WorldWideScience

Sample records for high telomerase expression

  1. Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages

    Science.gov (United States)

    Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis

    2010-01-01

    Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948

  2. The differentiation status of primary gonadal germ cell tumors correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase

    International Nuclear Information System (INIS)

    Schrader, Mark; Burger, Angelika M; Müller, Markus; Krause, Hans; Straub, Bernd; Schostak, Martin; Schulze, Wolfgang; Lauke, Heidrun; Miller, Kurt

    2002-01-01

    The activity of the ribonucleoprotein enzyme telomerase is detectable in germ, stem and tumor cells. One major component of telomerase is human telomerase reverse transcriptase (hTERT), which encodes the catalytic subunit of telomerase. Here we investigate the correlation of telomerase activity and hTERT gene expression and the differentiation status of primary testicular germ cell tumors (TGCT). Telomerase activity (TA) was detected by a quantitative telomerase PCR ELISA, and hTERT mRNA expression was quantified by online RT-PCR in 42 primary testicular germ cell tumors. The control group consisted of benign testicular biopsies from infertile patients. High levels of telomerase activity and hTERT expression were detected in all examined undifferentiated TGCTs and in the benign testicular tissue specimens with germ cell content. In contrast, differentiated teratomas and testicular control tissue without germ cells (Sertoli-cell-only syndrome) showed no telomerase activity and only minimal hTERT expression. These findings demonstrate an inverse relationship between the level of telomerase activity and hTERT mRNA expression and the differentiation state of germ cell tumors. Quantification of telomerase activity and hTERT mRNA expression enables a new molecular-diagnostic subclassification of germ cell tumors that describes their proliferation potential and differentiation status

  3. The differentiation status of primary gonadal germ cell tumors correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase

    Directory of Open Access Journals (Sweden)

    Schulze Wolfgang

    2002-11-01

    Full Text Available Abstract Background The activity of the ribonucleoprotein enzyme telomerase is detectable in germ, stem and tumor cells. One major component of telomerase is human telomerase reverse transcriptase (hTERT, which encodes the catalytic subunit of telomerase. Here we investigate the correlation of telomerase activity and hTERT gene expression and the differentiation status of primary testicular germ cell tumors (TGCT. Methods Telomerase activity (TA was detected by a quantitative telomerase PCR ELISA, and hTERT mRNA expression was quantified by online RT-PCR in 42 primary testicular germ cell tumors. The control group consisted of benign testicular biopsies from infertile patients. Results High levels of telomerase activity and hTERT expression were detected in all examined undifferentiated TGCTs and in the benign testicular tissue specimens with germ cell content. In contrast, differentiated teratomas and testicular control tissue without germ cells (Sertoli-cell-only syndrome showed no telomerase activity and only minimal hTERT expression. Conclusions These findings demonstrate an inverse relationship between the level of telomerase activity and hTERT mRNA expression and the differentiation state of germ cell tumors. Quantification of telomerase activity and hTERT mRNA expression enables a new molecular-diagnostic subclassification of germ cell tumors that describes their proliferation potential and differentiation status.

  4. Global gene expression response to telomerase in bovine adrenocortical cells

    International Nuclear Information System (INIS)

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H.

    2005-01-01

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state

  5. Correlation between telomerase activity and matrix metalloproteinases 2 expression in gastric cancer.

    Science.gov (United States)

    Wang, Gang; Wang, Wenling; Zhou, Jianjiang; Yang, Xiaofeng

    2013-01-01

    To investigate the relationship between telomerase activity (TA) and matrix metallo proteinases 2 (MMP-2) on malignant behavior and prognosis predictable value in gastric cancer. Telomerase activity and MMP-2 protein expressions were tested in 40 gastric surgical resected cancer samples and the clinicopathological data of enrolled patients were obtained to get correlation analysis results. The expression of telomerase was up-regulated with infiltrating depth, lymph node metastasis and stage (P correlated with infiltrating depth (P < 0.05). Combined detections of telomerase activity and MMP2 protein could identify patients at high risk in disease recurrence and prognosis more efficiently.

  6. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    Science.gov (United States)

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  7. Unique case of oligoastrocytoma with recurrence and grade progression: Exhibiting differential expression of high mobility group-A1 and human telomerase reverse transcriptase

    Science.gov (United States)

    Gandhi, Puneet; Khare, Richa; Niraj, Kavita; Garg, Nitin; Sorte, Sandeep K; Gulwani, Hanni

    2016-01-01

    Mixed gliomas, primarily oligoastrocytomas, account for about 5%-10% of all gliomas. Distinguishing oligoastrocytoma based on histological features alone has limitations in predicting the exact biological behavior, necessitating ancillary markers for greater specificity. In this case report, human telomerase reverse transcriptase (hTERT) and high mobility group-A1 (HMGA1); markers of proliferation and stemness, have been quantitatively analyzed in formalin-fixed paraffin-embedded tissue samples of a 34 years old patient with oligoastrocytoma. Customized florescence-based immunohistochemistry protocol with enhanced sensitivity and specificity is used in the study. The patient presented with a history of generalized seizures and his magnetic resonance imaging scans revealed infiltrative ill-defined mass lesion with calcified foci within the left frontal white matter, suggestive of glioma. He was surgically treated at our center for four consecutive clinical events. Histopathologically, the tumor was identified as oligoastrocytoma-grade II followed by two recurrence events and final progression to grade III. Overall survival of the patient without adjuvant therapy was more than 9 years. Glial fibrillary acidic protein, p53, Ki-67, nuclear atypia index, pre-operative neutrophil-lymphocyte ratio, are the other parameters assessed. Findings suggest that hTERT and HMGA1 are linked to tumor recurrence and progression. Established markers can assist in defining precise histopathological grade in conjuction with conventional markers in clinical setup. PMID:27672647

  8. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    International Nuclear Information System (INIS)

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis

  9. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  10. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method.

    Science.gov (United States)

    Li, Ying; Liu, Bangwei; Li, Xia; Wei, Qingli

    2010-07-15

    In the present study, an electrochemical method for highly sensitive detection of human telomerase activity was developed based on bio-barcode amplification assay. Telomerase was extracted from HeLa cells, then the extract was mixed with telomerase substrate (TS) primer to perform extension reaction. The extension product was hybridized with the capture DNA immobilized on the Au electrode and then reacted with the signal DNA on Au nanoparticles to form a sandwich hybridization mode. Electrochemical signals were generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to the DNA on Au nanoparticles via electrostatic interaction. This method can detect the telomerase activity from as little as 10 cultured cancer cells without the polymerase chain reaction (PCR) amplification of telomerase extension product. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. AZT as a telomerase inhibitor

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Armando, Romina G.; Alonso, Daniel F.

    2012-01-01

    Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.

  12. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  13. Radiation-induced progressive decreasing in the expression of reverse transcriptase gene of hEST2 and telomerase activity

    International Nuclear Information System (INIS)

    Zhu Hanneng; Chen Wenying; Xiong Sidong

    2000-01-01

    Telomerase is a ribonucleoprotein complex that adds heximeric repeats called telomeres to the growing ends of chromosomal DNA. Telomerase activity is present in a vast majority of tumors but is repressed in most normal tissues. Human telomerase catalytic subunit gene (hEST2) reverse transcriptase (RT) segment was cloned by PCR according to the sequence published in GeneBank. PCR was used to investigate the expression of the hEST2 RT segment in diverse tumors as well as in various normal tissues. Results indicated that hEST2 RT segment was detectable in tumor cells lines but not in normal cells and tissues. In order to identify the relationship between telomerase and the biological effect of radiation injury, HeLa cells, KB cells and A431 cells were employed to measure the change in telomerase activity after 60 Co-ray irradiation at RNA level and protein level. Quantitative PCR determined that expression of hEST2 RT segment that encodes seven motifs of the human telomeras decreased with increasing dosage of radiation. In addition, a PCR-based telomeric repeat amplification protocol was used to assay telomerase activity after exposure to radiation. The results strongly support the experiments we had made: Telomerase activity decreases with increasing dosage of radiation. We conclude that detection of the hEST2 RT segment by Northern blotting is a new method for detecting telomerase activity. Furthermore, radiation can cause a dose-dependent decrease in telomerase activity. The effect of radiation on telomerase is one possible reason for the death of cancer cells after irradiation. (author)

  14. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    Science.gov (United States)

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  15. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation

    DEFF Research Database (Denmark)

    Graakjaer, Jesper; Christensen, Rikke; Kolvraa, Steen

    2007-01-01

    were measured using Fluorescence In Situ Hybridization (Q-FISH). RESULTS: A telomere length pattern was found to exist in primary hMSC's as well as in hMSC-telo1. This pattern is similar to what was previously found in lymphocytes and fibroblasts. The cells were then exposed to a high dose of ionizing...... radiation. Irradiation caused profound changes in chromosome specific telomere lengths, effectively destroying the telomere length pattern. Following long term culturing after irradiation, a telomere length pattern was found to re-emerge. However, the new telomere length pattern did not resemble...

  16. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  17. Expression of telomerase reverse transcriptase in radiation-induced chronic human skin ulcer

    International Nuclear Information System (INIS)

    Zhao Po; Li Zhijun; Lu Yali; Zhong Mei; Gu Qingyang; Wang Dewen

    2001-01-01

    Objective: To investigate the expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TRT) and the possible relationship between the TRT and cancer transformation or poor healing in radiation-induced chronic ulcer of human skin. Methods: Rabbit antibody against human TRT and SP immunohistochemical method were used to detect TRT expression in 24 cases of formalin-fixed, paraffin-embed human skin chronic ulcer tissues induced by radiation, 5 cases of normal skin, 2 of burned skin, and 8 of carcinoma. Results: The positive rate for TRT was 58.3%(14/24) in chronic radiation ulcers, of which the strongly positive rate was 41.7%(10/24) and the weakly positive 16.7%(4/24), 0% in normal (0/5) and burned skin (0/2), and 100% in carcinoma (8/8). The strongly positive expression of TRT was observed almost always in the cytoplasm and nucleus of squamous epithelial cells of proliferative epidermis but the negative and partly weakly positive expression in the smooth muscles, endothelia of small blood vessels and capillaries, and fibroblasts. Chronic inflammtory cells, plasmacytes and lymphocytes also showed weakly positive for TRT. Conclusion: TRT expression could be involved in the malignant transformation of chronic radiation ulcer into squamous carcinoma, and in the poor healing caused by sclerosis of small blood vessels and lack of granulation tissue consisting of capillaries and fibroblasts

  18. Effects of Lifestyle Modification on Telomerase Gene Expression in Hypertensive Patients: A Pilot Trial of Stress Reduction and Health Education Programs in African Americans.

    Directory of Open Access Journals (Sweden)

    Shanthi Duraimani

    Full Text Available African Americans suffer from disproportionately high rates of hypertension and cardiovascular disease. Psychosocial stress, lifestyle and telomere dysfunction contribute to the pathogenesis of hypertension and cardiovascular disease. This study evaluated effects of stress reduction and lifestyle modification on blood pressure, telomerase gene expression and lifestyle factors in African Americans.Forty-eight African American men and women with stage I hypertension who participated in a larger randomized controlled trial volunteered for this substudy. These subjects participated in either stress reduction with the Transcendental Meditation technique and a basic health education course (SR or an extensive health education program (EHE for 16 weeks. Primary outcomes were telomerase gene expression (hTERT and hTR and clinic blood pressure. Secondary outcomes included lifestyle-related factors. Data were analyzed for within-group and between-group changes.Both groups showed increases in the two measures of telomerase gene expression, hTR mRNA levels (SR: p< 0.001; EHE: p< 0.001 and hTERT mRNA levels (SR: p = 0.055; EHE: p< 0.002. However, no statistically significant between-group changes were observed. Both groups showed reductions in systolic BP. Adjusted changes were SR = -5.7 mm Hg, p< 0.01; EHE = -9.0 mm Hg, p < 0.001 with no statistically significant difference between group difference. There was a significant reduction in diastolic BP in the EHE group (-5.3 mm Hg, p< 0.001 but not in SR (-1.2 mm Hg, p = 0.42; the between-group difference was significant (p = 0.04. The EHE group showed a greater number of changes in lifestyle behaviors.In this pilot trial, both stress reduction (Transcendental Meditation technique plus health education and extensive health education groups demonstrated increased telomerase gene expression and reduced BP. The association between increased telomerase gene expression and reduced BP observed in this high

  19. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  20. Telomere 1 (POT1) gene expression and its association with telomerase activity in colorectal tumor samples with different pathological features.

