put to the numerous tests for determining the strength and the creep behavior at elevated temperature. In the real PCRV, the concrete is heated at different heating rate depending on the location of a certain volume element of the concrete in the structure. Furthermore, the heat transport simultaneously causes the moisture transport. For this reason, the test has been planned to investigate the transient creep at various heating rates and in different states of moisture during heating to the accident temperature up to 300 deg C. The cylindrical specimens were used for the high temperature creep test. The test procedure and the test results are reported. It was shown that the thermal history (heating rate, duration of holding at a certain temperature and so on) determines the transient creep deformation to a great extent. (K.I.)

  1. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: srjian@gmail.com [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-02-08

    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  2. Numerical description of creep of highly creep resistant alloys

    International Nuclear Information System (INIS)

    Preussler, T.

    1991-01-01

    Fatigue tests have been performed with a series of highly creep resistant materials for gas turbines and related applications for gaining better creep data up to long-term behaviour. The investigations were performed with selected individual materials in the area of the main applications down to strains and stresses relevant to design, and have attained trial durations of 25000 to 60000 h. In continuing former research, creep equations for a selection of characterizing individual materials have been improved and partly newly developed on the basis of a differentiated evaluation. Concerning the single materials, there are: one melt each of the materials IN-738 LC, IN-939, IN-100, FSX-414 and Inconel 617. The applied differentiated evaluation is based on the elastoplastical behaviour from the hot-drawing test, the creep behaviour from the non interrupted or the interrupted fatigue test, and the contraction behaviour from the annealing test. The creep equations developed describe the high temperature deformation behaviour taking into account primary, secondary and partly the tertiary creep dependent of temperature, stress and time. These equations are valid for the whole application area of the respective material. (orig./MM) [de

  3. Fracture mechanical evaluation of high temperature structure and creep-fatigue defect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2004-02-01

    This study proposed the evaluation procedure of high temperature structures from the viewpoint of fracture mechanics on the cylindrical structure applicable to the KALIMER, which is developed by KAERI. For the evaluation of structural integrity, linear and non-linear fracture mechanics parameters were analyzed. Parameters used in creep defect growth applicable to high temperature structure of liquid metal reactor and the evaluation codes with these parameters were analyzed. The evaluation methods of defect initiation and defect growth which were established in R5/R6 code(UK), JNC method (Japan) and RCC-MR A16(France) code were analyzed respectively. The evaluation procedure of leak before break applicable to KALIMER was preliminarily developed and proposed. As an application example of defect growth, the creep-fatigue defect growth on circumferential throughwall defect in high temperature cylindrical structure was evaluated by RCC-MR A16 and this application technology was established.

  4. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  5. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  6. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  7. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  8. Effect of carbide precipitates on high temperature creep of a 20Cr-25Ni austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamane, T.; Takahashi, Y.; Nakagawa, K.

    1984-01-01

    The high temperature creep of an austenitic stainless steel having carbide precipitates, is different from that of the carbide precipitate-free one. Strain rates of the steady state creep d(epsilonsub(s))/dt, or minimum strain rates of the creep in precipitate hardened and dispersion strengthened alloys at the creep temperature T, can be expressed by Sherby-Dorn's equation d(epsilonsub(s))/dt = Aσsup(n) exp (-Qsub(c)/RT). The stress exponent n, and the activation energy for creep Qsub(c), in a power law creep region, are more than those of unstrengthened alloys, where σ is the creep stress, R the gas constant and A the constant. In this research, the influence of carbide precipitates on steady creep rates, is investigated. Experimental details are given. Results are given and discussed. (author)

  9. Comparison study of inelastic analyses for high temperature structure subjected to cyclic creep loading

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, H. Y.; Lee, J. H.

    2002-01-01

    It is necessary to develop a reliable numerical analysis method to simulate the plasticity and creep behavior of LMR high temperature structures. Since general purpose finite element analysis codes such as ABAQUS and ANSYS provide various models for plastic hardening and creep equation of Norton's power law, it is possible to perform the separate iscoplasticity analysis. In this study, the high temperature structural analysis program(NONSTA-VP) implementing Chaboche's unified visco plasticity equation into ABAQUS has been developed and the viscoplastic response of the 316 SS plate having a circular hole subjected to a cyclic creep loading has been analyzed. The results among the separate visco plasticity analyses and the unified visco plasticity analysis using NONSTA-VP have been compared and the results from NONSTA-VP shows remarkable responses of stress relaxation and creep behavior during hold time compared to those from separate visco plasticity analyses. Also, it is anticipated to reduce the conservatism arising from using elastic approach for creep-fatigue damage analysis since the stress range and the strain range from the unified visco plasticity analysis has been greatly reduced compared to those from separate visco plasticity analyses and elastic analysis

  10. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  11. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-01-01

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  12. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  13. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  14. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S [CISE SpA, Milan (Italy); Crudeli, R [ENEL SpA, Milan (Italy)

    1999-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  15. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S. [CISE SpA, Milan (Italy); Crudeli, R. [ENEL SpA, Milan (Italy)

    1998-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  16. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  17. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  18. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  19. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    International Nuclear Information System (INIS)

    Khabaz, Fardin; Khare, Ketan S.; Khare, Rajesh

    2014-01-01

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  20. Constitutive modeling of creep behavior in single crystal superalloys: Effects of rafting at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ya-Nan, E-mail: fanyn12@mails.tsinghua.edu.cn; Shi, Hui-Ji, E-mail: shihj@mail.tsinghua.edu.cn; Qiu, Wen-Hui

    2015-09-17

    Rafting and creep modeling of single crystal superalloys at high temperatures are important for the safety assessment and life prediction in practice. In this research, a new model has been developed to describe the rafting evolution and incorporated into the Cailletaud single crystal plasticity model to simulate the creep behavior. The driving force of rafting is assumed to be the relaxation of the strain energy, and it is calculated with the local stress state, a superposition of the external and misfit stress tensors. In addition, the isotropic coarsening is introduced by the cube root dependence of the microstructure periodicity on creep time based on Ostwal ripening. Then the influence of rafting on creep deformation is taken into account as the Orowan stress in the single crystal plasticity model. The capability of the proposed model is validated with creep experiments of CMSX-4 at 950 °C and 1050 °C. It is able to predict the rafting direction at complex loading conditions and evaluate the channel width during rafting. For [001] tensile creep tests, good agreement has been shown between the model predictions and experimental results at different temperatures and stress levels. The creep acceleration can be captured with this model and is attributed to the microstructure degradation caused by the precipitate coarsening.

  1. Correlation between microstructure and the creep behaviour at high temperature of Alloy 800 H

    International Nuclear Information System (INIS)

    Spiradek, K.; Degischer, H.P.; Lahodny, H.

    1989-01-01

    A systematic metallographic study was performed to identify the nature of the microstructural changes occurring during high temperature creep deformation of Alloy 800 H. Creep tests were carried out at 800 deg. C under constant load conditions corresponding to the initial stresses between 25 and 80 MPa. Some tests were interrupted after certain elongations to provide the samples for electron microscopy. Emphasis was put on the creep periods relevant to design where only a few per cent of deformation are tolerable. The influence of the initial material conditions on the creep behaviour was examined. Variations of the initial microstructures were achieved by different solution treatments (980/1250) deg. C, preageing at 800 deg. C (0/6400) h and cold deformation up to 10% followed by ageing at 800 deg. C. The results of the microstructural examinations were correlated with the creep curves that provide a basis for identification of the creep mechanisms operating at the test conditions. (author). 14 refs, 17 figs

  2. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    Science.gov (United States)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  3. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  4. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  5. Creep-fatigue life property of FBR high-temperature structural materials under tension-torsion loading and life evaluation method

    International Nuclear Information System (INIS)

    Ogata, Takashi; Nitta, Akito

    1994-01-01

    Creep-fatigue damage in high temperature structural components in a FBR progress under multiaxial stress condition depending on their operating conditions and configuration. Therefore, multiaxial stress effects on creep-fatigue damage evolution must be clarified to make precise creep-fatigue damage evaluation of these components. In this study, creep-fatigue tests in FBR high temperature materials such as SUS304, 316FR stainless steels and a modified 9Cr steel were conducted under biaxial stress subjecting tension-compression and torsion loading, in order to examine biaxial stress effects on failure mechanism and life property, and to discuss creep-fatigue life evaluation methods under biaxial stress. Main results obtained in this study are summarized as follows: 1. The main cracks under cyclic torsion loading propagated by shear mode in three materials. But intergranular failure was occurred in SUS304 and 316FR, and transgranular failure was observed in Mod.9Cr steel. 2. Nonlinear damage accumulation model proposed based on uniaxial creep-fatigue test results was extended to apply for creep-fatigue damage evaluation under biaxial stress state by considering the biaxial stress effects on fatigue and creep damage evolution. 3. It was confirmed that creep-fatigue life under biaxial stress could be predicted by the extended evaluation method with higher accuracy than existing methods. (author)

  6. Effect of 1.0% Ni on high-temperature impression creep and hardness of recycled aluminium alloy with high Fe content

    Science.gov (United States)

    Faisal, M.; Mazni, Noor; Prasada Rao, A. K.

    2018-03-01

    Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.

  7. Effects of thermal - mechanical treatment in the creep - and tensile properties of niobium at high temperature

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Pinatti, Dyonisio G.

    1981-01-01

    Mechanical behavior of Nb at high temperature was studied based upon the samples morfology. The samples were obtainned after thermal mechanical treatment of 50mm diameter and 250mm length ingot produced by electron beam vacuum. A lot of the samples was tensile tested as a function of temperature showing small interstitials solute effect and a matrix hardened probably by substitutionals. Other lot was creep tested at homologous temperature of 0,34 and stress between 80 and 120 MPa. The results of these tests were analysed as a function of the sample morfology and showed a dependence of the percentage of recrystalization and of the grain size on the minimum creep rate. The fracture analysis showed significant effect of the oxygen content although it didn't contribute to the creep results. (Author) [pt

  8. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments

    International Nuclear Information System (INIS)

    Gaffard, V.

    2004-12-01

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  9. High Temperature Creep-Fatigue-Oxidation Interactions in 9% Cr Martensitic Steels

    International Nuclear Information System (INIS)

    Fournier, B.; Sauzay, M.; Pineau, A.

    2007-01-01

    Full text of publication follows: Martensitic steels of the 9-12%Cr family are widely used in the energy industry and were selected as candidate materials for structural components of future fusion reactors [1,2]. Typical in-service conditions require operating temperatures between 673 and 873 K, which means that the creep behaviour of these steels is of primary interest. In addition, some components are anticipated to operate in a pulsed mode, leading to complex time-dependencies of temperature, stress and strain in materials. Therefore, in design procedures, fatigue and creep-fatigue data are required. Furthermore, to meet the need for very long inservice lifetime of components (with very long hold times ∼ one month) reliable cyclic lifetime models are necessary, since complete tests with such long holding periods cannot, of course, be carried out in laboratory. To make these extrapolations safer and more reliable a precise understanding of the damage and interaction mechanisms is required. Fatigue, creep-fatigue and relaxation-fatigue tests were carried out at high temperature (823 K), under three different atmospheres (air, vacuum and He+impurities) and for a large panel of applied fatigue and creep strain. Holding periods are found to decrease the fatigue lifetime. Surprisingly enough compressive holding periods are more deleterious than tensile ones in air. Observations were carried out on fracture surfaces, specimen surfaces and cross sections. No creep cavity is visible, whatever the holding period duration, but a major influence of oxidation is highlighted. Oxidation is all the more predominant for low applied strains. Tests carried out under vacuum and helium show that the formation of a thick oxide layer can lead to a fatigue lifetime 4 times shorter. Crack propagation is mainly transgranular for all applied strains. Both damage observations and a theoretical study of oxide layers fracture mechanisms allow qualitative explanations for recorded fatigue

  10. Estimation of Temperature Influence on Creep Rate of High-Temperature Elements in Steam Turbines and Steam Pipelines

    Directory of Open Access Journals (Sweden)

    A. G. Gerasimova

    2011-01-01

    Full Text Available The paper considers a high temperature influence on strength characteristics of steam pipelines and steam turbine parts of high and medium pressure. The charts showing a decisive temperature importance in diffuse creep have been presented in the paper. The paper contains a calculation of steel self-diffusion coefficient. Dependence Dsd = f(t for more accurate assessment of  resource characteristics of the applied steel has been proposed in the paper.

  11. Multiaxial creep of tubes of Alloy 800 and Alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Schubert, F.; Nickel, H.

    1989-01-01

    The deformation behaviour under multiaxial loading at temperature higher than 800 deg. C is strongly controlled by creep. For dimensioning and inelastic analysis the use of v. Mises theory and Norton's creep law for stationary creep are demonstrated for different combination of internal pressure and axial or torsional stress or strains. The experimental results are in satisfactory agreement with the theoretical predicted deformation behaviour if values for the coefficient k and n in Norton's creep law are used, which are close to the real creep resistance in the component. (author). 11 refs, 12 figs, 2 tabs

  12. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    International Nuclear Information System (INIS)

    Sediako, A.; Shook, S.; Vogel, S.; Sediako, D.

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and excellent diecastability are frequently among the main considerations in development of a new magnesium alloy for automotive industry. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material become important factors in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated- temperature applications. Along with others 'traditional' characterization techniques of metals' performance in high- temperature creep, neutron diffraction was employed in this study to analyze evolution of crystallographic texture during creep deformation. The paper compares two methods of texture analysis in neutron diffraction studies: based on monochromatic (reactor-source) beam and white neutron beam (time-of-flight method, synchrotron). The time-of-flight (TOF) spectrometer illuminates the sample with a non-filtered beam of neutrons and captures the readings with an encircled detector array. This provides a very fast and detailed picture of the crystallographic texture for the bulk of the sample. As the white beam retains all neutron wavelengths, it takes much less time to collect statistically-valid dataset for the diffraction pattern. On the other hand, the monochromatic beam setup includes a monochromatic crystal that filters out a specific wavelength. The diffracted beam is then captured by a much simpler neutron detector. This setup is more flexible, allowing for choosing various wavelengths (depending on the sample material) but obviously requiring more time for statistically viable data collection. These studies were performed using E3 neutron

  13. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  14. Principal physical mechanisms of material creep resistance and rupture at elevated temperatures

    International Nuclear Information System (INIS)

    Krishtal, M.A.

    1977-01-01

    Mechanisms of creep and long-term failure of refractory materials at different temperatures and stress levels are considered. At high temperatures and low stresses the diffusion (vacancial) mechanism is observed. Temperatures being low and stresses sufficiently high, dislocation mechanism involving avalanche dislocation break-off is manifested. Intermediate conditions provide other mechanisms, i.e. dislocation glide, dislocation climbing, grain-boundary and sub-grain-boundary mechanisms. Quantitative relationships between creep rate and some structural and kinetic parameters are discussed. Account of the creep mechanism is necessary when selecting methods for strengthening of alloys

  15. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  16. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  17. Properties of aluminum alloys tensile, creep, and fatigue data at high and low temperatures

    CERN Document Server

    1999-01-01

    This book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. The individual test results were compiled, plotted in various ways, and analyzed. The average values from the tensile and creep tests were then normalized to the published typical room-temperature tensile properties of the respective alloys for easy comparison. This extensive project was done by Alcoa Laboratories over a period of several years. The types of data presented include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures, including tensile properties at subzero temperatures, at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of t...

  18. Planning of the in-situ creep test in sedimentary soft rocks under high temperature

    International Nuclear Information System (INIS)

    Takakura, Nozomu; Yoshikawa, Kazuo; Okada, Tetsuji; Sawada, Masataka; Tani, Kazuo; Takeda, Kayo

    2007-01-01

    Research has been conducted on underground facilities for energy storage and waste disposal in sedimentary soft rocks. One of the research topics is that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long-term stability of caverns in sedimentary soft rocks as influenced by changes in the external environment. This report presents the plan of field creep test for the purpose to establish the evaluation method of long-term stability of caverns in soft rocks. A series of field creep test is performed to study the influence of high temperature in an underground facility at a depth of 50 meters. (author)

  19. The analytical description of high temperature tensile creep for cavitating materials subjected to time variable loads

    International Nuclear Information System (INIS)

    Bocek, M.

    A phenomenological cavitation model is presented by means of which the life time as well as the creep curve equations can be calculated for cavitating materials subjected to time variable tensile loads. The model precludes the proportionality between the damage A and the damage rate (dA/dt) resp. Both are connected by the life time function tau. The latter is derived from static stress rupture tests and contains the loading conditions. From this model the life fraction rule (LFR) is derived. The model is used to calculate the creep curves of cavitating materials subjected at high temperatures to non-stationary tensile loading conditions. In the present paper the following loading procedures are considered: creep at constant load F and true stress s; creep at linear load increase ((dF/dt)=const) and creep at constant load amplitude cycling (CLAC). For these loading procedures the creep equations for cavitating and non-cavitating specimens are derived. Under comparable conditions the creep rate of cavitating materials are higher than for non-cavitating ones. (author)

  20. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  1. A review of the high temperature creep in oxide nuclear fuels (I)

    International Nuclear Information System (INIS)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C. Y.

    1998-06-01

    Since the initial stage of fuel developmental until recently, considerable efforts have been extensively directed at studying the creep properties of uranium dioxide and its related phases largely due to the importance of their application to the reactor fuels. In this state-of-the-art report, the creep behavior and mechanisms of UO 2 and its related phases were reviewed and discussed in terms of experimental variables such as applied stress, temperature, microstructure and stoichiometry. The objective of this review is to obtain a complete understanding of the influences of these variables on the creep property and creep mechanism in these materials aiming at devising more proper methods for the improvement of the behavior. The database obtained from the results will be primarily utilized also, as the reference data for studying the creep behavior of UO 2 -based mixed oxide nuclear fuels. (author). 64 refs., 6 tabs., 25 figs

  2. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    Science.gov (United States)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  3. Temperature dependence of creep properties of cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Yuji; Nakajima, Hajime

    1995-01-01

    The creep properties of Hastelloy XR, in a solution treated, 10% or 20% cold-worked condition, were investigated at temperatures from 800 to 1,000degC for the duration of creep tests up to about 2,500 ks. At 800 and 850degC, the steady-state creep rate and rupture ductility decreased and the rupture life increased after cold work of 10% or 20%. Although the rupture life of the 10% cold-worked alloy was longer at 900degC than that of the solution treated one, the rupture lives of the 10% cold-worked and solution treated alloys were almost equal at 950degC, which is the highest helium temperature in an intermediate heat exchanger of the High Temperature Engineering Test Reactor (HTTR). The beneficial effect of 10% cold work on the rupture life and the steady-state creep rate disappeared at 1,000degC. The beneficial effect of 20% cold work disappeared at 950degC because significant dynamic recrystallization occurred during creep. While rupture ductility of this alloy decreased after cold work of 10% or 20%, it recovered to a considerable extend at 1,000degC. It is emphasized that these cold work effects should be taken into consideration in design, operation and residual life estimation of high temperature components of the HTTR. (author)

  4. Mathematical model for creep and thermal shrinkage of concrete at high temperature

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1983-01-01

    Based on the existing limited test data, it is possible to set up an approximate constitutive model for creep and shrinkage at temperatures above 100 0 C, up to about 400 0 C. The model presented here describes the effect of various constant temperatures on the creep rate and the rate of aging, similar effects of the specific water content, the creep increase caused by simultaneous changes in moisture content, the thermal volume changes as well as the volume changes caused by changes in moisture content (drying shrinkage or thermal shrinkage), and the effect of pore pressure produced by heating. Generalizations to time-variable stresses and multiaxial stresses are also given. The model should allow more realistic analysis of reactor vessels and containments for accident situations, of concrete structures subjected to fire, of vessels for coal gasification or liquefaction, etc. (orig.)

  5. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Wang, Lumin; Was, Gary

    2010-01-01

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  6. Flux creep characteristics in high-temperature superconductors

    International Nuclear Information System (INIS)

    Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.; McElfresh, M.W.; Gambino, R.J.

    1990-01-01

    We describe the voltage-current characteristics of YBa 2 Cu 3 O 7-δ epitaxial films within the flux creep model in a manner consistent with the resistive transition behavior. The magnitude of the activation energy, and its temperature and magnetic field dependences, are readily derived from the experimentally observed power law characteristics and show a (1-T/T c ) 3/2 type of behavior near T c . The activation energy is a nonlinear function of the current density and it enables the determination of the shape of the flux line potential well

  7. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  8. Creep property of carbon and nitrogen free high strength new alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muneki, S., E-mail: ABE.Fujio@nims.go.j [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan); Okubo, H.; Abe, F. [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan)

    2010-06-15

    The carbon and nitrogen free new alloys which were composed of supersaturated martensitic microstructure with high dislocation density before the creep test have been investigated systematically. These alloys were produced from the new approach which raised creep strength by the utilization of the reverse transformed austenite phase as a matrix and intermetallic compounds such as Laves phase and mu-phase as precipitates during heating before the creep test. It is important that these alloys are independent of any carbides and nitrides as strengthening factors. The high temperature creep test over 700 {sup o}C exceeds 50,000 h, and the test is continuous. Creep behavior of the alloys is found to be different from that of the conventional high-Cr ferritic steels. The addition of boron to the alloy pulled the recrystallization temperature up in the high temperature, and it became a creep test in the un-recrystallization condition, and the creep property of high temperature over 700 {sup o}C was drastically improved. The minimum creep rates of Fe-Ni alloys at 700 {sup o}C are found to be much lower than those of the conventional high Cr ferritic heat resistant steels, which is due to fine dispersion strengthening useful even at 700 {sup o}C in these alloys. As a result it became clear that the value for 100,000 h was exceeded at 700 {sup o}C and 100 MPa calculated from the Larson-Miller parameter at C = 20.

  9. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  10. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Lan, Xiao-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Qiu, Jingwen [College of Electrical and Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Hu, Te [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Tang, Hui-ping [State Key Laboratory of Porous Metal Materials, Northwestern Institute of Nonferrous Metal Research, Xi' an, Shaanxi 710012 (China)

    2016-08-15

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocation mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.

  11. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Hong, Sung Deok; Kim, Yong Wan; Kim, Seon Jin; Park, Jae Young; Ekaputra, I. M. W.

