WorldWideScience

Sample records for high temperature characterization

  1. On-wafer high temperature characterization system

    Science.gov (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  2. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  3. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  4. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  5. High temperature experimental characterization of microscale thermoelectric effects

    Science.gov (United States)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High

  6. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  7. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  8. Silicon Carbide Diodes Performance Characterization at High Temperatures

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  9. Characterization of wheat MYB genes responsive to high temperatures.

    Science.gov (United States)

    Zhao, Yue; Tian, Xuejun; Wang, Fei; Zhang, Liyuan; Xin, Mingming; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Peng, Huiru

    2017-11-21

    Heat stress is one of the most crucial environmental factors, which reduces crop yield worldwide. In plants, the MYB family is one of the largest families of transcription factors (TFs). Although some wheat stress-related MYB TFs have been characterized, their involvement in response to high-temperature stress has not been properly studied. Six novel heat-induced MYB genes were identified by comparison with previously established de novo transcriptome sequencing data obtained from wheat plants subjected to heat treatment; genomic and complete coding sequences of these genes were isolated. All six TaMYBs were localized in the nucleus of wheat protoplasts. Transactivation assays in yeast revealed that all six proteins acted as transcriptional activators, and the activation domains were attributed to the C-termini of the six wheat MYB proteins. Phylogenetic analysis of the six TaMYBs and R2R3-MYBs from Arabidopsis revealed that all six proteins were in clades that contained stress-related MYB TFs. The expression profiles of TaMYB genes were different in wheat tissues and in response to various abiotic stresses and exogenous abscisic acid treatment. In transgenic Arabidopsis plants carrying TaMYB80 driven by the CaMV 35S promoter, tolerance to heat and drought stresses increased, which could be attributed to the increased levels of cellular abscisic acid. We identified six heat-induced MYB genes in wheat. We performed comprehensive analyses of the cloned MYB genes and their gene products, including gene structures, subcellular localization, transcriptional activation, phylogenetic relationships, and expression patterns in different wheat tissues and under various abiotic stresses. In particular, we showed that TaMYB80 conferred heat and drought tolerance in transgenic Arabidopsis. These results contribute to our understanding of the functions of heat-induced MYB genes and provide the basis for selecting the best candidates for in-depth functional studies of heat

  10. High Temperature Materials Characterization and Advanced Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. (and others)

    2007-06-15

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division.

  11. Characterization of high-current, high-temperature superconductor current lead elements

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L. [Argonne National Lab., IL (United States); Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J. [American Superconductor Corp., Westborough, MA (United States)

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  12. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    This paper presents an experimental characterization of a high temperature protonexchange membrane fuel cell (HT-PEMFC) short stack carried out by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate...

  13. Characterization of High Temperature Mechanical Properties Using Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    David Hurley; Stephen Reese; Farhad Farzbod; Rory Kennedy

    2012-05-01

    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure.

  14. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  15. Test method development for structural characterization of fiber composites at high temperatures

    Science.gov (United States)

    Mandell, J. F.; Grande, D. H.; Edwards, B.

    1985-01-01

    Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.

  16. Trap Characterization in High Field, High Temperature Stressed Gallium Nitride High Electron Mobility Transistors

    Science.gov (United States)

    2013-03-01

    to a one dimensional Poisson - Schrodinger model with the same parameters of the fabricated device. The largest dispersion occurred before threshold...of self -heating to further improve reliability. The use of sapphire and diamond as a substrate to improve thermal characteristics was investigated...This is consistent with prior work [14]. Devices tested at higher temperatures had higher drain currents. This was to be expected due to additional

  17. Characterization of Lactococcus lactis mutants with improved performance at high temperatures and potential dairy applications

    DEFF Research Database (Denmark)

    Chen, Jun

    through its effect on the starter culture. The optimum and maximum temperature for most L. lactis strains are approximately 30ºC and 38ºC, respectively. Increasing the fermentation temperature could have several beneficial effects, e.g. reduce bacteriophage attacks and increase acidification rate...... and lactate production rates when compared to MG1363 at high temperatures. Whole genome re-sequencing identified 13 SNPs, one DIP and one large deletion in TM29, and additional sequencing of the isolated intermediates indicated dynamic accumulation of mutations with rising fitness in a temporal order. DNA...... thermo-tolerant L. lactis. The adaptation was carried out using a serial-transfer regime at steadily increasing temperatures, and the strain used was L. lactis subsp. cremoris MG1363, which is a well-characterized dairy isolate. After exposure to increasing temperatures over 900 generations, one mutant...

  18. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    Directory of Open Access Journals (Sweden)

    Elena Anamaria Man

    2015-11-01

    Full Text Available The purpose of this study is to analyze the steady-state and transient behavior of the electrical and thermal parameters of thermoelectric generators (TEGs. The focus is on the required wait-time between measurements in order to reduce measurement errors which may appear until the system reaches steady-state. By knowing this waiting time, the total characterization time can also be reduced. The experimental characterization process is performed on a test rig known as TEGeta, which can be used to assess the output characteristics of TEG modules under different load values and temperature conditions. The setup offers the possibility to control the hot side temperature up to 1000 °C with a load variation range value between 0.22–8.13 Ω. A total of ten thermocouples are placed in the setup with the purpose of measuring the temperature in specific points between the heater and the heat sink. Based on the readings, the temperature on the hot and cold side of the modules can be extrapolated. This study provides quantitative data on the minimum waiting time of the temperatures in the surrounding system to reach equilibrium. Laboratory tests are performed on a calcium-manganese oxide module at temperatures between 400 and 800 °C to explore the high temperatures features of the setup.

  19. Serological and Molecular Characterization of a High Temperature-recovered Virus Belonging to Tospovirus Serogroup IV

    OpenAIRE

    Hei-Ti, HSU; Peter P., UENG; Fang-Hua, CHU; Zhaohui, YE; Shyi-Don, YEH; U.S.Department of Agriculture, Agricultural Research Service; Department of Plant Pathology, National Chung-Hsing University

    2000-01-01

    A serologically and cytologically distinct gloxinia tospovirus(HT-1)previously isolated from a gloxinia plant infected with Impatiens necrotic spot virus(INSV)when propagated in a high-temperature environment was characterized. Rabbit antisera produced for INSV and Tomato spotted wilt virus(TSWV)nucleocapsids(N)failed to react with HT-1 proteins in western blot analysis. The HT-1 antibodies reacted strongly with homologous antigen but failed to react with INSV and TSWV. However, the HT-1 anti...

  20. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    Science.gov (United States)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.

  1. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Directory of Open Access Journals (Sweden)

    Gatsa O.

    2018-01-01

    In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor device operating at high temperature level (400°. Piezoelectric parameters enhancement and loss reduction at elevated temperatures are envisaged to be optimized. Further sensor development and test in MTR are expected to be realized in the near future.

  2. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    Science.gov (United States)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  3. Kinetic and stoichiometric characterization for efficient enhanced biological phosphorus removal (EBPR) process at high temperatures.

    Science.gov (United States)

    Liau, Kee Fui; Shoji, Tadashi; Ong, Ying Hui; Chua, Adeline Seak May; Yeoh, Hak Koon; Ho, Pei Yee

    2015-04-01

    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.

  4. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  5. Development, characterization, and applications of high temperature superconductor nanobridge Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J.R.; Tigges, C.P.; Hietala, V.M.; Plut, T.A. [Sandia National Labs., Albuquerque, NM (United States); Martens, J.S.; Char, K.; Johansson, M.E. [Conductus, Inc., Sunnyvale, CA (United States)

    1994-03-01

    A well-controlled, high-yield Josephson junction process in high temperature superconductors (HTS) is necessary for the demonstration of ultra-high-speed devices and circuits which exceed the capabilities of conventional electronics. The authors developed nanobridge Josephson junctions in high quality thin-film YBaCuO with dimensions below 100 nm fabricated using electron-beam nanolithography. They characterized this Josephson junction technology for process yield, junction parameter uniformity, and overall applicability for use in high-performance circuits. To facilitate the determination of junction parameters, they developed a measurement technique based on spectral analysis in the range of 90--160 GHz of phase-locked, oscillating arrays of up to 2,450 Josephson junctions. Because of the excellent yield and uniformity of the nanobridge junctions, they successfully applied the junction technology to a wide variety of circuits. These circuits included transmission-line pulse formers and 32 and 64-bit shift registers. The 32-bit shift register was shown to operate at clock speeds near 100 GHz and is believed to be one of the faster and more complex digital circuit demonstrated to date using high temperature superconductor technology.

  6. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Science.gov (United States)

    Gatsa, O.; Combette, P.; Rozenkrantz, E.; Fourmentel, D.; Destouches, C.; Ferrandis, J. Y. AD(; )

    2018-01-01

    In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d'Électronique et des Systèmes) on collaboration with CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor

  7. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the

  8. Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization

    Directory of Open Access Journals (Sweden)

    Jean-Marc Tulliani

    2013-01-01

    Full Text Available A modified gel-casting process was developed to produce both dense and highly porous (40% volume yttria tetragonal zirconia polycrystal (Y-TZP using agar, a natural polysaccharide, as gelling agent. A fugitive phase, made of commercial polyethylene spheres, was added to the ceramic suspension before gelling to produce cellular ceramic structures. The characterization of the microstructural features of both dense and cellular ceramics was carried out by FEG SEM analysis of cross-sections produced by focused ion beam. The mechanical properties of the components were characterized at room temperature by nanoindentation tests in continuous stiffness measurement mode, by investigating the direct effect of the presence of residual microporosity. The presence of a diffuse residual microporosity from incomplete gel deaeration resulted in a decay of the bending strength and of the elastic modulus. The mechanical behavior of both dense and cellular zirconia (in terms of elastic modulus, flexural strength, and deformation at rupture was investigated by performing four-point bending tests at the temperature of 1500°C.

  9. Characterization of modified tapioca starch solutions and their sprays for high temperature coating applications.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature.

  10. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2014-01-01

    Full Text Available The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature.

  11. Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing

    Science.gov (United States)

    Frisenda, Riccardo; Island, Joshua O.; Lado, Jose L.; Giovanelli, Emerson; Gant, Patricia; Nagler, Philipp; Bange, Sebastian; Lupton, John M.; Schüller, Christian; Molina-Mendoza, Aday J.; Aballe, Lucia; Foerster, Michael; Korn, Tobias; Niño, Miguel Angel; Perez de Lara, David; Pérez, Emilio M.; Fernandéz-Rossier, Joaquín; Castellanos-Gomez, Andres

    2017-11-01

    Two-dimensional (2D) semiconducting materials are particularly appealing for many applications. Although theory predicts a large number of 2D materials, experimentally only a few of these materials have been identified and characterized comprehensively in the ultrathin limit. Lead iodide, which belongs to the transition metal halides family and has a direct bandgap in the visible spectrum, has been known for a long time and has been well characterized in its bulk form. Nevertheless, studies of this material in the nanometer thickness regime are rather scarce. In this article we demonstrate an easy way to synthesize ultrathin, highly crystalline flakes of PbI2 by precipitation from a solution in water. We thoroughly characterize the produced thin flakes with different techniques ranging from optical and Raman spectroscopy to temperature-dependent photoluminescence and electron microscopy. We compare the results to ab initio calculations of the band structure of the material. Finally, we fabricate photodetectors based on PbI2 and study their optoelectronic properties.

  12. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    Directory of Open Access Journals (Sweden)

    Roswitha Zeis

    2015-01-01

    Full Text Available The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA primarily consists of a polybenzimidazole (PBI-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE, the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes

  13. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Zeis, Roswitha

    2015-01-01

    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell

  14. Characterization of magnetic biochar amended with silicon dioxide prepared at high temperature calcination

    Directory of Open Access Journals (Sweden)

    Baig Shams Ali

    2016-09-01

    Full Text Available Calcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1 comparable to magnetic biochar. Thermogravimetric analysis (TGA revealed that both calcined samples generated higher residual mass (>96 % and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.

  15. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  16. Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunctional Evaluation

    Science.gov (United States)

    Zhou, Ping; Deng, Yi; Lyu, Beier; Zhang, Ranran; Zhang, Hai; Ma, Hongwei; Lyu, Yalin; Wei, Shicheng

    2014-01-01

    Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces. PMID:25415328

  17. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation.

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    Full Text Available Polydopamine (PDA coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces.

  18. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  19. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Schaltz, Erik; Kær, Søren Knudsen

    2009-01-01

    This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBIbased HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using...

  20. Radiometric characterization of a high temperature blackbody in the visible and near infrared

    Energy Technology Data Exchange (ETDEWEB)

    Taubert, R. D.; Hollandt, J. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)

    2013-09-11

    At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 °C to 3000 °C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 °C to 3000 °C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

  1. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2017-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization cur...... hydrogen, steam reforming and autothermal reforming gas at 160 ◦ C and showed how significantly lower performance with autoreformate at the same stoichiometry....

  2. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    OpenAIRE

    Nicola Zuliani

    2013-01-01

    High Temperature Proton Exchange Membrane (HT PEM) fuel cell based on polybenzimidazole (PBI) polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, onl...

  3. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    OpenAIRE

    Nicola Zuliani

    2011-01-01

    High Temperature Proton Exchange Membrane (HT PEM) fuel cell based on polybenzimidazole (PBI) polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, onl...

  4. Temperature Logging to Characterize Flow Patterns in a Highly Permeable Fractured Karstic Aquifer, Poitiers (France)

    Science.gov (United States)

    Chatelier, M.; Ruelleu, S.; Bour, O.; Porel, G.; Delay, F.

    2008-12-01

    In heterogeneous media, such as higly fractured rocks or karstic aquifers, the characterization of the main flow paths is required for further flow modeling but rather difficult to achieve due to the complexity of the flow field. Here we compare the information provided by temperature logs with flow logs measurements in a fractured karstic aquifer at the Hydrogeological Experimental Site (HES) of Poitiers (France). Temperature logs have been widely used to address flow in fractured rocks. Basically, the method tracks eventual distortions of the geothermic gradient due to groundwater motion. It is considered as inexpensive since the point is simply to monitor water temperatures along a borehole profile and then to translate the measures in terms of inflow-outflow locations and incidentally of vertical flows along the borehole. Flow logs were obtained from an heat-pulse flowmeter that allow to measure downward or upward vertical groundwater velocities larger than a mm/s. The HES is set up over a 100m thickness confined Jurassic limestone aquifer. The HES includes 32 fully penetrating wells which geometry is inspired from the "five spot" borehole configuration. The inter- comparisons between previous data from flowmeter testing, borehole imaging and 3D seismic imaging indicate that main flow-paths are mostly concealed within sub-horizontal layers riddled with karstic channels and along sub-vertical fractures. Temperature and flow measurements have been carried out under both ambient and forced flow conditions. Two forced flow conditions are available yielding short pumping time data with pumping at the monitored well, large pumping time data with pumping at a distant well. Most boreholes show quite constant vertical profiles of temperature indicating the existence of flow along boreholes. In addition, a few wells may show drop of temperature at 115 m depth and anomalous warm-water arrivals at 65m. These features associated with non equilibrated temperatures highlight

  5. Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures

    Directory of Open Access Journals (Sweden)

    Rama B. Bhat

    2010-02-01

    Full Text Available Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA, thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 µm and thick (about 2–3 mm films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  6. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  7. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  8. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  9. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  10. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

    Science.gov (United States)

    Jespersen, Jesper Lebæk; Schaltz, Erik; Kær, Søren Knudsen

    This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBI-based HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using Equivalent Circuit (EC) modeling key parameters, such as the membrane resistance, charge transfer resistance and gas transfer resistance are identified, however the physical interpretation of the parameters derived from EC's are doubtful as discussed in this paper. The EC model proposed, which is a modified Randles circuit, provides a reasonably good fit at all the conditions tested. The measurements reveal that the cell temperature is an important parameter, which influences the cell performance significantly, especially the charge transfer resistance proved to be very temperature dependent. The transport of oxygen to the Oxygen Reduction Reaction (ORR) likewise has a substantial effect on the impedance spectra, results showed that the gas transfer resistance has an exponential-like dependency on the air stoichiometry. Based on the present results and results found in recent publications it is still not clear what exactly causes the distinctive low frequency loop occurring at oxygen starvation. Contrary to the oxygen transport, the transport of hydrogen to the Hydrogen Oxidation Reaction (HOR), in the stoichiometry range investigated in this study, shows no measurable change in the impedance data. Generally, this work is expected to provide a basis for future development of impedance-based fuel cell diagnostic systems for HT-PEM fuel cell.

  11. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  12. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hanany, Shaul [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Matsumura, Tomotake [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Johnson, Bradley [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Jones, Terry [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-02-01

    We have previously presented a design for a cosmic microwave background (CMB) polarimeter in which a cryogenically cooled half-wave plate rotates by means of a high-temperature superconducting (HTS) bearing. Here, a prototype bearing, consisting of a commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured its coefficient of friction and vibrational property as a function of several parameters, including temperature between 15 and 83 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm and ambient pressure of {approx}10{sup -7} Torr. We concluded that the low rotational drag of the HTS bearing would allow rotations for long periods with minimal input power and negligible wear and tear, thus making this technology suitable for a future satellite mission.

  13. Characterization of low temperature high voltage axial insulator breaks for the ITER cryogenic supply line

    Science.gov (United States)

    Fernandez Pison, P.; Sgobba, S.; Aviles Santillana, I.; Langeslag, S. A. E.; Su, M.; Piccin, R.; Journeaux, J. Y.; Laurenti, A.; Pan, W.