    Science.gov (United States)

    Izgi, Ahu; Gunal, Armagan; Yalcin, Serap; Gunduz, Ufuk

    2014-09-01

    The ends of chromosoms, telomeres are bound with a number of proteins which protect and stabilize telomeres against degredation, end to end fusion and aberrant recombinations. Telomeric DNA is bound of two groups of proteins, which are double-stranded telomeric DNA bindings proteins, and single stranded telomeric binding proteins. Among telomere binding proteins, protections of telomere 1 protein is a single stranded telomere binding proteins and suggested to be a significant player for telomere elongation and has an association with an enzyme called as telomerase which is an intrinsic reverse transcriptase. Telomerase synthesizes hexameric telomeric repeats onto the chromosomes thereby compansating telomere loss in immortal cells, such as tumor cells, whereas telomeres are shorthened with each division in normal cells. PCR-based TRAP (telomeric repeat amplification protocol) assay is a very sensitive assay for the detection of enzymatic activity of telomerase even if a few numbers of cancerous cells are available. The association between telomerase activity and hPOT1 expression in colorectal cancer is still unclear. Protein extraction was performed from specimens of matched normal and colorectal cancer specimens. Protein concentrations were determined by Bradford assay. Optimized protein concentrations were used for TRAP Assay. TRAP products were seperated by vertical gel electrophoresis on 12.5% polyacrylamide gels and visualized by silver staining. Gene expression of hPOT1 was determined by qPCR analysis. The results demonstrated that all tumor tissues were telomerase positive whereas all corresponding normal tissue was telomerase negative. Among clinicopathological findings, telomerase activity was found to be associated with stage, histology, localization, distant metastasis and lymph node metastasis of tumor in the current study. Although all of the clinicopathological findings differed in the expression of hPOT1 compared to normal tissues, they did not

  1. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Tiantian

    2010-05-01

    Full Text Available Abstract Background Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT gene, a key component of the telomerase complex and its expression in gastric cancer. Results Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. Conclusions The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.

  2. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Simonsen, Janne Lytoft; Rosada, Cecilia; Serakinci, Nedime

    2002-01-01

    Human bone marrow stromal cells (hMSCs) were stably transduced by a retroviral vector containing the gene for the catalytic subunit of human telomerase (hTERT). Transduced cells (hMSC-TERTs) had telomerase activity, and the mean telomere length was increased as compared with that of control cells....... The transduced cells have now undergone more than 260 population doublings (PD) and continue to proliferate, whereas control cells underwent senescence-associated proliferation arrest after 26 PD. The cells maintained production of osteoblastic markers and differentiation potential during continuous subculturing......, did not form tumors, and had a normal karyotype. When implanted subcutaneously in immunodeficient mice, the transduced cells formed more bone than did normal cells. These results suggest that ectopic expression of telomerase in hMSCs prevents senescence-associated impairment of osteoblast functions....

  3. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2013-02-01

    Full Text Available Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentration of cyclodextrin-curcumin and free curcumin. Telomerase gene expression level in two groups was compared by Real-time PCR. Results: MTT assay demonstrated that β-cyclodextrin-curcumin enhanced curcumin delivery in T47D breast cancer cells. The level of telomerase gene expression in cells treated with cyclodextrin-curcumin was lower than that of cells treated with free curcumin (P=0.001. Conclusion: Results are suggesting that cyclodextrin-curcumin complex can be more effective than free curcumin in inhibition of telomerase expression.

  4. Telomerase activity in gastric cancer.

    Science.gov (United States)

    Hiyama, E; Yokoyama, T; Tatsumoto, N; Hiyama, K; Imamura, Y; Murakami, Y; Kodama, T; Piatyszek, M A; Shay, J W; Matsuura, Y

    1995-08-01

    Although many genetic alterations have been reported in gastric cancer, it is not known whether all gastric tumors are capable of indefinite proliferative potential, e.g., immortality. The expression of telomerase and stabilization of telomeres are concomitant with the attainment of immortality in tumor cells; thus, the measurement of telomerase activity in clinically obtained tumor samples may provide important information useful both as a diagnostic marker to detect immortal cancer cells in clinical materials and as a prognostic indicator of patient outcome. Telomerase activity was analyzed in 66 primary gastric cancers with the use of a PCR-based assay. The majority of tumors (85%) displayed telomerase activity, but telomerase was undetectable in 10 tumors (15%), 8 of which were early stage tumors. Most of the tumors with telomerase activity were large and of advanced stages, including metastases. Survival rate of patients of tumors with detectable telomerase activity was significantly shorter than that of those without telomerase activity. Alterations of telomere length (reduced/elongated terminal restriction fragments) were detected in 14 of 66 (21%) gastric cancers, and all 14 had telomerase activity. Cellular DNA contents revealed that all 22 aneuploid tumors had detectable telomerase activity. The present results indicate that telomerase activation may be required as a critical step in the multigenetic process of tumorigenesis, and that telomerase is frequently but not always activated as a late event in gastric cancer progression.

  5. When Telomerase Causes Telomere Loss.

    Science.gov (United States)

    Glousker, Galina; Lingner, Joachim

    2018-02-05

    Telomerase counteracts telomere shortening, preventing cellular senescence. Telomerase deficiency causes telomere syndromes because of premature telomere exhaustion in highly proliferative cells. Paradoxically, in a recent issue of Cell, Margalef et al. (2018) demonstrate that telomerase causes telomere loss in cells lacking the RTEL1 helicase, which is defective in Hoyeraal-Hreidarsson syndrome (HHS). Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  7. Modulation of Telomerase Activity in Cancer Cells by Dietary Compounds: A Review

    Directory of Open Access Journals (Sweden)

    Takahiro Eitsuka

    2018-02-01

    Full Text Available Telomerase is expressed in ~90% of human cancer cell lines and tumor specimens, whereas its enzymatic activity is not detectable in most human somatic cells, suggesting that telomerase represents a highly attractive target for selective cancer treatment. Accordingly, various classes of telomerase inhibitors have been screened and developed in recent years. We and other researchers have successfully found that some dietary compounds can modulate telomerase activity in cancer cells. Telomerase inhibitors derived from food are subdivided into two groups: one group directly blocks the enzymatic activity of telomerase (e.g., catechin and sulfoquinovosyldiacylglycerol, and the other downregulates the expression of human telomerase reverse transcriptase (hTERT, the catalytic subunit of human telomerase, via signal transduction pathways (e.g., retinoic acid and tocotrienol. In contrast, a few dietary components, including genistein and glycated lipid, induce cellular telomerase activity in several types of cancer cells, suggesting that they may be involved in tumor progression. This review summarizes the current knowledge about the effects of dietary factors on telomerase regulation in cancer cells and discusses their molecular mechanisms of action.

  8. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    OpenAIRE

    Nosratollah Zarghami; Abbas Rami; Fatemeh Kazemi-Lomedasht

    2013-01-01

    Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentrati...

  9. Identification of the Types Properties and Functional Characteristics of Telomerase Expressing Cells in Breast Cancer

    National Research Council Canada - National Science Library

    Hines, William

    2003-01-01

    ... biochemical and functional properties may be characterized. Through examining the role of telomerase in cancer, this project also fosters the education of the candidate through the interaction with several experts in breast cancer pathology, epidemiology, bio...

  10. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling

    Directory of Open Access Journals (Sweden)

    Frederik Otzen Bagger

    2016-03-01

    Full Text Available Acute myeloid leukemia (AML is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242. Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. Keywords: AML, Leukemia, Stem cells, Telomere, Telomerase

  11. Risk of progression of early cervical lesions is associated with integration and persistence of HPV-16 and expression of E6, Ki-67, and telomerase

    Directory of Open Access Journals (Sweden)

    Arianna Vega-Peña

    2013-01-01

    Full Text Available Background: Low-grade squamous intraepithelial lesions (LSIL are the earliest lesions of the uterine cervix, the persistence and integration of high-risk human papillomavirus (HR-HPV as type 16, which promotes the development of more aggressive lesions. Aim: To select more aggressive lesions with tendency to progress to invasive cervical cancer. Materials and Methods: A total of 75 cytological specimens in liquid base (Liqui-PREP were analyzed: 25 specimens were with no signs of SIL (NSIL and without HPV; 25 NSIL with HPV-16, and 25 with both LSIL and HPV-16. The expression of Ki-67, telomerase, and viral E6 was evaluated by immunocytochemistry; and the detection of viral DNA was done by polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLPs for genotyping or sequencing of HPV-16. The physical state of HPV-16 was evaluated by in situ hybridization with amplification with tyramide. Results: Of the total group, 58.6% had LSIL associated with persistence and of these 59.3% was associated with integrated state of HPV as intense expression of E6, Ki-67 (P = 0.013, P = 0.055 has except for the expression of telomerase present a non-significant association (P<0.341. Conclusions: Overexpression of E6 and Ki-67 is associated with the integration of HPV-16, favoring viral persistence, and increasing the risk of progression in women with NSIL and LSIL.

  12. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Raheleh Farahzadi

    Full Text Available The use of mesenchymal stem cells (MSCs for cell therapy and regenerative medicine has received widespread attention over the past few years, but their application can be complicated by factors such as reduction in proliferation potential, the senescent tendency of the MSCs upon expansion and their age-dependent decline in number and function. It was shown that all the mentioned features were accompanied by a reduction in telomerase activity and telomere shortening. Furthermore, the role of epigenetic changes in aging, especially changes in promoter methylation, was reported. In this study, MSCs were isolated from the adipose tissue with enzymatic digestion. In addition, immunocytochemistry staining and flow cytometric analysis were performed to investigate the cell-surface markers. In addition, alizarin red-S, sudan III, toluidine blue, and cresyl violet staining were performed to evaluate the multi-lineage differentiation of hADSCs. In order to improve the effective application of MSCs, these cells were treated with 1.5 × 10-8 and 2.99 × 10-10 M of ZnSO4 for 48 hours. The length of the absolute telomere, human telomerase reverse transcriptase (hTERT gene expression, telomerase activity, the investigation of methylation status of the hTERT gene promoter and the percentage of senescent cells were analyzed with quantitative real-time PCR, PCR-ELISA TRAP assay, methylation specific PCR (MSP, and beta-galactosidase (SA-β-gal staining, respectively. The results showed that the telomere length, the hTERT gene expression, and the telomerase activity had significantly increased. In addition, the percentage of senescent cells had significantly decreased and changes in the methylation status of the CpG islands in the hTERT promoter region under treatment with ZnSO4 were seen. In conclusion, it seems that ZnSO4 as a proper antioxidant could improve the aging-related features due to lengthening of the telomeres, increasing the telomerase gene expression

  13. Association of telomerase activity with radio- and chemosensitivity of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Willich Normann

    2010-07-01

    Full Text Available Abstract Background Telomerase activity compensates shortening of telomeres during cell division and enables cancer cells to escape senescent processes. It is also supposed, that telomerase is associated with radio- and chemoresistance. In the here described study we systematically investigated the influence of telomerase activity (TA and telomere length on the outcome of radio- and chemotherapy in neuroblastoma. Methods We studied the effects on dominant negative (DN mutant, wild type (WT of the telomerase catalytic unit (hTERT using neuroblastoma cell lines. The cells were irradiated with 60Co and treated with doxorubicin, etoposide, cisplatin and ifosfamide, respectively. Viability was determined by MTS/MTT-test and the GI50 was calculated. Telomere length was measured by southernblot analysis and TA by Trap-Assay. Results Compared to the hTERT expressing cells the dominant negative cells showed increased radiosensitivity with decreased telomere length. Independent of telomere length, telomerase negative cells are significantly more sensitive to irradiation. The effect of TA knock-down or overexpression on chemosensitivity were dependent on TA, the anticancer drug, and the chemosensitivity of the maternal cell line. Conclusions Our results supported the concept of telomerase inhibition as an antiproliferative treatment approach in neuroblastomas. Telomerase inhibition increases the outcome of radiotherapy while in combination with chemotherapy the outcome depends on drug- and cell line and can be additive/synergistic or antagonistic. High telomerase activity is one distinct cancer stem cell feature and the here described cellular constructs in combination with stem cell markers like CD133, Aldehyddehydrogenase-1 (ALDH-1 or Side population (SP may help to investigate the impact of telomerase activity on cancer stem cell survival under therapy.

  14. Telomerase in lung cancer diagnostics

    International Nuclear Information System (INIS)

    Kovkarova, E.; Stefanovski, T.; Dimov, A.; Naumovski, J.