    2013-01-01

    This paper presents a comparative investigation on the high-temperature tensile and creep properties of Alloy 617 base metal (BM) and weld metal (WM) fabricated by a gas tungsten arc weld process. The WM had higher yield strength and lower ultimate tensile strength than the BM does; however, its elongation was significantly lower than that of the BM. The creep curve of the BM and WM was somewhat different from that of typical heat-resistance steel, and did not show a textbook creep. The WM exhibited a longer creep rupture life, lower creep rate, and lower rupture ductility than the BM. However, as the creep rupture time reached approximately 36,800 h, the creep life of the WM was expected to be almost similar to that of the BM; and after 36,800 h, its creep life was expected to be worse than the BM. Loner creep tests is needed to investigate the long-term creep life of the WM. The creep failure mode of the BM and WM was obviously an intergranular cracking of the cavity formation and growth mechanisms, although it was more evident in the WM. The BM had a more ductile fracture surface than the WM

  12. High-temperature creep of equiaxed Cd-26.5 at % Zn eutectic in the superplastic regime

    International Nuclear Information System (INIS)

    Tonejc, Anton; Poirier, J.-P.

    1976-01-01

    The temperature and stress dependence on the secondary creep rate of the Cd+26.5Zn eutectoid in the superplastic domain was studied in constant-stress compression creep. Experiments were performed in the following ranges of temperature, stress and grain size: 170C 2 , 1<10μm. In all cases secondary creep was established after a strain approximately equal to 4%. For temperatures higher than 200C all the techniques yielded the same value for m (m=0.49+-0.03) in the whole investigated range of stresses. For T=170C a lower value of m was found (m=0.33). The activation energy was determined and found equal to 25Kcal/mol. Micrographic examinations were performed on sectioned samples at several stages of deformation. The grain size was found to be identical for various conditions of temperature and stress and very stable with respect to deformation. The experimental results of the creep tests are discussed in relation with the microstructural aspects

  13. Pt-Rh alloys. Investigation of creep rate and rupture time at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumic, Biserka; Gomidzelovic, Lidija; Marjanovic, Sasa; Ivanovic, Aleksandra; Dimitrijevic, Silvana [Belgrade Univ., Bor (Serbia). Inst. of Mining and Metallurgy; Krstic, Vesna

    2013-02-01

    The results of experimental investigation of creep rate and rupture time of the alloys of Pt-Rh system are presented in this paper. Selected alloys with 7-40 wt.-% Rh content were examined using a universal device for tensile testing of materials at high temperatures, and monitoring structure changes of the samples by electron microscopy. Investigations were performed in the temperature range between 1200 C and 1700 C at a stress between 2 MPa and 15 MPa. (orig.)

  14. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    Science.gov (United States)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  15. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Model-based Approach for Long-term Creep Curves of Alloy 617 for a High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Yong Wan

    2008-01-01

    Alloy 617 is a principal candidate alloy for the high temperature gas-cooled reactor (HTGR) components, because of its high creep rupture strength coupled with its good corrosion behavior in simulated HTGR-helium and its sufficient workability. To describe a creep strain-time curve well, various constitutive equations have been proposed by Kachanov-Rabotnov, Andrade, Garofalo, Evans and Maruyama, et al.. Among them, the K-R model has been used frequently, because a secondary creep resulting from a balance between a softening and a hardening of materials and a tertiary creep resulting from an appearance and acceleration of the internal or external damage processes are adequately considered. In the case of nickel-base alloys, it has been reported that a tertiary creep at a low strain range may be generated, and this tertiary stage may govern the total creep deformation. Therefore, a creep curve for nickel-based Alloy 617 will be predicted appropriately by using the K-R model that can reflect a tertiary creep. In this paper, the long-term creep curves for Alloy 617 were predicted by using the nonlinear least square fitting (NLSF) method in the K-R model. The modified K-R model was introduced to fit the full creep curves well. The values for the λ and K parameters in the modified K-R model were obtained with stresses

  17. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  18. Study of creep microstructure in aluminium at medium temperatures

    International Nuclear Information System (INIS)

    Caillard, Daniel

    1980-01-01

    This research thesis focused on the use of electronic microscopy for the study of the properties of a sub-structure which appears during the second stage of creep in aluminium under intermediate temperatures. The author used conventional observations at 100 kV performed on thin blades manufactured after the macroscopic creep test, and in situ deformation observations in the high voltage microscope for the examination of thicker blades. After a review of knowledge on creep and on creep models, the author describes the used experimental conditions, notably for in situ experiments, their benefits and limitations. Geometric properties of various dislocation networks present in sub-grains and sub-boundaries are then described. A creep model is then proposed, based on the previous observations, and is compared with other published experimental results

  19. Low temperature irradiation creep of tungsten and molybdenum

    International Nuclear Information System (INIS)

    Pouchou, J.-L.

    1975-12-01

    It is demonstrated that the mechanism of stress biased nucleation of dislocation loops may contribute significantly to the low temperature irradiation creep. This is achieved by measuring length and electrical resistivity changes at liquid hydrogen temperature, under fission fragments bombardement. From these measurements (correlated with some electron microscopy observations of irradiated samples), the following three stages of deformation appear: at low doses (smaller than 10 -2 displacement per atom) the deformation is mainly an increase in volume due to point defects. The study of this stage gives the formation volume of a Frenkel pair, and the number of point defects created by an initial fission fragment; for doses higher than 10 -2 d.p.a., the point defects saturation is reached. At this stage, vacancies and interstitials collapse into loops, the nucleation of which is polarized by the applied stress. At zero stress, the corresponding creep rate is zero. At high stresses (>50 kg/mm 2 ), creep rate saturates at value of the order of 10 -21 (FF/cm 3 ) -1 ; because of the recombinations of loops, the creep rate decreases continuously during irradiation. The recombinations lead to a dense dislocation network (formed at doses of 1 d.p.a.), the climb of which oriented by the applied stress gives rise to a steady state creep. The creep rate is smaller, by at least one order of magnitude, than that which is observed in the stage of loop formation [fr

  20. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  1. Creep behavior of concrete under multiaxial stress at elevated temperature, 1

    International Nuclear Information System (INIS)

    Ohgishi, Sakichi; Kishitani, Koichi; Oshima, Hisaji; Kosaka, Yoshio; Shiire, Toyokazu.

    1977-01-01

    The field of application of concrete structures is extended to that of low and high temperature and dynamic loading. The creep of concrete has been studied under one, two or three axis compression below 80 deg. C, and this is owing to the design standards for PCPVs in Europe and America adopting the design temperature below 80 deg. C. However, the design temperature for PCPVs is expected to rise, and the high temperature, three axis creep of concrete must be studied to examine the physical property and thermodynamics in wide range of temperature, such as free energy gradient, the behavior of adsorbed water molecules, and activating energy, which control the creep. In this study, various problematical points in the development of a testing apparatus which can make three axis compression creep test from 300 to 500 deg. C were pointed out, and the measures to solve them were investigated. The creep testing apparatus was actually manufactured for trial, and the performance was tested. The design conditions for the testing apparatus, the problems in the manufacture, the selection of materials, and the results of trial are described. As for the pressurizing media, oil is used up to 180 deg. C, mercury up to 300 deg. C, and molten anatomical alloy in nitrogen atmosphere up to 500 deg. C. Buried Ailtech gauges can be used for the strain measurement up to 320 deg. C. The leakpreventing method for various penetrations was developed successfully. (Kako, I.)

  2. Pinning and creep in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.; Ivlev, B.I.

    1992-01-01

    The angular and magnetic field dependence of a critical current parallel to the layers in the layered superconductors is studied. The critical current value is found for a superconductor with strong pinning centers. Quantum flux creep in sufficiently perfect layered high-Tc superconductors is discussed. The cross-over temperature between activated and quantum creep is found. (orig.)

  3. Effect of room temperature prestrain on creep life of austenitic 25Cr-20Ni stainless steels

    International Nuclear Information System (INIS)

    Park, In Duck; Ahn, Seok Hwan; Nam, Ki Woo

    2004-01-01

    25Cr-20Ni series strainless steels have an excellent high temperature strength, high oxidation and high corrosion resistance. However, further improvement can be expected of creep strength by work hardening prior creep. In the present study, the effect of prestraining at room temperature on the creep behavior of a Class M(STS310S) and a Class A(STS310J1TB) alloy containing precipitates have been examined. Prestraining was carried out at room temperature and range of prestrain was 0.5∼2.5 % at STS310J1TB and 2.0∼7.0 % at STS310S. Creep behavior and creep rate of pre-strained specimens were compared with that of virgin specimens. Room temperature prestraining produced the creep life that is longer than that of a virgin specimen both for STS310J1TB and STS310S when creep test was carried out at the temperature lower than recrystallization temperature. The reason for this improvement of creep life was ascribable to the interaction between dislocations and precipitates in addition to the dislocation-dislocation interaction in STS310J1TB and the dislocation-dislocation interaction in STS310S. The beneficial effect of prestraining in STS310J1TB was larger than that of STS310S

  4. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  5. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru [Belgorod State National Research University, Pobedy street 85, Belgorod 308015 (Russian Federation); Leont' eva-Smirnova, Maria, E-mail: smirnova@bochvar.ru [Bochvar High-Technology Research Institute of Inorganic Materials, ul. Rogova 5, Moscow 123098 (Russian Federation)

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  6. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  7. Flux Creep Investigation in Bi2Sr2CaCu2O8+d High-Temperature Superconductor

    Directory of Open Access Journals (Sweden)

    G. R. Blanca

    2004-12-01

    Full Text Available The flux creep process in a c-axis Bi2Sr2CaCu2O8+d thin film was investigated at different temperatures and applied fields using the Kim-Anderson (KA approach. The peaked behavior shown in the magnetoresistance profile was attributed to the competing mechanisms of flux motion and sample-intrinsic transition near Tc.Within the temperature range where the competition occurs, U increases with temperature and consequently a decrease in the superconducting volume corresponds to a decrease in the flux creep. Moreover, the flux creep potential barrier varies with applied current I at all temperatures consistent with the KA model.

  8. Study of the temperature dependence of the uniaxial creep property of similar material of new soft rock

    Science.gov (United States)

    Wang, Y. Y.; Wu, Y.; Fan, X. Y.; Zhang, J. L.; Guo, P.; Li, J. G.

    2017-11-01

    Using the experimental method, the experimental research of creep properties were conducted under different temperature ranging from 10°C to 60°C. The similar material of new soft rock consists of paraffin, which can obtain that the deformation contains the instantaneous elastic deformation and creep deformation through the uniaxial creep experimental results. And thus the increase of temperature has great influence on the creep characteristics of similar soft rock according to the creep curve of similar soft rock at 10°C to 60°C. With the increase of temperature, the slope of the stress-strain curve of similar soft rock is increasing, while the average of the creep modulus is decreasing, which means that the capacity of resist deformation is reduced. Therefore, the creeps law of high-temperature and short-time can be shown the creep phenomenon of low-temperature and long-time, and further shorten the creep experimental cycle.

  9. Creep testing of nodular iron at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.; Seitisleam, Facredin; Wu, Rui; Sandstroem, Rolf (Swerea KIMAB AB, Stockholm (Sweden))

    2010-12-15

    The creep strain at room temperature, 100 and 125 deg C has been investigated for the ferritic nodular cast iron insert intended for use as the load-bearing part of canisters for long term disposal of spent nuclear fuel. The microstructure consisted of ferrite, graphite nodules of different sizes, compacted graphite and pearlite. Creep tests have been performed for up to 41,000 h. The specimens were cut out from material taken from two genuine inserts, I30 and I55. After creep testing, the specimens from the 100 deg C tests were hardness tested and a metallographic examination was performed. Creep strains at all temperatures appear to be logarithmic, and accumulation of creep strain diminishes with time. The time dependence of the creep strain is consistent to the W-model for primary creep. During the loading plastic strains up to 1% appeared. The maximum recorded creep strain after the loading phase was 0.025%. This makes the creep strains technically insignificant. Acoustic emission recordings during the loading of the room temperature tests showed no sounds or other evidence of microcracking during the loading phase. There is no evidence that the hardness or the graphite microstructure changed during the creep tests

  10. An extension of a high temperature creep model to account for fuel sheath oxidation

    International Nuclear Information System (INIS)

    Boccolini, G.; Valli, G.

    1983-01-01

    Starting from the high-temperature creep model for Zircaloy fuel sheathing, the NIRVANA (developed by AECL), a multilayer model, is proposed in this paper: it includes the outer oxide plus alpha retained layers, and the inner core of beta or alpha plus beta material, all constrained to deform with the same creep rate. The model has been incorporated into the SPARA fuel computer code developed for the transient analysis of fuel rod behaviour in the CIRENE prototype reactor, but it is in principle valid for all Zircaloy fuel sheathings. Its predictions are compared with experimental results from burst tests on BWR and PWR type sheaths; the tests were carried out at CNEN under two research contracts with Ansaldo Meccanico Nucleare and Sigen-Sopren, respectively

  11. Plastic creep flow processes in fracture at elevated temperatures

    International Nuclear Information System (INIS)

    Rice, J.R.

    1979-01-01

    Recent theoretical developments on fracture at elevated temperature in the presence of overall plastic (dislocation) creep are discussed. Two topics are considered: stress fields at tips of macroscopic cracks in creeping solids; and diffusive growth of microscopic grain boundary cavities in creeping solids

  12. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    Science.gov (United States)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  13. Low-temperature creep of nanocrystalline titanium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H.; Averback, R.S. (Dept. of Materials Sceince and Engineering, Univ. of Illinois, Urbana, IL (United States))

    1991-11-01

    This paper reports that nanocrystalline TiO[sub 2] with densities higher than 99% of rutile has been deformed in compression without fracture at temperatures between 600[degrees] and 800[degrees] C. The total strains exceed 0.6 at strain rates as high as 10[sup [minus]3] s[sup [minus]1]. The original average grain size of 40 nm increases during the creep deformation to final values in the range of 120 to 1000 nm depending on the temperature and total deformation. The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is d[sup [minus]q] with q in the range of 1 to 1.5. It is concluded that the creep deformation occurs by an interface reaction controlled mechanism.

  14. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  15. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  16. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  17. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  18. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Sun, J., E-mail: jsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Xing, H. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China)

    2012-08-15

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M{sub 23}C{sub 6}, M{sub 6}C, {sigma} phase and Laves phase. The M{sub 23}C{sub 6} carbides were observed at grain boundaries in the steel after creep at 873 K. The M{sub 6}C, {sigma} phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of {sigma} and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  19. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  20. Concrete creep at transient temperature: constitutive law and mechanism

    International Nuclear Information System (INIS)

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs

  1. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  2. Numerical and experimental study of creep of grade 91 steel at high temperature

    International Nuclear Information System (INIS)

    Lim, R.

    2011-01-01

    Grade 91 steel is a suitable candidate for structural components of the secondary and the vapour of the generation IV nuclear reactors. Their in-service lifetime will be extended to 60 years. It is necessary to consider the mechanisms involved-term during long creep to propose more reliable predictions of creep lifetimes. Necking is the main failure mechanism for creep lifetimes up to 160 kh at 500 C and 94 kh at 600 C. Necking modelling including the material creep softening leads to two bound laws including experimental lifetimes of a large number of tempered martensitic steels loaded up to 200 kh at temperature 500-700 C. The observed creep intergranular cavities are shown to affect very weekly creep strain rate. The prediction of the cavity evolution will allow estimating creep lifetimes out of experimental data domain. Their nucleation and growth, supposed to be associated to vacancy diffusion, are modelled using two classical models. The first one considers instantaneous nucleation (Raj and Ashby) and the second one continuous nucleation obeying the Dyson law (Riedel). The second one leads to two bound laws, more stable with respect to the parameter values. It allows predicting final sizes of cavities in reasonable agreement with the measured ones. Nevertheless, nucleation rate should be estimated from measured cavity densities. Nucleation of cavities by diffusion is simulated using the Raj model. This model does not allow predicted final cavity densities in agreement with the measured ones, even by considering cavity nucleation at precipitates/Laves interfaces experimentally observed and the maximum local stress concentration of a factor 2 computed using finite element calculation in a 2D plane strain hypothesis based on either simulated or real microstructures containing triple points or precipitates/Laves phases. The use of the Dyson law allows us to propose predictions of long-term creep lifetimes. Lifetime predicted using the diffusion-induced growth

  3. A review of creep behavior of high temperature composites in relation to molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    A brief review of creep behavior of composites is presented. It is shown that even for a two component system, creep of a composite depends on complex combination of several factors, including the constitutive behavior of the component phases at stress and temperature, and mechanical, chemical, diffusional and thermodynamic stability of the two-phase interfaces. The existing theoretical models based on continuum mechanics are presented. These models are evaluated using the extensive experimental data on molydisilicide--silicon carbide composites by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other predictions fall. For molydisilicide, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix while fibers deform predominately elastically

  4. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  5. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  6. A Creep Model for High-Density Snow

    Science.gov (United States)

    2017-04-01

    proportionality, Q = activation energy (Cal/mol), R = the ideal gas constant (1.985 Cal/mol K), and T = absolute temperature in Kelvin. Applying this, I...modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...this power law ). The present study used this general form as the basis for developing two creep models: one to describe the pri- mary creep and

  7. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  8. Effect of step-wise change of stress and temperature on primary creep of concrete

    International Nuclear Information System (INIS)

    Furumura, Fukujiro; Abe, Takeo; Shinohara, Yasuji; Kim, Wha-Jung.

    1991-01-01

    The success of analyzing the behavior of concrete structures at elevated temperature greatly depends on how accurately certain mechanical properties, especially stress-strain curves, creep and thermal expansion, can be determined within wide temperature range. The importance of creep in the design of reinforced and prestressed concrete structures has been more recognized with the advent of the use of concrete at elevated temperature. The creep strain of concrete is affected by stress, time and temperature. The creep law which can predict the creep behavior under varying stress and temperature by using the experimental results of creep strain under constant stress and temperature is indispensable for analyzing the behavior of reinforced concrete structures under varying temperature. Accordingly the main purpose of this study is to clarify the primary creep behavior of concrete under varying stress and temperature. The cylindrical specimens, the testing procedure, the test results and the modified strain hardening law are reported. By using the modified strain hardening law, the primary creep behavior of concrete can be estimated better. (K.I.)

  9. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  10. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  11. Research on high-temperature compression and creep behavior of porous Cu–Ni–Cr alloy for molten carbonate fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Li W.

    2015-06-01

    Full Text Available The effect of porosity on high temperature compression and creep behavior of porous Cu alloy for the new molten carbonate fuel cell anodes was examined. Optical microscopy and scanning electron microscopy were used to investigate and analyze the details of the microstructure and surface deformation. Compression creep tests were utilized to evaluate the mechanical properties of the alloy at 650 °C. The compression strength, elastic modulus, and yield stress all increased with the decrease in porosity. Under the same creep stress, the materials with higher porosity exhibited inferior creep resistance and higher steadystate creep rate. The creep behavior has been classified in terms of two stages. The first stage relates to grain rearrangement which results from the destruction of large pores by the applied load. In the second stage, small pores are collapsed by a subsequent sintering process under the load. The main deformation mechanism consists in that several deformation bands generate sequentially under the perpendicular loading, and in these deformation bands the pores are deformed by flattering and collapsing sequentially. On the other hand, the shape of a pore has a severe influence on the creep resistance of the material, i.e. every increase of pore size corresponds to a decrease in creep resistance.

  12. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  13. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Schubert, F.

    1990-08-01

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, ε min = k.σ n . The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.) [de

  14. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  15. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    International Nuclear Information System (INIS)

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200 degree C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100 degree C is about 100 dpa. At 550 degree C this transient is over by 10 -8 dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350 degree C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment

  16. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  17. Creep rupture of structures subjected to variable loading and temperature

    International Nuclear Information System (INIS)

    Wojewodzki, W.

    1975-01-01

    The aim of the present paper is to show on the basis of equations and the analysis of creep mechanisms the possibilities of a description of the creep behavior of material under variable temperature and loading conditions. Also the influence of cyclic proportional loading and temperature gradient upon the rupture life and strains of a thick cylinder is investigated in detail. The obtained theoretical creep curves coincide with the experimental results for investigated steel in the temperature range from 500 0 C to 575 0 C. The constitutive equations together with the functions determined previously are applied to solve the problem of thick cylinder subjected to cyclic proportional pressure and temperature gradient. Numerical results for the thick steel cylinder are presented both in diagrammatical and tabular form. The obtained new results clearly show the significant influence of temperature gradient, cyclic temperature gradient, and cyclic pressure upon the stress redistribution, the magnitude of deformation, the propagation of the front damage and the rupture life. It was found that small temperature fluctuations at elevated temperature can shorten the rupture life very considerably. The introduced description of the creep rupture behavior of material under variable temperature and loading conditions together with the results for the thick cylinder indicate the possibilities of solutions of practical problems encountered in structural mechanics of reactor technology

  18. Implementation of constitutive equations for creep damage mechanics into the ABAQUS finite element code - some practical cases in high temperature component design and life assessment

    International Nuclear Information System (INIS)

    Segle, P.; Samuelson, L.Aa.; Andersson, Peder; Moberg, F.