    2017-12-01

    Cable-in-conduit conductors of the ITER magnet system are directly cooled by supercritical helium. Insulation breaks are required in the liquid helium feed pipes to isolate the high voltage system of the magnet windings from the electrically grounded helium coolant supply line. They are submitted to high voltages and significant internal helium pressure and will experience mechanical forces resulting from differential thermal contraction and electro-mechanical loads. Insulation breaks consist essentially of stainless steel tubes overwrapped by an outer glass – fiber reinforced composite and bonded to an inner composite tube at each end of the stainless steel fittings. For some types of insulator breaks Glass – Kapton – Glass insulation layers are interleaved in the outer composite. Following an extensive mechanical testing campaign at cryogenic temperature combined with leak tightness tests, the present paper investigates through non-destructive and destructive techniques the physical and microstructural characteristics of the low temperature high voltage insulation breaks and of their individual components, thus allowing to correlate the structure and properties of the constituents to their overall performance. For all the tests performed, consistent and reproducible results were obtained within the range of the strict acceptance criteria defined for safe operation of the insulation breaks.

  14. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  15. Characterization and Thermal Dehydration Kinetics of Highly Crystalline Mcallisterite, Synthesized at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Emek Moroydor Derun

    2014-01-01

    Full Text Available The hydrothermal synthesis of a mcallisterite (Mg2(B6O7(OH62·9(H2O mineral at low temperatures was characterized. For this purpose, several reaction temperatures (0–70°C and reaction times (30–240 min were studied. Synthesized minerals were subjected to X-ray diffraction (XRD, fourier transform infrared (FT-IR, and Raman spectroscopies and scanning electron microscopy (SEM. Additionally, experimental analyses of boron trioxide (B2O3 content and reaction yields were performed. Furthermore, thermal gravimetry and differential thermal analysis (TG/DTA were used for the determination of thermal dehydration kinetics. According to the XRD results, mcallisterite, which has a powder diffraction file (pdf number of “01-070-1902,” was formed under certain reaction parameters. Pure crystalline mcallisterite had diagnostic FT-IR and Raman vibration peaks and according to the SEM analysis, for the minerals which were synthesized at 60°C and 30 min of reaction time, particle size was between 398.30 and 700.06 nm. Its B2O3 content and reaction yield were 50.80±1.12% and 85.80±0.61%, respectively. Finally, average activation energies (conversion values (α that were selected between 0.1 and 0.6 were calculated as 100.40 kJ/mol and 98.31 kJ/mol according to Ozawa and Kissinger-Akahira-Sunose (KAS methods, respectively.

  16. Multi-field simulations and characterization of CMOS-MEMS high-temperature smart gas sensors based on SOI technology

    Science.gov (United States)

    Lu, Chih-Cheng; Liao, Kuan-Hsun; Udrea, F.; Covington, J. A.; Gardner, J. W.

    2008-07-01

    This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms.

  17. Characterization and analysis of high temperature superconducting microstrip and coplanar resonators using a spectral domain method

    Energy Technology Data Exchange (ETDEWEB)

    Kedar, Ashutosh [Department of Electronic Science, University of Delhi South Campus, New Delhi-110021 (India); Kataria, N D [National Physical Laboratory, New Delhi-110012 (India); Gupta, K K [Department of Electronic Science, University of Delhi South Campus, New Delhi-11002, (India)

    2004-07-01

    Microwave characteristics of planar high temperature superconducting microstrip line resonator (MSR) and coplanar waveguide (CPW) resonators have been estimated using a full wave spectral domain technique in conjunction with the complex resistive boundary condition. The computer aided design method developed is applied to simulate the characteristics of planar resonators. The proposed method has been validated with experimental results after taking into account the practical operating conditions. A reasonable agreement for the theoretically computed and measured resonant frequency and unloaded Q-value with experimental data of Porch et al (1995 IEEE Microw. Theory Technol. 2 306-14) has been observed for the MSR operated at 5 GHz as well as for the CPW resonator at 7.95 GHz.

  18. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.

    Science.gov (United States)

    Jo, Yun Hwan; Jung, Inyu; Choi, Chung Seok; Kim, Inyoung; Lee, Hyuck Mo

    2011-06-03

    To fabricate a low cost, highly conductive ink for inkjet printing, we synthesized a gram scale of uniformly sized Sn nanoparticles by using a modified polyol process and observed a significant size-dependent melting temperature depression from 234.1 °C for bulk Sn to 177.3 °C for 11.3 nm Sn nanoparticles. A 20 wt% of Sn nanoparticles was dispersed in the 50% ethylene glycol: 50% isopropyl alcohol mixed solvent for the appropriate viscosity (11.6 cP) and surface tension (32 dyn cm(-1)). To improve the electrical property, we applied the surface treatments of hydrogen reduction and plasma ashing. The two treatments had the effect of diminishing the sheet resistance from 1 kΩ/sq to 50 Ω/sq. In addition, conductive patterns (1 cm × 1 cm) were successfully drawn on the Si wafer using an inkjet printing instrument with conductive Sn ink. The maximum resistivity for an hour of sintering at 250 °C was 64.27 µΩ cm, which is six times higher than the bulk Sn resistivity (10.1 µΩ cm).

  19. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2015-01-01

    to 1000 °C with a load variation range value between [0.22 – 8.13] Ω. A total of ten thermocouples are placed in the setup with the purpose of measuring the temperature in specific points between the heater and the heat sink. Based on the readings, the temperature on the hot and cold side of the modules...... can be extrapolated. Additionally, the set of measurements can offer heat flux information on both hot and cold sides of the system. This study provides quantitative data on the minimum waiting time of the temperatures in the surrounding system to reach equilibrium. Laboratory test results...

  20. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials; Outils de caracterisation thermophysique et modeles numeriques pour les composites thermostructuraux a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lorrette, Ch

    2007-04-15

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  1. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    characterization of the corrosion products. The corrosion products consisted of three layers: i) the outermost layer consisting of a mixed layer of K2SO4 and FexOy on a partly molten layer of the initial deposit, ii) the middle layer consists of spinel (FeCr2O4) and Fe2O3, and iii) the innermost layer is a sponge......-like Ni3S2 containing layer. At the corrosion front, Cl-rich protrusions were observed. Results indicate that selective corrosion of Fe and Cr by Cl, active oxidation and sulphidation attack of Ni are possible corrosion mechanisms....

  2. Characterization and Activation Study of Black Chars Derived from Cellulosic Biomass Pyrolyzed at Very High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The State of Tennessee, in partnership with the University of Tennessee (UT) and the Oak Ridge National Laboratory (ORNL), has created the RevV! Manufacturing voucher program to help Tennessee manufacturers gain access to the world-class resources at ORNL. As a part of this program, ORNL was working with Proton Power, Inc. (PPI), a rapidly growing company located in Lenoir City, Tennessee. PPI has developed a patented renewable energy system that uses biomass and waste sources to produce inexpensive hydrogen gas or synthetic fuels which are economically competitive with fossil fuels. The pyrolysis process used by PPI in their manufacturing chain generates significant amounts of black carbon char as by-product. The scope of ORNL collaboration with PPI was assessing the black carbon char as a potential feedstock for activated carbon production, as this could be a potentially new revenue stream. During 2015-2016 ORNL received eight char samples from PPI and characterized their initial properties, simulated their physical activation by carbon dioxide, prepared gram-size samples of physically activated carbons, and characterized their surface and porosity properties. This report presents a summary of the work methods employed and the results obtained in the collaborative project between ORNL and PPI.

  3. Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water

    Science.gov (United States)

    Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao

    2018-03-01

    F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.

  4. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  5. Preparation and characterization of high-transmittance AZO films using RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China); Sun, Yihua, E-mail: sunyihua316181@163.com [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China); Lv, Xin; Li, Derong [Glass Industry Engineering Research Center of Hubei Province, Hubei Sanxia New Building Materials Co., Ltd., Dangyang 444105 (China); Fang, Liang; Wang, Hailin; Sun, Xiaohua; Huang, Caihua; Yu, Haizhou; Feng, Ping [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China)

    2014-10-30

    Highlights: • We prepared the AZO thin films on soda-lime glass without the substrate heated. • High-transmittance AZO films had been obtained by RF magnetron sputtering using a ceramic target. • The minimum resistivity of 2.55 × 10{sup −3} Ω cm combined with highest transmittance of 91% was obtained at a sputtering power of 400 W. • The resistivity decreased and transmittance improved with the sputtering power increase. - Abstract: Aluminum-doped zinc oxide (AZO) thin films with 250 nm thickness had been prepared on soda-lime glass substrate without heated by RF magnetron sputtering using a ceramic target. The microstructure, surface morphology, electrical and optical properties of AZO thin films had been investigated by X-ray diffraction, scanning electron microscope, four-point probe method and optical transmission spectroscopy. The results indicated that all of the films obtained were polycrystalline with a hexagonal structure and oriented with the c-axis perpendicular to the substrate. The resistivity decreased and transmittance improved with the sputtering power increase. The minimum resistivity of 2.55 × 10{sup −3} Ω cm combined with highest transmittance of 91% was obtained at a sputtering power of 400 W. The optical bandgap at different sputtering power varied among 3.81–4.04 eV.

  6. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  7. High temperature measuring device

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  8. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  9. Development of high temperature mechanical rig for characterizing the viscoplastic properties of alloys used in solid oxide cells

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Greco, Fabio; Kwok, Kawai

    2017-01-01

    temperature and in controlled atmosphere. The methodology uses a mechanical loading rig designed to apply variable as well as constant loads on samples within a gas-tight high temperature furnace. In addition, a unique remotely installed length measuring setup involving laser micrometer is used to monitor...

  10. Temperature characterization of versatile transceivers

    CERN Document Server

    Olanterä, L.; Storey, S; Sigaud, C; Soos, C; Troska, J; Vasey, F

    2013-01-01

    The Versatile Transceiver is a part of the Versatile Link project, which is developing optical link architectures and components for future HL-LHC experiments. While having considerable size and weight constraints, Versatile Transceivers must work under severe environmental conditions. One such environmental parameter is the temperature: the operating temperature range is specified to be from -30 to +60°C. In this contribution we present the results of the temperature characterization of the VTRx transmitter and receiver. Several transmitter candidates from three different manufacturers have been characterized: multi-mode Vertical Cavity Surface-Emitting Lasers and a single-mode Edge-Emitter Laser. Also both single- and multi-mode receivers have been tested.

  11. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography.

    Science.gov (United States)

    Hintersteiner, Ingrid; Himmelsbach, Markus; Buchberger, Wolfgang W

    2015-02-01

    In recent years, the development of reliable methods for the quantitation of microplastics in different samples, including evaluating the particles' adverse effects in the marine environment, has become a great concern. Because polyolefins are the most prevalent type of polymer in personal-care products containing microplastics, this study presents a novel approach for their quantitation. The method is suitable for aqueous and hydrocarbon-based products, and includes a rapid sample clean-up involving twofold density separation and a subsequent quantitation with high-temperature gel-permeation chromatography. In contrast with previous procedures, both errors caused by weighing after insufficient separation of plastics and matrix and time-consuming visual sorting are avoided. In addition to reliable quantitative results, in this investigation a comprehensive characterization of the polymer particles isolated from the product matrix, covering size, shape, molecular weight distribution and stabilization, is provided. Results for seven different personal-care products are presented. Recoveries of this method were in the range of 92-96 %.

  12. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C [Los Alamos National Laboratory; Sediako, Dimitry [CANADIAN NEUTRON BEAM; Shook, S [APPLIED MAGNESIUM INTERNATIONAL; Sediako, A [MCGILL UNIV

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed using E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.

  13. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  14. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  15. High temperature structural silicides

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  16. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  17. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  18. Characterization of Different Capsicum Varieties by Evaluation of Their Capsaicinoids Content by High Performance Liquid Chromatography, Determination of Pungency and Effect of High Temperature

    Directory of Open Access Journals (Sweden)

    Alberto González-Zamora

    2013-10-01

    Full Text Available The chili pepper is a very important plant used worldwide as a vegetable, as a spice, and as an external medicine. In this work, eight different varieties of Capsicum annuum L. have been characterized by their capsaicinoids content. The chili pepper fruits were cultivated in the Comarca Lagunera region in North of Mexico. The qualitative and quantitative determination of the major and minor capsaicinoids; alkaloids responsible for the pungency level, has been performed by a validated chromatographic procedure (HPLC-DAD after a preliminary drying step and an opportune extraction procedure. Concentrations of total capsaicinoids varied from a not detectable value for Bell pepper to 31.84 mg g−1 dried weight for Chiltepín. Samples were obtained from plants grown in experimental field and in greenhouse without temperature control, in order to evaluate temperature effect. Analysis of the two principal capsaicinoids in fruits showed that the amount of dihydrocapsaicin was always higher than capsaicin. In addition, our results showed that the content of total capsaicinoids for the varieties Serrano, Puya, Ancho, Guajillo and Bell pepper were increased with high temperature, while the content of total capsaicinoids and Scoville heat units (SHU for the varieties De árbol and Jalapeño decreased. However, the pungency values found in this study were higher for all varieties analyzed than in other studies.

  19. Characterization of different Capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature.

    Science.gov (United States)

    González-Zamora, Alberto; Sierra-Campos, Erick; Luna-Ortega, J Guadalupe; Pérez-Morales, Rebeca; Rodríguez Ortiz, Juan Carlos; García-Hernández, José L

    2013-10-31

    The chili pepper is a very important plant used worldwide as a vegetable, as a spice, and as an external medicine. In this work, eight different varieties of Capsicum annuum L. have been characterized by their capsaicinoids content. The chili pepper fruits were cultivated in the Comarca Lagunera region in North of Mexico. The qualitative and quantitative determination of the major and minor capsaicinoids; alkaloids responsible for the pungency level, has been performed by a validated chromatographic procedure (HPLC-DAD) after a preliminary drying step and an opportune extraction procedure. Concentrations of total capsaicinoids varied from a not detectable value for Bell pepper to 31.84 mg g(-1) dried weight for Chiltepín. Samples were obtained from plants grown in experimental field and in greenhouse without temperature control, in order to evaluate temperature effect. Analysis of the two principal capsaicinoids in fruits showed that the amount of dihydrocapsaicin was always higher than capsaicin. In addition, our results showed that the content of total capsaicinoids for the varieties Serrano, Puya, Ancho, Guajillo and Bell pepper were increased with high temperature, while the content of total capsaicinoids and Scoville heat units (SHU) for the varieties De árbol and Jalapeño decreased. However, the pungency values found in this study were higher for all varieties analyzed than in other studies.

  20. High Temperature QCD

    CERN Document Server

    Lombardo, M P

    2012-01-01

    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  1. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  2. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  3. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas

    1995-02-01

    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  4. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements

    Science.gov (United States)

    Galmiche, Bénédicte; Mazellier, Nicolas; Halter, Fabien; Foucher, Fabrice

    2014-01-01

    Standard particle imaging velocimetry (PIV), time-resolved particle imaging velocimetry (TR-PIV) and laser Doppler velocimetry (LDV) are complementary techniques used to measure the turbulence statistics in a fan-stirred combustion vessel. Since a solid knowledge of the aerodynamic characteristics of the turbulent flow will enable better analysis of the flame-turbulence interactions, the objective of this paper is to provide an accurate characterization of the turbulent flow inside the combustion vessel. This paper aims at becoming a reference for further work on turbulent premixed flames using this fan-stirred combustion vessel. Close approximations of homogeneous and isotropic turbulence are achieved using this setup. The integral length scales L, Taylor microscales λ and Kolmogorov length scales η, the rms velocity fluctuations and the energy spectra are investigated using PIV, TR-PIV and LDV techniques. The difficulty to reach an accurate estimation of the integral length scale is particularly examined. The strengths and limitations of these three techniques are highlighted. High temporally resolved and high spatially resolved PIV appears as an interesting alternative to LDV in so far as close attention is paid to the measurements resolution. Indeed, the largest scales of the flow are limited by the field size and the smallest ones may be not caught with high accuracy due to the limited spatial resolution. A low spatial resolution of the PIV measurements can also lead to an underestimation of the rms velocity fluctuations. As the vessel was designed to study turbulent combustion at high initial pressure and high initial temperature, the effects of the gas temperature and pressure on the energy spectra and the turbulent parameters are finally investigated in the last part of the paper.

  5. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  6. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  7. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  8. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    This work involves the an experimental characterisation and the development of control strategies for the methanol reformer system used in the Serenergy Serenus H3 E-350 high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The system consists of a fuel evaporator utilizing...... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...... unit that allows the use of waste heat from the fuel cell stack in the reformer system, and a burner unit is also integrated to supplement provide heat using the stack anode hydrogen. The reformer is initially placed in an experimental system capable of emulating the interfaces to the fuel cell system...

  9. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  10. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  11. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/09/0023-0036. Keywords.

  12. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  13. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based...... in an increase in the high frequency and intermediate frequency impedances. When adding CO and methanol to the anode gas, the low frequency part of the impedance spectrum is especially affected at high load currents, which is clearly seen as a result of the high load current resolution used in this work....... The negative effects of methanol vapor are found to be more pronounced on the series resistance. When CO and methanol vapor are both present in anode gas, the entire frequency spectrum and thereby all the equivalent circuit model parameters are affected. It is also shown that the trends of contamination...

  14. High temperature future

    Energy Technology Data Exchange (ETDEWEB)

    Sheinkopf, K. [Solar Energy Research and Education Foundation, Washington, DC (United States)

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  15. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  16. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    Science.gov (United States)

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  18. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated....... The results show that at high temperatures, mostly aliphatic radicals (g = 2.0026-2.0028) and PAH radicals (g = 2.0027e2.0031) were formed....

  19. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W

    2004-08-01

    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  20. A feasibility study of temperature rise measurement in a tissue phantom as an alternative way for characterization of the therapeutic high intensity focused ultrasonic field.