    2003-01-01

    Background. Telomerase is a ribonucleoprotein that looks after the telomeric cap of the linear chromosomes maintaining its length. It is over expressed in tumour tissues, but not in normal somatic cells. Therefore the aim of this study was to determine the telomerase activity in lung cancer patients as novel marker for lung cancer detection evaluating the influence of tissue/cell obtaining technique. Material and methods. Using the TRAP (telomeric repeat amplification protocol), telomerase activity was determined in material obtained from bronchobiopsy (60 lung cancer patients compared with 20 controls) and washings from transthoracic fine needle aspiration biopsy performed in 10 patients with peripheral lung tumours. Results. Telomerase activity was detected in 75% of the lung cancer bronchobyopsies, and in 100% in transthoracic needle washings. Conclusions. Measurement of telomerase activity can contribute in fulfilling the diagnosis of lung masses and nodules suspected for lung cancer. (author)

  15. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study

    Science.gov (United States)

    Raghunandan, Bangalore Nagarajachar; Sanjai, Karpagaselvi; Kumaraswamy, Jayalakshmi; Papaiah, Lokesh; Pandey, Bhavna; Jyothi, Bellur MadhavaRao

    2016-01-01

    Background: Telomerase is an RNA-dependent DNA polymerase that synthesizes TTAGGG telomeric DNA sequences and almost universally provides the molecular basis for unlimited proliferative potential. The telomeres become shorter with each cycle of replication and reach a critical limit; most cells die or enter stage of replicative senescence. Telomere length maintenance by telomerase is required for all the cells that exhibit limitless replicative potential. It has been postulated that reactivation of telomerase expression is necessary for the continuous proliferation of neoplastic cells to attain immortality. Use of immunohistochemistry (IHC) is a useful, reliable method of localizing the human telomerase reverse transcriptase (hTERT) protein in tissue sections which permits cellular localization. Although there exists a lot of information on telomerase in oral cancer, little is known about their expression in oral epithelial dysplasia and their progression to oral squamous cell carcinoma (OSCC) compared to normal oral mucosa. This study addresses this lacuna. Aims: To compare the expression of hTERT protein in oral epithelial dysplasia and OSCC with normal oral mucosa by Immunohistochemical method. Subjects and Methods: In this preliminary study, IHC was used to detect the expression of hTERT protein in OSCC (n = 20), oral epithelial dysplasia (n = 21) and normal oral mucosa (n = 10). The tissue localization of immunostain, cellular localization of immunostain, nature of stain, intensity of stain, percentage of cells stained with hTERT protein were studied. A total number of 100 cells were counted in each slide. Statistical Analysis: All the data were analyzed using SPSS software version 16.0. The tissue localization, cellular localization of cytoplasmic/nuclear/both of hTERT stain, staining intensity was compared across the groups using Pearson's Chi-square test. The mean percentage of cells stained for oral epithelial dysplasia, OSCC and normal oral mucosa were

  16. DETECTION OF TELOMERASE ACTIVITY IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    Yang Wentao; Xu Liangzhong; Zhang Taiming; Zhu weiping; Li Xiaomei; Jin Aiping

    1998-01-01

    Objective:To investigate the significance of telomerase activity in breast carcinoma with its respect to axillary lymph node status. Methods: Telomerase activity was analyzed in 88 breast carcinomas and 16benign breast lesions, using polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assay. Results: Telomerase activity was detected in 75 (85%) of 88 breast carcinomas (including three breast carcinomas in situ which were all positive for telomerase activity), whereas in benign breast lesions analyzed only 2(12.5%) of 16 cases were positive for telomerase activity. The difference between the two groups was statistically significant (P<0.001). Besides,telomerase activity was expressed significantly higher in node-positive breast carcinoma (93%) than in nodenegative ones (77%) (P<0.05). Conclusion: Our results suggest that telomerase activation plays an important role during breast carcinoma development. It is possible that this enzyme may serve as an early indication of breast carcinoma.

  17. Progressive Increase in Telomerase Activity From Benign Melanocytic Conditions to Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Ruben D. Ramirez

    1999-04-01

    Full Text Available The expression of telomerase activity and the in situ localization of the human telomerase RNA component (hTR in melanocytic skin lesions was evaluated in specimens from sixty-three patients. Specimens of melanocytic nevi, primary melanomas and subcutaneous metastases of melanoma were obtained from fifty-eight patients, whereas metastasized lymph nodes were obtained from five patients. Telomerase activity was determined in these specimens by using a Polymerase Chain Reaction—based assay (TRAP. High relative mean telomerase activity levels were detected in metastatic melanoma (subcutaneous metastasess = 54.5, lymph node metastasess = 56.5. Much lower levels were detected in primary melanomas, which increased with advancing levels of tumor cell penetration (Clark II = 0.02, Clark III = 1.1, and Clark IV = 1.9. Twenty-six formalin-fixed, paraffin-embedded melanocytic lesions were sectioned and analyzed for telomerase RNA with a radioactive in situ hybridization assay. In situ hybridization studies with a probe to the template RNA component of telomerase confirmed that expression was almost exclusively confined to tumor cells and not infiltrating lymphocytes. These results indicate that levels of telomerase activity and telomerase RNA in melanocytic lesions correlate well with clinical stage and could potentially assist in the diagnosis of borderline lesions.

  18. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Science.gov (United States)

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  19. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  20. Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    International Nuclear Information System (INIS)

    He, Xianli; Qiao, Qing; Ge, Naijian; Nan, Jing; Shen, Shuqun; Wang, Zizhong; Yang, Yefa; Bao, Guoqiang

    2010-01-01

    Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by γ-radiation. To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after γ-radiation and the γ-radiation-induced telomerase activity (defined as after γ-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs). Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 ± 7.21 vs. 11.02 ± 8.03, p = 0.168). However, after γ-radiation treatment, γ-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 ± 0.93 vs. 1.22 ± 0.66, p < 0.001). Using the median value of γ-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high γ-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between γ-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the γ-radiation-induced telomerase activities in both cases and controls. Overall, our findings for the first time suggest that the increased γ-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted

  1. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  2. Telomerase Activity Detected by Quantitative Assay in Bladder Carcinoma and Exfoliated Cells in Urine

    Directory of Open Access Journals (Sweden)

    Roberta Fedriga

    2001-01-01

    Full Text Available Early diagnosis is one of the most determining factors for patient survival. The detection of telomerase activity is a potentially promising tool in the diagnosis of bladder and other types of cancer due to the high expression of this enzyme in tumor cells. We carried out a quantitative evaluation of telomerase activity in urine samples in an attempt to determine a cut-off capable of identifying cancer patients. Telomerase activity was quantified by fluorescence TRAP assay in urine from 50 healthy volunteers and in urine and bioptic tumor samples from 56 previously untreated bladder cancer patients and expressed in arbitrary enzymatic units (AEU. Telomerase activity in urine ranged from 0 to 106 AEU (median 0 in healthy donors and from 0 to 282 AEU (median 87 in patients with cancer. A telomerase expression higher than the cut off value determined by receiver operating characteristic (ROC analysis was observed in 78% of cases, regardless of tumor grade and in 71% (15/21 of cases of nonassessable or negative cytology. The quantitative analysis of telomerase activity in urine enabled us to define cut-off values characterized by different sensitivity and specificity. Cytologic and telomerase determination, used sequentially, enabled us to detect about 90% of tumors.

  3. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  4. Telomerase lost?

    Czech Academy of Sciences Publication Activity Database

    Mason, J. M.; Randall, T. A.; Čapková Frydrychová, Radmila

    2016-01-01

    Roč. 125, č. 1 (2016), s. 65-73 ISSN 0009-5915 R&D Projects: GA ČR GA14-07172S Grant - others:GA JU(CZ) 052/2013/P; GA JU(CZ) 038/2014/P; European Union Seventh Framework Programme(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : telomerase * DNA sequences * Bombyx mori Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.414, year: 2016 http://link.springer.com/article/10.1007%2Fs00412-015-0528-7

  5. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  6. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  7. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Science.gov (United States)

    Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L

    2011-02-09

    Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  8. Distinct profiles of TERT promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma.

    Science.gov (United States)

    Annunziata, Clorinda; Pezzuto, Francesca; Greggi, Stefano; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2018-03-31

    Two recurrent mutations (-124 G > A and -146 G > A) in the core promoter region of the human telomerase reverse transcriptase (TERT) gene create consensus binding sites for ETS transcription factors and cause increased TERT expression in several tumour types. We analyzed TERT promoter mutations and TERT mRNA levels in head and neck cancer, cervical carcinoma and cervical intraepithelial neoplasia (CIN) as well as in C-4I, CaSki, HeLa and SiHa cervical cell lines. Nucleotide sequence analysis of TERT promoter region showed that 33.3% of oral squamous cell carcinoma (SCC) and 16.8% of cervical SCC harboured mutually exclusive G to A transitions at nucleotide position -124 or -146. TERT promoter was mutated at nucleotide -146 (G > A) in SiHa cell line. Other nucleotide changes creating in some cases putative ETS binding sites were more frequent in oral SCC (26.7%) than in cervical carcinoma (4.8%). The frequency of mutations was independent of human papillomavirus (HPV) tumour status in both cervical and oral cancer. Expression of TERT gene was significantly higher in TERT promoter mutated (-124G > A or -146G > A) cervical SCC compared to not mutated SCC irrespective of HPV16 E6 and E7 levels. Such hot spot changes were not detected in oropharyngeal SCC, cervical adenocarcinoma and CIN lesions. Our results suggest that TERT promoter mutations play a relevant role in oral SCC as well as in cervical SCC, besides the already known effect of HPV16 E6 protein on TERT expression. © 2018 UICC.

  9. An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoming Yi

    2000-09-01

    Full Text Available Telomerase, a cellular reverse transcriptase, adds telomeric repeats to chromosome ends. In normal human somatic cells, telomerase is repressed and telomeres progressively shorten, leading to proliferative senescence. Introduction of the telomerase (hTERT cDNA is sufficient to produce telomerase activity and immortalize normal human cells, suggesting that the repression of telomerase activity is transcriptional. The telomerase transcript has been shown to have at least six alternate splicing sites (four insertion sites and two deletion sites, and variants containing both or either of the deletion sites are present during development and in a panel of cancer cell lines we surveyed. One deletion (β site and all four insertions cause premature translation terminations, whereas the other deletion (α site is 36 by and lies within reverse transcriptase (RT motif A, suggesting that this deletion variant may be a candidate as a dominant-negative inhibitor of telomerase. We have cloned three alternately spliced hTERT variants that contain the α,β or both α and,β deletion sites. These alternate splicing variants along with empty vector and wild-type hTERT were introduced into normal human fibroblasts and several telomerase-positive immortal and tumor cell lines. Expression of the α site deletion variant (hTERT α− construct was confirmed by Western blotting. We found that none of the three alternate splicing variants reconstitutes telomerase activity in fibroblasts. However, hTERT α− inhibits telomerase activities in telomerase-positive cells, causes telomere shortening and eventually cell death. This alternately spliced dominant-negative variant may be important in understanding telomerase regulation during development, differentiation and in cancer progression.

  10. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    International Nuclear Information System (INIS)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Kim, Sahn-Ho; Pindolia, Kirit R.; Arbab, Ali S.; Gautam, Subhash C.

    2012-01-01

    Highlights: ► CDDO-Me inhibits hTERT gene expression. ► CDDO-Me inhibits hTERT protein expression. ► CDDO-Me inhibits hTERT telomerase activity. ► CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  11. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation.

    Science.gov (United States)

    Witkowska, Agnieszka; Strzalka-Mrozik, Barbara; Owczarek, Aleksander; Gola, Joanna; Mazurek, Urszula; Grzeszczak, Wladyslaw; Gumprecht, Janusz

    2015-12-01

    Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation and 54 healthy controls were enrolled in the study. The 51 transplant patients received a three-drug immunosuppressive regimen consisting of cyclosporine A, prednisone and mycophenolate mofetil. In stage 1 of the study, the expression profiles of 123 transcripts, which represented 70 genes, were assessed in peripheral mononuclear blood cells using an oligonucleotide microarray technique in 8 transplant recipients and 4 healthy control subjects. Among the analyzed transcripts, the expression levels of 4 differed significantly between the studied groups; however, only the ACD (adrenocortical dysplasia homolog) gene, encoding the telomere-binding protein POT1-interacting protein 1 (TPP1), was sufficiently specific for telomere homeostasis. The expression of ACD was downregulated in transplant recipients (fold change, 2.11; P=0.006). In stage 2 of the study, reverse transcription-quantitative polymerase chain reaction analysis of ACD , DKC1 and hTERT mRNA was conducted for all transplant patients and control subjects. The results confirmed the downregulation of the ACD gene in patients that had received immunosuppressive therapy (P=0.002). The results of the present study indicate that the downregulation of ACD gene transcription, and thus TPP1 protein expression, may enhance the capacity for cell immortalization, despite normal levels of other key telomere maintenance factors, in patients undergoing immunosuppressive therapy. Furthermore, the results indicate that TPP1 has

  12. Hypoxia induces telomerase reverse transcriptase (TERT gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma model

    Directory of Open Access Journals (Sweden)

    Mok Helen OL

    2006-09-01

    Full Text Available Abstract Background Current understanding on the relationships between hypoxia, hypoxia-inducible factor-1 (HIF-1 and telomerase reverse transcriptase (TERT gene expression are largely based on in vitro studies in human cancer cells. Although several reports demonstrated HIF-1- mediated upregulation of the human TERT gene under hypoxia, conflicting findings have also been reported. Thus far, it remains uncertain whether these findings can be directly extrapolated to non-tumor tissues in other whole animal systems in vivo. While fish often encounter environmental hypoxia, the in vivo regulation of TERT by hypoxia in non-neoplastic tissues of fish remains virtually unknown. Results The adult marine medaka (Oryzias melastigma was employed as a model fish in this study. We have cloned and characterized a 3261-bp full-length TERT cDNA, omTERT, which encodes a protein of 1086 amino acids. It contains all of the functional motifs that are conserved in other vertebrate TERTs. Motif E is the most highly conserved showing 90.9–100% overall identity among the fish TERTs and 63.6% overall identity among vertebrates. Analysis of the 5'-flanking sequence of the omTERT gene identified two HRE (hypoxia-responsive element; nt. – 283 and – 892 cores. Overexpression of the HIF-1α induced omTERT promoter activity as demonstrated using transient transfection assays. The omTERT gene is ubiquitously expressed in fish under normoxia, albeit at varying levels, where highest expression was observed in gonads and the lowest in liver. In vivo expression of omTERT was significantly upregulated in testis and liver in response to hypoxia (at 96 h and 48 h, respectively, where concomitant induction of the omHIF-1α and erythropoietin (omEpo genes was also observed. In situ hybridization analysis showed that hypoxic induction of omTERT mRNA was clearly evident in hepatocytes in the caudal region of liver and in spermatogonia-containing cysts in testis. Conclusion This

  13. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    International Nuclear Information System (INIS)

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  14. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    Science.gov (United States)

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  15. Telomerase and drug resistance in cancer

    OpenAIRE

    Lipinska, Natalia; Romaniuk, Aleksandra; Paszel-Jaworska, Anna; Toton, Ewa; Kopczynski, Przemyslaw; Rubis, Blazej

    2017-01-01

    It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gen...