    1996-01-01

    Constitutive equations for creep damage mechanics are implemented into the finite element program ABAQUS using a user supplied subroutine, UMAT. A modified Kachanov-Rabotnov constitutive equation which accounts for inhomogeneity in creep damage is used. With a user defined material a number of bench mark tests are analyzed for verification. In the cases where analytical solutions exist, the numerical results agree very well. In other cases, the creep damage evolution response appear to be realistic in comparison with laboratory creep tests. The appropriateness of using the creep damage mechanics concept in design and life assessment of high temperature components is demonstrated. 18 refs

  19. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  20. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  1. Unexpected damage and/or failures caused by creep below the limit temperature for creep design; Ovaentade krypskador och/eller haverier orsakade av krypmekanismer under graenstemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Eklund, Anders; Taflin, Anders; Thunvik, Thomas

    2006-07-15

    Recently, several cases of cracking caused by creep have occurred in components operating at temperatures below the specified limit temperature for creep. Components operating below this limit temperature have not been designed with due regard to creep cracking and have accordingly not been subjected to inspection for creep damage. This work has surveyed the extent of these cases of creep damage by reviewing earlier failures and performed metallographic studies of damaged components and made parametric calculations of creep crack growth below the limit temperature. The following critical parameters have been determined for power plants: Creep damage below the transition temperature does not usually occur until operating times above 200.000 hours. Time to rupture differs from ordinary creep crack growth because these cracks have substantially longer incubation time of 20-30 years, with relative low creep deformation, and after that a rapid creep crack growth with only some few years to the creep rupture. Operation at 470-480 deg C, i.e. up to some 10 deg C below the transition temperature for a material like EN 13CrMo4-5, can be expected to result in severe creep damages comparable with ordinary creep failures at stressed locations. Operation at a temperature of 450-460 deg C can give rise to creep damage, however, this damage shows a more sparse occurrence. Creep damaged welds occurring below the limit temperature show cracks at the melting junction of the weld bead in opposite to ordinary creep damages. System stresses can also cause a more rapid crack growth. An international survey also shows that the variation of creep strength values between individual steel batches are just as wide as for ordinary creep. Based on this work, the following complementary recommendations can be issued: Elastic stress analysis (based on expansion calculations) can also be recommended for the identification of areas with intensified stresses. One should also perform a complete

  2. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  3. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  4. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    International Nuclear Information System (INIS)

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-01-01

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M 23 C 6 (M = Cr, Fe) and Cr 2 N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr 2 N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size

  5. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  6. Elevated temperature design of KALIMER reactor internals accounting for creep and stress-rupture effects

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Yoo, Bong

    2000-01-01

    In most LMFBR (Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER (Korea Advanced Liquid Metal Reactor) reactor internal structures is carried out for normal operating conditions which have the operating temperature 530 deg. C and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME code case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects. (author)

  7. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  8. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  9. Study of tertiary creep instability in several elevated-temperature structural materials

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.

    1978-01-01

    Data for a number of common elevated temperature structural materials have been analyzed to yield mathematical predictions for the time and strain to tertiary creep at various rupture lives and temperatures. Materials examined include types 304 and 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, alloy 718, Hastelloy alloy X, and ERNiCr--3 weld metal. Data were typically examined over a range of creep temperatures for rupture lives ranging from less than 100 to greater than 10,000 hours. Within a given material, trends in these quantities can be consistently described, but it is difficult to directly relate the onset of tertiary creep to failure-inducing instabilities. A series of discontinued tests for alloy 718 at 649 and 620 0 C showed that the material fails by intergranular cracking but that no significant intergranular cracking occurs until well after the onset of tertiary creep

  10. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  11. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  12. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  13. HTR 500: Final report of the project '' uniaxial creep tests at controlled temperature''

    International Nuclear Information System (INIS)

    1992-03-01

    The report presents the results of creep trials with HTR-concrete, which were carried out in the scope of development of prestressed concrete - reactor pressure vessels at the ETH Lausanne Institute for Steel and Prestressed Concrete. With temperature, an increase of creep and shrinkage was observed, a lesser dependence on exhaustion and type of concrete. The point in time of reaching the final value is not dependent on temperature for creep, but is for shrinkage. The modulus of elasticity depends on the temperature pre-treatment, but only insignificantly on the test temperature. figs., tabs

  14. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  15. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  16. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  17. Does nanocrystalline Cu deform by Coble creep near room temperature?

    International Nuclear Information System (INIS)

    Li, Y.J.; Blum, W.; Breutinger, F.

    2004-01-01

    The proposal that nanocrystalline Cu produced by electro deposition (ED) creeps at temperatures slightly above room temperature by diffusive flow via grain boundaries (Coble creep) has been checked by compression tests. It was found that the minimum creep rates obtained in tension are significantly larger than those in compression, probably due to interference of tensile fracture. Scanning electron microscopic investigation showed that the spacing between large-angle grain boundaries is about 10 μm rather than the reported value of 30 nm. Comparison with coarse grained and ultrafine grained Cu produced by equal channel angular pressing showed that the ED-Cu work hardens similarly to coarse grained Cu in contrast to ultrafine grained Cu which reaches its maximum deformation resistance within a small strain interval of 0.04 and has distinctly higher strain rate sensitivity of flow stress. The present results are consistent with the established knowledge that there is no softening by grain boundaries, e.g. due to Coble creep, near room temperature in Cu with grain sizes above 1 μm. The grain boundary effect observed in ultrafine grained Cu is interpreted in terms of modification of dislocation generation and dislocation annihilation by grain boundaries

  18. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep

    International Nuclear Information System (INIS)

    Zhang, J.X.; Wang, J.C.; Harada, H.; Koizumi, Y.

    2005-01-01

    The development of dislocation configurations in two single-crystal superalloys during high-temperature low-stress creep (1100 deg C, 137 MPa) was investigated with the use of transmission electron microscopy. Detailed analysis showed that the lattice misfit has an important influence on the dislocation movement. For an alloy with a large negative lattice misfit, the dislocations are able to move smoothly by cross-slip in the horizontal γ channels. During subsequent formation of γ/γ' rafted structure, the dislocations on the surface of γ' cuboids rapidly re-orientate themselves from to direction and form a complete network. For an alloy with a small lattice misfit, the dislocations move by the combination of climbing and gliding processes, and the resultant γ/γ' interfacial dislocation network is incomplete. A good explanation of the creep curves is obtained from these differences in the microstructures

  19. Oxidation and creep failure of alloy 617 foils at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Ko, G.D.; Li, F.X. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of); Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr

    2008-08-31

    The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 {mu}m thick foils at 800-1000 deg. C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr{sub 2}O{sub 3}), which was thermodynamically unstable at 1000 deg. C, and discrete internal oxides, alumina ({alpha}-Al{sub 2}O{sub 3}), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr{sub 2}O{sub 3} oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 deg. C, while the primary, secondary and tertiary creeps were observed at 1000 deg. C. Dynamic recrystallization occurred at 800 deg. C and 900 deg. C, while partial dynamic recrystallization at 1000 deg. C. The apparent activation energy, Q{sub app}, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.

  20. Creep behavior of UO2 above 20000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-01-01

    A series of high temperature creep measurements were made for UO 2 in the temperature range from 2000 0 C to the melting temperature. The effects of temperature, stress and accrued strain on the creep rate have been measured. The results indicate that additional creep mechanisms are being activated at the higher temperatures

  1. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage

    Energy Technology Data Exchange (ETDEWEB)

    Graverend, Jean-Briac le, E-mail: jblgpublications@gmail.com [Texas A& M University, Department of Aerospace Engineering and Materials Science Engineering, TAMU 3141, College Station, TX 77843 (United States); Adrien, Jérome [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Cormier, Jonathan [Institut Pprime, CNRS-ENSMA-Université de Poitiers, UPR CNRS 3346, Département Physique et Mécanique des Matériaux, ISAE-ENSMA, 1 avenue Clément Ader, BP 40109, F86961 Futuroscope Chasseneuil cedex (France)

    2017-05-17

    Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000 °C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100 °C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.

  2. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  3. Creep damage in zircaloy-4 at LWR temperatures

    International Nuclear Information System (INIS)

    Keusseyan, R.L.; Hu, C.P.; Li, C.Y.

    1978-08-01

    The observation of creep damage in the form of grain boundary cavitation in Zircaloy-4 in the temperature range of interest to Light Water Reactor (LWR) applications is reported. The observed damage is shown to reduce the ductility of Zircaloy-4 in a tensile test at LWR temperatures

  4. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  5. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  6. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  7. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  8. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Science.gov (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Creep theories compared by means of high sensitivity tensile creep data

    International Nuclear Information System (INIS)

    Salim, A.

    1987-01-01

    Commonly used creep theories include time-hardening, strain-hardening and Rabotnov's modified strain-hardening. In the paper they are examined by using high sensitivity tensile creep data produced on 1% CrMoV steel at a temperatue of 565 0 C. A special creep machine designed and developed by the author is briefly described and is compared with other existing machines. Tensile creep data reported cover a stress range of 100-260 MN m -2 ; four variable-creep tests each in duplicate are also reported. Test durations are limited to 3000 h, or failure, whichever occurs earlier. The strain-hardening theory and Rabotnov's modified strain-hardening theory are found to give good prediction of creep strain under variable stress conditions. The time-hardening theory shows a relatively poor agreement and considerably underestimates the accumulated inelastic strain under increasing stress condition. This discrepancy increases with the increased stress rate. The theories failed to predict the variable stress results towards the later part of the test where tertiary effects were significant. The use of creep equations which could account for creep strain at higher stress levels seems to improve the situation considerably. Under conditions of variable stress, it is suggested that a theory based on continuous damage mechanics concepts might give a better prediction. (author)

  10. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  11. High temperature creep properties and microstructural examinations of P92 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kalck, Charlotte; Giroux, Pierre-Francois [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; Fournier, Benjamin; Barcelo, Francoise; Dalle, France; Ivan, Tournie [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); Laurent, Forest [CEA Saclay, DEN/DANS/DM2S/LTA, Gif-sur-Yvette (France); Gourgues-Lorenzon, Anne-Francoise [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux

    2010-07-01

    The present study deals with the creep properties of welded joints made of P92 steels. The purpose is to determine the weakest zone at 550 C under various load levels (160-240 MPa) and to investigate the evolution of the microstructure during creep. The study of the fracture surfaces and the microstructural examination of welded joints prior to and after creep tests allow to investigate damage development. Ductile fracture occurs in the heat affected zone, more precisely, in the intercritical area, together with pronounced necking. Observation of the necking area shows many cavities and cracks. (orig.)

  12. High temperature cracking of steels: effect of geometry on creep crack growth laws; Fissuration des aciers a haute temperature: effet de la geometrie sur la transferabilite des lois de propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, M.R

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C{sup *} and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C{sup *} parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C{sup *} parameter, a second non singular term, denoted here as Q{sup *}, is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C{sup *} parameter (da/dt - C{sup *}), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C{sup *} type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C{sup *}), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical

  13. Analysis of Current HT9 Creep Correlations and Modification

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Sohn, Dongseong; Cheon, Jin Sik

    2014-01-01

    It has high thermal conductivity, high mechanical strength and low irradiation induced swelling. However high temperature creep of HT9 has always been a life limiting factor. Above 600 .deg. C, the dislocation density in HT9 is decreased and the M 23 C 6 precipitates coarsen, these processes are accelerated if there is irradiation. Finally microstructural changes at high temperature lead to lower creep strength and large creep strain. For HT9 to be used as a future cladding, creep behavior of the HT9 should be predicted accurately based on the physical understanding of the creep phenomenon. Most of the creep correlations are composed of irradiation creep and thermal creep terms. However, it is certain that in-pile thermal creep and out-of-pile thermal creep are different because of the microstructure changes induced from neutron irradiation. To explain creep behavior more accurately, thermal creep contributions other than neutron irradiation should be discriminated in a creep correlation. To perform this work, existing HT9 creep correlations are analyzed, and the results are used to develop more accurate thermal creep correlation. Then, the differences between in-pile thermal creep and out-of-pile thermal creep are examined

  14. Creep deformation of high Cr-Mo ferritic/martensitic steels by material softening

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2005-01-01

    High Cr (9-12%Cr) ferritic/martensitic steels represent a valuable alternative to austenitic stainless steel for high temperature applications up to 600 .deg. C both in power and petrochemical plant, as well as good resistance to oxidation and corrosion. Material softening is the main physical phenomenon observed in the crept material. Thermally-induced change (such as particle coarsening or matrix solute depletion) and strain-induced change (such as dynamic subgrain growth) of microstructure degraded the alloy strength. These microstructural changes during a creep test cause the material softening, so the strength of the materials decreased. Many researches have been performed for the microstructural changes during a creep test, but the strength of crept materials has not been measured. In the present work, we measured the yield and tensile strength of crept materials using Indentationtyped Tensile Test System (AIS 2000). Material softening was quantitatively evaluated with a creep test condition, such as temperature and applied stress

  15. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  16. Creep-rupture properties of type 304 austenitic stainless steel at elevated temperatures

    International Nuclear Information System (INIS)

    Zulkifli Ahyak; Esah Hamzah; Abdul Aziz Mohamad.

    1987-08-01

    The creep behaviour of a type 304 stainless steel has been examined at temperatures of 450 to 750 0 C under uniaxial initial stress of 200 Mpa. It was found that carbide precipitation within grain boundary, recrystallization and grain growth occured during creep at above 550 0 C. It is apparent that the creep-resistant of the steel is influenced by grain boundaries. (author)

  17. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  18. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  19. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    In order to carry out the structural design of high temperature pipings, intermediate heat exchangers and isolating valves for a multipurpose high temperature gas-cooled reactor, in which coolant temperature reaches 1000 deg C, the creep characteristics of Hastelloy X used as the heat resistant material must be clarified. In addition to usual creep rupture life and the time to reach a specified creep strain, the dependence of creep strain curves on time, temperature and stress must be determined and expressed with equations. Therefore, using the creep data of Hastelloy X given in the literatures, the creep constitutive equation was made. Since the creep strain curves under the same test condition were different according to heats, the sensitivity analysis of the creep constitutive equation was performed. The form of the creep constitutive equation was determined to be Garofalo type. The result of the sensitivity analysis is reported. (Kako, I.)

  20. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  1. Research Activities on Development of Piping Design Methodology of High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Nam-Su [Seoul National Univ. of Science and Technology, Seoul(Korea, Republic of); Won, Min-Gu [Sungkyukwan Univ., Suwon (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering and Construction Co. Inc., Gimcheon (Korea, Republic of); Lee, Hyeog-Yeon; Kim, Yoo-Gon [Korea Atomic Energy Research Institute, Daejeon(Korea, Republic of)

    2016-10-15

    A SFR is operated at high temperature and low pressure compared with commercial pressurized water reactor (PWR), and such an operating condition leads to time-dependent damages such as creep rupture, excessive creep deformation, creep-fatigue interaction and creep crack growth. Thus, high temperature design and structural integrity assessment methodology should be developed considering such failure mechanisms. In terms of design of mechanical components of SFR, ASME B and PV Code, Sec. III, Div. 5 and RCC-MRx provide high temperature design and assessment procedures for nuclear structural components operated at high temperature, and a Leak-Before-Break (LBB) assessment procedure for high temperature piping is also provided in RCC-MRx, A16. Three web-based evaluation programs based on the current high temperature codes were developed for structural components of high temperature reactors. Moreover, for the detailed LBB analyses of high temperature piping, new engineering methods for predicting creep C*-integral and creep COD rate based either on GE/EPRI or on reference stress concepts were proposed. Finally, the numerical methods based on Garofalo's model and RCC-MRx have been developed, and they have been implemented into ABAQUS. The predictions based on both models were compared with the experimental results, and it has been revealed that the predictions from Garafalo's model gave somewhat successful results to describe the deformation behavior of Gr. 91 at elevated temperatures.

  2. Influence of molybdenum on the high-temperature mechanical resistance especially creep resistance around 7000C of 18-14 type stainless steels

    International Nuclear Information System (INIS)

    Ben Marzouk, M.T.

    1977-06-01

    The influence of molybdenum on the mechanical properties under traction, the creep parameters, sub-structure and diffusion parameters of iron in stainless steels was investigated. Between 20 0 C and 800 0 C molybdenum has no significant effect on the elastic limit, breaking load or consolidation coefficient but increases the distributed elongation between 500 0 C and 800 0 C; its influence is greatest at 700 0 C. Addition of molybdenum reduces the creep rate at high temperature from the start of the test up to breaking point. In the temperature range studied, 600 0 C to 900 0 C, its influence is greatest at 600 0 C, decreases as the temperature rises and disappears at 900 0 C. Addition of 2% molybdenum increases the activation energy from 72 kcal/mole to 88 kcal/mole. At 700 0 C molybdenum hardly affects the precipitation and structure of dislocations but delays healing processes. Between 1000 0 C and 1300 0 C molybdenum has no effect on the iron diffusion coefficient: Q=68.7kcal/mole, D 0 =1.3cm 2 /s. The influence of Mo on the creep resistance of austenitic steels between 600 0 C and 900 0 C does not seem to be due to precipitation but to a solid solution effect, which could be a decrease in the diffusion coefficient of iron below 900 0 C [fr

  3. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  4. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    Science.gov (United States)

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  5. Long-term creep modeling of wood using time temperature superposition principle

    OpenAIRE

    Gamalath, Sandhya Samarasinghe

    1991-01-01

    Long-term creep and recovery models (master curves) were developed from short-term data using the time temperature superposition principle (TTSP) for kiln-dried southern pine loaded in compression parallel-to-grain and exposed to constant environmental conditions (~70°F, ~9%EMC). Short-term accelerated creep (17 hour) and recovery (35 hour) data were collected for each specimen at a range of temperature (70°F-150°F) and constant moisture condition of 9%. The compressive stra...

  6. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  7. On the spherical nanoindentation creep of metallic glassy thin films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.H.; Ye, J.H. [Institution of Micro/Nano-Mechanical Testing Technology & Application, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Feng, Y.H. [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Ma, Y., E-mail: may@zjut.edu.cn [Institution of Micro/Nano-Mechanical Testing Technology & Application, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China)

    2017-02-08

    Metallic glassy thin films with eight kind of compositions were successfully prepared on Si substrate by magnetron sputtering. The room-temperature creep tests were performed at plastic regions for each sample relying on spherical nanoindetation. The creep deformations were studied by recording the total creep displacement and strain after 2000 s holding. More pronounced creep deformation was observed in the sample with lower glass transition temperature (T{sub g}). Strain rate sensitivity (SRS) was then calculated from the steady-state creep and exhibited a negative correlation with increasing T{sub g}. It is suggested that creep mechanism of the nano-sized metallic glass was T{sub g}-dependent, according to the demarcation of SRS values. Based on the obtained SRS, shear transformation zone (STZ) size in each sample could be estimated. The results indicated that an STZ involves about 25–60 atoms for the employed eight samples and is strongly tied to T{sub g}. The characteristic of STZ size in metallic glassy thin films was discussed in terms of applied method and deformation modes.

  8. Concrete for PCRVs: strength of concrete under triaxial loading and creep at elevated temperatures

    International Nuclear Information System (INIS)

    Linse, D.; Aschl, H.; Stoeckl, S.

    1975-01-01

    To provide detailed information for the calculation of prestressed concrete reactor vessels, investigations of the behaviour of concrete under multiaxial loading and on creep at elevated temperatures were made at the Institut fuer Massivbau of the Technical University of Munich. The strength of concrete under triaxial compression is dependent on the stress ratio. The less the stresses differ from hydrostatic compression the more strength increases. Triaxial compression increases very much the deformability of concrete. Plastic deformations of +-10% and more (all stresses compression, but not equal, strains compression or tension) are possible without large cracks. The creep deformations are considerably dependent on the temperature. Creep at 80 0 C is about three to four times higher than at 20 0 C. The Poisson's ratio of creep at elevated temperature seems to be bigger than at normal temperatures at a rate of loading of 35% and 50% of the ultimate strength. (Auth.)

  9. Creep and swelling of Type 348 stainless steel at temperatures up to 700 K and comparison with fast reactor data

    International Nuclear Information System (INIS)

    Beeston, J.M.; Thomas, L.E.

    1982-01-01

    In-reactor creep and swelling of Type 248 stainless steel from ATR SN-5 and ETR H-10 in-pile tube measurements were investigated to identify and characterize their mechanistic relationships at temperatures less than 723 0 K. The principal creep mechanism appears to be diffusion along high conductivity paths related to interstitial loops. The irradiation creep is a function of temperature and is presented as an empirical equation. The swelling in the ATR in-pile tubes is also presented as an empirical equation

  10. Development of Probability Evaluation Methodology for High Pressure/Temperature Gas Induced RCS Boundary Failure and SG Creep Rupture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul; Hong, Soon Joon; Lee, Jin Yong; Lee, Kyung Jin; Lee, Kuh Hyung [FNC Tech. Co., Seoul (Korea, Republic of)

    2008-04-15

    Existing MELCOR 1.8.5 model was improved in view of severe accident natural circulation and MELCOR 1.8.6 input model was developed and calculation sheets for detailed MELCOR 1.8.6 model were produced. Effects of natural circulation modeling were found by simulating SBO accident by comparing existing model with detailed model. Major phenomenon and system operations which affect on natural circulation by high temperature and high pressure gas were investigated and representative accident sequences for creep rupture model of RCS pipeline and SG tube were selected.

  11. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  12. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  13. Creep equations for gas turbine materials

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Preussler, T.

    1988-01-01

    The long-term high-temperature deformation behaviour of typical gas turbine materials can be described on the basis of a differentiated evaluation which takes the results from thermal tension tests, short-term creep tests with continuous extension measurement, long-term creep tests with discontinuous extension measurement as well as annealing tests with contraction measurement into account. By this, especially the 'negative creeping' can be controlled. Equations were developed for individual materials of the type IN-738 LC, IN-939, IN-100 and FSX-414, which describe the high-temperature deformation behaviour with consideration to the primary and secondary creeping and partly the tertiary creeping. The equations are valid in the entire application-relevant range, i.e. up to 100 000 h in the case of industrial turbine materials. (orig.) [de

  14. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...... is quite stable and convergence can be reached also with big time steps. Keywords: Viscoplasticity, creep, unified constitutive model, aluminum, high temperature....

  15. Pressure--temperature creep testing as applied to a commercial rock salt

    International Nuclear Information System (INIS)

    Dropek, R.K.; Wawersik, W.R.

    1976-06-01

    A triaxial compression apparatus was evaluated in its performance of quasi-static and creep experiments on rock salt under confining pressures to 5000 psi and temperatures to 200 0 C. Included is the capability to measure both axial and lateral (radial) deformation. Based on empirical data fits of the form epsilon = at/sup eta/, the observed 10 hour to 100 hour creep rates and the projected 1 year creep rates, epsilon 1 , were in the order of 10 -6 to 10 -8 s -1 . For the most part the principal strain ratios, absolute value of epsilon 3 /epsilon 1 , or the ratio of the principal strain rates lay between .37 and .6 suggesting volume changes during creep which are relatively small compared with the changes in shear strain and shear strain rates. Beyond these general observations no specific trends could be identified concerning, for example, the effects of pressure, deviator stress and even temperature. This is due to gross data scatter on one hand and to insufficient number of data points for meaningful statistical analyses on the other

  16. Creep in rock salt with temperature. Testing methods and results

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Berest, P.