    Science.gov (United States)

    Chen, Di; Fan, Tingbo; Zhang, Dong; Wu, Junru

    2009-12-01

    The feasibility that temperature field measurements in vitro as an alternative way to characterize the high intensity focused ultrasound (HIFU) field used in therapeutic applications has been explored in a phantom study. Thermocouples (copper-constantan, diameter 0.125 mm) are embedded in a phantom filled with tissue mimicking material that simulates the thermal and acoustic properties of soft-tissue. The temperature rises as a function of ultrasound exposure time near the focus of a HIFU transducer (1.1 MHz, active radius a=32 mm, geometric focal length=62 mm) of various acoustic powers up to 30 W are measured and compared with predicted values using a simple nonlinear Gaussian model. The experimental results can be explained well by the model if no acoustic cavitation takes place. When the acoustic power become higher (>5 W) and the local temperature elevation >15 degrees C and the local temperature is >40 degrees C at the focal point, cavitation vapor bubbles appear. The presence of the cavitation bubbles may increase the temperature rise rate initially. The bubble aggregates may form along the beam axis under sonication and then eventually makes the temperature elevation reach a saturated value. When acoustic cavitation occurs, the bubble-assisted enhancement of the initial temperature rise (exposure time t<2s) can still be predicted by the theory.

  1. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  2. To flower or not to flower, a temperature-sensitive decision : Characterization of flowering responses at high ambient temperature in Arabidopsis thaliana

    NARCIS (Netherlands)

    Rodenburg, Nicole

    2015-01-01

    To maximize fitness, plants use environmental cues to optimize growth processes. One of the processes under strong environmental regulation is flowering. Multiple environmental factors influence flowering, including temperature. Both a continuously increased ambient temperature as well as temporary

  3. To flower or not to flower, a temperature-sensitive decision. Characterization of flowering responses at high ambient temperature in Arabidopsis thaliana

    NARCIS (Netherlands)

    Rodenburg, N.

    2015-01-01

    To maximize fitness, plants use environmental cues to optimize growth processes. One of the processes under strong environmental regulation is flowering. Multiple environmental factors influence flowering, including temperature. Both a continuously increased ambient temperature as well as temporary

  4. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  5. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2017-08-01

    Full Text Available LiFePO4 (LFP is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW-based 3D printing was used to fabricate three-dimensional (3D LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  6. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.

    Science.gov (United States)

    Liu, Changyong; Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-08-10

    LiFePO₄ (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  7. High Temperature Hybrid Elastomers

    Science.gov (United States)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  8. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  9. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  10. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C...

  11. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  12. Instrumentated indentation test at high temperature for the characterization of irradiated materials; Instrumentierte Eindringpruefung bei Hochtemperatur fuer die Charakterisierung bestrahlter Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Albinski, Bartlomiej

    2014-07-01

    Predicting the behavior of structural materials assigned to the use in future fusion reactors is an essential part in their development and design. Mechanical testing characterizes the new designed materials. In these tests, the expected operating conditions, i. e. high temperatures and radiation damage, have to be simulated. For this purpose, instrumented indentation is a particularly capable testing method. The relationship of force and indentation depth recorded during the indentation of a hard tip into a specimen allows to predict the mechanical parameters of the tested material. Stress and strain appearing in the material can be excerpted when using a spherical indenter tip. Consequently, besides material's hardness and Young's modulus its properties in the plastic regime can be described. Reproducing the operating conditions of a fusion reactor for the indentation test bases on two aspects. First, irradiated samples need to be tested by remote-handling methods. Second, the samples have to be heated for the experiment. Both of these requirements lead to a new testing device that allows instrumented indentation on irradiation damaged materials in a remote-handled way at temperatures up to 650 C. Installation, set-up and initial operation of this newly designed apparatus are described. This includes design and integration of the components contributing to the indentation test, the systems for measurement and feedback control of the testing parameters sample temperature, indentation force, indentation depth and time as well as supporting gear and peripherals. Existing boundary conditions have to be incorporated in this process. Experimental verification and calibration of each subsystem is done. The proper interaction between the subsystems proves the functional capability and reliability of the new high-temperature indentation device. Material tests were accomplished on a reduced-activation ferritic-martensitic steel, tungsten and tantalum using the

  13. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  14. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  15. Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant

    Directory of Open Access Journals (Sweden)

    X. M. Zhang

    2016-10-01

    Full Text Available A polyimide (PI aerogel with excellent combined thermal and dielectric properties was successfully prepared by the polycondensation of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA, 5-amino-2-(4-aminophenylbenzoxazole (APBO and octa(amino-phenylsilsesquioxane (OAPS crosslinker, followed by a supercritical carbon dioxide (scCO2 drying treatment. The developed PI aerogel exhibited an ultra-low dielectric constant (k of 1.15 at a frequency of 2.75 GHz, a volume resistivity of 5.45·1014 Ω·cm, and a dielectric strength of 132 kV/cm. The flexible PI aerogel exhibited an openpore microstructure consisting of three-dimensional network with tangled nanofibers morphology with a porosity of 85.6% (volume ratio, an average pore diameter of 19.2 nm, and a Brunauer-Emmet-Teller (BET surface area of 428.6 m2/g. In addition, the PI aerogel showed excellent thermal stability with a glass transition temperature (Tg of 358.3 °C, a 5% weight loss temperature over 500 °C, and a residual weight ratio of 66.7% at 750 °C in nitrogen.

  16. Life at High Temperatures

    Indian Academy of Sciences (India)

    2005-09-15

    Sep 15, 2005 ... or more in the vicinity of geothermal vents in the deep sea and the plant Tidestromia oblongifolia (Amaranthaceae) found in Death. Valley in California, where the hottest temperature on earth ever recorded during 43 consecutive days in 1917 was >48 °C. (Guinness Book of W orId Records, 1999).

  17. High Temperature Corrosion and Characterization Studies in Flux Cored Arc Welded 2.25Cr-1Mo Power Plant Steel

    Science.gov (United States)

    Kumaresh Babu, S. P.; Natarajan, S.

    2010-07-01

    Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.

  18. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  19. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  20. Synthesis and characterization of K(Ta(x)Nb(1_x))O3 particles by high temperature mixing method under hydrothermal and solvothermal conditions.

    Science.gov (United States)

    Gu, Honghui; Zhu, Kongjun; Qiu, Jinhao; Ji, Hongli; Cao, Yang; Jin, Jiamei

    2013-02-01

    KTa(x)Nb(1_x)O3 (KTN) particles with an orthorhombic perovskite structure were synthesized via a high temperature mixing method (HTMM) under hydrothermal and solvothermal conditions. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microcopy (HRTEM). The influences of alkaline concentration and Ta doping amounts on the phase structure and morphology of the obtained powders were investigated. The results showed that KTN powders could be solvothermally prepared when the KOH concentration is as low as 0.5 M. In comparison with the hydrothermal process, supercritical isopropanol plays an important role in synthesizing KTN particles under milder conditions. The KTa(0.4)Nb(0.6)O3 particles solvothermally synthesized in isopropanol are made of well crystallized and single crystalline particles with a size of about 100-200 nm. Room temperature PL studies excited at different wavelengths reveal five emission bands centered at about 421 nm, 446 nm, 468 nm, 488 nm, and 498 nm, respectively. The supercritical process proposed here provides a new potential route for synthesizing other perovskite-type materials.

  1. High-Temperature Superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2012-01-01

    This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was  significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

  2. Characterization of Ni19.5Ti50.5Pd25Pt5 High-Temperature Shape Memory Alloy Springs and their Potential Application in Aeronautics

    Science.gov (United States)

    Stebner, Aaron; Padula, Santo A.; Noebe, Ronald D.

    2008-01-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni19.5Ti50.5Pd25Pt5. Recent work has shown that this material is capable of being used in operating environments of up to 250 C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni19.5Ti50.5Pd25Pt5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  3. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  4. High Temperature Surface Interactions

    Science.gov (United States)

    1989-11-01

    oxidation rate of "pure SiC* in air (from compilation of data by Schlichting6). For T < 14001C, partial cristobalite formation; T > 1400"C, decreased...aluminium content is high enough, the beta phase percolates and contains a dispersion of -- Ni particles. Such a tructure is certainly less favourable

  5. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  6. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    Snail Research Unit of the SAMRC and Department of Zoology, Potchefstroom University for CHE,. Potchefstroom. The survival of the freshwater snail species Bulinus africanus, Bulinus g/obosus and Biompha/aria pfeifferi at extreme high temperatures was experimentally investigated. Snails were exposed to temperatures ...

  7. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  8. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  9. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  10. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  11. Geomechanical characterization of the Upper Carboniferous under thermal stress for the evaluation of a High Temperature - Mine Thermal Energy Storage (HT-MTES)

    Science.gov (United States)

    Hahn, Florian; Brüggemann, Nina; Bracke, Rolf; Alber, Michael

    2017-04-01

    The goal of this R&D project is to create a technically and economically feasible conceptual model for a High Temperature - Mine Thermal Energy Storage (HT-MTES) for the energetic reuse of a mine on the example of the Prosper-Haniel coal mine in Bottrop, Germany. This project is funded by the "Initiative Energy Storage" program of the German Federal Ministries BMWi, BMU and BMBF. At the end of 2018, the last operative coal mine in North Rhine-Westphalia, Germany (Prosper-Haniel), is going to be closed down, plugged and abandoned. Large amounts of subsurface infrastructures, resembled mainly by open parts of former galleries and mining faces are going to be flooded, after the mine is closed down and therefore have the potential to become an enormous geothermal reservoir for a seasonal heat storage. During the summer non-used (waste) heat from solar thermal power plants, garbage incineration, combined heat and power plants (CHP) or industrial production processes can be stored within dedicated drifts of the mine. During the winter season, this surplus heat can be extracted and directly utilized in commercial and/or residential areas. For the evaluation of such a HT-MTES within a former coal mine, the corresponding geomechanical parameters of the Upper Carboniferous under thermal stress needs to be evaluated. Therefore the main rock types of the Upper Carboniferous (claystone, siltstone and sandstone) are subject to a geomechanical characterization before and after thermal cyclic loadings of temperatures up to 200 °C. The samples have been collected directly from the coal mine Prosper-Haniel within a depth range of 1000 - 1200 m. Unconfined compressive and tensile strengths, as well as triaxial tests were performed at room temperature. Furthermore, a range of petrophysical properties like density, thin-section analysis and P-wave velocities were determined. First results show an indication that the overall strength properties of the samples are not effected by

  12. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry

    2016-06-01

    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  13. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  14. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  15. Moire interferometry at high temperatures

    Science.gov (United States)

    Wu, Jau-Je

    1992-01-01

    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  16. High temperature superconductor accelerator magnets

    OpenAIRE

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is ...

  17. High Temperature Superconductor Accelerator Magnets

    OpenAIRE

    Van Nugteren, Jeroen; ten Kate, Herman; de Rijk, Gijs; Dhalle, Marc

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet ...

  18. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  19. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  20. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  1. Solute strengthening at high temperatures

    Science.gov (United States)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  2. High temperature superconductor current leads

    Science.gov (United States)

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  3. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Wate Bakker

    2004-03-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  4. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  5. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2016-10-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  6. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  7. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  8. High-temperature flooding injury

    Science.gov (United States)

    This problem, also called scald, is most serious in the hot desert valleys of the southwestern United States, subtropical regions in eastern Australia, and western Asia and northern Africa (Middle East) where fields are established and irrigated under high temperatures. The disorder also occurs to...

  9. High temperature thermoelectric energy conversion

    Science.gov (United States)

    Wood, Charles

    1987-01-01

    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  10. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a high-temperature solid-state reac- tion technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: a = (4·1158 ± 0·0003) Å. The synthesized powder was characterized using X-ray diffraction ...

  11. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  12. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  13. High Temperature Composite Heat Exchangers

    Science.gov (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.

    2002-01-01

    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  14. Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker Degn; Larsen Andresen, Mogens

    of mathematical models that can predict yields, composition and rates of product (char, tar, light gases) formation from fast pyrolysis. The modeling of cross-linking and polymerization reactions in biomass pyrolysis includes the formation of free radicals and their disappearance. Knowledge about these radical...... reactions is important in order to achieve the high fuel conversion at short residence times. However, little is known about the extent of free radical reactions in pulverized biomass at fast pyrolysis conditions.The concentration and type of free radicals from the decay (termination stage) of pyrolysis...... reactor, an entrained-flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7x1018 and 1.5x1019 spins g-1.The results indicated that any differences in the biomass major constituents (cellulose, hemicellulose, lignin) had a minor effect...

  15. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  16. High temperature two component explosive

    Science.gov (United States)

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  17. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  18. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  19. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  20. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  1. A Key Enzyme of the NAD+Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  2. Structural characterization of the high-temperature modification of the Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor compound

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Lopez-Rivera, S.A. [Grupo de Fisica Aplicada, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of)

    2016-06-15

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm{sup -1} have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm{sup -1} tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu{sub 2}GeTe{sub 3} secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. High temperature PEM fuel cells

    Science.gov (United States)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  4. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  5. Surface Evolution of Nano-Textured 4H–SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth

    Directory of Open Access Journals (Sweden)

    Xingfang Liu

    2015-09-01

    Full Text Available Nano-textured 4H–SiC homoepitaxial layers (NSiCLs were grown on 4H–SiC(0001 substrates using a low pressure chemical vapor deposition technique (LPCVD, and subsequently were subjected to high temperature treatments (HTTs for investigation of their surface morphology evolution and graphene growth. It was found that continuously distributed nano-scale patterns formed on NSiCLs which were about submicrons in-plane and about 100 nanometers out-of-plane in size. After HTTs under vacuum, pattern sizes reduced, and the sizes of the remains were inversely proportional to the treatment time. Referring to Raman spectra, the establishment of multi-layer graphene (MLG on NSiCL surfaces was observed. MLG with sp2 disorders was obtained from NSiCLs after a high temperature treatment under vacuum at 1700 K for two hours, while MLG without sp2 disorders was obtained under Ar atmosphere at 1900 K.

  6. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...... to be virtually zero, which allows a fuel cell to operate with no external humidification. At operational temperatures up to 200°C, a fuel cell based on this polymer membrane exhibits promising performance....

  7. Measuring nanowire thermal conductivity at high temperatures

    Science.gov (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  8. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  9. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  10. Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development.

    Science.gov (United States)

    Chauhan, Harsh; Khurana, Neetika; Tyagi, Akhilesh K; Khurana, Jitendra P; Khurana, Paramjit

    2011-01-01

    To elucidate the effect of high temperature, wheat plants (Triticum aestivum cv. CPAN 1676) were given heat shock at 37 and 42°C for 2 h, and responsive genes were identified through PCR-Select Subtraction technology. Four subtractive cDNA libraries, including three forward and one reverse subtraction, were constructed from three different developmental stages. A total of 5,500 ESTs were generated and 3,516 high quality ESTs submitted to Genbank. More than one-third of the ESTs generated fall in unknown/no hit category upon homology search through BLAST analysis. Differential expression was confirmed by cDNA macroarray and by northern/RT-PCR analysis. Expression analysis of wheat plants subjected to high temperature stress, after 1 and 4 days of recovery, showed fast recovery in seedling tissue. However, even after 4 days, recovery was negligible in the developing seed tissue after 2 h of heat stress. Ten selected genes were analyzed in further detail including one unknown protein and a new heat shock factor, by quantitative real-time PCR in an array of 35 different wheat tissues representing major developmental stages as well as different abiotic stresses. Tissue specificity was examined along with cross talk with other abiotic stresses and putative signalling molecules.

  11. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  12. Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    Science.gov (United States)

    Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.

    2008-01-01

    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.

  13. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  14. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  15. High temperature autoclave vacuum seals

    Science.gov (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  16. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  17. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k......Da with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes...

  18. SiC device development for high temperature sensor applications

    Science.gov (United States)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  19. Dynamic high-temperature Kolsky tension bar techniques

    OpenAIRE

    Song Bo; Nelson Kevin; Lipinski Ronald; Bignell John; Ulrich G.B.; George E.P.

    2015-01-01

    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was appl...

  20. High-temperature borehole instrumentation

    Science.gov (United States)

    Dennis, B. R.; Koczan, S. P.; Stephani, E. L.

    1985-10-01

    A new method of extracting natural heat from the Earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320(0)C (610(0)F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resources to develop the necessary downhole instruments to meet programmatic schedules.

  1. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  3. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  4. Development and characterization of a high temperature stress responsive subtractive cDNA library in Pearl Millet Pennisetum glaucum (L.) R.Br.

    Science.gov (United States)

    James, Donald; Tarafdar, Avijit; Biswas, Koushik; Sathyavathi, Tara C; Padaria, Jasdeep Chatrath; Kumar, P Ananda

    2015-08-01

    Pearl millet (Pennisetum glaucum L. R. Br.) is an important cereal crop grown mainly in the arid and semi-arid regions of India known to possess the natural ability to withstand thermal stress. To elucidate the molecular basis of high temperature response in pearl millet, 12 days old seedlings of P. glaucum cv. 841A were subjected to heat stress at 46 degrees C for different time durations ( 30 min, 2, 4, 8, 12 and 24 h) and a forward subtractive cDNA library was constructed from pooled RNA of heat stressed seedlings. A total of 331 high quality Expressed Sequence Tags (ESTs) were obtained from randomly selected 1050 clones. Sequences were assembled into 103 unique sequences consisting of 37 contigs and 66 singletons. Of these, 92 unique sequences were submitted to NCBI dbEST database. Gene Ontology through RGAP data base and BLASTx analysis revealed that about 18% of the ESTs showed homology to genes for "response to abiotic and biotic stimulus". About 2% of the ESTs showed no homology with genes in dbEST, indicating the presence of uncharacterized candidate genes involved in heat stress response in P. glaucum. Differential expression of selected genes (hsp101 and CRT) from the SSH library were validated by qRT-PCR analysis. The ESTs thus generated are a rich source of heat stress responsive genes, which can be utilized in improving thermotolerance of other food crops.

  5. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  6. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.

    Science.gov (United States)

    Yuangsaard, Napatchanok; Yongmanitchai, Wichien; Yamada, Mumoru; Limtong, Savitree

    2013-03-01

    Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.