  16. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    Science.gov (United States)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  17. Differences in telomerase activity between colon and rectal cancer.

    Science.gov (United States)

    Ayiomamitis, Georgios D; Notas, George; Zaravinos, Apostolos; Zizi-Sermpetzoglou, Adamantia; Georgiadou, Maria; Sfakianaki, Ourania; Kouroumallis, Elias

    2014-06-01

    Colorectal cancer is one of the most common cancers and the third leading cause of cancer death in both sexes. The disease progresses as a multistep process and is associated with genetic alterations. One of the characteristic features of cancer is telomerase activation. We sought to evaluate the differences in telomerase activity between colon cancer and adjacent normal tissue and to correlate the differences in telomerase activity between different locations with clinicopathological factors and survival. Matched colon tumour samples and adjacent normal mucosa samples 10 cm away from the tumour were collected during colectomy. We assessed telomerase activity using real time polymerase chain reaction. Several pathological characteristics of tumours, including p53, Ki-67, p21, bcl2 and MLH1 expression were also studied. We collected samples from 49 patients. There was a significantly higher telomerase activity in colon cancer tissue than normal tissue. Adenocarcinomas of the right colon express significantly higher telomerase than left-side cancers. Colon cancers and their adjacent normal tissue had significantly more telomerase and were more positive to MLH1 than rectal cancers. The expression of p53 negatively correlated to telomerase activity and was linked to better patient survival. Colon and rectal cancers seem to have different telomerase and MLH1 profiles, and this could be another factor for their different biologic and clinical behaviour and progression. These results support the idea that the large bowel cannot be considered a uniform organ, at least in the biology of cancer.

  18. Telomerase and the search for the end of cancer.

    Science.gov (United States)

    Mocellin, Simone; Pooley, Karen A; Nitti, Donato

    2013-02-01

    Many of the fundamental molecular mechanisms underlying tumor biology remain elusive and, thus, developing specific anticancer therapies remains a challenge. The recently discovered relationships identified among telomeres, telomerase, aging, and cancer have opened a new avenue in tumor biology research that may revolutionize anticancer therapy. This review summarizes the critical aspects of telomerase biology that underpin the development of novel telomerase-targeting therapies for malignant diseases, and special regard is given to the aspects of telomerase that make it such an appealing target, such as the widespread expression of telomerase in cancers. Despite significant progress, issues remain to be addressed before telomerase-based therapies are truly effective and we include critical discussion of the results obtained thus far. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Telomerases: chemistry, biology, and clinical applications

    National Research Council Canada - National Science Library

    Lue, Neal F; Autexier, Chantal

    2012-01-01

    .... Other topics include telomerase biogenesis, transcriptional and post-translational regulation, off-telomere functions of telomerase and the role of telomerase in cellular senescence, aging and cancer...

  20. Comparison of telomerase activity in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Soleiman Mahjoub

    2006-11-01

    Full Text Available BACKGROUND: Telomerase is a reverse transcriptase enzyme that synthesizes telomeric DNA on chromosome ends. The enzyme is important for the immortalization of cancer cells because it maintains the telomeres. METHODS: Telomerase activity (TA was measured by fluorescence-based telomeric repeat amplification protocol (FTRAP assay in prostate carcinoma and benign prostatic hyperplasia (BPH. RESULTS: TA was present in 91.4% of 70 prostate cancers, 68.8% of 16 prostatic intraepithelial neoplasia (PIN, 43.3% of 30 BPH*, 21.4% of 14 atrophy and 20% of 15 normal samples adjacent to tumor. There was not any significant correlation between TA, histopathological tumor stage or gleason score. In contrast to high TA in the BPH* tissue from the cancer-bearing gland, only 6.3% of 32 BPH specimens from patients only diagnosed with BPH were telomerase activity-positive. CONCLUSIONS: These results indicate that TA is present in most prostate cancers. The high rate of TA in tissue adjacent to tumor may be attributed either to early molecular alteration of cancer that was histologically unapparent, or to the presence of occult cancer cells. Our findings suggest that the re-expression of telomerase activity could be one step in the transformation of BPH to PIN. KEY WORDS: Telomerase activity, prostate cancer, prostatic intraepithelial neoplasia, benign prostatic hyperplasia.

  1. Premature aging in telomerase-deficient zebrafish

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    2013-09-01

    The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC. Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC.

  2. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    Science.gov (United States)

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  3. [Methods of measuring telomere length and telomerase activity--practice and problems].

    Science.gov (United States)

    Saito, Y; Suda, T; Hatakeyama, K

    1998-05-01

    The development of a highly sensitive method for detection of telomerase activity, telomeric repeat amplification protocol (TRAP), has provided knowledge on telomerase activity in normal and cancer tissues. Subsequent several modifications have been achieved, including an introduction of the internal standard and hybridization protection technique that leads to simplicity and improvement of reproducibility and linearity of this method, and application of TRAP to in situ analysis to identify the cells responsible for telomerase activity. As for measurement of telomere length, fluorescence in situ hybridization technique appeared to give an information of telomere length on an individual chromosome in contrast to analysis of terminal restriction fragment, a conventional method which can express mean telomere length of all chromosomes. Further methodological improvement in this field is ongoing and showing a new sight on cell mortality and immortality.

  4. Evaluation of Energy Balance on Human Telomerase Reverse Transcriptase (hTERT) Alternative Splicing by Semi-quantitative RT-PCR in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Behjati, Mohaddeseh; Hashemi, Mohammad; Kazemi, Mohammad; Salehi, Mansoor; Javanmard, Shaghayegh Haghjooy

    2017-01-01

    Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis. Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured. ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels ( P = 0.09) and vWF ( P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue. The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.

  5. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression.

    Science.gov (United States)

    Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong

    2013-01-01

    In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (paminopropyl methacrylamide copolymers might be promise in gene delivery.

  6. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Telomerer og telomerase

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known as the biol......In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known...

  8. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites.

    Science.gov (United States)

    Dey, Abhishek; Chakrabarti, Kausik

    2018-01-24

    Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.

  9. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  10. The Emerging Roles for Telomerase in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meng-Ying Liu

    2018-05-01

    Full Text Available Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer and aging. Telomerase exists in neural stem cells (NSCs and neural progenitor cells (NPCs, at a high level in the developing and adult brains of humans and rodents. Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis. In addition, recent works have shown that telomerase reverse transcriptase (TERT can protect newborn neurons from apoptosis and excitotoxicity. However, to date, the link between telomerase and diseases in the central nervous system (CNS is not well reviewed. Here, we analyze the evidence and summarize the important roles of telomerase in the CNS. Understanding the roles of telomerase in the nervous system is not only important to gain further insight into the process of the neural cell life cycle but would also provide novel therapeutic applications in CNS diseases such as neurodegenerative condition, mood disorders, aging and other ailments.

  11. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    (-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  12. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK dependent pathway in human endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhou

    Full Text Available Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2 induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs, and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.

  13. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

    DEFF Research Database (Denmark)

    Lafferty-Whyte, K; Cairney, C J; Will, M B

    2009-01-01

    Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular le......TERT in different tumour types and normal tissues. We also show evidence to suggest a novel mesenchymal stem cell origin for ALT immortalization in cell lines and mesenchymal tissues....

  14. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-01-01

    -detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of gamma-rays and that overall DNA repair is similar...... in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres...

  15. Demonstration of constant upregulation of the telomerase RNA component in human gastric carcinomas using in situ hybridization.

    Science.gov (United States)

    Heine, B; Hummel, M; Demel, G; Stein, H

    1998-06-01

    Upregulation of the ribonucleoprotein telomerase seems to be a prerequisite for immortality, a feature of malignant cells. Using a polymerase chain reaction (PCR)-based assay, it is possible to demonstrate telomerase activity (TA) in specimens of most human malignancies, whereas it is absent from most normal tissues. It remains unclear, however, why between 5 and 50 per cent of various malignant tumour samples give negative results when TA is measured by the telomeric repeat amplification protocol (TRAP). The expectation that reverse transcription (RT)-PCR for detection of the telomerase RNA component (hTR) would be able to complement or to replace the TRAP assay failed, since malignant as well as non-malignant tissue samples gave positive results in most instances. In the present study, in situ hybridization (ISH) was developed to demonstrate the RNA component of human telomerase at the single cell level. With this method, 13 specimens of fresh frozen gastric carcinoma and four of normal, dysplastic, or inflamed gastric mucosa were investigated and the results were compared with those obtained by RT-PCR and the TRAP assay. In addition, ISH was performed on formalin-fixed sections of the same cases. The TRAP assay revealed positive results in 8 out of 13 gastric carcinomas and was negative in all non-malignant tissues. RT-PCR led to amplification of the telomerase RNA component in all specimens tested, irrespective of the presence or absence of malignant cells. By ISH, all gastric carcinomas showed strong telomerase RNA component-specific signals over malignant cells, whereas only a few grains were detectable over some types of normal somatic cells, including activated lymphocytes. In conclusion, high expression of the telomerase RNA component was restricted to the malignant cells of all the gastric carcinomas investigated, as shown by ISH. This indicates that the absence of TA in a proportion of carcinomas is due to methodological problems of the TRAP assay and is

  16. [Telomerase activity in uveal melanomas].

    Science.gov (United States)

    Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M

    2000-05-01

    The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.

  17. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles.

    Science.gov (United States)

    Lavranos, T C; Mathis, J M; Latham, S E; Kalionis, B; Shay, J W; Rodgers, R J

    1999-08-01

    We have previously postulated that granulosa cells of developing follicles arise from a population of stem cells. Stem cells and cancer cells can divide indefinitely partly because they express telomerase. Telomerase is a ribonucleoprotein enzyme that repairs the ends of telomeres that otherwise shorten progressively upon each successive cell division. In this study we carried out cell cycle analyses and examined telomerase expression to examine our hypothesis. Preantral (60-100 microm) and small (1 mm) follicles, as well as granulosa cells from medium-sized (3 mm) and large (6-8 mm) follicles, were isolated. Cell cycle analyses and expression of Ki-67, a cell cycle-related protein, were undertaken on follicles of each size (n = 3) by flow cytometry; 12% to 16% of granulosa cells in all follicles were in the S phase, and less than 2% were in the G(2)/M phase. Telomerase activity (n = 3) was highest in the small preantral follicles, declining at the 1-mm stage and even further at the 3-mm stage. In situ hybridization histochemistry was carried out on bovine ovaries, and telomerase RNA was detected in the granulosa cells of growing follicles but not primordial follicles. Two major patterns of staining were observed in the membrana granulosa of antral follicles: staining in the middle and antral layers, and staining in the middle and basal layers. No staining was detected in oocytes. Our results strongly support our hypothesis that granulosa cells arise from a population of stem cells.