    1985-01-01

    The growing interest shown in the delayed behaviour of rocks at elevated temperature has led the Solid Mechanics Laboratory to develop specific equipment designed for creep tests. The design and dimensioning of these units offer the possibility of investigating a wide range of materials. The article describes the test facilities used (uni-axial and tri-axial creep units) and presents the experimental results obtained on samples of Bresse salt [fr

  17. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    DEFF Research Database (Denmark)

    Howell, J.; Nielsson, O.; Horsewell, Andy

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...... instantaneous loading or during the primary creep stage. Trace analysis has shown that the multipoles are confined to {1 1 1} planes during primary creep but are not necessarily confined to these planes during steady-state creep unless they are pinned by interstitials....

  18. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, Peter M.; Whitis, Deborah H.; Mills, Michael J.

    2005-01-01

    Creep deformation substructures in superalloy Rene 88 DT have been investigated at two applied stress levels after small-strain (0.5%) creep at 650 deg. C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and substructures have been observed as a function of applied stress. It has been established that at intermediate temperatures microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress. At higher applied stress the mechanism changes to planar shearing of the matrix by 1/2 unit dislocations and Orowan looping of the precipitates. Detailed experimental evidences for these operating processes are shown and possible explanation is provided

  19. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Science.gov (United States)

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  20. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp

    2017-05-17

    The advanced ultra-supercritical (A-USC) power generation system is expected to become the next-generation base-load power station in Japan. Dissimilar weld joints between high-Cr heat-resistant steels and nickel-based alloys with a nickel-based filler metal (Alloy 82) will need to be adopted for this purpose. However, interfacial failure between the steels and weld metal has been observed under high-temperature creep conditions. Fractography and microstructure observations showed the failure initiated in a brittle manner by an oxide notch at the bottom of the U-groove. The fracture then proceeded along the bond line in a ductile manner with shallow dimples, where micro-Vickers hardness tests showed remarkable softening in the steel next to the bond line. In addition, the steel showed a much larger total elongation and reduction of area than the weld metal at low stresses under long-term creep conditions, leading to mismatch deformation at the interface. According to the results, it can be concluded that the interfacial failure between the 9Cr steels and Alloy 82 weld metal is initiated by an oxide notch and promoted by softening and the difference in the plasticity of the steels and weld metal.

  1. Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance L.

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 deg. C in an elastically pre-strained bend stress relaxation configuration with the initial stress of ∼100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10 -4 . Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes

  2. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  3. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  4. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments; Etude experimentale et modelisation, du comportement, de l'endommagement et de la rupture en fluage a haute temperature de joint soudes en acier 9Cr1Mo-NbV

    Energy Technology Data Exchange (ETDEWEB)

    Gaffard, V

    2004-12-15

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  5. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  6. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  7. Experience with conventional inelastic analysis procedures in very high temperature applications

    International Nuclear Information System (INIS)

    Mallett, R.H.; Thompson, J.M.; Swindeman, R.W.

    1991-01-01

    Conventional incremental plasticity and creep analysis procedures for inelastic analysis are applied to hot flue gas cleanup system components. These flue gas systems operate at temperatures where plasticity and creep are very much intertwined while the two phenomena are treated separately in the conventional inelastic analysis procedure. Data for RA333 material are represented in forms appropriate for the conventional inelastic analysis procedures. Behavior is predicted for typical operating cycles. Creep-fatigue damage is estimated based upon usage fractions. Excessive creep damage is predicted; the major contributions occur during high stress short term intervals caused by rapid temperature changes. In this paper these results are presented for discussion of the results and their interpretation in terms of creep-fatigue damage for very high temperature applications

  8. Room temperature nanoindentation creep of hot-pressed B6O

    CSIR Research Space (South Africa)

    Machaka, R

    2014-06-01

    Full Text Available of the nanoindentation creep behavior in B6O ceramics. 1 Room temperature nanoindentation creep of hot-pressed B6O Ronald Machakaa,b,* , Trevor E. Derryb,d, Iakovos Sigalasb,c aLight Metals, Materials Science and Manufacturing, Council for Scientific..., University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa dSchool of Physics, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, 2050 South Africa Abstract: Nanoindentation has become a widely...

  9. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  10. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  11. Creep of titanium--silicon alloys

    International Nuclear Information System (INIS)

    Paton, N.E.; Mahoney, M.W.

    1976-01-01

    Operative creep mechanisms in laboratory melts of Ti-5Zr-0.5Si and Ti-5Zr-0.5Si have been investigated as a function of microstructure, creep stress, and temperature. From creep rate data and transmission electron microscopy results, it has been shown that an important creep strengthening mechanism at 811 0 K in Si-bearing Ti alloys is clustering of solute atoms on dislocations. All of the alloys investigated showed anomalously high apparent activation energies and areas for creep and a high exponent (n) in the Dorn equation. In addition, the effect of heat treatment was investigated and it is shown that the highest creep strength was obtained by using a heat treatment which retained the maximum amount of silicon in solution. This is consistent with the proposed creep strengthening mechanism. An investigation of the creep behavior of several other Si containing alloys including two commercial alloys, Ti-11 and IMI-685 indicated similar results. 12 fig., 6 tables

  12. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  13. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  14. Effect of temperature changes on swelling and creep of AISI 316

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Gelles, D.S.; Foster, J.P.

    1980-04-01

    A number of previous publications have shown that the swelling of cold-worked AISI 316 is quite sensitive to changes in temperature which occur during irradiation. In this report those data are expanded and reanalyzed to show that the concurrent irradiation creep is also quite sensitive to changes in irradiation temperature. An explanation is advanced to explain this behavior in terms of the sensitivity to temperture history of the radiation-induced microchemical evolution of this steel. In particular, the sensitivity to temperature history of the radiation-stabilized gamma prime phase is invoked to explain the enhanced creep and swelling behavior of AISI 316 components which experienced either gradual or abrupt decreases in temperature. The phase development observed in this steel in response to temperature changes during irradiation is also compared to the similar behavior found in aged specimens subjected to isothermal irradiation

  15. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  16. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  17. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  18. Creep Behavior of Porous Supports in Metal-support Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Blennow Tullmar, Peter

    2013-01-01

    Creep is the inelastic deformation of a material at high temperatures over long periods of time. It can be defined as timedependent deformation at absolute temperatures greater than one half the absolute melting. Creep resistance is a key parameter for high temperature steel components, e.g. SOFC...... metal supports, where high corrosion resistance is a major design requirement. The four variables affecting creep rate are strain, time, temperature, and stress level and make creep difficult to quantify. In this work, the creep parameters of a SOFC metal support have been determined for the first time...... by means of a thermo mechanical analyzer (TMA) for stresses in the range of 1-17 MPa and temperatures between 650-750 °C. The creep parameters of Crofer® 22 APU were also acquired and compared with values obtained from literature to validate the technique....

  19. EFAM ETM-CREEP 03 - the engineering flaw assessment method for creep

    International Nuclear Information System (INIS)

    Landes, J.D.; Schwalbe, K.H.

    2002-01-01

    EFAM ETM-CREEP is a document that describes the GKSS procedure for estimating residual lives for structural components that contain crack-like defects and operating in a high temperature regime where they undergo creep deformation. It uses the traditional parameters C t and C * and the ETM parameters δ 5 and δ 5 to characterize the crack extension rates. It relies on input from EFAM ETM 97 for calculating these parameters and from EFAM GTP-CREEP 02 to provide the material property data for crack extension rates and fracture toughness data. (orig.) [de

  20. Elevated temperature creep behavior of Inconel alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Burke, W.F.

    1984-07-01

    Inconel 625 in the solution-annealed condition has been selected as the clad material for the fuel and control rod housing assemblies of the Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU). The clad is expected to be subjected to temperatures up to about 1100 0 C. Creep behavior for the temperature range of 800 0 C to 1100 0 C of Inconel alloy 625, in four distinct heat treated conditions, was experimentally evaluated

  1. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  2. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  3. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  4. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  5. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  6. Evaluation of conversion relationships for impression creep test at elevated temperatures

    International Nuclear Information System (INIS)

    Hyde, T.H.; Sun, W.

    2009-01-01

    This paper contains some results related to the evaluation of the conversion relationships between impression creep test data and conventional uniaxial creep test date, for determining the secondary creep properties at elevated temperature. Some important aspects, including conversion factors, specimen dimensions, typical test results and validity of the test technique etc are briefly reviewed. The method used to determine the conversion factors is based on a reference stress approach using the results of finite element (FE) analyses; this is described in the paper. The conversion factors (reference parameters) obtained from 2-dimensional (2D) and 3-dimensional (3D) FE analyses are compared and the effects of specimen geometry, on the conversion relationships, are assessed. The recommendations on the use of these conversion factors, in practical impression creep testing, are given. Proposals for future exploitation of the technique are addressed.

  7. Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, P.M.; Henry, M.F.; Whitis, D.D.; Milligan, W.W.; Mills, M.J.

    2005-01-01

    Creep deformation substructures in the superalloy Rene 88 DT have been investigated after small-strain (0.2-0.5%) creep at 650 deg C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and deformation mechanisms have been observed as a function of applied stress and precipitate microstructure. Both coarse and fine bimodal precipitate microstructures have been tested, produced by relatively slow and fast cooling from the supersolvus solutionizing temperature. The finer γ' microstructure exhibited significantly lower creep rates. It has been established that microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress, and changes to shearing by 1/2[1 1 0] dislocations and Orowan looping around the larger secondary precipitates at higher applied stress. In the coarser microstructure, the dominant deformation mode is isolated faulting where 1/2[1 1 0] dislocations shear the matrix while superlattice extrinsic stacking faults are created in the secondary γ' particles. The detailed mechanisms by which these deformation modes proceed are discussed, leading to the proposition that the thermally activated process for both microtwinning and isolated faulting is similar, involving diffusion-mediated re-ordering within the γ' particles in the wake of shearing 1/6 Shockley partials. Based on the present evidence, it is proposed that the tertiary γ' volume fraction is crucial in dictating the transition in mechanism and the creep strength of these alloys

  8. Study in laboratory of the influence of temperature on clays creep

    International Nuclear Information System (INIS)

    Boisson, J.Y.; Billotte, J.; Norotte, V.

    1993-01-01

    This study is a research programme on safety of radioactive waste disposal. The objective of the research carried out was the study of the long term effects of the temperature variations on the volume and the texture of clayed soils, notably as function of their initial petrophysical and petrographical characteristics and their preconsolidation state. From the experimental point of view, this study is based on the observation of the volumetrical deformation of samples subjected to thermal loading within 20 and 110 deg C temperature range with periodical measurements of their permeability in an oedometric cell. A complete textural study before and after the experiments allows for a continuous appreciation of the evolution of the texture. A preliminary bibliographical review has shown that the clays characteristics evolution and their uniaxial volumic strain under different temperatures loadings may exhibit an expansive or compactive behaviour due to temperature increase. Some of the parameters such as water content, consolidation state, plasticity, mineralogy and time plays a major part and have been criteria for the choice of four clays for the experimental phase. The experimental device, used and conceived at the Centre de Geologie de l'Ingenieur is a classical oedometric cell with specific modifications due to the very long term tests at high temperatures. The main obtained results are: a compressibility increase between 20 and 110 deg C; a creep module evolution with temperature; a noteworthy creep showing the importance of the time in the strain measurement; an analogy between mechanical consolidation and thermal consolidation ; an highly irreversible behaviour during a cooling phase; a modification of the structure material due to the temperature, but different and less important than modifications due mechanical stresses; the intrinsic permeability appears to be practically independent of the imposed thermal variations

  9. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  10. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  11. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  12. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  13. Creep of UO2 at 25000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1977-01-01

    Until an improved high temperature relationship is available, the previously derived low temperature relationship is a reasonable means for predicting the creep rates of UO 2 at 2500 0 C. The activation energy determined for creep at 2500 0 C is at least two times larger than that measured previously at the lower temperature. Stress induced grain growth under uniaxial compression at high temperatures in UO 2 results in preferential growth of grains having a cube axis closely aligned with the stress axis

  14. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui

    2011-06-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated below and above this glass transition temperature using a dynamic mechanical analysis (DMA) machine Q800 from TA instruments at 8 different temperatures: 10, 25, 40, 60, 80, 100, 120 and 150°C. The Burger\\'s model, which is the combined Maxwell model and Kelvin-Voigt model, fits well with our primary and secondary creep data. Accordingly, the results show that there\\'s little or no creep below the glass transition temperature. Above the glass transition temperature, the primary creep and creep rate increases with the temperature, with a retardation time constant around 6 minutes. © 2011 IEEE.

  15. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  16. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    Science.gov (United States)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in \\{100\\} slip systems and \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  17. Irradiation creep at temperatures of 400 degrees C and below for application to near-term fusion devices

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-01-01

    To study irradiation creep at 400 degrees C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400 degrees C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330 degrees C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys

  18. High-resolution TEM microscopy study of the creep behaviour of carbon-based cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwlyzwkj@126.com [College of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China); Chen, Weijie [College of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China); Gu, Wanduo [Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023 (China)

    2017-02-27

    Creep is in close relationship with the materials deterioration and deformation of the cathodes in aluminum reduction cells. The purpose of this work is to obtain the creep mechanism of the carbon cathode for aluminum electrolysis. A modified Rapoport equipment was used for measuring the creep strain of the semi-graphitic cathodes during aluminum electrolysis with CR=2.5 and at temperature of 945 ℃. The arrangement of carbon atom has been studied after hexagonal graphite converting into rhombohedral graphite during aluminum electrolysis by XRD and high-resolution transmission electron microscopy (HRTEM). The creep deformation of the carbon cathode has a close relationship with the mobile dislocation walls. These results will be helpful in controlling the cathode quality and its performance in aluminum reduction cells.

  19. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  20. High temperature deformation mechanisms of L12-containing Co-based superalloys

    Science.gov (United States)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions

  1. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  2. Creep of Sylramic-iBN Fiber Tows at Elevated Temperature in Air and in Silicic Acid-Saturated Steam

    Science.gov (United States)

    2015-06-01

    CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...protection in the United States. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...DISTRIBUTION UNLIMITED. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM

  3. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  4. Development of an accelerated creep testing procedure for geosynthetics.

    Science.gov (United States)

    1997-09-01

    The report presents a procedure for predicting creep strains of geosynthetics using creep tests at elevated temperatures. Creep testing equipment was constructed and tests were performed on two types of geosynthetics: High Density Polyethylene (HDPE)...

  5. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  6. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  7. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  8. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  9. Factors influencing the creep strength of hot pressed beryllium

    International Nuclear Information System (INIS)

    Webster, D.; Crooks, D.D.

    1975-01-01

    The parameters controlling the creep strength of hot pressed beryllium block have been determined. Creep strength was improved by a high initial dislocation density, a coarse grain size, and a low impurity content. The impurities most detrimental to creep strength were found to be aluminum, magnesium, and silicon. A uniform distribution of BeO was found to give creep strength which was inferior to a grain boundary distribution. The creep strength of very high purity, hot isostatically pressed beryllium was found to compare favorably with that of other more commonly used high temperature metals

  10. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  11. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  12. Vortex pinning and creep experiments

    International Nuclear Information System (INIS)

    Kes, P.H.

    1991-01-01

    A brief review of basic flux-pinning and flux-creep ingredients and a selection of experimental results on high-temperature-superconductivity compounds is presented. Emphasis is put on recent results and on those properties which are central to the emerging understanding of the flux-pinning and flux-creep mechanisms of these fascinating materials

  13. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  14. Aluminide protective coatings on high–temperature creep resistant cast steel

    Directory of Open Access Journals (Sweden)

    J. Kubicki

    2009-10-01

    Full Text Available This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were determined. Coatings capacity of carbon diffusion inhibition and thermal shocks resistance of coatings were determined with different methods. It was found, that all of the coatings reduce carbon diffusion in different degree and all coatings liable to degradation in consequence cracking and oxidation. Coating life time is mainly dependent on morphology, phase composition and service condition (thermal shocks first of all.

  15. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    Science.gov (United States)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  16. Extrapolation of creep behavior of high-density polyethylene liner in the Catch Basin of grout vaults

    International Nuclear Information System (INIS)

    Whyatt, G.A.

    1995-07-01

    Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176 degrees F to 212 degrees F (80 degrees C to 100 degrees C). The second type of test consisted of placing the liner between gravel and mortar at 194 degrees F (90 degrees C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194 degrees F (90 degrees C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194 degrees F (90 degrees C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report

  17. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  18. Evaluation of creep and relaxation data for hastelloy alloy x sheet

    International Nuclear Information System (INIS)

    Booker, M.K.

    1979-02-01

    Hastelloy alloy X has been a successful high-temperature structural material for more than two decades. Recently, Hastelloy alloy X sheet has been selected as a prime structural material for the proposed Brayton Isotope Power System (BIPS). The material also sees extensive application in the High-Temperature Gas-Cooled Reactor (HTGR). Design of these systems requires a detailed consideration of the high-temperature creep properties of this material. Therefore, available creep, creep-rupture, and relaxation data for Hastelloy alloy X were collected and analyzed to yield mathematical representations of the behavior for design use

  19. In situ monitored in-pile creep testing of zirconium alloys

    Science.gov (United States)

    Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.

    2014-01-01

    The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.

  20. Transitions in creep mechanisms and creep anisotropy in Zr-1Nb-1Sn-0.2Fe sheet

    International Nuclear Information System (INIS)

    Murty, K.L.; Ravi, J.; Wiratmo

    1995-01-01

    The creep characteristics of a Zr-1Nb-1Sn-0.2Fe alloy sheet were investigated at temperatures from 773 to 923K and at stresses ranging from 9 to 150MPa along both the rolling and transverse directions. Transitions in creep mechansims are noted, with diffusional viscous creep at low stresses, viscous-glide-controlled microcreep in the intermediate stress regime and the climb of edge dislocations at high stresses. The creep anisotropy decreases with a decrease in the stress exponent and the creep rates differ by only 30% in the viscous creep regime, while an order-of-magnitude difference is noted at high stresses. The solute-strengthening effect of Nb addition is evident in the stress regime where appropriate data are available. These transitions in creep mechansims clearly reveal the dangers in blind extrapolation of short-term high stress data to low stresses and long times relevant to in-reactor conditions. The creep behavior of these materials is similar to that noted in Class I alloys, while the transitions in deformation mechanisms in Zircaloy-4 resemble those found in pure metals or Class II alloys with no viscous glide mechanism. ((orig.))

  1. Microstrain evolution during creep of a high volume fraction superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States); Brown, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Daymond, M.R. [Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Majumdar, B.S. [Materials Department, New Mexico Tech, Socorro, NM 87801 (United States)]. E-mail: majumdar@nmt.edu

    2005-06-15

    The creep of superalloys containing a high volume fraction of {gamma}' phase is significantly influenced by initial misfit and by the evolution of internal stresses. An in situ neutron diffraction technique was used to monitor elastic microstrains in a polycrystalline superalloy, CM247 LC. The misfit was nearly zero at room temperature and it increased to -0.17% at 900 deg. C. These values are rationalized in terms of thermal mismatch using an eigenstrain formulation and a simple formula is derived to relate the thermal mismatch to the misfit strain. During creep at 425 MPa at 900 deg. C, the material exhibited primarily tertiary behavior. For grains with [0 0 1] axis close to the loading direction, the elastic microstrain in the loading direction increased with creep time for the {gamma}' phase, whereas the opposite occurred for the {gamma} phase. These results are explained in terms of constrained deformation in the narrow {gamma} channels and by an interface dislocation buildup. TEM analysis of the crept microstructure provides evidence of the interface dislocation network.

  2. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  3. Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad [Materials Science and Engineering Department, Shahid Chamran University, Ahwaz (Iran, Islamic Republic of)], E-mail: javadsafari@yahoo.com; Nategh, Saeed [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: nategh@sharif.edu

    2009-01-15

    The interaction of dislocation with strengthening particles, including primary and secondary {gamma}', during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 deg. C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of {gamma}' particles in creep at 871 deg. C under stress of 475 MPa was commenced at the earlier creep times and governed the creep deformation mechanism. In two levels of examined stresses, as far as the creep deformation was controlled by glide and climb, creep curves were found to be at the second stage of creep and commence of the tertiary creep, with increasing creep rate, were found to be in coincidence with the particles shearing. Microstructure evolution, with regard to {gamma}' strengthening particles, led to particles growth and promoted activation of other deformation mechanisms such as dislocation bypassing by orowan loop formation. Dislocation-secondary {gamma}' particles interaction was detected to be the glide and climb at the early stages of creep, while at the later stages, the dislocation bypassed the secondary precipitation by means of orowan loops formation, as the secondary particle were grown and the mean inter-particle distance increased.

  4. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  5. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    Science.gov (United States)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  6. IGSCC growth behaviors of Alloy 690 in hydrogenated high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K.; Yamada, T.; Miyamoto, T.; Terachi, T. [INSS, (Japan)

    2011-07-01

    The rate of growth of stress corrosion cracking (SCC) was measured for cold worked and thermally treated and solution treated Alloy 690 (UNS N06690, CW TT690, CW ST690) in hydrogenated pressurized water reactor (PWR) primary water under static load condition. Three important patterns were observed: First, Intergranular stress corrosion cracking (IGSCC) was observed on both TT and ST690 even in static load condition if materials were heavily cold worked although the rate of SCC growth was much slower than that of CW mill annealed Alloy 600. Furthermore much rapid SCC growth was recognized in 20% CW TT690 than that of 20% CW ST690. This is quite different result in the literature in high temperature caustic solution. Second, in order to assess the role of creep, rates of creep crack growth were measured in air, argon, and hydrogen gas environments using 20% CW TT690, and 20% CW MA600 in the range of temperatures between 360 and 460 C; intergranular creep cracking (IG creep cracking) was observed on the test materials even in air. Similar slope of 1/T-type temperature dependencies on IGSCC and IG creep crack growth were observed on 20% CW TT690. Similar fracture morphologies and similar 1/T-type temperature dependencies suggest that creep is important in the growth of IGSCC of CW TT690 in high temperature water. Third, cavities and pores were observed at grain boundaries near tips of SCC and creep although the size of the cavities and pores of SCC were much smaller than that of creep cracks. Also the population and size of cavities seem to decrease with decreasing test temperature. These results suggest that the difference in the size and population of cavities might be related with the difference in crack growth rate. And the cavities seem to be formed result from collapse of vacancies at grain boundaries as the crack embryo. This result suggests that diffusion of condensation of vacancies in high stressed fields occurs in high temperature water and gas environments

  7. Anomalous high temperature creep behaviour of an Al-8.5Fe-1.3V-1.7Si (8009Al type) alloy reinforced with alumina short fibres

    Czech Academy of Sciences Publication Activity Database

    Čadek, Josef; Kuchařová, Květa

    2004-01-01

    Roč. 42, č. 1 (2004), s. 9-20 ISSN 0023-432X R&D Projects: GA AV ČR IBS2041001 Institutional research plan: CEZ:AV0Z2041904 Keywords : High temperature creep- load transfer Subject RIV: JI - Composite Materials Impact factor: 1.056, year: 2004

  8. Effect of stacking fault energy on high-temperature creep parameters of nickel-cobalt alloys

    International Nuclear Information System (INIS)

    Nerodenko, L.M.; Dabizha, E.V.