  7. Measurement of thermodynamic temperature of high temperature fixed points

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  8. Measurement of thermodynamic temperature of high temperature fixed points

    Science.gov (United States)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-01

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 "Radiation Thermometry". The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  9. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    A number of opinions are held on the relative importance of the various physical ... optimum as well as extreme temperatures on vital functions such as survival, egg ..... solids on the biology of certain freshwater molluscs. D .Sc. thesis,. Potch.

  10. Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2014-12-01

    The crystal structures of many technologically important high-temperature phases are predicted to have lattice instabilities at low temperature, making their thermodynamic and mechanical properties inaccessible to standard first principles approaches that rely on the (quasi) harmonic approximation. Here, we use the recently developed anharmonic potential cluster expansion within Monte Carlo simulations to predict the effect of temperature and anisotropic stress on the elastic properties of ZrH2, a material that undergoes diffusionless transitions among cubic, tetragonal, and orthorhombic phases. Our analysis shows that the mechanical properties of high-temperature phases with low-temperature vibrational instabilities are very sensitive to temperature and stress state. These findings have important implications for materials characterization and multi-scale simulations and suggest opportunities for enhanced strain engineering of high-temperature phases exhibiting soft-mode instabilities.

  11. Assessment of high-temperature filtering elements

    Energy Technology Data Exchange (ETDEWEB)

    Monica Lupion; Francisco J. Gutierrez Ortiz; Benito Navarrete; Vicente J. Cortes [University of Seville, Seville (Spain). E.T.S. Ingenieros

    2008-07-01

    A complete experimental campaign has been carried out in a hot gas filtration test facility so as to test several filtering elements and configurations, particularly, three different types of bag filters and one ceramic candle. The facility was designed to operate under a wide range of conditions, thus providing an excellent tool for the investigation of hot gas filtration applications for the advanced electrical power generation industry such as IGCC, PFBC or fuel cell technologies. Relevant parameters for the characterization and optimization of the performance of the filters have been studied for a variety of operation conditions such as filtration velocity, particle concentration, pressure and temperature among others. Pressure drop across the filter, cleaning pulse interval, baseline pressure drop, filtration efficiency and durability of the filter have been investigated for each type considered and dependences on parameters have been established. On top of that, optimal operating conditions and cleaning strategies were determined. The tests results show that bag filters are a suitable alternative for the hot gas filtration due to the better performance and the high efficiency observed, which makes them suitable for industrial applications operating under high temperature high pressure conditions considered within the study (200-370{degree}C and 4-7.5 barg respectively). 7 refs., 7 figs., 10 tabs.

  12. High temperature superconducting fault current limiter

    Science.gov (United States)

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  13. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    TEMPERATURE SUPERCONDUCTORS by Jordan R. White December 2015 Thesis Advisor: Clifford Whitcomb Co-Advisor: Fotis Papoulias THIS PAGE INTENTIONALLY...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...trends. 14. SUBJECT TERMS electric ships, high temperature superconductor , HTS 15. NUMBER OF PAGES 111 16. PRICE CODE 17. SECURITY CLASSIFICATION

  14. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  15. Characterization of highly transient EUV emitting discharges

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Joost van der; Kieft, Erik; Broks, Bart [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-07-15

    The method of disturbed Bilateral Relations (dBR) is used to characterize highly transient plasmas that are used for the generation of Extreme Ultra Violet (EUV), i.e. radiation with a wavelength around 13.5 nm. This dBR method relates equilibrium disturbing to equilibrium restoring processes and follows the degree of equilibrium departure from the global down to the elementary plasma-level. The study gives global values of the electron density and electron temperature. Moreover, it gives a method to construct the atomic state distribution function (ASDF). This ASDF, which is responsible for the spectrum generated by the discharge, is found to be far from equilibrium. There are two reasons for this: first, systems with high charge numbers radiate strongly, second the highly transient behaviour makes that the distribution over the various ionization stages lags behind the temperature evolution.

  16. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  17. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    under high temperatures and calculated the second-order elastic constant (Cij ) and bulk modulus. (KT) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (δT) as temperature-independent and then by treating δT as temperature-dependent parameter. The results obtained when δT is ...

  18. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  19. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  20. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  1. High-Temperature Test Technology

    Science.gov (United States)

    1987-03-01

    Do any of your facilities have vacuum test capability? YesO No~l If yes, What is the minimum vacuum chamber pressure? What is the maximum allowable...available? YesO N[-- If "yes," please Indicate the following: Vaporizer Superheater Capacity Capacity Max Temperature LH2 LN2 Are gaseous hydrogen...personnel safety? 5. Does the facility have radiant heating capability? YesO NoF- If "yes," please provide the following information: Lamp types Tungsten

  2. Thermodynamics of High Temperature Materials.

    Science.gov (United States)

    1985-03-15

    temperatures In the present range have also been obtained by Krauss and Warncke [8] and by Vollmer et al. [9], using adiabatic calorimetry, and by Kollie [10...value for heat capacity. The electrical resistivity results reported by Kollie [10] and by Powell et al. [13] are respectively about 1 and 1.5% lower...extensive annealing of the specimens used in the measurements: the specimen (>99.89% pure) used by Kollie was annealed at 1100 K for 24 h and Laubitz et al

  3. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes

    NARCIS (Netherlands)

    Winterhoff, N.; Goethe, R.; Gruening, P.; Rohde, M.; Kalisz, H.; Smith, H.E.; Valentin-Weigand, P.

    2002-01-01

    The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C

  4. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  5. High-Purity Germanium Characterization

    Science.gov (United States)

    Weinandt, Nick; Sun, Yongchen; Mei, Dongming

    2010-11-01

    Underground germanium crystal growth is a main focus of the CUBED 2010 research in the state of South Dakota where the DUSEL will be hosted. High-purity germanium is essential to the construction of germanium detectors for neutrioless double-beta decay and dark matter experiments planned for DUSEL. The characterization of germanium ingots and crystals is an important part of the high-purity germanium crystal growth process. Through the characterization process, we can learn important information such as net impurity concentration and crystal structure. The information can be fed back to the zone refining and crystal growth processes. Resistivity measurements and Hall Effect experiments were used to understand the impurity concentration of the germanium bars. Both experiments were run at 77K to avoid thermal conductivity. When resistivity and Hall Effect experiments are coupled with future research into and Spectroscopies, we can begin to understand exactly what impurities are present in the sample. With resistivity, the Hall Effect, Photo-Thermal Ionization Spectroscopy, and Deep-Level Transit Spectroscopy, we can gain a more complete understanding of the characterization techniques and the growing of the crystal. At the conference I would be able to show the results obtained from our experiments

  6. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  7. Conductivity and electrochemical characterization of PrFe1-xNixO3-δ at high temperature

    DEFF Research Database (Denmark)

    Hashimoto, Shin-Ichi; Kammer Hansen, Kent; Poulsen, Finn Willy

    2007-01-01

    PrFe(1-x)NixO(3)- (x=0.4-0.6) compounds were synthesized and characterized by powder XRD, electrical conductivity and electrochemical impedance spectroscopy on point electrodes on a Ce0.9Gd0.1O2-delta (CGO10) electrolyte. As a reference, the electrochemical performance of LaFe(0.4)AM(0.6)O(3-delt...

  8. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  9. Copper Alloy For High-Temperature Uses

    Science.gov (United States)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  10. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  11. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  12. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  13. Novel high glass temperature sugar-based epoxy resins: Characterization and comparison to mineral oil-based aliphatic and aromatic resins

    Directory of Open Access Journals (Sweden)

    P. Niedermann

    2015-02-01

    Full Text Available Curing and rheological behaviour, glass transition temperature, mechanical and thermal properties of two newly synthesized glucopyranoside- (GPTE and glucofuranoside- (GFTE based renewable epoxy resin (EP components were investigated and compared to aromatic and aliphatic EPs. The glucose-based EPs can be successfully cured with amine and anhydride type curing agents, their gel times are suitable for processing and can be well-adopted to the needs of the common composite preparation methods. GPTE showed the highest glass transition temperature (Tg among all investigated resins, followed by GFTE and DGEBA. Below the Tg there was no significant difference between the storage modulus values of the EP systems. The glucose-based EPs had lower tensile and bending strength, but their tensile modulus values are not significantly different from the mineral oil based EPs. The thermal stability of the synthesized GPTE and GFTE is between DGEBA and the aliphatic resins. In applications where bending stresses are dominant over the tensile ones, and outstanding Tg is required, these glucose-based resins offer a feasible renewable option.

  14. Construction and testing of a system for the electrical characterization of ceramic thermistors at low temperatures

    Directory of Open Access Journals (Sweden)

    F. C. S. Luz

    2014-03-01

    Full Text Available A high-precision and low cost system was built for the electrical characterization of ceramic thermistors at low temperatures, using components readily available in materials research laboratories. The system presented excellent reproducibility in the electrical characterization of NTC ceramic sensors from -75 ºC (195 K to 23 ºC (296 K. The behavior of the NTC sensor was comparable to that of commercial thermistors only below room temperature (α = -3.2%/K, demonstrating the importance of fully characterizing these materials at both low and high temperatures.

  15. The flavoured BFSS model at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yuhma; Filev, Veselin G. [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Kováčik, Samuel [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Faculty of Mathematics, Physics and Informatics,Comenius University Bratislava, Mlynská dolina, Bratislava, 842 48 (Slovakia); O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)

    2017-01-25

    We study the high-temperature series expansion of the Berkooz-Douglas matrix model, which describes the D0/D4-brane system. At high temperature the model is weakly coupled and we develop the series to second order. We check our results against the high-temperature regime of the bosonic model (without fermions) and find excellent agreement. We track the temperature dependence of the bosonic model and find backreaction of the fundamental fields lifts the zero-temperature adjoint mass degeneracy. In the low-temperature phase the system is well described by a gaussian model with three masses m{sub A}{sup t}=1.964±0.003, m{sub A}{sup l}=2.001±0.003 and m{sub f}=1.463±0.001, the adjoint longitudinal and transverse masses and the mass of the fundamental fields respectively.

  16. High temperature superconductors in electromagnetic applications

    CERN Document Server

    Richens, P E

    2000-01-01

    powder-in-tube and dip-coated, have been made using a novel single loop tensometer that enables the insertion of a reasonably long length of conductor into the bore of a high-field magnet. The design, construction, and characterization of a High Temperature Superconducting (HTS) magnet is described. The design stage has involved the development of computer software for the calculation of the critical current of a solenoid wound from anisotropic HTS conductor. This calculation can be performed for a variety of problems including those involving magnetic materials such as iron by the incorporation of finite element electromagnetic analysis software. This has enabled the optimization of the magnet's performance. The HTS magnet is wound from 190 m of silver-matrix Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 1 sub 0 powder-in-tube tape conductor supplied by Intermagnetics General Corporation. The dimensions are 70 mm bore and 70 mm length, and it consists of 728 turns. Iron end-plates were utilized in order to reduc...

  17. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  18. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  19. High-temperature heat-pump fluids

    Science.gov (United States)

    Bertinat, M. P.

    1988-05-01

    Heat pumps could be immensely useful in many industrial processes, but standard working fluids are unsuitable for the high temperatures involved. The ideal high-temperature heat-pump fluid should have a high (but not too high) critical temperature, a moderate critical pressure ( approximately=5.0 MPa) and a low (but not too low) boiling point. There are many organic fluids that do meet the above thermodynamic criteria The author's list of 250 contained dozens of them including many of the common laboratory solvents such as ethanol, ether and especially acetone. Unfortunately most of them are highly flammable. The ideal work fluid for high-temperature heat pumps will probably always remain elusive and water, despite its drawbacks will continue to be the best choice in most applications

  20. Additives for high temperature liquid lubricants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yavrouian, A.H.; Repar, J.; Moran, C.M.; Lawton, E.A.; Anderson, M.S.

    1994-01-15

    The purpose of this task was to perform research for the Department of Energy (DOE) on the synthesis and characterization of additives for liquid lubricants which could lead to significant improvements in the major tribological task area of friction and wear reduction at high temperature. To this end JPL surveyed candidate precursor compounds which are soluble in liquid lubricants, synthesized the most promising of these materials, characterized them and submitted these additives to National Institute of Standards and Technology (NIST) for evaluation.

  1. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses.

    Science.gov (United States)

    Maat, Douwe S; Biggs, Tristan; Evans, Claire; van Bleijswijk, Judith D L; van der Wel, Nicole N; Dutilh, Bas E; Brussaard, Corina P D

    2017-06-02

    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).

  2. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses

    Science.gov (United States)

    Maat, Douwe S.; Biggs, Tristan; Evans, Claire; van Bleijswijk, Judith D. L.; van der Wel, Nicole N.; Dutilh, Bas E.; Brussaard, Corina P. D.

    2017-01-01

    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming). PMID:28574420

  3. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  4. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  5. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  6. High temperature spectral gamma well logging

    Energy Technology Data Exchange (ETDEWEB)

    Normann, R.A.; Henfling, J.A.

    1997-01-01

    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  7. Search for New and Better High Temperature Superconductors

    Science.gov (United States)

    2014-03-30

    Nanometer-Scale Scanning Tunneling Potentiometry Appendix A – List of publications from the MURI (Also endnotes for text) 1) Introduction This...scanning tunneling potentiometry ) for nanometer-scale transport characterization of thin films. In addition, we actively addressed the questions: (1...assessing materials for their potential to exhibit high temperature superconductivity. 2.6 Nanometer-Scale Scanning Tunneling Potentiometry

  8. High-Temperature-Superconductor Films In Microwave Circuits

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1993-01-01

    Report discusses recent developments in continuing research on fabrication and characterization of thin films of high-temperature superconducting material and incorporation of such films into microwave circuits. Research motivated by prospect of exploiting superconductivity to reduce electrical losses and thereby enhancing performance of such critical microwave components as ring resonators, filters, transmission lines, phase shifters, and feed lines in phased-array antennas.

  9. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  10. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  11. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  12. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    Directory of Open Access Journals (Sweden)

    Bin Dong

    2016-09-01

    Full Text Available In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (ΔC with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on ΔC measurement.

  13. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  14. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  15. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  16. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A

    2004-01-01

    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  17. NASA High Operating Temperature Technology Program Overview

    Science.gov (United States)

    Nguyen, Q. V.; Hunter, G. W.

    2017-11-01

    NASA’s Planetary Science Division has begun the High Operating Temperature Technology (HOTTech) program to address Venus surface technology challenges by investing in new technology development. This presentation reviews this HOTTech program.

  18. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  19. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş

    2005-01-01

    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  20. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  1. Synthesis and characterizations of palladium catalysts with high activity and stability for formic acid oxidation by hydrogen reduction in ethylene glycol at room temperature

    Science.gov (United States)

    Wu, Meixia; Li, Muwu; Wu, Xin; Li, Yuexia; Zeng, Jianhuang; Liao, Shijun

    2015-10-01

    In this work, a Pd/C catalyst with high activity as well as excellent stability has been prepared by hydrogen gas reduction of Pd(II) precursor in ethylene glycol solution with the assistance of appropriate amount of sodium citrate. Pd nanoparticles with an average particle size of 3.8 nm and excellent uniformity are obtained. The Pd/C catalyst synthesized in this work shows an electrochemical surface area of 68.6 m2 g-1 and displays activities of 819 A g-1. Strikingly, the Pd/C catalyst also exhibits excellent stability, which has been confirmed by its slow activity decay under repeated potential cycles as well as chronoamperometric test. The activity for Pd/C at the 300th and 500th cycle remains at 5.5 and 2.4 mA cm-2, respectively, which is 25% and 11% of its initial value, respectively. The oxidation currents at the Pd/C and Pd/C-Citrate (control) at 0 V decrease to 44% and 25% of their initial values. Transmission electron microscopy observations on the Pd/C catalyst after 1000 potential cycles reveal that, in addition to carbon support corrosion, Pd agglomeration together with more serious Pd dissolution occur at the same time, leading to a decrease of the electrocatalytic performance.

  2. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  3. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh

    2013-01-01

    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  4. Neutron experiments on high-temperature superconductors

    Science.gov (United States)

    Mook, H. A., Jr.

    1989-12-01

    This report details the trip to the ILL to perform neutron scattering research on high-temperature superconductivity. The trip was very successful because of the excellent users' facilities available at the ILL. The data we accumulated were of high quality and will make an impact on our understanding of high-temperature superconductivity. However, we cannot continue to run a research program in this field with the limited beam time available at the ILL. To make substantial progress in this field, we must restart the High Flux Isotope Reactor.

  5. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  6. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  7. Structure of liquid oxides at very high temperatures

    CERN Document Server

    Landron, C; Thiaudiere, D; Price, D L; Greaves, G N

    2003-01-01

    The structural characterization of condensed matter by synchrotron radiation combined with neutron data constitutes a powerful structural tool in material science. In order to investigate refractory liquids at very high temperatures, we have developed a new analysis chamber for performing combined X-ray absorption and diffraction measurements by using laser heating and aerodynamic levitation. A similar system has been designed for neutron experiments. This high temperature equipment presents several advantages: the container does not physically or chemically perturb the sample, heterogeneous nucleation during cooling is suppressed and pollution by the container is removed. This cell can operate under various gas conditions from room temperature up to 3000 deg. C obtained by means of a sealed 125 W CO sub 2 laser. Experiments have been performed at LURE, ESRF and at ISIS. We have studied the local structure around the cations in several liquid and solid oxides. We have shown that high temperature synchrotron d...

  8. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  9. Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Aitor Lopez-Aldaba

    2015-04-01

    Full Text Available A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.

  10. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  11. Dynamic high-temperature Kolsky tension bar techniques

    Directory of Open Access Journals (Sweden)

    Song Bo

    2015-01-01

    Full Text Available Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. As an example, the high-temperature Kolsky tension bar was used to characterize a DOP-26 iridium alloy in high-strain-rate tension at 860 s−1/1030 ∘C.