  18. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    International Nuclear Information System (INIS)

    Rashid-Kolvear, Fariborz; Taboski, Michael AS; Nguyen, Johnny; Wang, Dong-Yu; Harrington, Lea A; Done, Susan J

    2010-01-01

    Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ). However, its effect on telomerase regulation in breast cancer has not been investigated. In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined

  19. Detection of telomerase activity by the TRAP assay and its variants and alternatives.

    Science.gov (United States)

    Fajkus, Jirí

    2006-09-01

    Telomerase activity is closely connected to problems of cellular immortality, proliferative capacity, differentiation, cancer and aging. Correspondingly, techniques for its detection have been essential for progress in telomere biology and are of still increasing importance in molecular diagnostics and therapy of cancer. This article reviews the development of the telomere repeat amplification protocol (TRAP) and its various modifications as the most widespread assay to detect and measure telomerase activity. Alternative possibilities of telomerase activity detection are also discussed which make it possible to omit the PCR-mediated amplification of telomerase products. These approaches are based on recent advances in highly sensitive detection systems.

  20. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  1. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing.

    Science.gov (United States)

    Aono, Jun; Ruiz-Rodriguez, Ernesto; Qing, Hua; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-01-01

    The present study sought to investigate the mechanisms underlying the mitogenic function of telomerase and to test the hypothesis that everolimus, commonly used on drug-eluting stents, suppresses smooth muscle cells (SMC) proliferation by targeting telomerase. Proliferation of SMC during neointima formation is prevented by drug-eluting stents. Although the replicative capacity of mammalian cells is enhanced by telomerase expression, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target remain to be investigated. We first employed constitutive expression of telomerase reverse transcriptase (TERT) in cell systems to study transcriptional mechanisms by which telomerase activates a mitogenic program. Second, overexpression of telomerase in mice provided a model to study the role of telomerase as a drug target for the antiproliferative efficacy of everolimus. Inhibition of neointima formation by everolimus is lost in mice overexpressing TERT, indicating that repression of telomerase confers the antiproliferative efficacy of everolimus. Everolimus reduces TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Using chromatin immunoprecipitation assays, we finally demonstrate that TERT induces E2F binding to S-phase gene promoters and supports histone acetylation, effects that are inhibited by everolimus and mediate its antiproliferative activity. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus. Our studies further identify a novel mitogenic pathway in SMC

  2. Quantitative and qualitative analysis of telomerase activity in benign and malignant thyroid tissues

    International Nuclear Information System (INIS)

    Zheng Rongxiu; Fang Peihua; Tan Jian; Lu Mei; Li Yigong

    2002-01-01

    Objective: To study the status of telomerase activity during the development of thyroid tumors, and to determine whether telomerase activity can be used clinically as a molecular marker in the differential diagnosis of thyroid cancer. Methods: Telomerase activity was measured in 37 thyroid carcinomas, 33 benign thyroid lesions and 30 normal thyroid tissue samples by means of a modified TRAP-PCR. The assay was also applied to 15 fine needle aspirates (FNAs) of thyroid carcinomas to test its sensitivity. Results: Thirty-one of 37 thyroid carcinomas (83.8%), 7 of 33 benign thyroid lesions (21.2%), and 4 of 30 adjacent normal thyroid tissue samples expressed telomerase activity, 15 FNAs also had positive telomerase activity, just as their corresponding tissue specimens. The quantitative analysis showed that the telomerase activity was significantly higher in thyroid carcinomas than that in benign thyroid tissue samples. And medullary carcinomas and anaplastic carcinomas had higher levels of telomerase activity than papillary carcinomas. Conclusions: Telomerase activity is a good marker for thyroid carcinomas. The quantitative TRAP-PCR might have more potential application in the differential diagnosis of tumors and the estimation of tumor progression and prognosis. And this sensitive assay could become a useful new modality for supplementing microscopic cytopathology in the detection of cancer cells in small tissue samples and FNAs

  3. Telomerase levels control the lifespan of human T lymphocytes

    NARCIS (Netherlands)

    Roth, Alexander; Yssel, Hans; Pene, Jerome; Chavez, Elizabeth A.; Schertzer, Mike; Lansdorp, Peter M.; Spits, Hergen; Luiten, Rosalie M.

    2003-01-01

    The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human

  4. β-Cyclodextrin-curcumin complex inhibit telomerase gene ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... have various applications in cancer therapy. But, its low water solubility and bioavailability is possible for poor drug delivery of curcumin. In this study, we prepared β-cyclodextrin-curcumin complex to determine the inhibitory effect of this drug on telomerase gene expression. Curcumin was encapsulated.

  5. Effects of DHA Supplementation on Vascular Function, Telomerase Activity in PBMC, Expression of Inflammatory Cytokines, and PPARγ-LXRα-ABCA1 Pathway in Patients With Type 2 Diabetes Mellitus: Study Protocol for Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Omid Toupchian

    2016-07-01

    Full Text Available Docosahexaenoic acid (DHA, as an omega-3 fatty acid, in a natural ligand of peroxisome proliferator-activated receptors (PPARs. Regarding the combinative effects of Nutrigenomics and Nutrigenetics and due to the lack of in vivo studies conducted using natural ligands of PPARs, we aimed to evaluate the effects of DHA supplementation on vascular function, telomerase activity, and PPARγ-LXRα-ABCA1 pathway, in patients with type 2 diabetes mellitus (T2DM, based on the Pro12Ala polymorphism in PPARγ encoding gene. 72 T2DM patients (36 dominant and 36 recessive allele carriers, aged 30-70, with body mass index of 18.5 to 35 kg/m2, will be participated in this double blind randomized controlled trial. In each group, stratification will be performed based on sex and age and participants will be randomly assigned to receive 2.4 g/day DHA or placebo (paraffin for 8 weeks. PPARγ genotyping will be carried out using PCR-RFLP method; Telomerase activity will be estimated by PCR-ELISA TRAP assay; mRNA expression levels of target genes will be assessed using real time PCR. Serum levels of ADMA, sCD163 and adiponectin, will be measured using ELISA commercial kits. The present study is designed in order to help T2DM patients to modify their health conditions based on their genetic backgrounds, and to recommend the proper food ingredients as the natural agonists for PPARs in order to prevent and treat metabolic abnormalities of the disease.

  6. Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which helps to prevent and treat cataracts in the eyes of dogs and other animals.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2014-01-01

    Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below

  7. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer

    International Nuclear Information System (INIS)

    Kala, Rishabh; Shah, Harsh N.; Martin, Samantha L.; Tollefsbol, Trygve O.

    2015-01-01

    Nutrition is believed to be a primary contributor in regulating gene expression by affecting epigenetic pathways such as DNA methylation and histone modification. Resveratrol and pterostilbene are phytoalexins produced by plants as part of their defense system. These two bioactive compounds when used alone have been shown to alter genetic and epigenetic profiles of tumor cells, but the concentrations employed in various studies often far exceed physiologically achievable doses. Triple-negative breast cancer (TNBC) is an often fatal condition that may be prevented or treated through novel dietary-based approaches. HCC1806 and MDA-MB-157 breast cancer cells were used as TNBC cell lines in this study. MCF10A cells were used as control breast epithelial cells to determine the safety of this dietary regimen. CompuSyn software was used to determine the combination index (CI) for drug combinations. Combinatorial resveratrol and pterostilbene administered at close to physiologically relevant doses resulted in synergistic (CI <1) growth inhibition of TNBCs. SIRT1, a type III histone deacetylase (HDAC), was down-regulated in response to this combinatorial treatment. We further explored the effects of this novel combinatorial approach on DNA damage response by monitoring γ-H2AX and telomerase expression. With combination of these two compounds there was a significant decrease in these two proteins which might further resulted in significant growth inhibition, apoptosis and cell cycle arrest in HCC1806 and MDA-MB-157 breast cancer cells, while there was no significant effect on cellular viability, colony forming potential, morphology or apoptosis in control MCF10A breast epithelial cells. SIRT1 knockdown reproduced the effects of combinatorial resveratrol and pterostilbene-induced SIRT1 down-regulation through inhibition of both telomerase activity and γ-H2AX expression in HCC1806 breast cancer cells. As a part of the repair mechanisms and role of SIRT1 in recruiting DNMTs

  8. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    Directory of Open Access Journals (Sweden)

    Jun Aono, MD, PhD

    2016-01-01

    Full Text Available Proliferation of smooth muscle cells (SMCs during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT, indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT.

  9. Reconstitution of active telomerase in primary human foreskin fibroblasts : effects on proliferative characteristics and response to ionizing radiation

    NARCIS (Netherlands)

    Kampinga, H.H.; Waarde-Verhagen, M.A.W.H. van; Assen-Bolt, A.J. van; Rodemann, H.P.; Prowse, K.R.; Linskens, M.H.K.

    2004-01-01

    Purpose: Telomere shortening has been proposed to trigger senescence, and since most primary cells do not express active telomerase, reactivation of telomerase activity was proposed as a safe and non-transforming way of immortalizing cells. However, to study radiation responses, it is as yet unclear

  10. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    Science.gov (United States)

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  11. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  12. Telomerase Activity in Chicken EmbryoFibroblast Cell Cultures Infected withMarek's Disease Virus

    Directory of Open Access Journals (Sweden)

    Gregory A. Tannock

    2010-07-01

    Full Text Available Background:Telomerase is a ribonucleoprotein, which adds telomeric repeats onto the 3’end of existing telomers at the end of chromosomes ineukaryotes. One hypothesis states that telomere length may function as a mitoticclock, therefore expression of telomerase activity in cancer cells may be a necessary and essential step for tumor development and progression.Methods:The detectability of telomerase activity in chicken embryofibroblast (CEF cells infected with different passages of Marek's disease virus(MDV was tested with the TRAPEZE® telomerase detection kit at passages14 (P14, P80/1 and P120 for the Woodland strain, and passage 9 (P9 for theMPF57 strain. Results:The results showed increased telomerase activity in MDV Woodlands strain at P14 and MPF57 strain at P9. Conclusion:Our results suggest that MDV-transformed cells at low passage are a suitable system for the study of telomerases in tumor developmentand for testing telomerase-inhibiting drugs.

  13. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  14. Effect of Mifepristone on the Telomerase Activity in Chorion and Decidua during Early Pregnancy

    Institute of Scientific and Technical Information of China (English)

    Ge-qing XIA; Ya-li XIONG; Yong-hong SUN

    2004-01-01

    Objective To investigate telomerase activity in chorion and decidua from abortion induced by mifepristone incorporated with misoprostol at early pregnancy Methods TRAP-SYBR Green assay was used to detect the expression of telomerase. Forty specimen were obtained from medicinal abortion (experiment group) and forty were from normal induced abortion (control group).Results Positive expression, of chorion telomerase was significantly different between the experimental group (28%, 11/40) and the control group (73%, 29/40) (P<0. 05).While in decidua, the positive rate was 28% (11/40) in the experimental group and 20% (9/40) in the control group, there was no significant difference (P>0. 05).Conclusion It is suggested that miferistone may significantly decrease the telomerase activity in chorion but not in decidua.

  15. TERRA mimicking ssRNAs prevail over the DNA substrate for telomerase in vitro due to interactions with the alternative binding site.

    Science.gov (United States)

    Azhibek, Dulat; Skvortsov, Dmitry; Andreeva, Anna; Zatsepin, Timofei; Arutyunyan, Alexandr; Zvereva, Maria; Dontsova, Olga

    2016-06-01

    Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. TRAPping telomerase within the intestinal stem cell niche

    OpenAIRE

    Pech, Matthew F; Artandi, Steven E

    2011-01-01

    Recent work from Hans Clevers' lab reveals high telomerase activity and telomere length in dividing LGR5-positive intestinal stem cells. They further report random chromosome segregation and thus challenge the ‘immortal strand' hypothesis at least for this stem cell population.

  17. Telomerase activation by the E6 gene product of human papillomavirus type 16.

    Science.gov (United States)

    Klingelhutz, A J; Foster, S A; McDougall, J K

    1996-03-07

    Activation of telomerase, a ribonucleoprotein complex that synthesizes telomere repeat sequences, is linked to cell immortalization and is characteristic of most cell lines and tumours. Here we show that expression of the human papillomavirus type 16 (HPV-16) E6 protein activates telomerase in early-passage human keratinocytes and mammary epithelial cells. This activation was observed in cells pre-crisis, that is, before they became immortal, and occurred within one passage of retroviral infection with vectors expressing HPV-16 E6. Studies using HPV-16 E6 mutants showed that there was no correlation between the ability of the mutants to activate telomerase and their ability to target p53 for degradation, suggesting that telomerase activation by HPV-16 E6 is p53 independent. Keratinocytes expressing wild-type HPV-16 E6 have an extended lifespan, but do not become immortal, indicating that telomerase activation and E6-mediate degradation of p53 are insufficient for their immortalization. These results show that telomerase activation is an intrinsic, but insufficient, component of transformation by HPV.

  18. Telomere lengthening and other functions of telomerase.

    Science.gov (United States)

    Rubtsova, M P; Vasilkova, D P; Malyavko, A N; Naraikina, Yu V; Zvereva, M I; Dontsova, O A

    2012-04-01

    Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.