    1982-01-01

    Results of creep investigation are discussed for two alloys of the Ni-Co system. In terms of the structural creep model an analysis is made for the effect of stacking fault energy on averaged parameters of the dislocation structure: inovable dislocation density subgrain size, activation volume. The rate of steady-state creep is determined by the process of dislocation passing through the subgrain boundaries with activation energy of 171.0 and 211.5 kJ/mol for the Ni-25% Co and Ni-65% Co alloys, respectively

  9. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  10. Creep of fissile ceramic materials under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1975-01-01

    Theoretical estimation of the irradiation-induced creep rate of U0 2 by a modification of the Nabarro-Herring model for diffusional creep resulted in a creep rate range between about 6 x 10 -6 to 8 x 10 -5 h -1 for a fission rate of 1 x 10 14 f/cm 3 s and a stress of 2 kgf/mm 2 . Accordingly, the creep rate is enhanced by irradiation at temperatures below 1000 0 to 1200 0 C. It is essentially due to the 'thermal rods' along the fission fragment tracks. Therefore, irradiation-induced creep rates should depend only slightly on temperature and must be markedly lower for carbide and nitride fuel. In-reactor creep experiments on UO 2 were performed at fuel temperatures between 250 0 to 850 0 C. At burnups between 0.3 to 3% the steady-state compressive creep rates are proportional to stress (0 to 4 kgf/mm 2 ) and to fission rate (1 x 10 13 to 2 x 10 14 f/cm 3 s), and are in the range estimated before. The increase in the creep rate with increasing temperature is low and corresponds to an apparent activation energy of only 5200 cal/mol. At burnups above 3 to 4% the stress exponent of the irradiation-induced creep rate increased from n = 1 to n = 1.5. Creep measurements on UO 2 to 15 wt-%Pu0 2 (mechanically mixed, sintered density 86% TD) showed the same temperature dependence as UO 2 below 700 0 C. However, the creep rates were higher by a factor of about 20 compared to fully dense UO 2 . This difference may be explained by assuming a high 'effective' porosity. In-pile creep tests on some UN samples resulted in creep rates that were lower by an order of magnitude than for UO 2 under comparable conditions. (author)

  11. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  12. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  13. Investigation into the effects of operating conditions and design parameters on the creep life of high pressure turbine blades in a stationary gas turbine engine

    OpenAIRE

    Eshati, Samir; Abu, Abdullahi; Laskaridis, Panagiotis; Haslam, Anthony

    2011-01-01

    A physics–based model is used to investigate the relationship between operating conditions and design parameters on the creep life of a stationary gas turbine high pressure turbine (HPT) blade. A performance model is used to size the blade and to determine its stresses. The effects of radial temperature distortion, turbine inlet temperature, ambient temperature and compressor degradation on creep life are then examined. The results show variations in creep life and failure locat...

  14. Non-Contact Measurements of Creep Properties of Refractory Materials

    Science.gov (United States)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  15. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, D. W.; Ryu, W. S.; Han, C. H.; Yoon, J. H.; Chang, J.

    2005-01-01

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  16. Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Kawasaki, Megumi; Beyerlein, Irene J.; Vogel, Sven C.; Langdon, Terence G.

    2008-01-01

    High-purity aluminum was processed by equal-channel angular pressing (ECAP) and then tested under creep conditions at 473 K. The results show conventional power-law creep with a stress exponent of n = 5 which is consistent with an intragranular dislocation process involving the glide and climb of dislocations. It is demonstrated that diffusion creep is not important in these tests because the ultrafine grains produced by ECAP are not stable at this temperature. Texture measurements were undertaken using the high-pressure preferred orientation neutron time-of-flight diffractometer and they reveal significant differences in the evolution of texture during creep in pressed and unpressed specimens. These experimental measurements of texture are in excellent agreement with theoretical textures predicted using a visco-plastic self-consistent model that limits deformation to plastic slip. The calculations provide additional confirmation that creep occurs through an intragranular dislocation process

  17. A simplified model for cumulative damage with interaction effect for creep loading

    International Nuclear Information System (INIS)

    Gomuc, R.; Bui-Quoc, T.; Biron, A.

    1989-01-01

    This paper explains that the basic creep-rupture behavior of a material at high temperature is obtained with constant stresses under isothermal conditions. Structural components operating at high temperature are, however, usually subjected to fluctuations of stresses and/or temperatures. Experimental conditions cannot cover all possible combinations of these parameters and, in addition, systematic investigations on cumulative creep damage are very limited due to long-term testing. The authors suggest that there is a need to establish a reliable procedure for evaluating the cumulative creep damage effect under non-steady stresses and temperatures

  18. Experimental evaluation of the interaction effect between plastic and creep deformation

    International Nuclear Information System (INIS)

    Ikegami, K.; Niitsu, Y.

    1985-01-01

    An experimental study of plasticity-creep interaction effects is reported. The combined stress tests are performed on thin wall tubular specimens of SUS 304 stainless steel at room temperature and high temperature (600 0 C). The plastic behaviors subsequent to creep pre-strain and creep behaviors subsequent to plastic pre-strain are obtained for loading along straight stress paths with a corner. The inelastic behaviors including both plastic and creep deformations are experimentally investigated. The interaction effects between plastic and creep deformations are quantitatively estimated with the equi-plastic strain surface. (author)

  19. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report

    International Nuclear Information System (INIS)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J.

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q K . The influence of a preceding temperature transient up to 800 C (≤Ac 1b ) or 840 C (>Ac 1b ) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [de

  20. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  1. Some factors influencing the creep behaviour of alloy 800

    International Nuclear Information System (INIS)

    Asbury, F.E.; Willoughby, G.

    1975-01-01

    Studies have been made of the stability of the creep behaviour of two commercial casts of Incoloy 800, one high carbon and the other low carbon. The effects of pre-ageing, of prolonged creep up to 10 4 hours duration, and of grain size were investigated. Three factors were found to excercise a major influence on creep behaviour. Firstly, when the high carbon alloy was heat treated at 1150degC super-saturation effects, ascribed principally to carbon, gave some initial strengthening which would not, however, persist for the duration of service life in nuclear power plant applications above 600degC. Secondly, a gamma-dash type phase precipitated readily at 550 to 600degC, giving a marked increase in creep strength. Nucleation was sluggish at higher temperatures but once established, this form of strengthening could persist up to at least 650degC. Creep under non-isothermal conditions at 600 to 700degC would be complex on account of the behaviour of this phase. The hardening associated with its precipitation was greater in the low carbon alloy. Finally it was demonstrated that, in spite of gamma-dash precipitation, fine grained low carbon material was weak in creep at low stresses and temperatures. This was ascribed to the occurrence of grain boundary diffusion creep. It appears that this source of weakening would persist in service, and severely restrict the maximum temperature of usage for fined grained high tensile material. (author)

  2. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  3. Margins in high temperature leak-before-break assessments

    Energy Technology Data Exchange (ETDEWEB)

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  4. Margins in high temperature leak-before-break assessments

    International Nuclear Information System (INIS)

    Budden, P.J.; Hooton, D.G.

    1997-01-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep

  5. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements

    International Nuclear Information System (INIS)

    Grenier, P.

    1966-06-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the α and β phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the α - β transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the β phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [fr

  6. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  7. The microstructure and impression creep behavior of cast Mg–4Sn–4Ca alloy

    International Nuclear Information System (INIS)

    Khalilpour, Hamid; Mahdi Miresmaeili, Seyed; Baghani, Amir

    2016-01-01

    Because of low creep properties of magnesium–aluminum alloys, magnesium–tin alloys have received much attention in applications where high mechanical properties in high temperatures required. In this study creep properties of Mg–4Sn–4Ca alloy were investigated by the aim of impression creep test, scanning electron microscopy, energy dispersion spectrometry and X-ray diffraction analysis. The impression creep tests were carried out under different shear modulus normalized stress at high temperatures. According to the measured stress exponent values and activation energies the climb-controlled dislocation creep was determined as the dominant mechanism. The creep resistance of this alloy was related to the presence of Ca–Mg–Sn and Mg_2Ca phases which are distributed uniformly in the matrix and exhibit high thermal stability.

  8. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2015-05-01

    Full Text Available The aim of present work is to study the high temperature degradation of the powder-processed polycrystalline superalloy Ni-15Cr-18Co-4Al-3.5Ti-5Mo. This superalloy has been applied as material for grips of a creep machine. The material was exposed at 1100 °C for about 10 days at 10 MPa stress. During the creep test occurred unacceptable creep deformation of grips as well as severe surface oxidation with scales peeling off. Three types of the microstructure were observed in the studied alloy: (i unexposed state; (ii heat treated (annealing - 10 min/1200 °C and (iii after using as a part of the equipment of the creep machine during the creep test. It is shown that the microstructure degradation resulting from the revealed γ´ phase fcc Ni3(Al,Ti particles preferentially created at the grain boundaries of the samples after performing creep tests affects mechanical properties of the alloy and represents a significant contribution to all degradation processes affecting performance and service life of the creep machine grips. Based on investigation and obtained results, the given material is not recommended to be used for grips of creep machine at temperatures above 1000 °C.

  9. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  10. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  11. Irradiation creep experiments on fusion reactor candidate structural materials

    International Nuclear Information System (INIS)

    Hausen, H.; Cundy, M.R.; Schuele, W.

    1991-01-01

    Irradiation creep rates were determined for annealed and cold-worked AMCR- and 316-type steel alloys in the high flux reactor at Petten, for various irradiation temperatures, stresses and for neutron doses up to 4 dpa. Primary creep elongations were found in all annealed materials. A negative creep elongation was found in cold-worked materials for stresses equal to or below about 100 MPa. An increase of the negative creep elongation is found for decreasing irradiation temperatures and decreasing applied stresses. The stress exponent of the irradiation creep rate in annealed and cold-worked AMCR alloys is n = 1.85 and n = 1.1, respectively. The creep rates of cold-worked AMCR alloys are almost temperature independent over the range investigated (573-693 K). The results obtained in the HFR at Petten are compared with those obtained in ORR and EBR II. The smallest creep rates are found for cold-worked materials of AMCR- and US-PCA-type at Petten which are about a factor two smaller than the creep rates obtained of US-316 at Petten or for US-PCA at ORR or for 316L at EBR II. The scatter band factor for US-PCA, 316L, US-316 irradiated in ORR and EBR II is about 1.5 after a temperature and damage rate normalization

  12. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    Science.gov (United States)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  13. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  14. Creep characteristics of single crystalline Ni3Al(Ta,B)

    International Nuclear Information System (INIS)

    Wolfenstine, J.; Earthman, J.C.

    1994-01-01

    The creep characteristics, including the nature of the creep transient after a stress reduction and activation energy for creep of single crystalline Ni 3 Al(Ta,B) in the temperature range 1,083 to 1,388 K, were investigated. An inverse type of creep transient is exhibited during stress reduction tests in the creep regime where the stress exponent is equal to 3.2. The activation energy for creep in this regime is equal to 340 kJ mol -1 . A normal type of creep transient is observed during stress reduction tests in the regime where the stress exponent is equal to 4.3. The activation energy for creep in this regime is equal to 530 kJ mol -1 . The different transient creep behavior and activation energies for creep observed in this investigation are consistent with the previous suggestion that the n = 4.3 regime is associated with creep by dislocation climb, whereas the n = 3.2 regime is associated with a viscous dislocation glide process for Ni 3 Al at high temperatures

  15. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  16. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  17. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon

    2008-11-01

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008

  18. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  19. Recent Methodologies for Creep Deformation Analysis and Its Life Prediction

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Iung

    2016-01-01

    To design the high-temperature creeping materials, various creep data are needed for codification, as follows: i) stress vs. creep rupture time for base metals and weldments (average and minimum), ii) stress vs. time to 1% total strain (average), iii) stress vs. time to onset of tertiary creep (minimum), and iv) constitutive eqns. for conducting time- and temperature- dependent stress-strain (average), and v) isochronous stress-strain curves (average). Also, elevated temperature components such as those used in modern power generation plant are designed using allowable stress under creep conditions. The allowable stress is usually estimated on the basis of up to 10"5 h creep rupture strength at the operating temperature. The master curve of the “sinh” function was found to have a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. The proposed multi-C method in the LM parameter revealed better life prediction than a single-C method. These improved methodologies can be utilized to accurately predict the long-term creep life or strength of Gen-IV nuclear materials which are designed for life span of 60 years

  20. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  1. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  2. The microstructure and impression creep behavior of cast Mg–4Sn–4Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khalilpour, Hamid, E-mail: Ha.Khalilpoorster@gmail.com [Shahid Rajaee Teacher Training University, Faculty of Mechanical Engineering, Lavizan, Tehran (Iran, Islamic Republic of); Mahdi Miresmaeili, Seyed, E-mail: s_m_miresmaeily@yahoo.com [Shahid Rajaee Teacher Training University, Faculty of Mechanical Engineering, Lavizan, Tehran (Iran, Islamic Republic of); Baghani, Amir, E-mail: amir-baghani@uiowa.edu [University of Iowa, Department of Mechanical and Industrial Engineering, Iowa City, IA (United States)

    2016-01-15

    Because of low creep properties of magnesium–aluminum alloys, magnesium–tin alloys have received much attention in applications where high mechanical properties in high temperatures required. In this study creep properties of Mg–4Sn–4Ca alloy were investigated by the aim of impression creep test, scanning electron microscopy, energy dispersion spectrometry and X-ray diffraction analysis. The impression creep tests were carried out under different shear modulus normalized stress at high temperatures. According to the measured stress exponent values and activation energies the climb-controlled dislocation creep was determined as the dominant mechanism. The creep resistance of this alloy was related to the presence of Ca–Mg–Sn and Mg{sub 2}Ca phases which are distributed uniformly in the matrix and exhibit high thermal stability.

  3. Effect of carburizing helium environment on creep behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kurata, Yuji; Ogawa, Yutaka; Nakajima, Hajime

    1988-01-01

    Creep tests were conducted on Ni-base heat-resistant alloys Hastelloy XR and XR-II, i.e. versions of Hastelloy X modified for nuclear applications, at 950degC using four types of helium environment with different impurity compositions, and mainly the effect of carburization was examined. For all the materials tested, the values of creep rupture time obtained under the carburizing conditions were similar to or longer than those in the commonly used, standard test environment (JAERI Type B helium). The difference among the results was interpreted by the counterbalancing effects of the strengthening due to carburization and possible weakening caused under very low oxidizing potential. In the corrosion monitoring specimens pronounced carbon pick-up was observed in the environment with high carbon activity and very low oxidizing potential. Based on the results obtained in the present and the previous works, it is suggested that a moderate control of the impurity chemistry is important rather than simple purification of the coolant in protecting the material from the environment-enhanced degradation. Either condition with high or low extremes in the oxidizing and carburizing potentials may cause enhanced degradation and thus are desirable to be avoided at the elevated temperatures. (author)

  4. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  5. Effect of solute segregation on thermal creep in dilute nanocyrstalline Cu alloys

    International Nuclear Information System (INIS)

    Schäfer, Jonathan; Ashkenazy, Yinon; Albe, Karsten; Averback, Robert S

    2012-01-01

    Highlights: ► Segregating solutes lower the grain boundary free volume in nanocrystalline Cu. ► Lower free volume leads to reduced atomic mobility and higher creep resistance. ► Increase in creep resistance scales with atomic size of segregating solutes. ► Atomic processes in boundaries are similar to the ones in amorphous material. - Abstract: The effect of solute segregation on thermal creep in dilute nanocrystalline alloys (Cu–Nb, Cu–Fe, Cu–Zr) was studied at elevated temperatures using molecular dynamics simulations. A combined Monte-Carlo and molecular dynamics simulation technique was first used to equilibrate the distribution of segregating solutes. Then the creep rates of the diluted Cu samples were measured as functions of temperature, composition, load and accumulated strain. In Cu–Nb samples, the creep rates were observed to increase initially with strain, but then saturate at a value close to that obtained for alloys prepared by randomly locating the solute in the grain boundaries. This behavior is attributed to an increase in grain boundary volume and energy with added chemical disorder. At high temperatures, the apparent activation energy for creep was anomalously high, 3 eV, but only 0.3 eV at lower temperatures. This temperature dependence is found to correlate with atomic mobilities in bulk Cu–Nb glasses. Calculations of creep in nanocrystalline Cu alloys containing other solutes, Fe and Zr, show that the suppression of creep rate scales with their atomic volumes when dissolved in Cu.

  6. 'In-beam' simulation of high temperature helium embrittlement of DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Schroeder, H.; Batfalsky, P.

    1982-01-01

    This work describes a facility for high temperature creep rupture tests during homogeneous helium implantation. This 'in-beam' creep testing facility is used to simulate helium embrittlement effects which will be very important for first wall materials of future fusion reactors operated at high temperatures. First results for DIN 1.4970 austenitic stainless steel clearly demonstrate differences between samples 'in-beam' tested at 1073 K and those creep tested at the same temperature after room temperature helium implantation. The specimens ruptured 'in-beam' have much shorter lifetimes and lower ductility than the specimens tested after room temperature implantation. There are also differences in the microstructures, concerning helium bubble sizes and densities in matrix and grain boundaries. These microstructural differences may be a key for the understanding of the more severe helium embrittlement effects 'in-beam' as compared to creep tests performed after room temperature implantation. (orig.)

  7. Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn; Shi, Wenchao; Jiang, WenMao; Zhao, Zhe; Shan, Debin

    2016-03-21

    The light and heavy rare earth elements are added to the magnesium alloys to improve the strengths and the creep resistance. The age hardening behaviors of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy aged at 200, 225 and 250 °C were investigated. Tensile tests and creep tests of the extruded and extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr were carried out at 150–300 °C. The relationship between the microstructure and the properties of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy was studied. The result shows that the extruded Mg–6Gd–4Y–Nd–0.7Zr (contained less than 10 wt% Gd) peak aged at 225 °C for 72 h has the excellent creep resistance and high strengths with the UTS more than 350 MPa from room temperature to 200 °C, which are correlative with the precipitates. The high dense and uniform distribution of β′ phase with good heat stability precipitates inhibiting the dislocation motion contributes to age hardening, accelerates the ageing hardening response and increases the creep resistance. The artificially aged (T5) at low temperature further creep tested and tensile tested at higher temperatures decreases the resistance to the dislocation motion and the grain boundary sliding, resulting in the reduction in creep properties and strengths of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy above 225 °C.

  8. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  9. Analysis of Helical Stainless Steel 08X18H10 Spring Relaxation at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available The object of this paper is to study a cylindrical helical spring to be applied at high temperatures. The aim of this work is to study the regularity of relaxation stresses in spring and evaluate its long-term stresses.The work allowed us to establish relaxation dependencies of springs under high temperatures. According to the results of creep tests at 600°, the theoretical equation of steel creep was defined concretely. It was then used for the analysis at 350°.The paper presents a created finite element model of spring relaxation. It is the stainless steel 08Х18Н10 spring to be used at the temperature of 350°.In this paper describes the basic theory of creep, considers the relationship between the creep speed and parameters. The changing compression force of springs is analyzed under fixed compression amount.The paper also analyzes the changing length of springs in the free state after various stages of high-temperature relaxation test. It determines the results of compression forces and free length under different amount of compression.The analysis to compare the theoretical calculation of the compression forces with the experimental results is conducted. Computer modeling is created in Abaqus for calculation. Spring relaxation experiments are carried out under fixed compression amount and at the temperature of 350°. It is shown that the simulation results, which are carried out in Abaqus coincide with experimental results. The study shows that it is possible to use the creep equation parameters, based on the experimental results at high temperatures, to predict creep and relaxation properties of springs, which work at less high temperatures. The work results can be used as a basis in designing the springs working at high temperatures.

  10. Low temperature dissolution creep induced B-type olivine fabric during serpentinization and deformation in mantle wedge

    Science.gov (United States)

    Liu, W.; Zhang, J.

    2017-12-01

    The B-type olivine fabric (i.e., the [010]ol axes subnormal to foliation and the [001]ol axes subparallel to the lineation) has been regarded as an important olivine fabric for interpreting global trench-parallel S-wave polarization in fore-arc regions. However, strong serpentinization and cold temperature environment in the mantle wedge should inhibit development of the B-type olivine fabric that requires high temperature to activate solid-state plastic deformation. Here we report fabrics of olivine and antigorite generated at low temperatures (300-370 oC) during serpentinization in a fossil mantle wedge of the Val Malenco area, Central Alps. Olivine in the serpentine matrix develops a pronounced B-type fabric, while antigorite in the same matrix displays a strong crystallographic orientation (CPO) with the (001) and the [010] subparallel to foliation and lineation, respectively. The following evidence leads to the conclusion that the B-type olivine fabric is resulted from dissolution creep assisted by grain boundaries sliding (GBS) and grain rotation, rather than solid-state plastic deformation: (1) serpentinization took place at low temperatures and a fluid-enriched environment, ideal for dissolution-precipitation creep; (2) the voids and zigzag boundaries along the interface between antigorite and olivine suggest a fluid dissolution reaction; (3) the primary coarse olivine develops a nearly random fabric, indicating the B-type fabrics in the fine-grained olivine can't be inherited fabrics. These results document for the first time the B-type olivine CPO formed by dissolution creep at low temperatures during serpentinization and provide a mechanism to reconcile petrofabric observations with geophysical observations of trench parallel fast S-wave seismic anisotropy in fore-arc mantle wedge regions.