  12. Dynamic high-temperature Kolsky tension bar techniques

    Science.gov (United States)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. As an example, the high-temperature Kolsky tension bar was used to characterize a DOP-26 iridium alloy in high-strain-rate tension at 860 s-1/1030 ∘C.

  13. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    the anode and cathode flow plates. The purpose of this study is to investigate the feasibility of the proposed temperature characterization method and to identify the temperature distribution on an operating HT-PEM in various modes of operation, including a 700 h sensors durability test. The embedded......The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...... sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can...

  14. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    Science.gov (United States)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  15. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  16. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  17. High temperature thrust chamber for spacecraft

    Science.gov (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  18. Stability projections for high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Laquer, H.L.; Edeskuty, F.J.; Hassenzahl, W.V.; Wipf, S.L.

    1989-03-01

    The stability of the new high temperature superconducting oxides has been analyzed, using the methodology developed over the last 25 years for conventional Type II superconductors. The results are presented in graphical form for the temperature range from 4 to 100 K. For a 90 K superconductor the first flux jump field peaks above 7 T at 60 K, ( and for a 120 k superconductor it peaks above 12 T at 75 K). The maximum adiabatically stable thickness increases dramatically. The linear dimension of the minimum propagating zone increases by a factor of 3 to 5, and the quench propagation velocity drops by 4 orders of magnitude. The high temperature superconducting materials will, therefore, have much higher stability than conventional Type II superconductors; their high flux jump fields will make ultra-fine multifilamentary conductors unnecessary and improve the outlook for tape conductors; the energy to create a propagating zone is increased; however, methods of coil protection will have to be modified.

  19. Fatigue and Fracture Characterization of HPDC AM6OB Magnesium Alloy at Cold Temperature

    Science.gov (United States)

    Nur Hossain, Md.; Taheri, Farid

    2011-12-01

    An investigation of the fatigue and fracture characterization of the high pressure die cast (HPDC) AM60B magnesium alloy at -40 °C temperature was conducted by means of the constant load amplitude fatigue test. The results demonstrated that low temperature had a significant influence on alloy's fatigue life; the life increased at -40 °C temperature as compared to that at room temperature. The fracture surfaces of the tested specimens were observed under a scanning electron microscope (SEM) to further understand the fracture phenomenon at low temperature.

  20. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  1. Temperature measurements of high power LEDs

    Science.gov (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  2. Fiber Bragg Grating Filter High Temperature Sensors

    Science.gov (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  3. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  4. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  5. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  6. High Temperature Mechanisms for Venus Exploration

    Science.gov (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  7. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  8. High Summer Temperatures and Mortality in Estonia.

    Directory of Open Access Journals (Sweden)

    Daniel Oudin Åström

    Full Text Available On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia.We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia.We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement.We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  9. High Summer Temperatures and Mortality in Estonia.

    Science.gov (United States)

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  10. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  11. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  12. Research at Very High Pressures and High Temperatures

    Science.gov (United States)

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  13. Lightweight High-Temperature Thermal Insulation

    Science.gov (United States)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  14. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperatureare known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadaldevelopment and sex ratio in amphibians but the mechanism of action is not ...

  15. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  16. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  17. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  18. Complex performance during exposure to high temperatures.

    Science.gov (United States)

    1969-06-01

    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  19. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended ...

  20. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of ...

  1. High pressure and high temperature behaviour of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Thakar, Nilesh A. [K. K. Shah Jarodwala Maninagar Science College, Rambaug, Maninagar, Ahmedabad-380008 (India); Bhatt, Apoorva D. [Department of Physics, Gujarat University, Ahmedabad-380009 (India); Pandya, Tushar C., E-mail: pandyatc@gmail.com [St. Xavier' s College, Navrangpura, Ahmedabad-380009 (India)

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  2. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  3. Sorbents Remove Oxygen At High Temperatures

    Science.gov (United States)

    Sharma, Pramod K.

    1995-01-01

    Cobalt-exchanged, platinized zeolites 13X and L found conveniently reducible in hot gaseous mixture of hydrogen and nitrogen and thereafter useful as sorbents of trace amounts of oxygen at high temperatures. Aided by catalytic action of platinum, sorbents exhibit rapid oxygen-sorption kinetics and, according to thermodynamic properties of O2/CoO system, capable of lowering level of oxygen in otherwise inert gaseous atmosphere to less than 1 part per trillion in temperature range of 400 to 800 degrees C. Inert atmospheres with these oxygen levels required for processing of certain materials in semiconductor industry.

  4. A review of high-temperature adhesives

    Science.gov (United States)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  5. High temperature dynamic engine seal technology development

    Science.gov (United States)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  6. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  7. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  8. Apparatus for temperature-dependent cathodoluminescence characterization of materials

    Science.gov (United States)

    Bok, Jan; Schauer, Petr

    2014-07-01

    An apparatus for characterization of temperature-dependent cathodoluminescence (CL) of solid-state materials is presented. This device excites a specimen using an electron beam and the CL emission is collected from the specimen side opposite the e-beam irradiation. The design of the temperature-controlled specimen holder that enables cooling down to 100 K and heating up to 500 K is described. The desired specimen temperature is automatically stabilized using a PID controller, which is the proportional-integral-derivative control feedback loop. Moreover, the specimen holder provides in situ e-beam current measurement during the specimen excitation. The apparatus allows the measurement of the CL intensity, the CL spectrum, or the CL intensity decay depending on the specimen temperature, or on a variety of excitation conditions, such as excitation energy, electron current (dose), or excitation duration. The apparatus abilities are demonstrated by an example of the CL measurements of the YAG:Ce single-crystal scintillator.

  9. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  10. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  11. Transport Processes in High Temperature QCD Plasmas

    Science.gov (United States)

    Hong, Juhee

    The transport properties of high temperature QCD plasmas can be described by kinetic theory based on the Boltzmann equation. At a leading-log approximation, the Boltzmann equation is reformulated as a Fokker-Planck equation. First, we compute the spectral densities of Tµν and Jµ by perturbing the system with weak gravitational and electromagnetic fields. The spectral densities exhibit a smooth transition from free-streaming quasi-particles to hydrodynamics. This transition is analyzed with hydrodynamics and diffusion equation up to second order. We determine all of the first and second order transport coefficients which characterize the linear response in the hydrodynamic regime. Second, we simulate the wake of a heavy quark moving through the plasmas. At long distances, the energy density and flux distributions show sound waves and a diffusion wake. The kinetic theory calculations based on the Boltzmann equation at weak coupling are compared to the strong coupling results given by the AdS/CFT correspondence. By using the hard-thermal-loop effective theory, we determine the photon emission rate at next-to-leading order (NLO), i.e., at order g2mD /T. There are three mechanisms which contribute to the leading-order photon emission: (2 ↔ 2) elastic scatterings, (1 ↔ 2) collinear bremsstrahlung, and (1 ↔ 1) quark-photon conversion due to soft fermion exchange. At NLO, these three mechanisms are not completely independent. When the transverse momentum between quark and photon becomes soft, the Compton scattering with a soft gluon reduces to wide-angle bremsstrahlung. Similarly, bremsstrahlung reduces to the quark-photon conversion process when the photon carries most of the incoming momentum. Therefore, the rates should be matched to determine the wide-angle NLO correction. Collinear bremsstrahlung can be accounted for by solving an integral equation which corresponds to summing ladder diagrams. With O(g) corrections in the collision kernel and the asymptotic

  12. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  13. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  14. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  15. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  16. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  17. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  18. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  19. Vapor phase lubrication of high temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)

    1995-06-01

    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  20. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  1. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  2. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  3. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  4. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  5. Trends in Surface Temperature at High Latitudes

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  6. Characterization of air temperature in modern ion chambers due to phantom geometry and ambient temperature changes.

    Science.gov (United States)

    Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N

    2016-07-01

    Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording

  7. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  8. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  9. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2001-04-01

    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  10. Fundamental aspects of high-temperature corrosion

    OpenAIRE

    Rapp, Robert

    1993-01-01

    Some recent considerations in three widely different aspects of high-temperature corrosion are summarized: 1) reactions at the metal/scale interface in support of scale growth; 2) mass transfer effects in the control of evaporation of volatile reaction products; and 3) the codeposition of multiple elements for diffusion coatings using halide-activated cementation packs. The climb of misfit edge dislocations from the metal/scale interface can achieve the annihilation of vacancies associated wi...

  11. Thermal fuse for high-temperature batteries

    Science.gov (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  12. High-Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  13. High-temperature technological processes: Thermophysical principles

    Science.gov (United States)

    Rykalin, N. N.; Uglov, A. A.; Anishchenko, L. M.

    The book is concerned with the principles of thermodynamics and heat transfer theory underlying high-temperature technological processes. Some characteristics of electromagnetic radiation and heat transfer in solids, liquids, and gases are reviewed, and boundary layer theory, surface phenomena, and phase transitions are examined. The discussion includes an analysis of a number of specific processes, such as treatment by concentrated energy fluxes (electron-beam and laser processing) and plasma machining.

  14. Brittle Materials Design, High Temperature Gas Turbine

    Science.gov (United States)

    1981-03-01

    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  15. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  16. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)

    2006-12-15

    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  17. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2.3 A cm-2 were obtained....

  18. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    Science.gov (United States)

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed.

  19. High temperature superconducting digital circuits and subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L. [Conductus, Sunnyvale, CA (United States); Hietala, V.M.; Wendt, J.R. [Sandia National Labs., Albuquerque, NM (United States); Hou, S.Y.; Phillips, J. [AT and T Bell Labs., Murray Hill, NJ (United States)

    1993-10-01

    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  20. The characterization of scintillator performance at temperatures up to 400 degrees centigrade

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A., E-mail: boatnerla@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Neal, John S., E-mail: Nealjs1@ornl.gov [Global Nuclear Security Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Kolopus, James A., E-mail: kolopusja@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ramey, Joanne O., E-mail: rameyjo@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Akkurt, Hatice, E-mail: akkurth@ornl.gov [Reactor and Nuclear Systems Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2013-05-01

    The logging and characterization of geothermal wells requires improved scintillator systems that are capable of operation at temperatures significantly above those commonly encountered in the logging of most conventional oil and gas wells (e.g., temperatures nominally in the range of up to 150 °C). Unfortunately, most of the existing data on the performance of scintillators for radiation detection at elevated temperatures is fragmentary, uncorrelated, and generally limited to relatively low temperatures—in most cases to temperatures well below 200 °C. We have designed a system for characterizing scintillator performance at temperatures extending up to 400 °C under inert atmospheric conditions, and this system is applied here to the determination of scintillator performance at elevated temperatures for a wide range of scintillators including, among others: bismuth germanate, cadmium tungstate, cesium iodide, cesium iodide (Tl), cesium iodide (Na), sodium iodide, sodium iodide (Tl), lutetium oxy-orthosilicate (Ce), zinc tungstate, yttrium aluminum perovskite (Ce), yttrium aluminum garnet (Ce), lutetium aluminum perovskite (Ce), and barium fluoride, strontium iodide (Eu). Most of the scintillator samples exhibited severe degradation in light yield at elevated temperatures. Measurements were terminated at temperatures at which the measured light yield no longer appeared useful. The results of these high-temperature scintillator performance tests are described in detail here. Comparisons of the relative elevated-temperature properties of the various scintillator materials have resulted in the identification of promising scintillator candidates for high-temperature use in geothermal and fossil-fuel well environments. -- Highlights: ► Scintillator performance at elevated temperatures up to 400°C. ► Scintillators for geothermal logging. ► Scintillators for oil well logging. ► LuAP:Ce high temperature performance.

  1. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  2. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2017-12-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  3. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  4. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  5. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T

    2015-01-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  6. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    . Different particle shapes of beechwood and leached wheat straw chars produced in the drop tube reactor which have similar potassium content suggested a stronger influence of the major biomass cell wall compounds (cellulose, hemicellulose, lignin and extractives) and silicates on the char morphology than...... multi core structures compared to pinewood soot generated at 1400°C, combining both single and multi core particles.Beechwood and wheat straw soot samples had multi and single core particles at both temperatures.In thermogravimetric analysis, the maximal reaction rate of pinewood soot was shifted...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...

  7. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  8. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  9. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  10. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  11. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  12. Capturing high temperature protein conformations for low-temperature study using ultra-fast cooling

    Science.gov (United States)

    Moreau, David; Atakisi, Hakan; Thorne, Robert

    protocols for cooling biomolecular crystals for x-ray cryocrystallography are poorly controlled, leading to crystal-to-crystal and within-crystal non-isomorphism. Furthermore, cooling times below the protein-solvent glass transition of .1 s provide ample time for biological temperature conformations to depopulate and shift. To address these issues, methods and apparatus for cooling biomolecular crystals at rates approaching 100,000 K/s have been developed. These cooling rates are sufficient to eliminate ice formation on cooling without use of cryoprotectants, and to quench additional high-temperature conformations for low-temperature study. Time scales for conformational relaxation can be characterized using variable cooling rates. Possible extension of these methods to maximize conformational quenching will be discussed.

  13. Noninvasive temperature monitoring using ultrasound tissue characterization method

    Science.gov (United States)

    Novak, Petr; Pousek, Lubomir; Schreib, Petr; Peschke, Peter; Vrba, Jan; Zuna, Ivan

    2001-05-01

    Microwave thermotherapy (MT) is an oncological treatment. At present the invasive thermometer probes are clinically used for temperature measuring during an MT. Any invasive handling of tumors is of high-risk. A new method of noninvasive monitoring of temperature distribution in tissue has been developed. An MT treatment of the experimentally induced pedicle-tumors of the rat was prepared. It consists of an intelligent regulation loop controlling a high frequency (HF) generator according to the maximal measured temperature in the tissue and a special HF MT applicator. The loop is also equipped with an invasive thermometer (4 invasive probes). During the MT treatment the series of ultrasound B-mode images were obtained. The texture parameters were evaluated form the obtained ultrasound images. These parameters were correlated with the invasively measured temperature during the MT session. For 60 rat samples a strong correlation between the mean gray level in the ROIs in the ultrasound pictures and the invasively measured temperature in the range 37-44 degree(s)C (98.6-111.2 F) was found. The correlation coefficient of the mean gray level and the invasively measured temperature is 0.96+/- 0.05. A system for representation of changes of spatial temperature distribution of the whole tumor during MT will be presented.

  14. Electrical Conductivity of Micas at High Temperatures

    Science.gov (United States)

    Watanabe, T.

    2008-12-01

    Electrical conductivity, along with seismic velocity, gives us clues to infer constituent materials and temperatures in the Earth's interior. Dry rocks have been considered to be electrically insulating at crustal temperatures. Observed high conductivity has been ascribed to the existence of fluids. However, Fuji-ta et al. (2007) recently reported that a dry gneiss shows relatively high conductivity (10-4-10-3 S/m) at the temperature of 300-400°C, and that it is strongly anisotropic in conductivity. They suggested that the alignment of biotite grains governs conductivity of the gneiss sample. Electrical properties of rock forming minerals are still poorly understood. We thus have measured electrical properties of biotite single crystals up to 700°C. In order to get a good understanding of conduction mechanisms, measurements have been also made on phlogopite and muscovite, which are common micas with similar crystallographic structures. Thin plates parallel to cleavages (thickness~0.1mm) were prepared from mica single crystals. Electrical impedance was measured by 2-electrode method. The specimen was kept in nitrogen or argon atmosphere. The conductivity measured parallel to cleavages is higher than that measured perpendicular to cleavages by 3-4 orders of magnitude. However, no significant difference in the activation energy of conductivity was observed between two directions. The activation energy of conductivity is ~50 kJ/mol for biotite and ~100 kJ/mol for phlogopite and muscovite. The conductivity of biotite is higher than those of phlogopite and muscovite by several orders of magnitude at the same temperature. The conductivity of biotite parallel to cleavages is ~10-1 S/m at 400°C. The conductivity of biotite increases irreversibly by heating. The irreversible change was not significant below 450°C. Remarkable increase is observed at the temperature of 450-550°C. No significant change was observed in the second heating. Such an increase in conductivity

  15. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2012-03-01

    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  16. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance......In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...

  17. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  18. Diamond based detectors for high temperature, high radiation environments

    Science.gov (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  19. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    With dwindling easily accessible oil and gas resources, more and more exploration and production activities in the oil industry are driven to technically challenging environments such as unconventional resources and deeper formations. The temperature and pressure can become extremely high, e.g., up...

  20. Using IDA to Understand Electron Temperature Structures in High Temperature Discharges in the Madison Symmetric Torus

    Science.gov (United States)

    Reusch, L. M.; Galante, M. E.; den Hartog, D. J.; Franz, P.; Johnson, J. R.; McGarry, M. B.; Stephens, H. D.

    2014-10-01

    The Madison Symmetric Torus (MST) Reversed-Field Pinch is equipped with two independent electron temperature (Te) diagnostics: Thomson scattering (TS) and double-filter soft x-ray (SXR). Both diagnostics are able to measure Te at a rate up to 25 kHz and are in good qualitative agreement in the hot plasma core, where Te > 1 keV. We are able to combine information from both TS and SXR diagnostics along with prior physics knowledge using integrated data analysis techniques (IDA) [R. Fischer and A. Dinklage, Rev. Sci. Instrum. 75, 4237 (2004)] to improve the precision and utility of Te measurements on MST. Using IDA, there is a factor of 4 improvement in the uncertainty of all temperature measurements. We have also implemented a Markov Chain Monte Carlo analysis for analyzing the various temperature structures that MST is capable of sustaining. We have compared emissivity maps and flux surface reconstructions to the electron temperatures from several discharges to characterize the phenomenology of temperature structures in high temperature plasmas in MST. Work supported by US DOE and NSF.