  19. Telomerase and mammalian ageing: a critical appraisal.

    Science.gov (United States)

    Goyns, M H; Lavery, W L

    2000-03-13

    The telomeres that occur at the end of chromosomes are maintained by the activity of telomerase and are thought to be important protective factors in maintaining the integrity of chromosomes. It now appears that in vitro replicative senescence, which has been observed in cultured somatic cells, is due to a loss of telomere length in those cells, caused by inactivity of telomerase. This has led to the proposition that telomerase activity is an important determinant in organismal ageing. However, many cells in the body do not proliferate regularly and therefore will not lose telomere length. Cells that do proliferate frequently have now been shown to have active telomerase. Other cells, such as fibroblasts, that do not have telomerase activity but proliferate only occasionally may not reach the Hayflick limit during the lifetime of an animal. There is also no correlation between telomere length and the maximal lifespan exhibited by different species. Studies of telomerase knock-out mice have reported some aspects of accelerated ageing after three generations, but the relevance of these observations to normal ageing remains unconvincing. The role of telomerase in producing immortal tumour cells and the possibility that activation of telomerase is an important event in malignant transformation is similarly controversial and open to alternative interpretations. The significance of these and other observations, and how they define the role of telomerase in ageing, is discussed.

  20. P. berghei telomerase subunit TERT is essential for parasite survival.

    Directory of Open Access Journals (Sweden)

    Agnieszka A Religa

    Full Text Available Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA, though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT, is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further

  1. Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP.

    Science.gov (United States)

    Lemieux, Bruno; Laterreur, Nancy; Perederina, Anna; Noël, Jean-François; Dubois, Marie-Line; Krasilnikov, Andrey S; Wellinger, Raymund J

    2016-05-19

    Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The roles of telomeres and telomerase in cellular immortalization and the development of cancer.

    Science.gov (United States)

    Klingelhutz, A J

    1999-01-01

    Normal human cells have a limited lifespan in culture called the Hayflick limit. Recent studies have indicated that telomere shortening is one of the important meters utilized by cells to determine the Hayflick limit, and that activation of a mechanism to maintain telomere length is essential for cells to become immortal. It is generally believed that cells must have a means to maintain telomeres in order to progress to malignancy. Most cancers do this by activating an enzyme called telomerase which adds telomeric repeats to the telomere ends. Recently, expression of this enzyme has been shown to extend the lifespan of cells. This review discusses the research that led to the discovery of telomerase, the characteristics of telomerase complex, and how recent and future advances in the telomerase field may lead to better diagnostic and treatment protocols for many different cancer types.

  3. MNS16A tandem repeats minisatellite of human telomerase gene: a risk factor for colorectal cancer.

    Science.gov (United States)

    Hofer, Philipp; Baierl, Andreas; Feik, Elisabeth; Führlinger, Gerhard; Leeb, Gernot; Mach, Karl; Holzmann, Klaus; Micksche, Michael; Gsur, Andrea

    2011-06-01

    Telomerase reactivation and expression of human telomerase gene [human telomerase reverse transcriptase (hTERT)] are hallmarks of unlimited proliferation potential of cancer cells. A polymorphic tandem repeats minisatellite of hTERT gene, termed MNS16A was reported to influence hTERT expression. To assess the role of MNS16A as potential biomarker for colorectal cancer (CRC), we investigated for the first time the association of MNS16A genotypes with risk of colorectal polyps and CRC. In the ongoing colorectal cancer study of Austria (CORSA), 3842 Caucasian participants were recruited within a large screening project in the province Burgenland including 90 CRC cases, 308 high-risk polyps, 1022 low-risk polyps and 1822 polyp free controls verified by colonoscopy. MNS16A genotypes were determined by polymerase chain reaction from genomic DNA. Associations of MNS16A genotypes with CRC risk were estimated by logistic regression analysis computing odds ratios (ORs) and 95% confidence intervals (CIs). We identified five different variable number of tandem repeats (VNTRs) of MNS16A including VNTR-364, a newly discovered rare variant. VNTR-274 allele was associated with a 2.7-fold significantly increased risk of CRC compared with the VNTR-302 wild-type (OR = 2.69; 95% CI = 1.11-6.50; P = 0.028). In our CORSA study, the medium length VNTR-274 was identified as risk factor for CRC. Although, this population-based study herewith reports the largest cohort size concerning MNS16A thus far, further large-scale studies in diverse populations are warranted to confirm hTERT MNS16A genotype as potential biomarker for assessment of CRC risk.

  4. Urine Telomerase for Diagnosis and Surveillance of Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Angela Lamarca

    2012-01-01

    Full Text Available Bladder cancer has increased incidence during last decades. For those patients with nonmuscle involved tumors, noninvasive diagnosis test and surveillance methods must be designed to avoid current cystoscopies that nowadays are done regularly in a lot of patients. Novel urine biomarkers have been developed during last years. Telomerase is important in cancer biology, improving the division capacity of cancer cells. Even urinary telomerase could be a potentially useful urinary tumor marker; its use for diagnosis of asymptomatic and symptomatic patients or its impact during surveillance is still unknown. Moreover, there will need to be uniformity and standardization in the assays before it can become useful in clinical practice. It does not seem to exist a real difference between the most classical assays for the detection of urine telomerase (TRAP and hTERT. However, the new detection methods with modified TeloTAGGG telomerase or with gold nanoparticles must also be taken into consideration for the correct development of this diagnosis method. Maybe the target population would be the high-risk groups within screening programs. To date there is no enough evidence to use it alone and to eliminate cystoscopies from the diagnosis and surveillance of these patients. The combination with cytology or FISH is still preferred.

  5. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma.

    Science.gov (United States)

    Gordon, Katrina E; Ireland, Hazel; Roberts, Meryl; Steeghs, Karen; McCaul, James A; MacDonald, D Gordon; Parkinson, E Kenneth

    2003-01-15

    Human epithelial cells experience multiple barriers to cellular immortality in culture (mortality mechanisms 0, 1, and 2). Mortality mechanism 2 (M2) is termed crisis and involves telomere dysfunction due to lack of telomerase. However, proliferating normal keratinocytes in vivo can express telomerase, so it is unclear whether human squamous cell carcinomas (SCCs), which usually have high telomerase levels, develop from preexisting telomerase-positive precursors or by the activation of telomerase in telomerase-deficient somatic cells. We show that 6 of 29 oral SCCs show characteristics of M2 crisis in vivo, as indicated by a high anaphase bridge index (ABI), which is a good correlate of telomere dysfunction, and that 25 of 29 tumors possess some anaphase bridges. ABIs in excess of 0.2 in the primary tumor showed a decrease in the corresponding lymph node metastases. This suggests that high levels of telomere dysfunction (>0.2) and, by inference, M2 crisis bestow a selective disadvantage on SCCs during progression stages of the disease. Supporting this, SCCs with high levels of telomere dysfunction grow poorly in culture, and the ectopic expression of telomerase corrects this, together with other features of M2 crisis. Our data suggest that a substantial proportion of oral SCCs in vivo ultimately arise from telomerase-deficient keratinocytes rather than putative telomerase-proficient cells in the undifferentiated parts of the epithelium. Furthermore, the presence of significant levels of telomere dysfunction in a high proportion of SCCs at diagnosis but not in the normal epithelium implies that the therapeutic inhibition of telomerase should selectively compromise the growth of such tumors.

  6. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-telomeric Roles of Arabidopsis Telomerase

    Directory of Open Access Journals (Sweden)

    Ladislav eDokládal

    2015-11-01

    Full Text Available Telomerase-reverse transcriptase (TERT plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE TERT domain and identified a nuclear-localized protein that contains a RNA recognition motif (RRM. This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  7. The putative Leishmania telomerase RNA (LeishTER undergoes trans-splicing and contains a conserved template sequence.

    Directory of Open Access Journals (Sweden)

    Elton J R Vasconcelos

    Full Text Available Telomerase RNAs (TERs are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER that contains a 5' spliced leader (SL cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs and its role in parasite telomere biology.

  8. Telomerase activity-independent function of telomerase reverse transcriptase is involved in acrylamide-induced neuron damage.

    Science.gov (United States)

    Zhang, P; Pan, H; Wang, J; Liu, X; Hu, X

    2014-07-01

    Polyacrylamide is used widely in industry, and its decomposition product, acrylamide (ACR), readily finds its way into commonly consumed cosmetics and baked and fried foods. ACR exerts potent neurotoxic effects in human and animal models. Telomerase reverse transcriptase (TERT), the catalytic subunit of telomerase, traditionally has been considered to play an important role in maintaining telomere length. Emerging evidence has shown, however, that TERT plays an important role in neuroprotection by inhibiting apoptosis and excitotoxicity, and by promoting angiogenesis, neuronal survival and neurogenesis, which are closely related to the telomere-independent functions of TERT. We investigated whether and how the TERT pathway is involved in ACR induced neurotoxicity in rat cortical neurons. We found that ACR 1) significantly reduced the viability of cortical neurons as measured by MTT assay, 2) induced neuron apoptosis as revealed by FITC-conjugated Annexin V/PI double staining and flow cytometry (FACS) analysis, 3) elevated expression of cleaved caspase-3, and 4) decreased bcl-2 expression of cortical neurons. ACR also increased intracellular ROS levels in cortical neurons, increased MDA levels and reduced GSH, SOD and GSH-Px levels in mitochondria in a dose-dependent manner. We found that TERT expression in mitochondria was increased by ACR at concentrations of 2.5 and 5.0 mM, but TERT expression was decreased by 10 mM ACR. Telomerase activity, however, was undetectable in rat cortical neurons. Our results suggest that the TERT pathway is involved in ACR induced apoptosis of cortical neurons. TERT also may exert its neuroprotective role in a telomerase activity-independent way, especially in mitochondria.

  9. Prevalence of Telomerase Activity in Human Cancer

    Directory of Open Access Journals (Sweden)

    Chi-Hau Chen

    2011-05-01

    Full Text Available Telomerase activity has been measured in a wide variety of cancerous and non-cancerous tissue types, and the vast majority of clinical studies have shown a direct correlation between it and the presence of cancerous cells. Telomerase plays a key role in cellular immortality and tumorigenesis. Telomerase is activated in 80–90% of human carcinomas, but not in normal somatic cells, therefore, its detection holds promise as a diagnostic marker for cancer. Measurable levels of telomerase have been detected in malignant cells from various samples: tissue from gestational trophoblastic neoplasms; squamous carcinoma cells from oral rinses; lung carcinoma cells from bronchial washings; colorectal carcinoma cells from colonic luminal washings; bladder carcinoma cells from urine or bladder washings; and breast carcinoma or thyroid cancer cells from fine needle aspirations. Such clinical tests for telomerase can be useful as non-invasive and cost-effective methods for early detection and monitoring of cancer. In addition, telomerase activity has been shown to correlate with poor clinical outcome in late-stage diseases such as non-small cell lung cancer, colorectal cancer, and soft tissue sarcomas. In such cases, testing for telomerase activity can be used to identify patients with a poor prognosis and to select those who might benefit from adjuvant treatment. Our review of the latest medical advances in this field reveals that telomerase holds great promise as a biomarker for early cancer detection and monitoring, and has considerable potential as the basis for developing new anticancer therapies.

  10. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.

    Science.gov (United States)

    Armstrong, Christine A; Tomita, Kazunori

    2017-03-01

    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.

  11. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells

    NARCIS (Netherlands)

    Chui, Amy; Gunatillake, Tilini; Brennecke, Shaun P.; Ignjatovic, Vera; Monagle, Paul T.; Whitelock, John M.; van Zanten, Dagmar E.; Eijsink, Jasper; Wang, Yao; Deane, James; Borg, Anthony J.; Stevenson, Janet; Erwich, Jan Jaap; Said, Joanne M.; Murthi, Padma

    Objective-Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced

  12. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas.

    Directory of Open Access Journals (Sweden)

    Yuwei Zhang

    Full Text Available Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas.Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT and telomerase RNA component (TERC in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability.Sequencing analysis revealed one deletion involving TERC (TERC del 341-360, and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous; A1062T (4 heterozygous]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01. Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs following Zeocin

  13. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    Science.gov (United States)

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  14. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  15. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  16. Alterations of telomerase activity and terminal restriction fragment in gastric cancer and its premalignant lesions.