  11. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  12. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  13. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  14. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  15. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    Science.gov (United States)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  16. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  17. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  18. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  19. Interaction of high cycle fatigue with high temperature creep in superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2002-01-01

    Roč. 93, č. 7 (2002), s. 661-665 ISSN 0044-3093 R&D Projects: GA AV ČR IAA2041002; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z2041904 Keywords : Single crystals * Creep/fatigue interaction * Persistent slip bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.636, year: 2002

  20. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  1. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 2. Quantitative evaluation of microstructural damage in creep-interrupted specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1998-02-01

    Mod.9Cr-1Mo steel has a martensitic lath structure. Recovery of the lath structure takes place in the course of creep. Microstructural degradation due to the recovery results in the acceleration of creep rate and the subsequent failure of a specimen. Change of lath width during creep of the steel was quantitatively investigated to propose a residual life assessment methodology based on the recovery process. Since the steel was tempered at 1053K, the lath structure is thermally stable at the testing temperatures (848K-923K). However, recovery of lath structure readily takes place during creep, indicating that the recovery is induced by creep deformation. Lath width d increases with creep strain and saturates to a value d s determined by creep stress. The increase of d is faster at a higher stress and temperature. A normalized change in lath width, Δd/Δd s , was introduced to explain the variation of lath growth rate with creep stress and temperature. Δd is the change in lath width from the initial value d 0 , and Δd s is the difference between d s and d 0 . Δd/Δd s is uniquely related to creep strain ε and the relationship is independent of creep stress as well as creep temperature. This Δd/Δd s -ε relationship obtained by an accelerated creep test at a higher temperature or stress is applicable to any creep condition including service conditions of engineering plants. Creep strain can be evaluated from the measurement of Δd/Δd s based on the Δd/Δd s -ε relationship. A creep curve under any creep condition can readily be calculated by creep data of the steel. Combining these information one can assess residual life of a structural component made of the steel. (author)

  2. Eccentric pressurized tube for measuring creep rupture

    International Nuclear Information System (INIS)

    Schwab, P.R.

    1981-01-01

    Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research

  3. Applicability of creep damage rules to a nickel-base heat-resistant alloy Hastelloy XR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Najime; Tanabe, Tatsuhiko; Nakasone, Yuji

    1992-01-01

    A series of constant load and temperature creep rupture tests and varying load and/or temperature creep rupture tests was carried out on a nickel-base heat-resistant alloy Hastelloy XR, which was developed for applications in the High-Temperature Engineering Test Reactor, at temperatures ranging from 850 to 1000deg C in order to examine the applicability of the conventional creep damage rules, i.e., the life fraction, the strain fraction and their mixed rules. The life fraction rule showed the best applicability of these three criteria. The good applicability of the rule was considered to result from the fact that the creep strength of Hastelloy XR was not strongly affected by the change of the chemical composition and/or the microstructure during exposure to the high-temperature simulated HTGR helium environment. In conclusion the life fraction rule is applicable in engineering design of high-temperature components made of Hastelloy XR. (orig.)

  4. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  5. Generation of a high temperature material data base and its application to creep tests with French or German RPV-steel. Technical report

    International Nuclear Information System (INIS)

    Willschuetz, H.G.; Altstadt, E.

    2002-08-01

    Considering the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Numerous experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work /REM 1993/, /THF 1997/, /CHU 1999/. For pre- and post-test calculations of Lower Head Failure experiments like OLHF or FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed at the FZR using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed where the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. Additionally the implementation of all relevant temperature dependent material properties has been performed. For an evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in 3 levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called ''tube-failure-experiments'' are modeled: the RUPTHER-14 and the ''MPA-Meppen''-experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D-experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER-experiments. This report deals with the 1D- and 2D-simulations. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi55 RPV-steels, which are

  6. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  7. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  8. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  9. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  10. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Seith, B.; Schirra, M.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the german fast breder reactor SNR 300, was creep-tested in a temperature range of 550-650 deg C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continous measuring of the elongation. The test results up to about 4.000 hours is described. Taking into account the results of other programs carried out with the same material between 550 and 600 deg C at similar rupture time, were defined the stresses for the longterm test. The main point of this program (''Extrapolation Program'') lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h for reactor operating temperatures. (author) [es

  11. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R. R.; Schirra, M.; Rivas, M. de la; Seith, B.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h. for reactor operating temperatures. (Author) 14 refs

  12. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1976-10-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German fast breeder reactor SNR 300 was creep-tested in a temperature range of 550-650 0 C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 5.000 hours. Taking into account the results of other programs carried out with the same material between 550 and 600 0 C at similar rupture times, were defined the stresses for the long term tests. The main point of this program ('Extrapolation Program') lies in the knowledge of the creep time and creep behaviour of the structure materials up to 3 x 10 4 h at high temperature in order to extrapolate up to 10 5 h for operating temperatures. (orig.) [de

  13. Creep in sodium

    International Nuclear Information System (INIS)

    Charnock, W.; Cordwell, J.E.

    1978-03-01

    Available information on the creep of austenitic, ferritic and Alloy-800 type steels in liquid sodium is critically reviewed. Creep properties of stainless steels can be affected by element transfer and corrosion. At reactor structural component temperatures environmental effects are likely to be less important than changes due to thermal ageing. At high clad temperatures (700 0 C) decarburisation may cause the loss of strength and ductility in unstabilised steels while cavity formation may cause embrittlement in stabilised steels. The properties of Alloy 800 are, in some experiments, found to deteriorate while in others they are enhanced. This may be a consequence of the metallurgical complexity of the material or arise from the nature of the various techniques employed. Low alloy ferritic steels tend to decarburise in sodium at temperatures greater than 500 0 C and this leads to loss of strength and an increase in ductility. High alloy ferritics are immune to this effect and appear to be able to tolerate a degree of carburisation. Although intergranular cracking may be enhanced in liquid sodium the mechanical consequences are not significant and evidence for the existence of an embrittlement effect not associated with element transfer or corrosion is weak. Stress and strain may enhance element transfer at crack tips. However in real cracks the gettering or supply action of the crack faces conditions the chemistry of the cracks in sodium and protects the crack tip from element transfer. Thus creep crack extension rates should be independent of changes in bulk coolant chemistry. (author)

  14. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  15. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    2015-01-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  16. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  17. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui; Deng, Peigang; Lam, Gilbert; Lu, Bo; Lee, Yi-Kuen; Tai, Yu-Chong

    2011-01-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated

  18. High-temperature and low-stress creep anisotropy of single-crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jacome, L. A.; Nortershauser, P.; Heyer, J. K.; Lahni, A.; Frenzel, J.; Dlouhý, Antonín; Somsen, C.; Eggeler, G.

    2013-01-01

    Roč. 61, č. 8 (2013), s. 2926-2943 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA202/09/2073 Institutional support: RVO:68081723 Keywords : superalloy single crystals * creep anisotropy * rafting * dislocations * deformation mechanisms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  19. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  20. Enhanced flux creep in Nb-Ti superconductors after an increase in temperature

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The magnetic fields of Superconducting Super Collider (SSC) dipole magnets change with time when the magnets are operated at constant current. The decay of the field is thought to be a consequence of flux creep in the Nb-Ti filaments in the superconducting cables. However, measured magnetic relaxation of small samples of SSC cable as a function of time is unlike the large decays that are observed in the fields of the actual magnets. We have made relaxation measurements on sample SSC conductors at 3.5 and 4.0 K after field cycling. The decay at both temperatures was 2.8% in 50 min. However, the relaxation measured after a temperature increase from 3.5 to 4.0 K was 4.8% in 50 min. A likely reason for the greater magnetization decay is that, after an increase in temperature, the Nb-Ti is in a supercritical state, with shielding currents flowing at a density greater than the new critical current density. This causes enhanced flux creep. We suggest that a small temperature rise during the operation of SSC magnets may contribute to the unexpectedly large magnetic field decay

  1. Sources of Variation in Creep Testing

    Science.gov (United States)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  2. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere....

  3. 22. lecture meeting of the association for heat-resistant steels and the association for high temperature materials 'long-term performance of heat-resistant steels and high-temperature materials'. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The proceedings volume contains 14 full papers discussing the long-term performance of high-temperature resistant materials (creep, creep fatigue, crack growth). 13 papers have been analysed and processed for separate retrieval from the ENERGY database. (orig./CB) [de

  4. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  5. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  6. A study of creep behavior in refractory alloys for thermionic emitter applications

    International Nuclear Information System (INIS)

    Gao Hong; Zee, Ralph

    1997-01-01

    The creep behavior of HfC strengthened tungsten alloys was studied. An ultrahigh vacuum high precision creep test system was constructed for this purpose so that the samples could be heated up to 3000 K for heat treatment and creep strain could be measured from the creep sample inside the vacuum chamber. Creep tests were conducted in tungsten strengthened with 0.37 percent of HfC at temperatures between 2000 K to 2500 K for durations up to 8 weeks. To explain the creep behavior observed in this dispersion strengthened alloy, a creep model was proposed which accounted for the presence of HfC particles in the form of a back stress generated by these particles. This model was verified by the creep test data of a W-0.37HfC alloy tested under both extruded and recrystallized microstructural conditions. According to this model, the steady state creep of this type alloys was expected to increase with time due to the HfC particle coarsening and recrystallization under high temperatures. In contrast, conventional simple power law creep only predicts a constant steady state creep for these materials, which does not represent the microstructural evolution of the materials. In this study, the experimental study was designed to verify the semi-mechanistic phenomenological creep model developed for carbide particle strengthened tungsten alloys

  7. High temperature deformation of polycrystalline NiO and CoO

    International Nuclear Information System (INIS)

    Krishnamachari, V.; Notis, M.R.

    1977-01-01

    High temperature creep of polycrystalline NiO appears to be controlled by oxygen lattice diffusion at temperatures between 1273 and 1373 K and at stress levels from 34.5 to 79.8 MPa (5 to 11 ksi). Experimentally observed creep rates agree well with predictions obtained from deformation maps based on self-diffusion data. TEM examination indicates that dislocations present in crept NiO specimens are predominantly glide-type rather than climb-type dislocations as found in CoO. The difference in creep behavior of these materials is believed to be due to the difference in stacking fault energies and the nature of charge associated with lattice defects. 2 tables. 7 figs., 34 references

  8. Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus.

    Science.gov (United States)

    Ratzker, Barak; Sokol, Maxim; Kalabukhov, Sergey; Frage, Nachum

    2016-06-20

    A spark plasma sintering (SPS) apparatus was used for the first time as an analytical testing tool for studying creep in ceramics at elevated temperatures. Compression creep experiments on a fine-grained (250 nm) polycrystalline magnesium aluminate spinel were successfully performed in the 1100-1200 °C temperature range, under an applied stress of 120-200 MPa. It was found that the stress exponent and activation energy depended on temperature and applied stress, respectively. The deformed samples were characterized by high resolution scanning electron microscope (HRSEM) and high resolution transmission electron microscope (HRTEM). The results indicate that the creep mechanism was related to grain boundary sliding, accommodated by dislocation slip and climb. The experimental results, extrapolated to higher temperatures and lower stresses, were in good agreement with data reported in the literature.

  9. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    Science.gov (United States)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  10. Evaluation of weldment creep and fatigue strength-reduction factors for elevated-temperature design

    International Nuclear Information System (INIS)

    Corum, J.M.

    1989-01-01

    New explicit weldment strength criteria in the form of creep and fatigue strength-reduction factors were recently introduced into the American Society of Mechanical Engineers Code Case N-47, which governs the design of elevated-temperature nuclear plants components in the United States. This paper provides some of the background and logic for these factors and their use, and it describes the results of a series of long-term, confirmatory, creep-rupture and fatigue tests of simple welded structures. The structures (welded plates and tubes) were made of 316 stainless steel base metal and 16-8-2 weld filler metal. Overall, the results provide further substantiation of the validity of the strength-reduction factor approach for ensuring adequate life in elevated-temperature nuclear component weldments. 16 refs., 7 figs

  11. B-type olivine fabric induced by low temperature dissolution creep during serpentinization and deformation in mantle wedge

    Science.gov (United States)

    Liu, Wenlong; Zhang, Junfeng; Barou, Fabrice

    2018-01-01

    The B-type olivine fabric (i.e., the [010] axes subnormal to foliation and the [001] axes subparallel to the lineation) has been regarded as an important olivine fabric for interpreting global trench-parallel S-wave polarization in fore-arc regions. However, strong serpentinization and cold temperature environment in the mantle wedge should inhibit development of the B-type olivine fabric that requires high temperature to activate solid-state plastic deformation. Here we report fabrics of olivine and antigorite generated at low temperatures (300-370 °C) during serpentinization in a fossil mantle wedge of the Val Malenco area, Central Alps. Olivine in the serpentine matrix develops a pronounced B-type fabric, while antigorite in the same matrix displays a strong crystallographic preferred orientation (CPO) with the (001) planes and the [010] axes subparallel to foliation and lineation, respectively. The following evidence leads to the conclusion that the B-type olivine fabric results from dissolution creep assisted by grain boundary sliding (GBS) and grain rotation, rather than solid-state plastic deformation: (1) serpentinization took place at low temperatures and a fluid-enriched environment, ideal for dissolution-precipitation creep; (2) the voids and zigzag boundaries along the interface between antigorite and olivine suggest a fluid dissolution reaction; (3) the primary coarse olivine develops a nearly random fabric, indicating the B-type fabrics in the fine-grained olivine may not be inherited fabrics. These results document for the first time the B-type olivine CPO formed by dissolution creep at low temperatures during serpentinization and provide a mechanism to reconcile petrofabric observations with geophysical observations of trench parallel fast S-wave seismic anisotropy in fore-arc mantle wedge regions.

  12. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  13. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  14. A study on the creep characteristics of simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.; Na, S.

    2001-09-01

    Compression creep test was performed using simulated DUPIC fuel in the temperature range from 1773 to 1973 K under the stress range of 21 - 60 MPa. Creep rate and the activation energy were obtained. The activation energy for creep was 649.35 - 675.94 kJ/mol at the low stress region, where creep mechanism was controlled by diffusion. On the other hand, the activation energy at high stress region was 750.68 - 792.18 kJ/mol, where creep mechanism was controlled by dislocation motion. The activation energy for dislocation creep was higher than that for diffusion creep. The activation energy of reference simulated DUPIC fuel was higher than that of UO2

  15. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  16. Creep Strength of Nb-1Zr for SP-100 Applications

    Science.gov (United States)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  17. Detection of generator bearing inner race creep by means of vibration and temperature analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Hilmisson, Reynir

    2015-01-01

    Vibration and temperature analysis are the two dominating condition monitoring techniques applied to fault detection of bearing failures in wind turbine generators. Relative movement between the bearing inner ring and generator axle is one of the most severe failure modes in terms of secondary...... damages and development. Detection of bearing creep can be achieved reliably based on continuous trending of the amplitude of vibration running speed harmonic and temperature absolute values. In order to decrease the number of condition indicators which need to be assessed, it is proposed to exploit...... a weighted average descriptor calculated based on the 3rd up to 6th harmonic orders. Two cases of different bearing creep severity are presented, showing the consistency of the combined vibration and temperature data utilization. In general, vibration monitoring reveals early signs of abnormality several...

  18. High-temperature flaw assessment procedure: A state-of-the-art survey

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs

  19. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    Science.gov (United States)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to

  20. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  1. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  2. Effect of preparation techniques on creep characteristics of the Zr-2. 5% Nb alloy at temperatures of 673 to 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Pahutova, M; Kreici, J; Polesna, M [Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie

    1976-01-01

    The effect of the initial raw material - zirconium sponge or zirconium iodide - on some creep and stres-strain properties was studied on Zr-2.5%Nb alloy by a stress-strain test at constant crosshead speed and by strain-rate sensitivity testing. Dependence of the creep characteristics on cooling conditions after solution treatment was examined. Alloy made from Zr-sponge was used for measurement of steady-state creep rate on time to fracture dependence and steady-state creep rate on time to fracture with respect to the angle between rolling direction of alloy sheets and tensile axis. Transmission electron microscopy was used for structure study of both alloys after different heat treatment. Higher creep strength of the alloy made from iodide zirconium (after respective heat treatment) than that of the alloy made from Zr-sponge is discussed. Oxygen content and its effect on structural changes during heat treatment seems to be responsible for higher creep strength of the first alloy. On the other hand the difference of respective creep strengths is not so significant as to justify production of Zr-2.5%Nb alloy and perhaps of future high-strength Zr alloys (for applications in structural components in reactors in the temperature range of 673 to 773 K) from iodide zirconium. Results of creep and stress-strain (short time) testing are briefly discussed.

  3. Magnetic flux creep in HTSC and Anderson-Kim theory

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2014-01-01

    The theoretical and experimental data on flux creep in high-temperature superconductors (HTSC) were analyzed in the review paper. On the one hand, the main attention is paid to the most striking experimental results which have had a significant influence on the investigations of flux creep in HTSC. On the other hand, the analysis of theoretical studies is concentrated on the works, which explain the features of flux creep on the basis of the Anderson-Kim (AK) theory modifications, and received previously unsufficient attention. However, it turned out that the modified AK theory could explain a lot of features of flux creep in HTSC: the scaling behaviour of current-voltage curves of HTSC, the finite rate of flux creep at ultra low temperatures, the logarithmic dependence of effective pinning potential as a function of transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately the both problems: viscous vortex motion and flux creep in this field. Moreover the distribution of pinning potential and the interaction of vortices with each other are taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its detailed elaboration and approaching to real situations in superconductors

  4. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  5. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  6. Effects of 14 MeV neutron irradiation on creep of nickel and niobium

    International Nuclear Information System (INIS)

    Barmore, W.; Ruotola, A.; Raymond, E.; Mukherjee, A.

    1983-01-01

    Flux, stress and temperature effects on the creep strength of nickel and niobium were observed in situ at the RTNS-II 14 MeV neutron source at Lawrence Livermore National Laboratory. Creep test were done on Ni and Nb near 0.3 Tsub(m) with stresses to 280 MPa in a high vacuum test unit using a digital computer for control and data acquisition. Cyclic flux tests produced dramatic changes in creep rate. This creep behavior is attributed to the point defect fluctuations in the crystal structure. Analysis of creep and stress relaxation under steady state flux indicates that an intermediate temperature, thermally activated deformation mechanism is rate controlling. (orig.)

  7. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1993-11-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).

  8. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    International Nuclear Information System (INIS)

    Sgobba, S.; Kuenzi, H.U.; Ilschner, B.

    1993-01-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)

  9. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  10. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  11. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  12. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  13. Interfacing and data acquisitioning of creep testing machines

    International Nuclear Information System (INIS)

    Rana, M.A.; Ahmad, Z.; Farooq, M.A.; Ali, L.; Mushtaq, N.

    1998-05-01

    Automation of DSM-6100-CREEP TESTING MACHINES is made by using an IBM PC/XT/AT compatibles along with DAS-16 High Speed Analog I/O board. Creep test parameters namely force, temperature and LVDTs (Linear Variable Differential Transducer) left and right are calibrated. Empirical formula for each parameter is developed to convert data, which is received in the form of counts, into engineering units. LVDT controller module is designed and fabricated to handle two LVDTs for data acquisition of a creep test required for it. (author)

  14. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  15. Radiation effects on time-dependent deformation: Creep and growth

    International Nuclear Information System (INIS)

    Simonen, E.P.

    1989-03-01

    Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb-glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed. 53 refs., 18 figs., 1 tab

  16. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  17. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  18. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  19. Novel experiments to characterise creep-fatigue degradation in VHTR alloys

    International Nuclear Information System (INIS)

    Simpson, J.A.; Wright, J.K.; Wright, R.N.

    2015-01-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterise creep-fatigue behaviour of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasise the fatigue portion of the total damage and does not necessarily represent the behaviour of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950 deg. C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasise the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds. (authors)

  20. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  1. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  2. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  3. The effect of preparation techniques on creep characteristics of the Zr-2.5% Nb alloy at temperatures of 673 to 823 K

    International Nuclear Information System (INIS)

    Pahutova, M.; Krejci, J.; Polesna, M.