  1. Damage Assessment of Stress-Thermal Cycled high temperature

    Science.gov (United States)

    Ju, Jae-Hyung; Prochazka, Michael; Ronke, Ben; Morgan, Roger; Shin, Eugence

    2004-01-01

    We report on the characterization of bismaleimide and polyimide carbon fiber composite, microcrack development under stress thermal cycling loading. Such cycles range from cryogenic temperatures associated with cryogenic fuel (LN, LOX) containment to high temperatures of 300 degrees Celsius associated with future hypervelocity aeropropulsion systems. Microcrack development thresholds as a function of temperature range of the thermal cycle; the number of cycles; the applied stress level imposed on the composite are reported. We have conducted stress-thermal cycles on thin bismaleimide-woven carbon fiber foils for three temperature range cycles: 1. Ambient temperature - -196 degrees celsius. 2. Ambient temperature - 150 degrees Celsius; 200 degrees Celsius; 250 degrees Celsius. 3. -196 degrees Celsius - 250 degrees Celsius. The Principle findings are that the full cycles from -196 degrees Celsius to to 250 degrees Celsius cause the most significant microcrack of development. These observations indicate that the high temperature portion of the cycle under load causes fiber-matrix interface failure and subsequent exposure to higher stresses at the cryogenic, low temperature region results in composite matrix microcracking as a result of the additional stresses associate with the fiber-matrix thermal expansion mismatch. Our initial studies for 12 ply PMR-II-50 polyimide/M60JB carbon fabric [0f,90f,90f,0f,0f,90f]ls composites will be presented. The stress-thermal cycle test procedure for these will be described. Moisture absorption characteristics between cycles will be used to monitor interconnected microcrack development. The applied stress level will be 75% of the composite cryogenic (-196 degrees Celsius) ultimate strength.

  2. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola [Clay Technology AB, Lund (Sweden); Kiviranta, Leena; Kumpulainen, Sirpa [BandTech Oy, Helsinki (Finland); Linden, Johan [Aabo Akademi, Aabo (Finland)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  3. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  4. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...... to a temperature of 220°C. An activation energy of 9 kJ·mol−1 (2.2 kcal·mol−1) has been determined and the spectrum of the transient formed in the reaction has been determined at different temperatures....

  5. High temperature behaviour of a zircon ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMMPM; Hamidouche, M. [Lab. Science des Materiaux, Univ. de Setif (Algeria); Torrecillas, R. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The high temperature properties of a sintered zircon material has been tested up to 1200 C. A significant creep rate is observed, mainly attributed to the presence of glassy phase. The sub-critical crack growth measured in double torsion showed that above 1000 C, the crack velocity is reduced either by stress relaxation or by crack healing. The thermal shock analysis under a heat exchange coefficient of 600 W/m{sup 2}/K showed a regular decrease rather that a sudden fall off of properties. (orig.) 3 refs.

  6. Encapsulation of high temperature molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  7. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  8. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  9. High temperature deformation of 6061 Al

    Energy Technology Data Exchange (ETDEWEB)

    Kyungtae Park; Lavernia, E.J.; Mohamed, F.A. (Univ. of California, Irvine (United States). Dept. of Mechanical and Aerospace Engineering)

    1994-03-01

    The creep behavior of powder metallurgy (PM) 6061 Al, which has been used as a metal matrix alloy in the development of discontinuous silicon carbide reinforced aluminum (SiC-Al) composites, has been studied over six orders of magnitude of strain rate. The experimental data show that the steady-state stage of the creep curve is of short duration; that the stress dependence of creep rate is high and variable; and that the temperature dependence of creep rate is much higher than that for self-diffusion in aluminum. The above creep characteristics are different from those documented for aluminum based solid-solution alloys but are similar to those reported for discontinuous SiC-Al composites and dispersion-strengthened (DS) alloys. Analysis of the experimental data shows that while the high stress dependence of creep rate in 6061 Al, like that in DS alloys, can be explained in terms of a threshold stress for creep, the strong temperature dependence of creep rate in the alloy is incompatible with the predictions of available threshold stress models and theoretical treatments proposed for DS alloys.

  10. Development of High Temperature Gas Sensor Technology

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  11. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.

    2015-07-15

    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  12. High-temperature ordered intermetallic alloys V

    Energy Technology Data Exchange (ETDEWEB)

    Baker, I. (ed.) (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering); Darolia, R. (ed.) (GE Aircraft Engines, Cincinnati, OH (United States)); Whittenberger, J.D. (ed.) (NASA, Cleveland, OH (United States). Lewis Research Center); Yoo, M.H. (ed.) (Oak Ridge National Lab., TN (United States))

    1993-01-01

    These proceedings represent the written record of the High-Temperature Ordered Intermetallic Alloys 5 Symposium which was held in conjunction with the 1992 Fall Materials Research Society meeting in Boston, Massachusetts. This symposium, which was the fifth in the series originated by C.C Koch, C.T. Liu and N.S. Stoloff in 1984, was very successful with 86 oral presentations over four days, and approximately 140 posters given during two lively evening sessions. Such a response, in view of the increasing number of conferences being held on intermetallics each year, reveals the continued high regard for this series of symposia. Individual papers have been processed separately for inclusion in the appropriate data bases.

  13. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  14. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  15. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  17. Measurement system for temperature dependent noise characterization of magnetoresistive sensors

    Science.gov (United States)

    Nording, F.; Weber, S.; Ludwig, F.; Schilling, M.

    2017-03-01

    Magnetoresistive (MR) sensors and sensor systems are used in a large variety of applications in the field of industrial automation, automotive business, aeronautic industries, and instrumentation. Different MR sensor technologies like anisotropic magnetoresistive, giant magnetoresistive, and tunnel magnetoresistive sensors show strongly varying properties in terms of magnetoresistive effect, response to magnetic fields, achievable element miniaturization, manufacturing effort, and signal-to-noise ratio. Very few data have been reported so far on the comparison of noise performance for different sensor models and technologies, especially including the temperature dependence of their characteristics. In this paper, a stand-alone measurement setup is presented that allows a comprehensive characterization of MR sensors including sensitivity and noise over a wide range of temperatures.

  18. High temperature GaAs X-ray detectors

    Science.gov (United States)

    Lioliou, G.; Whitaker, M. D. C.; Barnett, A. M.

    2017-12-01

    Two GaAs p+-i-n+ mesa X-ray photodiodes were characterized for their electrical and photon counting X-ray spectroscopic performance over the temperature range of 100 °C to -20 °C. The devices had 10 μm thick i layers with different diameters: 200 μm (D1) and 400 μm (D2). The electrical characterization included dark current and capacitance measurements at internal electric field strengths of up to 50 kV/cm. The determined properties of the two devices were compared with previously reported results that were made with a view to informing the future development of photon counting X-ray spectrometers for harsh environments, e.g., X-ray fluorescence spectroscopy of planetary surfaces in high temperature environments. The best energy resolution obtained (Full Width at Half Maximum at 5.9 keV) decreased from 2.00 keV at 100 °C to 0.66 keV at -20 °C for the spectrometer with D1, and from 2.71 keV at 100 °C to 0.71 keV at -20 °C for the spectrometer with D2. Dielectric noise was found to be the dominant source of noise in the spectra, apart from at high temperatures and long shaping times, where the main source of photopeak broadening was found to be the white parallel noise.

  19. Aqueous Geochemistry at High Pressures and High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Jay D. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  2. High-temperature enzymatic breakdown of cellulose.

    Science.gov (United States)

    Wang, Hongliang; Squina, Fabio; Segato, Fernando; Mort, Andrew; Lee, David; Pappan, Kirk; Prade, Rolf

    2011-08-01

    Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.

  3. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  4. The constitutive representation of high-temperature creep damage

    Science.gov (United States)

    Chan, K. S.

    1988-01-01

    The elastic-viscoplastic constitutive equations of Bodner-Partom were applied to modeling creep damage in a high temperature Ni-alloy, B1900 + Hf. Both tertiary creep in bulk materials and creep crack growth in flawed materials were considered. In the latter case, the energy rate line integral was used for characterizing the crack driving force, and the rate of crack extension was computed using a local damage formulation that assumed fracture was controlled by cavitation occurring within the crack-tip process zone. The results of this investigation were used to assess the evolution equation for isotropic damage utilized in the Bodner-Partom constitutive equations.

  5. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  6. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    reaction kinetics. At oxygen partial pressures below 10-6 bar at 700 C, the mass transport processes dominated the response time. The response time increased with decreasing oxygen partial pressure and inlet gas flow rate. A series of porous platinum electrodes were impregnated with the ionically...... conducting gadolinium-doped cerium oxide (CGO). The addition of CGO was found to decrease the polarisation resistance of the oxygen reaction by up to an order of magnitude compared with a single phase platinum electrode by increasing the effective triple phase boundary (TPB) length. It did not have any......Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...

  7. Filter unit for use at high temperatures

    Science.gov (United States)

    Ciliberti, David F.; Lippert, Thomas E.

    1988-01-01

    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  8. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: hf@ipfn.ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2011-10-15

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  9. High Temperature Corrosion on Biodust Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi

    The high content of alkali metals and chlorine in biomass gives rise to fouling/slagging and corrosion of heat exchange components, such as superheaters, in biomass fired power plants. Increasing the lifetime of these components, and in addition, preventing unwarranted plant shutdowns due...... to their failure, requires understanding of the complex corrosion mechanisms, as well as development of materials that are resistant to corrosion under biomass firing conditions, thereby motivating the current work. To understand the mechanisms of corrosion attack, comprehensive analysis of corrosion products...... was necessary. In the present work, two complementary methodologies based on analysis of cross sections and plan views were applied to achieve comprehensive characterization of corrosion products. The suitability of these methods for both laboratory scale and full scale corrosion investigations was demonstrated...

  10. High Temperature Superconductor Josephson Weak Links

    Science.gov (United States)

    Hunt, B. D.; Barner, J. B.; Foote, M. C.; Vasquez, R. C.

    1993-01-01

    High T_c edge-geometry SNS microbridges have been fabricated using ion-damaged YBa_2Cu_3O_(7-x) (YBCO) and a nonsuperconducting phase of YBCO (N-YBCO) as normal metals. Optimization of the ion milling process used for YBCO edge formation and cleaning has resulted in ion-damage barrier devices which exhibit I-V characteristics consistent with the Resistively-Shunted-Junction (RSJ) model, with typical current densities (J_c) of approximately 5 x 10^6 A/cm^2 at 4.2 K. Characterization of N-YBCO films suggests that N-YBCO is the orthorhombic YBCO phase with oxygen disorder suppressing T_c...

  11. High temperature triaxial tests on Rochester shale

    Science.gov (United States)

    Bruijn, Rolf; Burlini, Luigi; Misra, Santanu

    2010-05-01

    Phyllosilicates are one of the major components of the crust, responsible for strength weakening during deformation. High pressure and temperature experiments of natural samples rich in phyllosilicates are needed to test the relevance of proposed weakening mechanisms induced by phyllosilicates, derived from lab experiments on single phase and synthetic polyphase rocks and single crystals. Here, we present the preliminary results of a series of high temperature triaxial tests performed on the illite-rich Rochester Shale (USA - New York) using a Paterson type gas-medium HPT testing machine. Cylindrical samples with homogeneous microstructure and 12-14% porosity were fabricated by cold and hot-isostatically pressing, hot-pressed samples were deformed up to a total shortening of 7.5 to 13%. To study the significance of mica dehydration, iron or copper jackets were used in combination with non-porous or porous spacers. Water content was measured before and after experiments using Karl Fischer Titration (KFT). All experiments show, after yielding at 0.6% strain, rapid hardening in nearly linear fashion until about 4-5% strain, from where stress increases at reducing rates to values at 10% strain, between 400 and 675 MPa, depending on experimental conditions. Neither failure nor steady state however, is achieved within the maximum strain of 13%. Experiments performed under 500 °C and 300 MPa confining pressure show weak strain rate dependence. In addition, iron-jacketed samples appear harder than copper-jacketed ones. At 700 °C samples are 17 to 37% weaker and more sensitive to strain rate than during 500 °C experiments. Although, iron-jacketed samples behave stronger than copper-jacketed ones. By visual inspection, samples appear homogeneously shortened. Preliminary analysis suggests that deformation is mostly accommodated by pore collapse. Although, with finite strain, pore collapse becomes less significant. A temperature, strain rate and jacket material dependent

  12. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    Science.gov (United States)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  13. Theoretical characterization of dimethyl carbonate at low temperatures.

    Science.gov (United States)

    Boussessi, R; Guizani, S; Senent, M L; Jaïdane, N

    2015-04-30

    Highly correlated ab initio methods (CCSD(T) and RCCSD(T)-F12) are employed for the spectroscopic characterization of the gas phase of dimethyl carbonate (DMC) at low temperatures. DMC, a relevant molecule for atmospheric and astrochemical studies, shows only two conformers, cis-cis and trans-cis, respectively, of C2v and Cs symmetries. cis-cis-DMC represents the most stable form. Using RCCSD(T)-F12 theory, the two sets of equilibrium rotational constants have been computed to be Ae = 10 493.15 MHz, Be = 2399.22 MHz, and Ce = 2001.78 MHz (cis-cis) and to be Ae = 6585.16 MHz, Be = 3009.04 MHz, and Ce = 2120.36 MHz (trans-cis). Centrifugal distortions constants and anharmonic frequencies for all of the vibrational modes are provided. Fermi displacements are predicted. The minimum energy pathway for the cis-cis → trans-cis interconversion process is restricted by a barrier of ∼3500 cm(-1). DMC displays internal rotation of two methyl groups. If the nonrigidity is considered, the molecule can be classified in the G36 (cis-cis) and the G18 (trans-cis) symmetry groups. For cis-cis-DMC, both internal tops are equivalent, and the torsional motions are restricted by V3 potential energy barriers of 384.7 cm(-1). trans-cis-DMC shows two different V3 barriers of 631.53 and 382.6 cm(-1). The far-infrared spectra linked to the torsional motion of both conformers are analyzed independently using a variational procedure and a two-dimensional flexible model. In cis-cis-DMC, the ground vibrational state splits into nine components: one nondegenerate, 0.000 cm(-1) (A1), four quadruply degenerate, 0.012 cm(-1) (G), and four doubly degenerate 0.024 cm(-1) (E1 and E3). The methyl torsional fundamentals are obtained to lie at 140.274 cm(-1) (ν15) and 132.564 cm(-1) (ν30).

  14. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  15. Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2016-10-01

    Full Text Available We evaluated the potential of a fiber optic cable connected to distributed temperature sensing (DTS technology to withstand wildland fire conditions and quantify fire behavior parameters. We used a custom-made ‘fire cable’ consisting of three optical fibers coated with three different materials—acrylate, copper and polyimide. The 150-m cable was deployed in grasslands and burned in three prescribed fires. The DTS system recorded fire cable output every three seconds and integrated temperatures every 50.6 cm. Results indicated the fire cable was physically capable of withstanding repeated rugged use. Fiber coating materials withstood temperatures up to 422 °C. Changes in fiber attenuation following fire were near zero (−0.81 to 0.12 dB/km indicating essentially no change in light gain or loss as a function of distance or fire intensity over the length of the fire cable. Results indicated fire cable and DTS technology have potential to quantify fire environment parameters such as heat duration and rate of spread but additional experimentation and analysis are required to determine efficacy and response times. This study adds understanding of DTS and fire cable technology as a potential new method for characterizing fire behavior parameters at greater temporal and spatial scales.

  16. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  17. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  18. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    Science.gov (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  19. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  20. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Vinayak N. Kabadi

    1998-11-12

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  1. Rapid sulfur capture studies at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Lawson, W.F.; Maloney, D.J.; Shaw, D.W.

    1990-12-01

    Determine conditions that would reproduce optimum sulfur capture ( super-equilibrium'') behavior. No attempt was made to extract kinetic data for calcination or sulfur capture, as might be done in a comprehensive study of sorbent behavior. While some interesting anomalies are present in the calcination data and in the limited surface area data, no attempt was made to pursue those issues. Since little sulfur capture was observed at operating conditions where super-equilibrium'' might be expected to occur, tests were stopped when the wide range of parameters that were studied failed to produce significant sulfur capture via the super-equilibrium mechanism. Considerable space in this report is devoted to a description of the experiment, including details of the GTRC construction. This description is included because we have received requests for a detailed description of the GTRC itself, as well as the pressurized dry powder feed system. In addition, many questions about accurately sampling the sulfur species from a high-temperature, high-pressure reactor were raised during the course of this investigation. A full account of the development of the gas and particulate sampling train in thus provided. 8 refs., 17 figs., 2 tabs.

  2. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  3. Characterization of the National Low-Temperature Neutron Irradiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1986-02-01

    The National Low-Temperature Neutron Irradiation Facility (NLTNIF) is now operating at the Bulk Shielding Reactor at ORNL. The facility provides high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. A general description and major specifications of the NLTNIF are presented along with the results of performance tests. In addition, the hardware and other considerations required to perform experiments in the NLTNIF are described.

  4. Fabrication and characterization of low pressure micro-resistojets with integrated heater and temperature measurement

    Science.gov (United States)

    Guerrieri, Daduí C.; Silva, Marsil A. C.; van Zeijl, Henk; Cervone, Angelo; Gill, Eberhard

    2017-12-01

    Three low pressure micro-resistojets (LPM) with integrated heater and temperature measurement were designed, manufactured and characterized at Delft university of technology. The devices were manufactured using silicon-based micro electro mechanical systems (MEMS) technology including a heater made of molybdenum for better operations at high temperature. The resistace of the heaters is used to estimate the chip temperature giving them a double function as heater and sensor simultaneously. The manufacturing steps are described in detail. A special interface was manufactured to hold the MEMS device considering the mechanical and electrical aspects. The MEMS devices are characterized for three different aspects: mechanical, electrical and propulsion. The three designed devices were tested mechanically and electrically, and one design was tested in terms of propulsion performance in a near-operational condition. The tests are promising and open the path to design a flight demonstration model.