    Science.gov (United States)

    Yang, S M; Fang, D C; Luo, Y H; Lu, R; Battle, P D; Liu, W W

    2001-08-01

    In order to explore the role of alterations of telomerase activity and terminal restriction fragment (TRF) length in the development and progression of gastric cancer. Telomerase activity was detected in 176 specimens of gastric mucosa obtained through an operation or endoscopical biopsy by using the telomeric repeat amplification protocol (TRAP) assay. Meanwhile, the mean length of TRF was measured with the use of a Southern blot in part of those samples. Telomerase activity was detected in 14 of 57 (24.6%) chronic atrophy gastritis patients, six of 18 (33.3%) intestinal metaplasia patients, three of eight (37.5%) dysplasia patients and 60 of 65 (92.3%) gastric cancer patients, respectively. Normal gastric mucosa revealed no telomerase activity. No association was found between telomerase activity and any clinicopathological parameters. The mean TRF length was decreased gradually with age in normal mucosa and in gastric cancer tissue. Regression analysis demonstrated that the reduction rate in these tissues was 41 +/- 12 base pairs/year. Among 35 gastric cancers, TRF length was shown to be shorter in 20 cases (57.1%), similar in 12 cases (34.3%) and elongated in three cases (7.6%), compared to the corresponding adjacent tissues. The mean TRF length tended to decrease as the mucosa underwent chronic atrophy gastritis, intestinal metaplasia, dysplasia and into gastric cancer. The mean TRF length in gastric cancer was not statistically correlated with clinicopathological parameters and telomerase activity. Our results suggest that telomerase is expressed during the early stage of gastric carcinogenesis, and that the clinical significance of TRF length appears to be limited in gastric cancer.

  17. Acute myocardial infarction: 'telomerasing' for cardioprotection

    OpenAIRE

    Sanchís-Gomar, Fabián; Lucía Mulas, Alejandro

    2015-01-01

    Reactivating the telomerase gene through gene therapy after acute myocardial infarction (AMI) has been recently reported to improve survival in mice. Given that regular physical exercise also activates this gene, therapeutic and lifestyle interventions targeting telomerase need to be explored as possible additions to the current armamentarium for myocardial regeneration. 9.292 JCR (2015) Q1, 17/289 Biochemistry & mollecular biology, 17/187 Cell biology, 8/124 Medicine, research & experimen...

  18. MicroRNA Regulation of Telomerase Reverse Transcriptase (TERT: Micro Machines Pull Strings of Papier-Mâché Puppets

    Directory of Open Access Journals (Sweden)

    Ammad Ahmad Farooqi

    2018-04-01

    Full Text Available Substantial fraction of high-quality information is continuously being added into the existing pool of knowledge related to the biology of telomeres. Based on the insights gleaned from decades of research, it is clear that chromosomal stability needs a highly controlled and dynamic balance of DNA gain and loss in each terminal tract of telomeric repeats. Telomeres are formed by tandem repeats of TTAGGG sequences, which are gradually lost with each round of division of the cells. Targeted inhibition of telomerase to effectively induce apoptosis in cancer cells has attracted tremendous attention and overwhelmingly increasingly list of telomerase inhibitors truthfully advocates pharmacological significance of telomerase. Telomerase reverse transcriptase (TERT is a multi-talented and catalytically active component of the telomerase-associated protein machinery. Different proteins of telomerase-associated machinery work in a synchronized and orchestrated manner to ensure proper maintenance of telomeric length of chromosomes. Rapidly emerging scientific findings about regulation of TERT by microRNAs has revolutionized our understanding related to the biology of telomeres and telomerase. In this review, we have comprehensively discussed how different miRNAs regulate TERT in different cancers. Use of miRNA-based therapeutics against TERT in different cancers needs detailed research in preclinical models for effective translation of laboratory findings to clinically effective therapeutics.

  19. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  20. The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle.

    Science.gov (United States)

    Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L

    2015-10-01

    The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor

  1. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.

    Science.gov (United States)

    Abbas, Ata; Hall, J Adam; Patterson, William L; Ho, Emily; Hsu, Anna; Al-Mulla, Fahd; Georgel, Philippe T

    2016-02-01

    Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

  2. The effect of β-ionone on telomerase activity in the human leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2015-06-01

    Full Text Available Background: Telomerase is highly activated in most human cancer cells, therefore, its inhibition has been proposed as a novel and promising strategy for cancer therapy. Many plant-derived anticancer agents act through inhibition of telomerase activity and induction of apoptosis. β-ionone, a carotenoid compound isolated from Roseaceae, has been reported to possess anticancer properties. The present study was undertaken to examine the mechanism of β-ionone-induced apoptosis in human leukemia cell line K562 with special emphasis on its role in telomerase inhibition. Method: In this study the anti-proliferation effect of β-ionone on K562 cells was evaluated by MTT assay. Apoptosis rate was detected by Hoechst staining and flow cytometry analysis. Telomerase activity was measured by (TRAP ELISA assay. Results: Exposure of K562 cells to β-ionone caused a dose-dependent decrease in proliferation. Flow cytometry analysis and Hoechst staining showed that percentage of apoptotic cells markedly increased with an increase in β-ionone concentration. Compared to control cells, treatment of K562 cells with β-ionone resulted in a significant decrease of telomerase activity. Moreover, a positive correlation was detected between telomerase inhibition and apoptosis induction in the treated K562 cells. Conclusion: Based on these results, β-ionone is an appropriate candidate for inhibiting telomerase activity in K562 cells. Therefore, it may be utilized as a novel drug against some leukemia cell lines.

  3. Telomere elongation in immortal human cells without detectable telomerase activity.

    Science.gov (United States)

    Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R

    1995-09-01

    Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.

  4. Effects of Curcuma longa Extract on Telomerase Activity in Lung and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2014-10-01

    Full Text Available Background: The purpose of this study is to evaluate the effect of Curcuma longa extract on the telomerase gene expression in QU-DB lung cancer and T47D breast cancer cell lines. Materials and Methods: The present study is an experimental research. Using 3 different phases n-hexane, dichloromethane and methanol, total extract of Curcuma longa in a serial dilution was prepared and three phases was analyzed for determining which phase has more curcuminoids. Then the extract cytotoxicity effect was tested on breast cancer cell line (T47D, and lung cancer cell line (QU-DB by 24, 48 and 72 h MTT (Dimethyl thiazolyl diphenyl tetrazolium assay. Then, the cells were treated with serial concentrations of the extract. Finally, total protein was extracted from the control and test groups, its quantity was determined and telomeric repeat amplification protocol (TRAP assay was performed for measurement of possible inhibition of the telomerase activity. Results: Cell viability and MTT-based cytotoxicity assay show that the total extract of Curcuma longa has cytotoxic effect with different IC50s in breast and lung cancer cell lines. Analysis of TRAP assay also shows a significant reduction in telomerase activity on both cancer cells with different levels. Conclusion: Curcuma longa extract has anti-proliferation and telomerase inhibitory effects on QU-DB lung cancer and T47D breast cancer cells with differences in levels of telomerase inhibition.

  5. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  6. The telomerase reverse transcriptase subunit from the dimorphic fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Dolores Bautista-España

    Full Text Available In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1 contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.

  7. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    -regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...... skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc (-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase...

  8. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo

    International Nuclear Information System (INIS)

    Guo, Hong; Hao, Jia; Wu, Chao; Shi, Yun; Zhao, Xiao-yan; Fang, Dian-chun

    2007-01-01

    Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-γ secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers

  9. Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter.

    Science.gov (United States)

    Wang, Shuwen; Zhu, Jiyue

    2003-05-23

    The transcriptional activation of human telomerase reverse transcriptase (hTERT) is an important step during cellular immortalization and tumorigenesis. To study how this activation occurs during immortalization, we have established a set of genetically related pre-crisis cells and their immortal progeny. As expected, hTERT mRNA was detected in our telomerase-positive immortal cells but not in pre-crisis cells or telomerase-negative immortal cells. However, transiently transfected luciferase reporters controlled by hTERT promoter sequences exhibited similar levels of luciferase activity in both telomerase-positive and -negative cells, suggesting that the endogenous chromatin context is likely required for hTERT regulation. Analysis of chromatin susceptibility to DNase I digestion consistently identified a DNase I hypersensitivity site (DHS) near the hTERT transcription initiation site in telomerase-positive cells. In addition, the histone deacetylase inhibitor trichostatin A (TSA) induced hTERT transcription and also a general increase in chromatin sensitivity to DNase treatment in telomerase-negative cells. The TSA-induced hTERT transcription in pre-crisis cells was accompanied by the formation of a DHS at the hTERT promoter. Furthermore, the TSA-induced hTERT transcription and chromatin alterations were not blocked by cycloheximide, suggesting that this induction does not require de novo protein synthesis and that TSA induces hTERT expression through the inhibition of histone deacetylation at the hTERT promoter. Taken together, our results suggest that the endogenous chromatin environment plays a critical role in the regulation of hTERT expression during cellular immortalization.

  10. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events requ...

  11. Dynamic telomerase gene suppression via network effects of GSK3 inhibition.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2009-07-01

    Full Text Available Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression.In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3'-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFkappaB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc.Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting.

  12. Low LET radiation-induced telomerase catalytic subunit promoter activation is mediated by nuclear factor Kappa B

    International Nuclear Information System (INIS)

    Natarajan, M.; Hong, F.A.; Mohan, S.; Herman, T.S.

    2003-01-01

    Full text: The objective of this study is to understand whether low doses of low LET radiation induces survival advantage in normal cells. As an increase in telomerase activity is associated with longevity and cell proliferation, we examined the telomerase response following gamma-irradiation in normal aortic endothelial cells. Telomeric Repeat Amplification Protocol assay following low LET radiation showed an increase in telomerase enzyme activity as early as 8 h post irradiation and reaches its maximum at 24 h. Subsequent analysis revealed that the increased telomerse enzyme activity is due to increased synthesis resulting from an increased transcription. Examination of transcriptional activation of telomerase reverse transcriptase (TERT) promoter regulation showed an enhanced transcription of the telomerse gene following gamma-irradiation. In our previous reports we documented an increase in NF-kB DNA-binding property following low LET radiation (3). Therefore, to determine whether the activation of NF-kB-signaling is responsible for induced TERT promoter activation, cells transiently transfected with minimal promoter region of TERT containing wild type or mutant NF-kB binding site were examined following low LET radiation. TERT promoter activation was induced in wild type transfected cells whereas, in mutant kB binding site, the activation remained at the basal level similar to that of un-irradiated cells. More significantly, the gamma-ray mediated promoter activation of telomerase gene as well as induce telomerase enzyme activity was abrogated by ectopically expressing the IkBa mutant (IkBa (S32A/S36A)), which blocks NF-kB activation. The results thus suggest that exposure to low LET radiation could induce telomerase activity and the activation is at least, in part, mediated by the transcription factor NF-kB. Sustained activation of telomerase in these cells after low LET radiation may impart extended life span

  13. Zoning of mucosal phenotype, dysplasia, and telomerase activity measured by telomerase repeat assay protocol in Barrett's esophagus

    NARCIS (Netherlands)

    Going, JJ; Fletcher-Monaghan, AJ; Neilson, L; Wisman, BA; van der Zee, A; Stuart, RC; Keith, WN

    2004-01-01

    Glandular dysplasia in Barrett's esophagus may regress spontaneously but can also progress to cancer. The human telomerase RNA template and the human telomerase reverse transcriptase enzyme which do not, of themselves, correlate strongly with telomerase activity, are too often overexpressed in

  14. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    Science.gov (United States)

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  15. Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension.

    Science.gov (United States)

    Porreca, Rosa M; Glousker, Galina; Awad, Aya; Matilla Fernandez, Maria I; Gibaud, Anne; Naucke, Christian; Cohen, Scott B; Bryan, Tracy M; Tzfati, Yehuda; Draskovic, Irena; Londoño-Vallejo, Arturo

    2018-05-18

    Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase.

  16. Investigation of hTERT gene expression levels in two cell lines infected by high-risk human papilloma virus

    Directory of Open Access Journals (Sweden)

    Maryam Akhtari

    2016-07-01

    Full Text Available Background: Human papilloma virus (HPV is one of the most important factors in cervical cancer. Viral sequences are integrated into the host cell genome. In mild cases the virus causes skin damages, in severe cases it leads to cancer. Like many other cancers, telomerase gene expression was increased in cervical cancer. This enzyme is a reverse transcriptase that contains two common subunits: i catalytic protein called human telomerase reverse transcriptase (hTERT and, ii RNA sequence called hTR. hTERT expression is hardly found in any somatic tissues. Detection of high telomerase activity in human cells, lead to tumor genesis. So hTERT can be used as a diagnostic tool in cancer detection. Methods: This experimental study was carried out from May 2013 to April 2014 in Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences in Tehran, Iran. Caski and Hela cancer cell lines were used which contain HPV16 and HPV18 respectively. Cell lines were cultured and total RNA was extracted. Following normalization agent glyceraldehyde-3-phosphate dehydrogenase (GADPH, hTERT expression level was determining by real-time PCR method. For each sample, the expression level of hTERT and GAPDH were quantified as copy numbers (per reaction using the standard curve. Finally, hTERT levels in Hela and Caski cell lines were compared quantitatively by t-test using GraphPad statistic software version 5 (San Diego, CA, USA. Results: According to the charts real-time PCR, hTERT gene expression in Hela and Caski cancer cell lines is significantly different (t=0.0319. Conclusion: All results confirm that hTERT expression levels in Hela and Caski cell lines are significantly different and the level of hTERT expression in the Caski cell line was slightly higher than that of Hela cell line. The significant difference between hTERT mRNA expression levels reported here could be used as a tumor marker for HPV16 and HPV18 in cervical cancer.