    1976-01-01

    The effect of the initial raw material - zirconium sponge or zirconium iodide - on some creep and stres-strain properties was studied on Zr-2.5%Nb alloy by a stress-strain test at constant crosshead speed and by strain-rate sensitivity testing. Dependence of the creep characteristics on cooling conditions after solution treatment was examined. Alloy made from Zr-sponge was used for measurement of steady-state creep rate on time to fracture dependence and steady-state creep rate on time to fracture with respect to the angle between rolling direction of alloy sheets and tensile axis. Transmission electron microscopy was used for structure study of both alloys after different heat treatment. Higher creep strength of the alloy made from iodide zirconium (after respective heat treatment) than that of the alloy made from Zr-sponge is discussed. Oxygen content and its effect on structural changes during heat treatment seems to be responsible for higher creep strength of the first alloy. On the other hand the difference of respective creep strengths is not so significant as to justify production of Zr-2.5%Nb alloy and perhaps of future high-strength Zr alloys (for applications in structural components in reactors in the temperature range of 673 to 773 K) from iodide zirconium. Results of creep and stress-strain (short time) testing are briefly discussed. (author)

  4. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  5. Evaluation of creep-fatigue life prediction methods for low-carbon/nitrogen-added SUS316

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1998-01-01

    Low-carbon/medium nitrogen 316 stainless steel called 316FR is a principal candidate for the high-temperature structural materials of a demonstration fast reactor plant. Because creep-fatigue damage is a dominant failure mechanism of the high-temperature materials subjected to thermal cycles, it is important to establish a reliable creep-fatigue life prediction method for this steel. Long-term creep tests and strain-controlled creep-fatigue tests have been conducted at various conditions for two different heats of the steel. In the constant load creep tests, both materials showed similar creep rupture strength but different ductility. The material with lower ductility exhibited shorter life under creep-fatigue loading conditions and correlation of creep-fatigue life with rupture ductility, rather than rupture strength, was made clear. Two kinds of creep-fatigue life prediction methods, i.e. time fraction rule and ductility exhaustion method were applied to predict the creep-fatigue life. Accurate description of stress relaxation behavior was achieved by an addition of 'viscous' strain to conventional creep strain and only the latter of which was assumed to contribute to creep damage in the application of ductility exhaustion method. The current version of the ductility exhaustion method was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted creep-fatigue life as large as a factor of 30. To make a reliable estimation of the creep damage in actual components, use of ductility exhaustion method is strongly recommended. (author)

  6. Low Temperature (320 deg C and 340 deg C) Creep Crack Growth in Low Alloy Reactor Pressure Vessel Steel

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2004-02-01

    Uni-axial creep and creep crack growth (CCG) tests at 320 deg C and 340 deg C as well as post test metallography have been carried out in a low alloy reactor pressure vessel steel (ASTM A508 class 2) having simulated coarse grained heat affected zone microstructure. The CCG behaviour is studied in terms of steady crack growth rate, creep fracture parameter C*, stress intensity factor and reference stress at given testing conditions. It has been found that CCG does occur at both tested temperatures. The lifetimes for the CCG tests are considerably shorter than those for the uni-axial creep tests. This is more pronounced at longer lifetimes or lower stresses. Increasing temperature from 320 deg C to 340 deg C causes a reduction of lifetime by approximately a factor of five and a corresponding increase of steady crack growth rate. For the CCG tests, there are three regions when the crack length is plotted against time. After incubation, the crack grows steadily until it accelerates when rupture is approached. Notable crack growth takes place at later stage of the tests. No creep cavitation is observed and transgranular fracture is dominant for the uni-axial creep specimens. In the CT specimens the cracks propagate intergranularly, independent of temperature and time. Some relations between time to failure, reference stress and steady crack growth rate are found for the CCG tests. A linear extrapolation based on the stress-time results indicates that the reference stress causing failure due to CCG at a given lifetime of 350,000 hours at 320 deg C is clearly lower than both yield and tensile strengths, on which the design stress may have based. Therefore, caution must be taken to prevent premature failure due to low temperature CCG. Both uni-axial and CCG tests on real welded joint at 320 deg C, study of creep damage zone at crack tip as well as numerical simulation are recommended for future work

  7. Examination of Experimental Data for Irradiation - Creep in Nuclear Graphite

    Science.gov (United States)

    Mobasheran, Amir Sassan

    The objective of this dissertation was to establish credibility and confidence levels of the observed behavior of nuclear graphite in neutron irradiation environment. Available experimental data associated with the OC-series irradiation -induced creep experiments performed at the Oak Ridge National Laboratory (ORNL) were examined. Pre- and postirradiation measurement data were studied considering "linear" and "nonlinear" creep models. The nonlinear creep model considers the creep coefficient to vary with neutron fluence due to the densification of graphite with neutron irradiation. Within the range of neutron fluence involved (up to 0.53 times 10^{26} neutrons/m ^2, E > 50 KeV), both models were capable of explaining about 96% and 80% of the variation of the irradiation-induced creep strain with neutron fluence at temperatures of 600^circC and 900^circC, respectively. Temperature and reactor power data were analyzed to determine the best estimates for the actual irradiation temperatures. It was determined according to thermocouple readouts that the best estimate values for the irradiation temperatures were well within +/-10 ^circC of the design temperatures of 600^circC and 900 ^circC. The dependence of the secondary creep coefficients (for both linear and nonlinear models) on irradiation temperature was determined assuming that the variation of creep coefficient with temperature, in the temperature range studied, is reasonably linear. It was concluded that the variability in estimate of the creep coefficients is definitely not the results of temperature fluctuations in the experiment. The coefficients for the constitutive equation describing the overall growth of grade H-451 graphite were also studied. It was revealed that the modulus of elasticity and the shear modulus are not affected by creep and that the electrical resistivity is slightly (less than 5%) changed by creep. However, the coefficient of thermal expansion does change with creep. The consistency of

  8. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  9. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  10. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  11. Evaluation of creep damage due to stress relaxation in SA533 grade B class 1 and SA508 class 3 pressure vessel steels

    International Nuclear Information System (INIS)

    Hoffmann, C.L.; Urko, W.

    1993-01-01

    Creep damage can result from stress relaxation of residual stresses in components when exposed to high temperature thermal cycles. Pressure vessels, such as the reactor vessel of the modular high-temperature gas reactor (MHTGR), which normally operate at temperatures well below the creep range can develop relatively high residual stresses in high stress locations. During short term excursions to elevated-temperatures, creep damage can be produced by the loadings on the vessel. In addition, residual stresses will relax out, causing greater creep damage in the pressure vessel material than might otherwise be calculated. The evaluation described in this paper assesses the magnitude of the creep damage due to relaxation of residual stresses resulting from short term exposure of the pressure vessel material to temperatures in the creep range. Creep relaxation curves were generated for SA533 Grade B, Class 1 and SA508 Class 3 pressure vessel steels using finite element analysis of a simple uniaxial truss loaded under constant strain conditions to produce an initial axial stress equal to 1.25 times the material yield strength at temperature. The strain is held constant for 1000 hours at prescribed temperatures from 700 F to 1000 F. The material creep law is used to calculate the relaxed stress for each time increment. The calculated stress relaxation versus time curves are compared with stress relaxation test data. Creep damage fractions are calculated by integrating the stress relaxation versus time curves and performing a linear creep damage summation using the minimum stress to rupture curves at the respective relaxation temperatures. Cumulative creep damage due to stress relaxation as a function of time and temperature is derived from the linear damage summation

  12. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  13. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  14. A Critical Analysis of the Conventionally Employed Creep Lifing Methods.

    Science.gov (United States)

    Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen

    2014-04-29

    The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure.

  15. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  16. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  17. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  18. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  19. Tensile and creep data on type 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  20. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  1. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  2. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  3. Irradiation creep lifetime analysis on first wall structure materials for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bing; Peng, Lei, E-mail: penglei@ustc.edu.cn; Zhang, Xiansheng; Shi, Jingyi; Zhan, Jie

    2017-05-15

    Fusion reactor first wall services on the conditions of high surface heat flux and intense neutron irradiation. For China Fusion Engineering Test Reactor (CFETR) with high duty time factor, it is important to analyze the irradiation effect on the creep lifetime of the main candidate structure materials for first wall, i.e. ferritic/martensitic steel, austenite steel and oxide dispersion strengthened steel. The allowable irradiation creep lifetime was evaluated with Larson-Miller Parameter (LMP) model and finite element method. The results show that the allowable irradiation creep lifetime decreases with increasing of surface heat flux, first wall thickness and inlet coolant temperature. For the current CFETR conceptual design, the lifetime is not limited by thermal creep or irradiation creep, which indicated the room for design parameters optimization.

  4. Microstructural evolution and creep of Fe-Al-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prokopcakova, Petra; Svec, Martin [Technical University of Liberec (Czech Republic). Dept. of Material Science; Palm, Martin [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Structure and Nano-/Micromechanics of Materials

    2016-05-15

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2{sub 1} Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  5. Microstructural evolution and creep of Fe-Al-Ta alloys

    International Nuclear Information System (INIS)

    Prokopcakova, Petra; Svec, Martin; Palm, Martin

    2016-01-01

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2 1 Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  6. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    International Nuclear Information System (INIS)

    Hall, M.M. Jr.

    1993-01-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates

  7. Effects of cobalt on creep rupture properties and dislocation structures in nickel base superalloys

    International Nuclear Information System (INIS)

    Wang, W.Z.; Jin, T.; Jia, J.H.; Liu, J.L.; Hu, Z.Q.

    2015-01-01

    The influences of cobalt (Co) on creep rupture lives and dislocation structures in nickel base superalloys with and without rhenium (Re) are investigated. The creep rupture test conditions were high temperature low stress (1100 °C/150 MPa), intermediate temperature and stress (982 °C, 1010 °C) and low temperature high stress (850 °C/586 MPa). The results show that increasing Co content could enhance the creep rupture lives at low and intermediate temperature, and does not degrade the creep rupture lives of alloys at high temperature. In Re-containing alloys, at high temperature low stress (1100 °C/150 MPa), the effects of Co on the dislocation structures are negligible, while at low temperature high stress (850 °C/586 MPa), stacking faults are generated in alloy with 12% Co, and in alloy with 3% Co and free of Co, gamma prime particles are sheared by dislocation pairs. In Re-free alloys, at intermediate temperature and stress (1010 °C/248 MPa), large quantities of stacking faults appear in alloy without Co, while in alloy having 12% Co, gamma prime particles are sheared by dislocation pairs coupled by anti-phase boundary (APB). The gamma prime sheared by stacking faults or by dislocation pairs coupled by APB depends on the competition of stacking faults energy and APB energy which is affected by temperature and the interaction of Re and Co

  8. Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor

    International Nuclear Information System (INIS)

    Choi, Woo Sung; Song, Gee Wook; Kim, Bum Shin; Chang, Sung Ho; Fleury, Eric

    2011-01-01

    It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed

  9. Datalogger for the creep laboratory

    International Nuclear Information System (INIS)

    Sambasivan, S.I.; Karthikeyan, T.V.; Chowdhary, D.M.; Anantharaman, P.N.

    1989-01-01

    The creep laboratory, MDL/ICGAR is a facility to study the creep properties of materials which are of interest to the fast reactor programme. The creep test is conducted over a few days to several months and years depending on the test variables employed. In these tests the creep strain and creep rate as a function of time are studied while the load and temperature are kept constant. The datalogger automates the process of recording the strain information as a function of time and also monitors the temperature throughout the test. The system handles 126 temperature channels and 42 strain channels from 27 machines. The temperature inputs are from the thermocouples and for cold junction compensation RTD's are used. An extensometer with a linear variable differential transformer (LVDT) or Super Linear Variable Capacitor (SLVC) form the set up to measure strain. The data logger consists of a front end analog input sub-system (AISS), a 8085 based Data Acquisition System (DAS) communicating to a microcomputer with CP/M operating system. The system responds to the user through the console and outputs of a dot matrix printer. The system, running a real time executive, also allows for on line enabling or disabling of a channel, printing of data, examining the current status and value, setting and getting time etc. (author)

  10. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  11. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    Farina, Luis Claudio

    2009-01-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  12. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  13. Influence of water–air ratio on the heat transfer and creep life of a high pressure gas turbine blade

    International Nuclear Information System (INIS)

    Eshati, S.; Abu, A.; Laskaridis, P.; Khan, F.

    2013-01-01

    An analytical model to investigate the influence of Water–Air Ratio (WAR) on turbine blade heat transfer and cooling processes (and thus the blade creep life) of industrial gas turbines is presented. The effects of WAR are emphasised for the modelling of the gas properties and the subsequent heat transfer process. The approach considers convective/film cooling and includes the influence of a thermal barrier coating. In addition, the approach is based on the thermodynamic outputs of a gas turbine performance simulation, heat transfer model, as well as a method that accounts for the changes in the properties of moist air as a function of WAR. For a given off-design point, the variation of WAR (0.0–0.10) was investigated using the heat transfer model. Results showed that with increasing WAR the blade inlet coolant temperature reduced along the blade span. The blade metal temperature at each section was reduced as WAR increased, which in turn increased the blade creep life. The increase in WAR increased the specific heat of the coolant and increased the heat transfer capacity of the coolant air flow. The model can be implemented by using the thermodynamic cycle of the engine, without knowing the turbine cooling details in the conceptual design stage. Also, this generic method assists the end user to understand the effect of operating conditions and design parameter on the creep life of a high pressure turbine blade. -- Highlights: • The influence of WAR on gas turbine blade heat transfer and creep life is examined. • Coolant specific heat capacity is the key property affected by changes in WAR. • Increase in WAR reduces the coolant and metal temperature along the blade span. • Creep life increases with increase in WAR even if ambient temperature is increased

  14. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  15. Application of regression analysis to creep of space shuttle materials

    International Nuclear Information System (INIS)

    Rummler, D.R.

    1975-01-01

    Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

  16. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  17. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  18. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  19. Creep behavior for advanced polycrystalline SiC fibers

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-01-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep open-quotes mclose quotes curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261 degrees C), Nicalon S (1256 degrees C), annealed Hi Nicalon (1215 degrees C), Hi Nicalon (1078 degrees C), Nicalon CG (1003 degrees C) and Tyranno E (932 degrees C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests

  20. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  1. Development of high temperature property database for Alloy 800H

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Watanabe, Katsutoshi; Tsuji, Hirokazu; Nakajima, Hajime.

    1993-07-01

    JAERI Material Performance Database (JMPD) has been developed since 1989 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Using relational database management system, PLANNER on the mainframe, the JMPD provides the retrieval supporting system, graphic and statistical analyses system. The data obtained with 7868 sets on characteristic data of metallic materials including fatigue crack growth data, etc. have been stored in the JMPD at the end of March in 1993. A ferritic superalloy, Alloy 800H is used for the structural material of the control rods of the High Temperature Engineering Test Reactor (HTTR). Thermal stress generates which might cause a severe creep damage at a reactor scram. It therefore needs to be designed with consideration on the fracture modes induced by creep deformation after neutron irradiation. The creep data (approximately 240 sets) and tensile data (approximately 100 sets) of Alloy 800H including the effects of test environment, aging treatment and neutron irradiation have been stored in the JMPD. Furthermore, using a personal computer, high temperature property database for Alloy 800H has been developed. The present report outlines the development of high temperature property database for Alloy 800H. (author)

  2. Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material

    International Nuclear Information System (INIS)

    Millett, Paul C.; Desai, Tapan; Yamakov, Vesselin; Wolf, Dieter

    2008-01-01

    Molecular dynamics (MD) simulations are used to study diffusion-accommodated creep deformation in nanocrystalline molybdenum, a body-centered cubic metal. In our simulations, the microstructures are subjected to constant-stress loading at levels below the dislocation nucleation threshold and at high temperatures (i.e., T > 0.75T melt ), thereby ensuring that the overall deformation is indeed attributable to atomic self-diffusion. The initial microstructures were designed to consist of hexagonally shaped columnar grains bounded by high-energy asymmetric tilt grain boundaries (GBs). Remarkably the creep rates, which exhibit a double-exponential dependence on temperature and a double power-law dependence on grain size, indicate that both GB diffusion in the form of Coble creep and lattice diffusion in the form of Nabarro-Herring creep contribute to the overall deformation. For the first time in an MD simulation, we observe the formation and emission of vacancies from high-angle GBs into the grain interiors, thus enabling bulk diffusion

  3. Power series like relation of power law and coupled creep ...

    African Journals Online (AJOL)

    When a solid deforms at high temperature its microstructure may in some sense be altered- holes and cracks may nucleate and grow inside the solid by various mechanism controlled by diffusion and by power law creep or by a combination of these mechanisms. Considering a coupled diffusion power law creep mechanism ...

  4. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  5. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  6. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    Science.gov (United States)

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  7. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  8. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  9. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  10. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  11. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  12. Analysis of structures based on a characteristic-strain model of creep

    International Nuclear Information System (INIS)

    Bolton, J.

    2008-01-01

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated

  13. Small ring testing of a creep resistant material

    International Nuclear Information System (INIS)

    Hyde, C.J.; Hyde, T.H.; Sun, W.; Nardone, S.; De Bruycker, E.

    2013-01-01

    Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys

  14. Magnetothermoelastic creep analysis of functionally graded cylinders

    International Nuclear Information System (INIS)

    Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.

    2010-01-01

    This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.

  15. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  16. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  17. Irradiation Creep and Swelling of Russian Ferritic-Martensitic Steels Irradiated to Very High Exposures in the BN-350 Fast Reactor at 305-335 degrees C

    International Nuclear Information System (INIS)

    Konobeev, Yury V.; Dvoriashin, Alexander M.; Porollo, S.I.; Shulepin, S.V.; Budylkin, N.I.; Mironova, Elena G.; Garner, Francis A.

    2003-01-01

    Russian ferritic/martensitic (F/M) steels EP-450, EP-852 and EP-823 were irradiated in the BN-350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb-Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP-450 and EP-823 at temperatures between 390 and 520C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP-450 and EP-852 at temperatures between 305 and 335C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures <420C, but may be camouflaged somewhat by precipitation-related densification. These irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels.

  18. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  19. Irradiation Creep of Ferritic-Martensitic Steels EP-450, EP-823 and EI-852 Irradiated in the BN-350 Reactor over Wide Ranges of Irradiation Temperature and Dose

    International Nuclear Information System (INIS)

    Porollo, S.I.; Konobeev, Y.V.; Ivanov, A.A.; Shulepin, S.V.; Garner, F.

    2007-01-01

    Full text of publication follows: Ferritic/martensitic (F/M) steels appear to be the most promising materials for advanced nuclear systems, especially for fusion reactors. Their main advantages are higher resistance to swelling and lower irradiation creep rate as has been repeatedly demonstrated in examinations of these materials after irradiation. Nevertheless, available experimental data on irradiation resistance of F/M steels are insufficient, with the greatest deficiency of data for high doses and for both low and high irradiation temperatures. From the very beginning of operation the BN-350 fast reactor has been used for irradiation of specimens of structural materials, including F/M steels. The most unique feature of BN-350 was its low inlet sodium temperature, allowing irradiation at temperatures over a very wide range of temperatures compared with the range in other fast reactors. In this paper data are presented on swelling and irradiation creep of three Russian F/M steels EP-450, EP-823 and EI-852, irradiated in experimental assemblies of the BN-350 reactor at temperatures in the range of 305-700 deg. C to doses ranging from 20 to 89 dpa. The investigation was performed using gas-pressurized creep tubes with hoop stresses in the range of 0 - 294 MPa. (authors)

  20. Creep in crystalline rock with application to high level nuclear waste repository

    International Nuclear Information System (INIS)

    Eloranta, P.; Simonen, A.

    1992-06-01

    The time-dependent strength and deformation properties of hard crystalline rock are studied. Theoretical models defining the phenomena which can effect these properties are reviewed. The time- dependent deformation of the openings in the proposed nuclear waste repository is analysed. The most important factors affecting the subcritical crack growth in crystalline rock are the stress state, the chemical environment, temperature and microstructure of the rock. There are several theoretical models for the analysis of creep and cyclic fatigue: deformation diagrams, rheological models thermodynamic models, reaction rate models, stochastic models, damage models and time-dependent safety factor model. They are defective in describing the three-axial stress condition and strength criteria. In addition, the required parameters are often too difficult to determine with adequate accuracy. Therefore these models are seldom applied in practice. The effect of microcrack- driven creep on the stability of the work shaft, the emplacement tunnel and the capsulation hole of a proposed nuclear waste repository was studied using a numerical model developed by Atomic Energy of Canada Ltd. According to the model, the microcrack driven creep progresses very slowly in good quality rock. Poor rock quality may accelerate the creep rate. The model is very sensitive to the properties of the rock and secondary stress state. The results show that creep causes no stability problems on excavations in good rock. The results overestimate the effect of the creep, because the analysis omitted the effect of support structures and backfilling

  1. Power-law creep of powder-metallurgy grade molybdenum sheet

    International Nuclear Information System (INIS)

    Ciulik, J.; Taleff, E.M.

    2007-01-01

    Creep behavior of commercial-purity, powder-metallurgy grade molybdenum (Mo) sheet has been investigated at temperatures between 1300 and 1600 deg. C (0.56-0.63 T m ) using tensile testing at controlled strain rates. Strain-rate-change tests were performed at constant-temperatures over true-strain rates from 1.0 x 10 -6 to 5.0 x 10 -4 s -1 . Results agree with previously published data indicating that Mo follows power-law creep with a stress exponent of about 5; however, the present results address a temperature range not previously documented. The activation energy for creep was determined to be 240 kJ/mol within this temperature range, which is lower than previously published values and approximately half the value reported for self-diffusion, indicating that diffusion mechanisms faster than lattice diffusion are active. It is shown that Mo creep data from a variety of investigations converge closely to a single line on a master plot of strain rate normalized using an activation energy of 240 kJ/mol when plotted against stress normalized by the temperature-dependent elastic modulus. This activation energy for creep is attributed to an effective diffusivity that fits the creep data obtained during this study as well as from previously published creep data from commercial-purity molybdenum

  2. Irradiation creep and growth of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Lansiart, S.; Darchis, L.; Pelchat, J.

    1990-01-01

    The influence of temperature and fast neutron flux on irradiation creep and growth of stress relieved zircaloy-4 pressurized tubes has been derived from experimental irradiations in NaK, performed up to 2.5 10 25 n.m -2 in the temperature range [280, 350] 0 C. A significant influence of temperature on axial growth has been observed: at 280 0 C the elongation can no longer be expressed as a linear function of fluence as for the 350 0 C irradiation temperature; diametral growth, on the other hand, always appears negligible. Irradiation creep obviously depends on temperature too; the diametral strain (including thermal part) has been modelled as a sum of primary and secondary terms, the former being independent of fluence. For the tubing considered it is observed that the ranking of the different batches, with respect to diametral creep resistance, is the same before and under irradiation. Concerning axial creep strain the stress relieved material behaves as does an isotropic tube. This is not the case of recrystallized zircaloy-4 F, which shows a non negligible axial deformation, related to the diametral creep one, even though this diametral irradiation creep strain is strongly reduced comparatively to that of the stress relieved material. The comparison of the two materials growth rates is more complex since their dependence on temperature and flux differs

  3. Irradiation creep performance of graphite relevant for pebble bed HTRs

    International Nuclear Information System (INIS)

    Kleist, G.; O'Connor, M.F.

    1980-01-01

    Irradiation - induced creep in the core reflector component graphite of high temperature reactors is of primary importance to the core designer since it provides a mechanism for the relief of internal stresses arising from differential Wigner shrinkage and thermal expansion. The experimental determination of the extent of this creep for conditions relevant to the reactor is thus imperative

  4. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  5. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  6. Pressure behavior of a steel pipeline experiencing creep at normal temperatures

    Czech Academy of Sciences Publication Activity Database

    Gajdoš, Lubomír; Šperl, Martin; Pavelková, R.