  5. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  6. Analytic Models of High-Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-11-29

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

  7. High Temperature Electrical Insulation Materials for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  8. High Temperature Fatigue Life Evaluation Using Small Specimen

    National Research Council Canada - National Science Library

    NOGAMI, Shuhei; HISAKA, Chiaki; FUJIWARA, Masaharu; WAKAI, Eichi; HASEGAWA, Akira

    2017-01-01

    For developing the high temperature fatigue life evaluation method using small specimen, the effect of specimen size and test environment on the high temperature fatigue life of the reduced activation...

  9. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  10. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  11. Thermoelectric Powered High Temperature Wireless Sensing

    Science.gov (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  12. High-temperature archeointensity measurements from Mesopotamia

    Science.gov (United States)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  13. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  14. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  15. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  16. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  17. Characterization of mock high-explosive powder

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, C.R.; Dorsey, G.F.

    1979-03-01

    Analytical characterization and explosibility tests were made on a simulative high-explosive powder consisting of cyanuric acid, melamine, nitrocellulose, and tris-(..beta..-chloroethyl)-phosphate. Tests indicated that the powder presents no unusual safety or health hazards in isostatic-pressing and dry-machining operations.

  18. Viscosity-based high temperature waste form compositions

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, G.A.

    1994-12-31

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO{sub 2} + Al{sub 2}O{sub 3} producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing.

  19. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  20. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Samadhan Krushna Phuge

    2017-06-20

    Jun 20, 2017 ... temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis ..... Table 1. Effect of rearing water temperature on gonadal differentiation and sex ratio of Euphlyctis cyanophlyctis .... tures (28, 30 and 32°C) induced female to male sex reversal.

  1. Problem aspects of high temperature referral metrology

    Science.gov (United States)

    Khodunkov, V. P.

    2017-11-01

    The main problematic aspects of the reproduction and transmission of a unit of temperature by a direct method are considered. The methodology and hardware for its implementation are considered. An estimate of the expected uncertainty in the measurement of the thermodynamic temperature is given.

  2. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  3. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  4. Vortices in high-performance high-temperature superconductors

    Science.gov (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E.; Kihlstrom, Karen J.; Crabtree, George W.

    2016-11-01

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  5. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  6. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  7. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Science.gov (United States)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.

    2013-10-01

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  8. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  9. In situ high temperature XRD studies of ZnO nanopowder prepared ...

    Indian Academy of Sciences (India)

    This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using ...

  10. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  11. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  12. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  13. High Temperature Acoustic Noise Reduction Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  14. CAST-IRONS AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2008-01-01

    Full Text Available The results of investigations of physical-mechanical characteristics of cast iron slugs, received by semicontinuos way of casting, at temperatures from 850 up to 1100^ С are given. 

  15. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  16. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  17. Martensitic high nitrogen steel for applications at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berns, H.; Escher, C. [Bochum Univ. (Germany); Streich, W.-D. [TRW Deutschland GmbH, Blumberg (Germany)

    1999-07-01

    Based on required material properties for inlet valves in combustion engines a martensitic high nitrogen steel was created. After selecting an alloy system with 14-17 w/o Cr, 1-3 w/o Mo, 0.1-0.3 w/o V and 0.4-0.7 w/o N by method of thermodynamical calculations of phase equilibria the newly developed martensitic steel was produced by pressurized electroslag remelting. Hot tensile tests and corrosion tests were carried out on hardened and tempered specimens in comparison with two standard valve steels. The high nitrogen steel shows a distinctly better corrosion resistance and high-temperature strength than the standard steel X45CrSi9-3 and is therefore comparable with the steel X85CrMoV18-2. Due to finer nitrides the newly developed steel is characterized by a fatigue strength which is 26% higher at 500 C service temperature. (orig.)

  18. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  19. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  20. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2.A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon...

  1. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  2. Pargasite at high pressure and temperature

    Science.gov (United States)

    Comboni, Davide; Lotti, Paolo; Gatta, G. Diego; Merlini, Marco; Liermann, Hanns-Peter; Frost, Daniel J.

    2017-08-01

    The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10-5 K-1 and α1 = 1.4(6)·10-9 K-2 [with α0(a) = 0.47(6)·10-5 K-1, α0(b) = 1.07(4)·10-5 K-1, and α0(c) = 0.97(7)·10-5 K-1]. The petrological implications for the experimental

  3. Magnesium Diecasting Alloys for High Temperature Applications

    Science.gov (United States)

    Pekguleryuz, Mihriban O.; Kaya, A. Arslan

    New growth area for automotive use of magnesium is powertrain applications such as the transmission case and engine block. These applications see service conditions in the temperature range of 150-200C under 50-70 MPa of tensile and compressive loads. In addition, metallurgical stability, fatigue resistance, corrosion resistance and castability requirements need to be met. A decade of research and development has resulted in a number of creep- resistant magnesium alloys that are potential candidates for elevated-temperature automotive applications. These alloys are mostly based on rare-earth and alkaline earth element additions to magnesium. This paper gives an overview of the various magnesium alloy systems for use in elevated-temperature applications.

  4. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    temperatures and pressures. Aqueous potassium hydroxide immobilized electrolyte in porous SrTiO3 was used in those cells. Electrolysis cells with metal foam based gas diffusion electrodes and the immobilized electrolyte were successfully demonstrated at temperatures up to 250 °C and 40 bar. Different electro-catalysts...... were tested in order to reduce the oxygen and hydrogen overpotentials. Current densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without using expensive noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2...... against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1...

  5. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos.

    Science.gov (United States)

    Sun, Bao-Jun; Li, Teng; Gao, Jing; Ma, Liang; Du, Wei-Guo

    2015-03-09

    Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development.

  6. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  7. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  8. Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding

    Science.gov (United States)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Qiao, Shi-Jie; Zhai, Yong-Jie; Wang, Ming-Di; Chen, Yao; Xu, Dong

    2016-04-01

    Ni60-hBN composite coatings with varying hBN content were prepared on Ti6Al4V substrates by laser cladding. The composite coatings with no cracks and few pores are bonded metallurgically with the substrates. The phase composition and microstructure of the composite coatings were investigated. The tribological properties of the composite coatings were evaluated under dry sliding wear test conditions at 20 °C, 300 °C and 600 °C, respectively. The microhardness gradually increased from the bottom to the top of the coating and increased with increasing of hBN content. The laser clad Ni60-10%hBN coating exhibits excellent tribological behavior at high temperatures (300 °C and 600 °C).

  9. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  10. Hot Plate Method with Two Simultaneous Temperature Measurements for Thermal Characterization of Building Materials

    Science.gov (United States)

    Osséni, Sibiath O. G.; Ahouannou, Clément; Sanya, Emile A.; Jannot, Yves

    2017-07-01

    This paper presents a study of the hot plate method with two simultaneous temperature measurements, on the heated and unheated faces of a sample to characterize. The thermal properties of polyvinyl chloride, plaster and laterite were considered to be a representative range of building materials. A 1D quadrupolar model was developed to represent the temperature evolution on the two faces over time. Three-dimensional numerical modeling of a quarter of the testing device with COMSOL software allowed defining the domain of the 1D hypothesis validity. The analysis of estimation possibilities of materials' thermal characteristics, with the developed method, revealed that thermal effusivity can be accurately estimated by using the temperature of the heated face at the beginning of heating. We showed that the simultaneous use of two temperatures enables the estimation of the thermal conductivity with a greater accuracy and over a shorter time interval than using the temperature of the heated face alone. We also demonstrated that under certain conditions (samples with a high ratio of thickness to width) the method with two temperature measurements enabled the estimation of the thermal effusivity and conductivity, while the method with one temperature allowed only the thermal effusivity to be estimated, because of 3D effects. This conclusion was confirmed by experimental results obtained with a mortar sample.

  11. Maintenance in Service of High Temperature Parts

    Science.gov (United States)

    1982-01-01

    program activities. io4 6-1 DEFECTS AND THEIR EFFECT ON THE BEHAVIOUR OF GAS TIURBNE DISCS Robert H Jeal Head of Materials Engineering Rolls-Royce Limited...temperature sulphidatien and hot forrosal. m 5.• ACKNOWLEDGEMENT The author wishes to thank N. Swindells of the University of Livernool for his efforts in

  12. Micromechanics of high temperature hydrogen attack

    NARCIS (Netherlands)

    Schlögl, Sabine M.; Giessen, Erik van der

    1999-01-01

    Hydrogen attack is a material degradation process that occurs at elevated temperatures in hydrogen-rich environments, such as found in petro-chemical installations. Weldments in components such as reactor vessels are particularly susceptible to hydrogen attack. This paper discusses a multi-scale

  13. Improving the high performance concrete (HPC behaviour in high temperatures

    Directory of Open Access Journals (Sweden)

    Cattelan Antocheves De Lima, R.

    2003-12-01

    Full Text Available High performance concrete (HPC is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.

    El hormigón de alta resistencia (HAR es un material de gran interés para la comunidad científica y técnica, debido a las claras ventajas obtenidas en término de resistencia mecánica y durabilidad. A causa de estas características, el HAR, en sus diversas formas, en algunas aplicaciones está reemplazando gradualmente al hormigón de resistencia normal, especialmente en estructuras expuestas a ambientes severos. Sin embargo, la microestructura muy densa y la baja permeabilidad t

  14. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  15. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  16. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  17. Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns

    Directory of Open Access Journals (Sweden)

    Enrique Ángel Rodríguez Jara

    2017-08-01

    Full Text Available As microclimate modifiers, courtyards may be a good passive strategy for enhancing thermal comfort and reducing the energy demands of buildings. Thus, it is necessary to be able to quantify their tempering effect in dominant summer climates. This is frequently done using calculation methods based on CFD, but these have the drawback of their high computational cost and complexity, so their use is limited to advanced users with a high level of knowledge. Thus, an alternative is required based on a simplified method that can explain and predict the air temperature drop in courtyards. This would be extremely useful for professionals looking for the optimal design of this kind of space through energy assessment programs integrating these methods. This study proposes a simplified method of characterization that aims to identify the functional dependencies of the decrease in air temperatures in courtyards, and so to predict the air temperature inside them from that outside, if available. From the results of several experimental campaigns, three variables have been identified that characterize the decrease in the air temperature in courtyards, all of which depend on the confinement factor of the courtyard. Finally, the proposed predictive method was validated by means of an additional monitoring campaign. The results show a good fit of the calculated values to the measured ones, R2 being equal to 0.98.

  18. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    . To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing...... during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed...... with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm....

  19. Probing thermodynamic fluctuations in high temperature superconductors

    Science.gov (United States)

    Vidal, Felix; Veira, J. A.; Maza, J.; Miguélez, F.; Morán, E.; Alario, M. A.

    1988-04-01

    We probe thermodynamic fluctuations in HTSC by measuring the excess electrical conductivity, Δσ, abovr T c in single-phase (within 4%) Ba 2LnCu 3O 7-δ compounds, with LnY, Ho and Sm. As expected, the measured relative effect, Δσ / σ (300 K), is much more important in HTSC than for low-temperature superconductors (at least one order of magnitude). In the reduced temperature region -5=-0.47 ± 0.06. This result confirms an universal critical behaviour of Δσ in HTSC, and the value of agrees with that predicted by the Aslamazov-Larkin (AL) theory for three-dimensional BCS superconductivity. However, A shows a normal conductivity dependence which is not accounted for by the AL theory.

  20. High Resolution Sensor for Nuclear Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  1. Double Bag VARTM for High Temperature Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cost and size are limiting factors in efforts to produce high strength, high stiffness, and high temperature composite parts. To address these issues, new processes...

  2. Confinement Studies in High Temperature Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Mclean, H S; Wood, R D; Casper, T A; Cohen, B I; Hooper, E B; LoDestro, L L; Pearlstein, L D; Romero-Talamas, C

    2006-10-23

    Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a completely self-organized toroidal plasma. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Addition of a new capacitor bank has produced 60% higher magnetic fields and almost tripled the pulse length to 11ms. For plasmas with T{sub e} > 300eV, it becomes feasible to use modest (1.8MW) neutral beam injection (NBI) heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX so that we can simulate the effect of adding NBI; initial results predict that such heating can raise the electron temperature and total plasma pressure in the core by a factor of two.

  3. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  4. Characterization of Al-Mg Alloy Aged at Low Temperatures

    Science.gov (United States)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; Golumbfskie, William; Sundberg, Erik; Free, Michael L.

    2017-04-01

    Long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier-Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundary of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.

  5. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  6. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  7. Geomechaical Behavior of Shale Rocks Under High Pressure and Temperature

    Science.gov (United States)

    Villamor Lora, R.; Ghazanfari, E.

    2014-12-01

    The mechanical properties of shale are demanding parameters for a number of engineering and geomechanical purposes. Borehole stability modeling, geophysics, shale oil and shale gas reservoirs, and underground storage of CO2 in shale formations are some of these potential applications to name a few. The growing interest in these reservoirs, as a source for hydrocarbons production, has resulted in an increasing demand for fundamental rock property data. These rocks are known to be non-linear materials. There are many factors, including induced cracks and their orientation, partial saturation, material heterogeneity and anisotropy, plasticity, strain rate, and temperature that may have an impact on the geomechanical behaviour of these shales.Experimental results and theoretical considerations have shown that the elastic moduli are not single-value, well-defined parameters for a given rock. Finding suitable values for these parameters is of vital importance in many geomechanical applications. In this study, shale heterogeneity and its geomechanical properties are explored through an extensive laboratory experimental program. A series of hydrostatic and triaxial tests were performed in order to evaluate the elasticity, viscoplasticity, yielding and failure response of Marcellus shale samples as a function of pressure and temperature. Additional characterization includes mineralogy, porosity, and permeability measurements. The shale samples were taken from a Marcellus outcrop at State Game Lands 252, located in Lycoming and Union counties, Allenwood, Pennsylvania. Laboratory experiments have shown that creep behaviour is highly sensitive to temperature. Furthermore, the non-linear nature of these rocks reveals interesting behaviour of the elastic moduli highly dependent on stress history of the rock. Results from cyclic triaxial tests point out the different behaviour between 1st-loading and unloading-reloading cycles. Experimental results of these Marcellus shales are

  8. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    We have presented a model of evaluating the pseudogap temperature for high temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions. The pseudogap temperature T ∗ is found to depend on dimension and is ...

  9. Predicting High Temperature Dislocation Physics in HCP Crystal Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Abigail [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carpenter, John S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-09

    This report applies models and experiments to answer key questions about the way materials deform; specifics regarding phase field dislocations dynamics; as well as high temperature rolling experiments.

  10. Gallium Oxide Nanostructures for High Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  11. High temperature lithium cells with solid polymer electrolytes

    Science.gov (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  12. Influence of oxidation on the high-temperature mechanical properties of zirconia/nickel cermets

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rodriguez, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain)]. E-mail: amr@us.es; Bravo-Leon, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain); Richter, G. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Ruehle, M. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Dominguez-Rodriguez, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain); Jimenez-Melendo, M. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain)

    2006-06-15

    influence of an oxidizing atmosphere on the high-temperature plasticity of zirconia/nickel cermets has been studied by conducting creep tests in air. The resulting microstructure has been characterized by scanning, conventional and high-resolution electron microscopy. Despite the large microstructural changes, the composites do not exhibit mechanical degradation.

  13. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  14. Spectroscopic diagnostics of high temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  15. High Temperature Processable Flexible Polymer Films

    Science.gov (United States)

    Sundar, D. Shanmuga; Raja, A. Sivanantha; Sanjeeviraja, C.; Jeyakumar, D.

    Recent developments in the field of flexible electronics motivated the researchers to start working in verdict of new flexible substrate for replacing the existing rigid glass and flexible plastics. Flexible substrates offer significant rewards in terms of being able to fabricate flexible electronic devices that are robust, thinner, conformable, lighter and can be rolled away when needed. In this work, a new flexible and transparent substrate with the help of organic materials such as Polydimethylsiloxane (PDMS) and tetra ethoxy orthosilicate (TEOS) is synthesized. Transmittance of about 90-95% is acquired in the visible region (400-700nm) and the synthesized substrate shows better thermal characteristics and withstands temperature up to 200∘C without any significant degradation. Characteristics such as transmittance (T), absorption (A), reflectance (R), refractive index (n) and extinction coefficient (k) are also reported.

  16. High Temperature Superconductivity in Cuprates: a model

    CERN Document Server

    Silva, P R

    2010-01-01

    A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permitti...

  17. Study of High Temperature Insulation Materials

    Directory of Open Access Journals (Sweden)

    Vaclav Mentlik

    2004-01-01

    Full Text Available One of current objectives of the electro insulating technology is the development of the material for extreme conditions. There is a need to operate some devices in extreme temperatures, for example the propulsion of the nuclear fuel bars. In these cases there is necessary to provide not just insulating property, but also the thermal endurance with the required durability of the insulating materials. Critical is the determination of the limit stress for the irreversible structure modification with relation to material property changes. For this purpose there is necessary to conduct lot of test on chosen materials to determine the limits mentioned above. Content of this article is the definition of diagnostic mode, including the definition of the exposure factors, definitions of the diagnostic system for data acquisition and first result of examinations.

  18. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas

    2014-01-01

    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  19. High-Temperature Coatings Offer Energy Savings

    Science.gov (United States)

    2012-01-01

    The U.S. X-Plane Program included the first-of-its-kind research in aerodynamics and astronautics with experimental vehicles, including the first aircraft to break the sound barrier; the first aircraft to fly in excess of 100,000, then 200,000, and then 300,000 feet; and the first aircraft to fly at three, four, five, and then six times the speed of sound. During the 1990s, NASA started developing a new thermal protection material to test on the X-33 and X-34 supersonic aircraft. The X-33 was intended to demonstrate the technologies needed for a new reusable launch vehicle and was projected to reach an altitude of approximately 50 miles and speeds of more than Mach 11. The X-34, a small, reusable technology demonstrator for a launch vehicle, was intended to reach an altitude of 250,000 feet and fly at speeds of Mach 8. As a result of its research and development efforts, NASA s Ames Research Center invented the Protective Ceramic Coating Material (PCCM). Applied to a surface, the thin, lightweight coating could protect the material underneath from extreme temperatures. The capability of the technology came from its emissivity, which radiated heat away from the surface it covered, thereby decreasing the amount of heat transferred to the underlying material. PCCM not only increased the capability of materials to withstand higher temperatures, it also exhibited impressive thermal shock, vibration, and acoustic performance. In addition, it proved to be resistant to abrasion and mechanical damage and was also environmentally safe, due to it being water-based and containing no solvents. Even though funding for the X-33 and X-34 ended in 2001, PCCM continued on a path of innovation.