    2018-01-01

    Roč. 31, č. 3 (2018), č. článku 05018001. ISSN 0893-1321 R&D Projects: GA TA ČR(CZ) TE02000162 Institutional support: RVO:68378297 Keywords : tightness test * pressure decrease * steel pipe * room temperature creep (RTC) Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 1.107, year: 2016 https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29AS.1943-5525.0000846

  7. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  8. Effect of creep-aging on precipitates of 7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: yclin@csu.edu.cn [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China); Jiang, Yu-Qiang; Chen, Xiao-Min; Wen, Dong-Xu [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); Zhou, Hua-Min [State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China)

    2013-12-20

    The creep-aging behaviors of 7075 aluminum alloy are studied by uniaxial tensile creep experiments under elevated temperatures. The effects of creep-aging temperature and applied stress on the precipitates of 7075-T651 aluminum alloy are investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Results show that (1) coarse insoluble precipitates (Al{sub 7}Cu{sub 2}Fe and Mg{sub 2}Si) and intermediate precipitates (Al{sub 18}Mg{sub 3}Cr{sub 2} and Al{sub 3}Zr) are found in the aluminum matrix, and the effects of creep-aging treatment on these precipitates are not obvious; (2) the main aging precipitates are η′ and η phases, and the amount of aging precipitates increase with the increase of creep-aging temperature and applied stress; (3) with the increase of creep-aging temperature and applied stress, the precipitates are discontinuously distributed on the grain boundary, and the width of precipitate free zone increases with the increase of creep-aging temperature and applied stress and (4) compared with the microstructure in the traditional stress-free aged sample, the creep-aging process can refine the precipitates and narrow the width of the precipitate free zone.

  9. A simple method for the investigation of the high temperature plasticity of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, N.Q. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary))

    1993-11-01

    The indentation creep test is a powerful and quick method for the investigation of the high temperature plasticity of various materials. During creep test a small cylindrical punch is pressed at constant loads into the surface of the sample and the penetration depth is registered as a function of testing time. On the basis of the creep curves taken at various temperatures and loads the strain rate sensitivity and the activation energy of the steady-state creep process can be determined. The main advantage of this test is that it needs only a small amount of testing material. In this paper the usefullness of this method illustrated by some results obtained on superplastic and non superplastic Al alloys. The indentation results are compared with tensile data obtained on the same materials. (orig.).

  10. The effect of vacuum environment on creep rupture properties of Inconel 617 at 1000 deg C

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Imamura, Riuzo

    1981-01-01

    The creep rupture strength of nickel-base superalloy in weakly acidic gas at high temperature above 1000 deg C lowers remarkably as compared with that in the atmosphere, and this problem is one of the important subjects in connection with the research and development of high temperature heat exchangers for multi-purpose high temperature gas-cooled reactor system being developed in Japan. In the case of Inconel 617, abnormal decarbonization phenomenon occurs in weakly acidic gas, and this is regarded as the cause of lowering the creep strength. In this study, the effects of the decarbonization in weak vacuum at 1000 deg C and the oxidation of Inconel 617 on its crack occurrence and propagation were clarified experimentally with notched plate test pieces. The material used was Inconel 617 nickel-base superalloy made by Huntington Alloys Inc. in the U.S. The creep rupture experiment was carried out with a simple tension creep tester. At the nominal stress of 3.5 kg/mm 2 , the creep rupture time in 0.3 Torr was the shortest when the grain size was 78 μm, and the creep rupture time increased as the grain size became larger. The creep rupture time in 0.3 Torr decreased to a half of that in the atmosphere. In 0.3 Torr, cracks occurred early, and propagated fast as compared with in the atmosphere. This is because the local creep velocity at the bottom of notches and in front of creep cracks is fast owing to the lack of protective oxide film. (Kako, I.)

  11. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  12. Evaluation of creep-fatigue/ environment interaction in Ni-base wrought alloys for HTGR application

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1986-01-01

    High Temperature Gas-cooled Reactor (HTGR) systems should be designed based on the high temperature structural strength design procedures. On the development of design code, the determination of failure criteria under cyclic loading and severe environments is one of the most important items. By using the previous experimental data for Ni-base wrought alloys, Inconel 617 and Hastelloy XR, several evaluation methods for creep-fatigue interaction were examined for their capability to predict their cyclic loading behavior for HTGR application. At first, the strainrange partitioning method, the frequency modified damage function and the linear damage summation rule were discussed. However, these methods were not satisfactory with the above experimental results. Thus, in this paper, a new fracture criterion, which is a modification of the linear damage summation rule, is proposed based on the experimental data. In this criterion, fracture is considered to occur when the sum of the fatigue damage, which is the function of the applied cyclic strain magnitude, and the modified creep damage, which is the function of the applied cyclic stress magnitude (determined as time devided by cyclic creep rupture time reflecting difference of creep damages by tensile creep and compressive creep), reaches a constant value. This criterion was successfully applied to the life prediction of materials at HTGR temperatures. (author)

  13. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  14. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  15. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  16. High-temperature compressive creep behaviour of perovskite-type oxides SrTi1-xFexO3-δ

    NARCIS (Netherlands)

    ten Donkelaar, S.F.P.; Stournari, V.; Malzbender, J.; Nijmeijer, Arian; Bouwmeester, Henricus J.M.

    2015-01-01

    Compressive creep tests have been performed on mixed ionic-electronic conducting perovskite-type oxides SrTi1-xFexO3- (STF, x = 0.3, 0.5 and 0.7). Observed activation energies and stress exponents, at 800–1000 ◦C and in the stress range 10 100 MPa, indicate that the steady-state creep rate of STF

  17. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Honda, Yoshio; Matsuda, Shozo; Murase, Hirokazu

    1979-01-01

    Creep properties of candidate superalloys for VHTR components in a helium environment at both temperatures of 800 0 C and 900 0 C were compared with those of the same alloys in the atmospheric condition, and the superalloys were contrasted with each other from the viewpoint of high temperature structural design. At 800 0 C, no significant effect of a helium environment on creep properties of the superalloys is observed. At 900 0 C, however, creep strength of Inconel 617, Incoloy 800 and Incoloy 807 in the helium environment decrease more than in the atmospheric environment. In Hastelloy X and Inconel 625, there is no significant difference between creep strengths in helium and those in the atmospheric condition. Concerning So and St values in helium at 900 0 C, Inconel 617 and Hastelloy X are clearly superior to other superalloys. (author)

  18. Evaluation of long-term creep-fatigue life of stainless steel weldment based on a microstructure degradation model

    International Nuclear Information System (INIS)

    Asayama, Tai; Hasebe, Shinichi

    1997-01-01

    This paper describes a newly developed analytical method of evaluation of creep-fatigue strength of stainless weld metals. Based on the observation that creep-fatigue crack initiates adjacent to the interface of sigma-phase/delta-ferrite and matrix, a mechanistic model which allows the evaluation of micro stress/strain concentration adjacent to the interface was developed. Fatigue and creep damage were evaluated using the model which describes the microstructure after exposed to high temperatures for a long time. Thus it was made possible to predict analytically the long-term creep-fatigue life of stainless steel metals whose microstructure is degraded as a result of high temperature service. (author)

  19. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  20. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  1. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  2. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  3. The effect of microstructural stability on long-term creep behaviour of 11 %Cr steels for steam power plants with operating steam temperatures up to 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Scholz, A.; Berger, C. [Technische Univ. Darmstadt (DE). Inst. fuer Werkstoffkunde (IFW); Kauffmann, F.; Maile, K. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Mayer, K.H. [Alstom Power, Nuernberg (Germany)

    2010-07-01

    The investigations of advanced ferritic/martensitic steels for 650 C power plant components focus on the improvement of high-temperature creep properties with respect to chemical composition. This study deals with the development of new heat resistant 11-12%Cr ferritic-martensitic steels with sufficient creep and oxidation resistance up to 650 application by using basic principles and concepts of physical metallurgy. The highest creep strength could be achieved with a 0.04% Nb alloyed 11%CrWCoMoVB melt, which is in addition alloyed with a higher C and B content as well as with lower W and Co portions. The microstructure evolution during creep of this newly developed steel was investigated in comparison to a sister alloy which comprises 0.06% Ta instead of the Nb. (orig.)

  4. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  5. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  6. Long-term Creep Life Prediction for Type 316LN Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Sung Ho; Lee, Chan Bok

    2007-01-01

    Since Sodium Fast Cooled Reactor (SFR) components are designed to be use for more than 30 years at a high temperature of 550 .deg. C, one of the most important properties of these components is the long term creep behavior. To accurately predict the long-term creep life of the components, it is essential to achieve reliable long-term test data beyond their design life. But, it is difficult to actually obtain long duration data because it is time-consuming work. So far, a variety of time-temperature parameters (TTPs) have been developed to predict a long-term creep life from shorter-time tests at higher temperatures. Among them, the Larson-Miller, the Orr-Sherby-Dorn, the Manson-Harferd and the Manson-Succop parameters have been typically used. None of these parameters has an overwhelming preference, and they have certain inherent restrictions imposed on their data in the application of the TTPs parameters. Meanwhile, it has been reported that the Minimum Commitment Method (MCM) proposed by Manson and Ensign has a greater flexibility for a creep rupture analysis. Thus, the MCM will be useful as another approach. Until now, the applicability of the MCM has not been investigated for type 316LN SS because of insufficient creep data. In this paper, the MCM was applied to predict a long-term creep life of type 316LN stainless steel (SS). Lots of creep rupture data was collected through literature surveys and the experimental data of KAERI. Using the short-term experimental data for under 2,000 hours, a longer-time rupture above 105 hours was predicted by the MCM at temperatures from 550 .deg. C to 800 .deg. C

  7. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  8. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  9. Modeling of helium effects in metals: High temperature embrittlement

    International Nuclear Information System (INIS)

    Trinkaus, H.

    1985-01-01

    The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)

  10. High-temperature deformation of SiC-whisker-reinforced MgO-PSZ/mullite composites

    International Nuclear Information System (INIS)

    Parthasarathy, T.A.; Hay, R.S.; Ruh, R.

    1996-01-01

    The effect of 33.5 vol% SiC whisker loading on high-temperature deformation of 1 wt% MgO-38.5 wt% zirconia-mullite composites was studied between 1,300 and 1,400 C. At strain rates of 10 -6 to 5 x 10 -4 /s the creep resistance of zirconia-mullite composites without SiC reinforcement was inferior to monolithic mullite of similar grain size. Analysis of the results suggested that the decreased creep resistance of mullite-zirconia composites compared to pure mullite could be at least partially explained by mechanical effects of the weaker zirconia phase, increased effective diffusivity of mullite by zirconia addition, and to the differences in mullite grain morphology. With SiC whisker reinforcement, the deformation rate at high stress was nearly the same as that of the unreinforced material, but at low stress the creep rates of the SiC-reinforced material were significantly lowered. The stress dependence of the creep rate of unreinforced material suggested that diffusional creep was the operative mechanism, while the reinforced material behaved as if a threshold stress for creep existed. The threshold stress could be rationalized based on a whisker network model. This was supported by data on other whisker-containing materials; however, the threshold stress had a temperature dependence that was orders of magnitude higher than the elastic constants, leaving the physical model incomplete. The effects of residual stresses and amorphous phases at whisker/matrix interfaces are invoked to help complete the physical model for creep threshold stress

  11. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  12. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  13. Evaluation of the onset of tertiary creep for types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    Staerk, E.; Picker, C.; Felsen, M.F.

    1989-01-01

    Austenitic stainless steels Types 304 and 316 are used for LMFBR components. Although at high temperature many codes base the allowable stress on the stress rupture strength, some recent codes eg ASME Code Case N47 and RCC-MR also take account of the onset of tertiary creep. In order to examine this latter aspect creep deformation data on Type 304 and Type 316 steel have been collected and analysed. The ratio time to onset of tertiary creep against the time to rupture has been analysed as a function of temperature. At temperatures below 750 0 C the ratio is found to decrease slightly with increasing temperature. Monkman Grant and Lambda relationships have also been investigated. In relation to the ASME S t allowable stress criteria it is shown that below 600 0 C the allowable stress is likely to be governed by the stress rupture strength rather than the onset of tertiary creep criterion. Recommendations are given concerning the determination of the onset of tertiary creep, the fitting of the Leyda/Rowe relationship and a method to compute the maximum allowable stress S t from equation describing the time-temperature dependency of the three constituents of S t

  14. The interpretation of stress reductions in creep-fatigue cycles of 316 stainless steel

    International Nuclear Information System (INIS)

    Hales, R.

    1986-11-01

    A statistical analysis of stress-drop results obtained on a number of different casts of 316 stainless steel in the temperature range 550 0 C to 700 0 C is presented. In all cases the results were obtained from strain controlled fatigue tests. The equations used to describe stress relaxation here are derived from forward creep equations which describe the dependence of creep rate on time, stress and temperature. Although there is no clear correspondence between creep and stress relaxation, creep equations offer an attractive starting point. Not all the models considered exhibited the expected response to changes in temperature. A revised analysis was carried out on the assumption that stress relaxation is thermally activated according to the Arrhenius equation. Two models were found to fit the data equally well and it was not possible to choose which of these relationships is the more appropriate to describe stress relaxation of cyclically conditioned material. On the basis of the evidence both are acceptable and may be used to calculate the creep damage according to the various high temperature design codes. Whichever gives the more conservative assessment should be used until a more mechanistically based judgement can be reached. (author)

  15. The effect of creep ratchetting on thin shells

    International Nuclear Information System (INIS)

    Hibbeler, R.C.; Wang, P.Y.

    1975-01-01

    The behavior of thin shells, in particular, cylindrical and spherical shells, which are subjected to a long-time cyclic thermal gradient is discussed. Like many reactor components (shells) which are subjected to start-up and shut-down conditions, provided the temperature is high enough, the shell will exhibit a progressive growth with each cycle of temperature. This phenomena is often referred to as ratchetting and is caused by inelastic strains developed by creep. Although the thermal stress distribution is biaxial it is possible to represent the material behavior using a simple uniaxial-stress model. Assuming thermal stress interaction occurs, the equations which determine the solution of the strain growth and stress per cycle are presented. The flexibility of the analysis provides a means for including the effects of an arbitrary temperature-cycle time and temperature dependence of material properties. A step temperature variation is considered. During each part of the temperature cycle it is necessary to satisfy the equilibrium and compatibility conditions for the model. At any instant, the total strain will depend upon elastic, thermal, and creep strain components in addition to prior inelastic creep strains accumulated during previous temperature cycles. Accounting for all these conditions, the relations describing the behavior of the material can be determined during an arbitrary jth cycle of temperature. In particular, the cases of material properties are considered which are used for reactor components. Where possible, a closed form solution is given for appropriate values of the creep law exponents n and m. For the general case, an algorithm for the computer-solution to the problem is given. Using the general solution, the analysis appears to offer a suitable compromise between accurate behavior description and analytical complexity

  16. High temperature mechanical tests performed on doped fuels

    International Nuclear Information System (INIS)

    Dugay, C.; Mocellin, A.; Dehaudt, P.; Sladkoff, M.

    1998-01-01

    The high-temperature compressive deformation of large-grained UO 2 doped with metallic oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. All the specimens are made from a single batch of UO 2 powder. Tests with constant applied strain rate of 20μm.min -1 show that Cr 2 O 3 additions cause a decrease in the flow stress of about 15 MPa compared with the reference material. When reduced in hydrogen at 1500 deg. C the specimens present a peak stress close to the flow stress of the pure UO 2 . Measurements of creep rates are made at 1500 deg. C at applied stresses varying from 20 to 70 MPa. Cr 2 O 3 additions increase the creep-rate, up to several orders of magnitude-change from the pure material to a doped one. All the doped materials exhibit power-law creep with exponents in the range of 4.9 to 6.3. The activation energy varies from 466 to 451 kJ/mol depending on the dopant concentration. The creep of the undoped material is divided into three regimes of deformation depending on stress. At low stresses the strain rate shows a second power dependence on stress. At high stress levels a higher stress dependence is observed. The creep power-law breaks down and an exponential law holds true at higher stresses. The activation energies are found to be 410 and 560 kJ/mol in the low- and high-stress regions respectively. The former value is in good agreement with the grain boundary diffusion energy in stoichiometric polycrystalline uranium dioxide and the latter corresponds to that found for self-diffusion energy of uranium. Creep behaviours are discussed in terms of deformation mechanisms. (author)

  17. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  18. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  19. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  20. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.

    2015-01-01

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  1. Creep of OFHC and silver copper at simulated final repository canister-service conditions

    International Nuclear Information System (INIS)

    Auerkari, P.; Leinonen, H.; Sandlin, S.

    1991-07-01

    Result of high-resolution creep rate measurements are described for estimating very long term creep life of copper and silver alloyed copper at room temperature and at stresses approaching the expected service conditions of final repository canisters. The aim was to assess the limiting service stress levels for potential canister wall materials. The 0.1 % silver alloyed copper showed minimum creep rates of 10 - 9 to 10 - 10 l/h, corresponding to 1 % strain in about 1000 to 10000 years, at room temperature and uniaxial stress level of 50 to 75 MPa. The predicted time to 1 % strain, when extrapolated from literature data, was at least one order of magnitude shorter. From the results of the present work, the 1 % creep life for OFHC copper was at most a few hundreds of years at 50 MPa stress level. The technique developed and used in this work for measuring very low strain rates appears useful for assessing low temperature creep life of practical structures essentially without accelerating the test from the service conditions

  2. Creep of OFHC and silver copper at simulated final repository canister-service conditions

    International Nuclear Information System (INIS)

    Auerkari, P.; Leinonen, H.; Sandlin, S.

    1991-09-01

    Results of high-resolution creep rate measurements are described for estimating very long term creep life of copper and silver alloyed copper at room temperature and at stresses approaching the expected service conditions of final repository canisters. The aim was to assess the limiting service stress levels for potential canister wall materials. The 0.1% silver alloyed copper showed minimum creep rates of 10 -9 to 10 -10 l/h, corresponding to 1 % strain in about 1000 to 10000 years, at room temperature and uniaxial stress level of 50 to 75 MPa. The predicted time to 1 % strain, when extrapolated from literature data, was at least one order of magnitude shorter. From the results of the present work, the 1 % creep life for OFHC copper was at most a few hundreds of years at 50 MPa stress level. The technique developed and used in this work for measuring very low strain rates appears useful for assessing low temperature creep life of practical structures essentially without accelerating the test from the service conditions. (au)

  3. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  4. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  5. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  6. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  7. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  8. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  9. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  10. Recent advances in design procedures for high temperature plant

    International Nuclear Information System (INIS)

    1988-01-01

    Thirteen papers cover several aspects of design for high temperature plant. These include design codes, computerized structural analysis and mechanical properties of materials at high temperatures. Seven papers are relevant for fast reactors and these are indexed separately. These cover shakedown design, design codes for thin shells subjected to cyclic thermal loading, the inelastic behaviour of stainless steels and creep and crack propagation in reactor structures under stresses caused by thermal cycling loading. (author)

  11. Elevated temperature creep and fatigue damage of a 2.25 Cr--1 Mo steel weldment

    International Nuclear Information System (INIS)

    Van Den Avyle, J.A.

    1978-01-01

    In weldments between dissimilar metals wide variations occur in metallurgical structure and mechanical properties, so that for good structural design it is necessary to understand the mechanical response of individual microstructural segments of the weld. This study investigates elevated temperature properties of a 2.25 Cr--1 Mo ferritic steel base metal welded with Chromenar 382V (Inconel 82) filler metal. Creep and low-cycle fatigue tests at 866 0 K (1100 0 F) show the filler metal and heat affected zone to be much stronger than the base metal. Optical microscopy does not show significant aging effects in the short-term fatigue tests or creep tests of 1180 hour duration

  12. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  13. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  14. Characterization of a 14Cr ODS steel by means of small punch and uniaxial testing with regard to creep and fatigue at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, M., E-mail: matthias.bruchhausen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Turba, K. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Lund University, Division of Materials Engineering, P.O. Box 118, SE-221 00 Lund (Sweden); Haan, F. de; Hähner, P.; Austin, T. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Carlan, Y. de [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette (France)

    2014-01-15

    A 14Cr ODS steel was characterized at elevated temperatures with regard to its behavior in small punch and uniaxial creep tests and in low cycle fatigue tests. A comparison of small punch and uniaxial creep tests at 650 °C revealed a strong anisotropy of the material when strained parallel and perpendicular to the extrusion direction with rupture times being several orders of magnitude lower for the perpendicular direction. The stress-rupture and Larson–Miller plots show a very large scatter of the creep data. This scatter is strongly reduced when rupture time is plotted against minimum deflection rate or minimum creep rate (Monkman–Grant plot). Fatigue tests have been carried out at 650 °C and 750 °C. The alloy is cyclically very stable with practically no hardening/softening. Results from the tests at both temperatures can be described by a common power law. An increase in the test temperature has little influence on the fatigue ductility exponent. For a given total strain level, the fatigue life of the alloy is reduced with increasing temperature.

  15. Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy

    Science.gov (United States)

    Das, Jayashree; Robi, P. S.; Sankar, M. Ravi

    2018-04-01

    The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.

  16. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    International Nuclear Information System (INIS)

    Chin, E.; Reis, E.E.

    1995-01-01

    The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis

  17. Constant structure creep experiments on aluminium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel

    2011-01-01

    Roč. 49, č. 5 (2011), s. 307-318 ISSN 0023-432X R&D Projects: GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z20410507 Keywords : mechanical properties * high temperature deformation * creep * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2011

  18. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    Science.gov (United States)

    2015-12-01

    word ceramic comes from the Greek word keramos, meaning pottery, but now refers to many classes of materials, including clays , abrasives......these situations, the viscosity of the grain boundary becomes an important factor for the creep rate. 25 When grain elongation accompanies grain

  19. Size Effect Studies of the Creep Behaviour of 20MnMoNi55 at Temperatures from 700 oC to 900 oC

    International Nuclear Information System (INIS)

    Krompholz, K.; Groth, E.; Kalkhof, D.

    2000-11-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 o C, 800 o C, and 900 o C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the austenitic phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect) of the original

  20. PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Mishina Alexandra Vasil'evna

    2012-12-01

    Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.