  20. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael Swanson; Daniel Laudal

    2008-03-31

    . Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  1. Photochemistry at high temperatures - potential of ZnO as a high temperature photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, M.; Beaud, P.; Kamber, I. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Direct conversion of solar radiation into useful, storeable and transportable chemical products is the primary goal of solar chemistry. In this paper we discuss some fundamental aspects of photochemistry at elevated temperatures. We show that luminescence can serve as an indicator of the potential use of a system as a photoconverter. As an example we present experimental data on the chemical potential and on the lifetime of the excited states of ZnO. The low luminescence quantum yield together with a lifetime of about 200 ps indicate that an efficient photochemical conversion on ZnO is highly improbable. We believe this to be a general feature of chemical systems based on a semiconductor photocatalyst, in particular of photoreactions at a solid/gas interface. (author) 3 figs., 6 refs

  2. High Temperature Superconductor Resonator Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a well-established need for more sensitive detectors in the 10 - 200 um wavelength range with high detectivity, D*>1010 cm-Hz1/2/W to increase the...

  3. Dynamic mechanical response and a constitutive model of Fe-based high temperature alloy at high temperatures and strain rates.

    Science.gov (United States)

    Su, Xiang; Wang, Gang; Li, Jianfeng; Rong, Yiming

    2016-01-01

    The effects of strain rate and temperature on the dynamic behavior of Fe-based high temperature alloy was studied. The strain rates were 0.001-12,000 s(-1), at temperatures ranging from room temperature to 800 °C. A phenomenological constitutive model (Power-Law constitutive model) was proposed considering adiabatic temperature rise and accurate material thermal physical properties. During which, the effects of the specific heat capacity on the adiabatic temperature rise was studied. The constitutive model was verified to be accurate by comparison between predicted and experimental results.

  4. Extruded Self-Lubricating Solid For High-Temperature Use

    Science.gov (United States)

    Sliney, H. E.; Waters, W. J.; Soltis, R. F.; Bemis, K.

    1996-01-01

    "EX-212" denotes high-density extruded form of composite solid material self-lubricating over wide range of temperatures. Properties equal or exceed those of powder-metallurgy version of this material. Developed for use in advanced engines at high temperatures at which ordinary lubricants destroyed.

  5. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  6. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  7. InGaN High Temperature Photovoltaic Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  8. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins

    KAUST Repository

    Diab, Amer El Hajj

    2014-12-01

    We report the temperature dependence of the core electrical parameters and transport characteristics of a flexible version of fin field-effect transistor (FinFET) on silicon-on-insulator (SOI) with sub-20-nm wide fins and high-k/metal gate-stacks. For the first time, we characterize them from room to high temperature (150 °C) to show the impact of temperature variation on drain current, gate leakage current, and transconductance. Variation of extracted parameters, such as low-field mobility, subthreshold swing, threshold voltage, and ON-OFF current characteristics, is reported too. Direct comparison is made to a rigid version of the SOI FinFETs. The mobility degradation with temperature is mainly caused by phonon scattering mechanism. The overall excellent devices performance at high temperature after release is outlined proving the suitability of truly high-performance flexible inorganic electronics with such advanced architecture.

  9. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  10. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  11. Grain boundaries in high temperature superconductors

    NARCIS (Netherlands)

    Hilgenkamp, Johannes W.M.; Mannhart, J.

    2002-01-01

    Since the first days of high-Tc superconductivity, the materials science and the physics of grain boundaries in superconducting compounds have developed into fascinating fields of research. Unique electronic properties, different from those of the grain boundaries in conventional metallic

  12. Synthesis and characterization of pure and (Ce, Zr, Ag) doped mesoporous CuO-Fe{sub 2}O{sub 3} as highly efficient and stable nanocatalysts for CO oxidation at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Said, Abd El-Aziz A., E-mail: aasaid55@yahoo.com; Abd El-Wahab, Mohamed M.M.; Goda, Mohamed N.

    2016-12-30

    Highlights: • Highly active and stable Fe-Cu mixed oxides were prepared by co-precipitation method. • Addition of CuO to Fe{sub 2}O{sub 3} increases the chemisorbed oxygen, the conductivity and S{sub BET}. • Activation energy of CO oxidation significantly decreased via doping with foreign ions. - Abstract: A series of single and mixed oxide nanocatalysts of mesoporous CuO-Fe{sub 2}O{sub 3} with different CuO contents (1–50 wt.%) were prepared by a co-precipitation method and further promoted by trace amounts of CeO{sub 2}, ZrO{sub 2} and Ag{sub 2}O (0.1–0.5 wt.%) dopants. The original and calcined catalysts were characterized by TG, DTA, XRD, TEM, VSM, N{sub 2} sorption analysis, surface chemisorbed oxygen and DC electrical conductivity measurements. The catalytic performance of these nanocatalysts toward CO oxidation was studied using a conventional fixed bed flow type reactor. The results revealed that the addition of 1–20 wt.% CuO to Fe{sub 2}O{sub 3} monotonically increases the specific surface area, the amount of surface chemisorbed oxygen, electrical conductivity and catalytic activity of the nanocatalysts. In addition, the catalytic activity indicated that Fe-Cu mixed oxide nanocatalyst promoted with the three dopants (CeO{sub 2}, ZrO{sub 2} and Ag{sub 2}O) exhibited the highest catalytic activity with a total conversion of CO into CO{sub 2} at 100 °C. Moreover, the activation energy of CO oxidation decreased from 38.4 to 23.1 kJmol{sup −1} upon treating the catalyst containing 20 wt.% CuO with the three dopants. Finally the effects of various operational parameters were also studied.

  13. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    Science.gov (United States)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and

  14. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  15. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  16. Distributed temperature sensing (DTS) to characterize the performance of producing oil wells

    Science.gov (United States)

    Williams, Glynn R.; Brown, George; Hawthorne, William; Hartog, Arthur H.; Waite, Peter C.

    2000-12-01

    This paper describes how distributed temperature sensing (DTS) based on Raman Scattering is being used as an in-situ logging technique in oil and gas wells. Traditional methods of gathering production data to characterize oil and gas well performance have relied on the introduction of electric logging tools into the well. This can be an expensive process in highly deviated or horizontal wells and usually results in the well being shut-in with the loss or deferment of hydrocarbon production. More recently permanently placed pressure sensors based on CMOS technology have been used, but these systems do not easily deliver distributed measurements and reliability has been found to be poor.

  17. Theoretical spectroscopic characterization at low temperatures of methyl hydroperoxide and three S-analogs

    Energy Technology Data Exchange (ETDEWEB)

    Dalbouha, S., E-mail: samiradalbouha@gmail.com; Senent, M. L., E-mail: senent@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006 (Spain); Komiha, N., E-mail: komiha@fsr.ac.ma [LS3ME-Équipe de Chimie Théorique et Modélisation, Faculté des Sciences, Université Mohamed V—Agdal, Rabat (Morocco)

    2015-02-21

    The low temperature spectra of the detectable species methyl hydroperoxide (CH{sub 3}OOH) and three sulfur analogs, the two isomers of methanesulfenic acid (CH{sub 3}SOH and CH{sub 3}OSH) and the methyl hydrogen disulfide (CH{sub 3}SSH), are predicted from highly correlated ab initio methods (CCSD(T) and CCSD(T)-F12). Rotational parameters, anharmonic frequencies, torsional energy barriers, torsional energy levels, and their splittings are provided. Our computed parameters should help for the characterization and the identification of these organic compounds in laboratory and in the interstellar medium.

  18. Analysis of the high-temperature particulate collection problem

    Energy Technology Data Exchange (ETDEWEB)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  19. High Temperature Protonic Conductors by Melt Growth

    Science.gov (United States)

    2006-11-21

    electrolyzers, solid state fuel cells, gas separation membranes, moisture sensors and high-density energy storage applications, among others (1-5...A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  20. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Science.gov (United States)

    Otte, Adam Nepomuk; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm2 at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  1. High Temperature Antenna Measurement System with GSG or GS Contact Probing Capability

    Science.gov (United States)

    Jordan, Jennifer L.; Scardelletti, Maximilian C.; Ponchak, George E.

    2009-01-01

    Applications that require data transmission at high temperatures are becoming more common due to growing commercial and military needs. Antennas are an indispensable part of these systems and the ability to characterize them at elevated temperatures is quite complicated with little or no information being reported on the subject [1]. This paper describes a measurement system that can characterize planar antennas up 600 C with ground-signal-ground (GSG) or ground-signal (GS) probe contacts. The return loss and radiation patterns of a folded slot antenna (FSA), designed to operate at 5 GHz (no ground plane on back side) and fabricated on an alumina substrate, are presented at room temperature (RT) and 250 C [2]. All measurements were made with Agilent's Precision Network Analyzer (PNA) E8361. The return loss and radiation patterns were also measured on a Styrofoam chuck to illustrate the effect the high temperature measurement system has on the patterns.

  2. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  3. High skin temperature and hypohydration impair aerobic performance.

    Science.gov (United States)

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  4. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  5. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  6. Structural and photocatalytic characterization of BaFe2O4 obtained at low temperatures

    Directory of Open Access Journals (Sweden)

    Silvana Da Dalt

    2011-12-01

    Full Text Available Barium monoferrite BaFe2O4 classified as permanent magnet stands out among other ceramic magnets due to its high chemical stability, corrosion resistance and low production cost. In addition, experiments conducted on photocatalytic degradation of methyl orange and UV transmittance by spectrophotometry have shown that this material has photocatalytic properties. The spinel ferrite is of importance in many technological areas such as computing, communications and security. Several techniques for synthesis have been studied to optimize the properties of this material. The synthesis of BaFe2O4 by conventional processes often occurs at temperatures above 1000 ºC. In this work, we obtained the phase BaFe2O4 at low temperatures (600 ºC from the combustion reaction using nitrates and maleic anhydride as metal complexing agent. Techniques of X-ray diffraction, specific surface area, thermogravimetry analysis and photocatalytic analysis were employed to characterize the products obtained.

  7. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures

    OpenAIRE

    Ke-cheng He; Rong-xin Guo; Qian-min Ma; Feng Yan; Zhi-wei Lin; Yan-Lin Sun

    2016-01-01

    In order to improve the spalling resistance of lightweight aggregate concrete at high temperature, two types of modified materials were used to modify clay ceramsite lightweight aggregates by adopting the surface coating modification method. Spalling of the concrete specimens manufactured by using the modified aggregates was observed during a temperature elevation. Mass loss and residual axial compressive strength of the modified concrete specimens after exposure to elevated temperatures were...

  8. Test plans of the high temperature test operation at HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakagawa, Shigeaki; Takada, Eiji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    HTTR plans a high temperature test operation as the fifth step of the rise-to-power tests to achieve a reactor outlet coolant temperature of 950 degrees centigrade in the 2003 fiscal year. Since HTTR is the first HTGR in Japan which uses coated particle fuel as its fuel and helium gas as its coolant, it is necessary that the plan of the high temperature test operation is based on the previous rise-to-power tests with a thermal power of 30 MW and a reactor outlet coolant temperature at 850 degrees centigrade. During the high temperature test operation, reactor characteristics, reactor performances and reactor operations are confirmed for the safety and stability of operations. This report describes the evaluation result of the safety confirmations of the fuel, the control rods and the intermediate heat exchanger for the high temperature test operation. Also, problems which were identified during the previous operations are shown with their solution methods. Additionally, there is a discussion on the contents of the high temperature test operation. As a result of this study, it is shown that the HTTR can safely achieve a thermal power of 30 MW with the reactor outlet coolant temperature at 950 degrees centigrade. (author)

  9. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  10. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1980-01-01

    A cell for pulse radiolytic measurements up to temperatures of 320°C and pressures of 14 MPa is constructed. The activation energy of the reaction OH + Cu2+ is determined to 13.3 kJ × mol−1 (3.2 kcal × mol−1). A preliminary study of the reaction e−aq + e−aq yields an activation energy of 22 k...

  11. Characterizing SPDY over High Latency Satellite Channels

    Directory of Open Access Journals (Sweden)

    Luca Caviglione

    2014-12-01

    Full Text Available The increasing complexity ofWeb contents and the growing diffusion of mobile terminals, which use wireless and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator, and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of Performance Enhancing Proxies usually deployed to isolate satellite trunks.

  12. Technology characterization: high Btu gas transmission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    A technology characterization for high Btu gas transmission was prepared. The scope of work was confined to a literature review. The work was divided into four specific areas as follows: (1) a summary of pertinent information from the environmental report of the Great Lakes Gas Company for a 365-mile high pressure pipeline serving American Natural Gas Company's proposed lignite gasification plant in North Dakota; (2) statistical information concerning the operation of the existing United States natural gas transmission pipeline network; (3) a summary of pertinent information from the environmental impact statement of the United States Department of Interior for the proposed 1,619-mile Northern Border Pipeline from Morgan, Montana to Delmont, Pennsylvania; and (4) a summary of pertinent information from the environmental impact statement of the Federal Power Commission for a proposed El Paso Natural Gas Company 418-mile pipeline within the State of Texas which was to be constructed in response to the displacement of natural gas by Liquefied Natural Gas (LNG) importation on the East Coast.

  13. Proteomics of Rice Grain under High Temperature Stress

    Directory of Open Access Journals (Sweden)

    Toshiaki eMitsui

    2013-03-01

    Full Text Available Recent proteomic analyses revealed dynamic changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature stress in rice ripening period causes damaged (chalky grains which have loosely packed round shape starch granules. The high temperature stress response on protein expression is complicated, and the molecular mechanism of the chalking of grain is obscure yet. Here, the current state on the proteomics research of rice grain grown under high temperature stress is briefly overviewed.

  14. Processing of extraterrestrial materials by high temperature vacuum vaporization

    Science.gov (United States)

    Grimley, R. T.; Lipschutz, M. E.

    1983-01-01

    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  15. Solar Power for Near Sun, High-Temperature Missions

    Science.gov (United States)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  16. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  17. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  18. Small Specimen Data from a High Temperature HFIR Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; McDuffee, Joel Lee [ORNL; Thoms, Kenneth R [ORNL

    2014-01-01

    The HTV capsule is a High Flux Isotope Reactor (HFIR) target-rod capsule designed to operate at very high temperatures. The graphite containing section of the capsule (in core) is approximately 18 inches (457.2 mm) long and is separated into eight temperature zones. The specimen diameters within each zone are set to achieve the desired gas gap and hence design temperature (900 C, 1200 C or 1500 C). The capsule has five zones containing 0.400 inch (10.16 mm) diameter specimens, two zones containing 0.350 inch (8.89 mm) diameter specimens and one zone containing 0.300 inch (7.62 mm) diameter specimens. The zones have been distributed within the experiment to optimize the gamma heating from the HFIR core as well as minimize the axial heat flow in the capsule. Consequently, there are two 900 C zones, three 1200 C zones, and three 1500 C zones within the HTV capsule. Each zone contains nine specimens 0.210 0.002 inches (5.334 mm) in length. The capsule will be irradiated to a peak dose of 3.17 displacements per atom. The HTV specimens include samples of the following graphite grades: SGL Carbon s NBG-17 and NBG-18, GrafTech s PCEA, Toyo Tanso s IG-110, Mersen s 2114 and the reference grade H-451 (SGL Carbon). As part of the pre-irradiation program the specimens were characterized using ASTM Standards C559 for bulk density, and ASTM C769 for approximate Young s modulus from the sonic velocity. The probe frequency used for the determination of time of flight of the ultrasonic signal was 2.25 MHz. Marked volume (specimen diameter) effects were noted for both bulk density (increased with increasing specimen volume or diameter) and Dynamic Young s modulus (decreased with increasing specimen volume or diameter). These trends are extended by adding the property vs. diameter data for unirradiated AGC-1 creep specimens (nominally 12.5 mm-diameter x 25.4 mm-length). The relatively large reduction in Dynamic Young s Modulus was surprising given the trend for increasing density

  19. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  20. Characterization of Temperature Profiles in Skin and Transdermal Delivery System When Exposed to Temperature Gradients In Vivo and In Vitro.

    Science.gov (United States)

    Zhang, Qian; Murawsky, Michael; LaCount, Terri; Hao, Jinsong; Kasting, Gerald B; Newman, Bryan; Ghosh, Priyanka; Raney, Sam G; Li, S Kevin

    2017-07-01

    Performance of a transdermal delivery system (TDS) can be affected by exposure to elevated temperature, which can lead to unintended safety issues. This study investigated TDS and skin temperatures and their relationship in vivo, characterized the effective thermal resistance of skin, and identified the in vitro diffusion cell conditions that would correlate with in vivo observations. Experiments were performed in humans and in Franz diffusion cells with human cadaver skin to record skin and TDS temperatures at room temperature and with exposure to a heat flux. Skin temperatures were regulated with two methods: a heating lamp in vivo and in vitro, or thermostatic control of the receiver chamber in vitro. In vivo basal skin temperatures beneath TDS at different anatomical sites were not statistically different. The maximum tolerable skin surface temperature was approximately 42-43°C in vivo. The temperature difference between skin surface and TDS surface increased with increasing temperature, or with increasing TDS thermal resistance in vivo and in vitro. Based on the effective thermal resistance of skin in vivo and in vitro, the heating lamp method is an adequate in vitro method. However, the in vitro-in vivo correlation of temperature could be affected by the thermal boundary layer in the receiver chamber.