  17. A second chance for telomerase reverse transcriptase in anticancer immunotherapy.

    Science.gov (United States)

    Zanetti, Maurizio

    2017-02-01

    Telomerase reverse transcriptase (TERT) is a self-antigen that is expressed constitutively in many tumours, and is, therefore, an important target for anticancer immunotherapy. In the past 10 years, trials of immunotherapy with TERT-based vaccines have demonstrated only modest benefits. In this Perspectives, I discuss the possible immunological reasons for this limited antitumour efficacy, and propose that advances in our understanding of the genetics and biology of the involvement of TERT in cancer provides the basis for renewed interest in TERT- based immunotherapy. Telomerase and TERT are expressed in cancer cells at every stage of tumour evolution, from the cancer stem cell to circulating tumour cells and tumour metastases. Many cancer types also harbour cells with mutations in the TERT promoter region, which increase transcriptional activation of this gene. These new findings should spur new interest in the development of TERT-based immunotherapies that are redesigned in line with established immunological considerations and working principles, and are tailored to patients stratified on the basis of TERT-promoter mutations and other underlying tumour characteristics. Thus, despite the disappointment of previous clinical trials, TERT offers the potential for personalized immunotherapy, perhaps in combination with immune-checkpoint inhibition.

  18. Differences in gene expression of cells growing in conventional 2D versus 3D cell culture

    International Nuclear Information System (INIS)

    Zschenker, Oliver; Cordes, Nils; Streichert, Thomas

    2009-01-01

    Full text: Telomeres are DNA protein complexes on the ends of chromosomes that distinguish the ends of chromosomes from double strand breaks and prevent degradation or fusion by nonhomologous end-joining. The loss of telomeres is associated with a loss of heterochromatic features leading to a less compact chromatin structure which allows e.g. DNA repair proteins to get better access to the site of the DNA damage and facilitate chromosome fusions. Telomerase is an enzyme that can counteract the loss of telomeres by adding telomeric repeats on the ends of chromosomes. Since telomerase is active in most tumor cells, telomerase is suggested to be the reason for the unlimited number of cell divisions of cancer cells. TRF2 is one of the most important proteins of the Shelterin complex protecting the telomeres from shortening by inhibiting ATM which is up-stream of the DNA repair mechanisms. Thus, we are concentrating on TRF2 and telomerase to investigate the differences in DNA repair in telomeric (heterochromatic) versus euchromatic regions. Human cancer cells with differences in status of p53 and telomerase like A549, UT-SCC15 and FaDu cells are used. Without any treatment, FaDu cells express high levels of telomerase and TRF2 in conventional 2D cell culture which is in contrast to e.g. A549. We found that telomerase is even higher expressed in 3D than in 2D cell culture. To connect telomere associated processes to both repair of radiogenic DNA damage/lesions and to cell-extracellular matrix interactions, we performed whole genome microarray analysis. By comparing the differential expression of genes associated with these three cell functions, we intend to yield new molecular insight into radiotherapy relevant tumor characteristics, particularly radioresistance and DNA damage response network processing. (author)

  19. Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia (Italy)

    2012-09-28

    Telomerase canonical activity at telomeres prevents telomere shortening, allowing chromosome stability and cellular proliferation. To perform this task, the catalytic subunit (telomerase reverse transcriptase, TERT) of the enzyme works as a reverse transcriptase together with the telomerase RNA component (TERC), adding telomeric repeats to DNA molecule ends. Growing evidence indicates that, besides the telomeric-DNA synthesis activity, TERT has additional functions in tumor development and is involved in many different biological processes, among which cellular proliferation, gene expression regulation, and mitochondrial functionality. TERT has been shown to act independently of TERC in the Wnt-β-catenin signaling pathway, regulating the expression of Wnt target genes, which play a role in development and tumorigenesis. Moreover, TERT RNA-dependent RNA polymerase activity has been found, leading to the genesis of double-stranded RNAs that act as precursor of silencing RNAs. In mitochondria, a TERT TERC-independent reverse transcriptase activity has been described that could play a role in the protection of mitochondrial integrity. In this review, we will discuss some of the extra-telomeric functions of telomerase.

  20. Dose-Dependent Cytotoxic Effects of Boldine in HepG-2 Cells—Telomerase Inhibition and Apoptosis Induction

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2015-02-01

    Full Text Available Plant metabolites are valuable sources of novel therapeutic compounds. In an anti-telomerase screening study of plant secondary metabolites, the aporphine alkaloid boldine (1,10-dimethoxy-2,9-dihydroxyaporphine exhibited a dose and time dependent cytotoxicity against hepatocarcinoma HepG-2 cells. Here we focus on the modes and mechanisms of the growth-limiting effects of this compound. Telomerase activity and expression level of some related genes were estimated by real-time PCR. Modes of cell death also were examined by microscopic inspection, staining methods and by evaluating the expression level of some critically relevant genes. The growth inhibition was correlated with down-regulation of the catalytic subunit of telomerase (hTERT gene (p < 0.01 and the corresponding reduction of telomerase activity in sub-cytotoxic concentrations of boldine (p < 0.002. However, various modes of cell death were stimulated, depending on the concentration of boldine. Very low concentrations of boldine over a few passages resulted in an accumulation of senescent cells so that HepG-2 cells lost their immortality. Moreover, boldine induced apoptosis concomitantly with increasing the expression of bax/bcl2 (p < 0.02 and p21 (p < 0.01 genes. Boldine might thus be an interesting candidate as a potential natural compound that suppresses telomerase activity in non-toxic concentrations.

  1. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    Science.gov (United States)

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  2. ORIGINAL ARTICLE Detection of human telomerase reverse ...

    African Journals Online (AJOL)

    salah

    currently remains the gold standard procedure for diagnosis, yet, it is invasive and costly. Urinary cytopathology remains to be the only non-invasive alter- native method for diagnosis. Although it is tumour specific, yet it has a poor sensitivity, especially for low grade tumours. Detection of Telomerase enzyme in exfoliated ...

  3. Telomeres, telomerase and premature ovarian failure

    Directory of Open Access Journals (Sweden)

    Renata Košir Pogačnik

    2011-11-01

    Full Text Available Telomeres are specialized structures at the ends of chromosomes, consisting of six repeated nucleotides in TTAGGG sequence. Genome stability is partly maintained by the architecture of telomeres and is gradually lost as telomeres progressively shorten with each cell replication. Critically shortened telomeres are recognized by DNA repair mechanisms as DNA damage and the cell replication cycle stops. The cell eventually dies or undergoes cell apoptosis. Telomere represents a cellular marker of biological age and are therefore also called cell mitotic clock. The enzyme that counteracts telomere shortening by adding nucleotides to the 3’ end of DNA strand is called telomerase. It is composed of the RNA subunit (TR, which is special type of messenger RNA (mRNA, the catalytic protein subunit (TERT, which works as a reverse transcriptase and numerous additional proteins. Telomerase is active in some germline, epithelial and haemopoietic cells, but in most somatic cells the activity is undetectable. In literature, the length of telomeres is closely connected with premature ovarian failure (POF. POF is generally defined as the onset of menopause before the age of 40. The causes of disease are genetical, autoimmune, iatrogenic or if we cannot establish the cause – idiopathic. A lot of studies examined correlation between idiopathic POF, length of telomeres and telomerase activity. The studies mostly show that women with POF have shortened telomeres and decreased activity of telomerase as compared to healthy women.

  4. Telomeres, telomerase and oral cancer (Review).

    Science.gov (United States)

    Sebastian, Sinto; Grammatica, Luciano; Paradiso, Angelo

    2005-12-01

    Oral squamous cell carcinoma (oral cancer) and many squamous cell carcinomas of the head and neck arise as a consequence of multiple molecular events induced by the effects of various carcinogens related to tobacco use, environmental factors, and viruses in some instances (e.g., mucosal oncogenic human papillomaviruses), against a background of inheritable resistance or susceptibility. Consequent genetic damage affects many chromosomes and genes, and it is the accumulation of these changes that appears to lead to carcinoma. Telomere maintenance by telomerase or, in its absence, alternative lengthening of telomeres protect this acquired altered genetic information ensuring immortality without losing eukaryotic linear DNA; when this does not occur DNA is lost and end-replication problems arise. Telomerase is reactivated in 80-90% of cancers thus attracting the attention of pathologists and clinicians who have explored its use as a target for anticancer therapy and to develop better diagnostic and prognostic markers. In the last few years, valuable research from various laboratories has provided major insights into telomerase and telomeres leading to their use as diagnostic and prognostic markers in several types of cancer. Moreover, many strategies have emerged which inhibit this complex enzyme for anticancer therapy and are one step ahead of clinical trials. This review explains the basic biology and the clinical implications of telomerase-based diagnosis and prognosis, the prospects for its use in anticancer therapy, and the limitations it presents in the context of oral cancer.

  5. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Telomeres and Telomerase in the Radiation Response: implications for instability, reprogramming, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Brock James Sishc

    2015-11-01

    Full Text Available Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks; DSBs and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles telomeres and telomerase play in the response of human cells to ionizing radiations of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET gamma(γ-rays or high LET high charge, high energy (HZE particles, delivered either acutely or at low dose rates (LDR. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprogramming. Taken together, the results reported here establish the critical importance of

  7. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  8. Telomere biology and telomerase mutations in cirrhotic patients with hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Flávia S Donaires

    Full Text Available Telomeres are repetitive DNA sequences at linear chromosome termini, protecting chromosomes against end-to-end fusion and damage, providing chromosomal stability. Telomeres shorten with mitotic cellular division, but are maintained in cells with high proliferative capacity by telomerase. Loss-of-function mutations in telomere-maintenance genes are genetic risk factors for cirrhosis development in humans and murine models. Telomerase deficiency provokes accelerated telomere shortening and dysfunction, facilitating genomic instability and oncogenesis. Here we examined whether telomerase mutations and telomere shortening were associated with hepatocellular carcinoma (HCC secondary to cirrhosis. Telomere length of peripheral blood leukocytes was measured by Southern blot and qPCR in 120 patients with HCC associated with cirrhosis and 261 healthy subjects. HCC patients were screened for telomerase gene variants (in TERT and TERC by Sanger sequencing. Age-adjusted telomere length was comparable between HCC patients and healthy subjects by both Southern blot and qPCR. Four non-synonymous TERT heterozygous variants were identified in four unrelated patients, resulting in a significantly higher mutation carrier frequency (3.3% in patients as compared to controls (p = 0.02. Three of the four variants (T726M, A1062T, and V1090M were previously observed in patients with other telomere diseases (severe aplastic anemia, acute myeloid leukemia, and cirrhosis. A novel TERT variant, A243V, was identified in a 65-year-old male with advanced HCC and cirrhosis secondary to chronic hepatitis C virus (HCV and alcohol ingestion, but direct assay measurements in vitro did not detect modulation of telomerase enzymatic activity or processivity. In summary, constitutional variants resulting in amino acid changes in the telomerase reverse transcriptase were found in a small proportion of patients with cirrhosis-associated HCC.

  9. In vitro reconstitution of the active T. castaneum telomerase.

    Science.gov (United States)

    Schuller, Anthony P; Harkisheimer, Michael J; Skordalakes, Emmanuel

    2011-07-14

    Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit. Additionally, telomerase is dormant in most somatic cells in adults, but is active in cancer cells where it promotes cell immortality. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres. Prior to 2008, only structures for individual telomerase domains had been solved. A major breakthrough in this field came from the determination of the crystal structure of the active, catalytic subunit of T. castaneum telomerase, TcTERT. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.

  10. Nutrition and lifestyle in healthy aging: the telomerase challenge.

    Science.gov (United States)

    Boccardi, Virginia; Paolisso, Giuseppe; Mecocci, Patrizia

    2016-01-01

    Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.

  11. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    Science.gov (United States)

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  12. Low-Dose Fluvastatin and Valsartan Rejuvenate the Arterial Wall Through Telomerase Activity Increase in Middle-Aged Men.

    Science.gov (United States)

    Janić, Miodrag; Lunder, Mojca; Cerkovnik, Petra; Prosenc Zmrzljak, Uršula; Novaković, Srdjan; Šabovič, Mišo

    2016-04-01

    Previously, we have shown that slightly to moderately aged arteries in middle-aged males can be rejuvenated functionally by sub-therapeutic, low-dose fluvastatin and valsartan treatment. Here, we explore whether this treatment could also increase telomerase activity. We hypothesized that telomerase activity might be associated with (1) an improvement of arterial wall properties and (2) a reduction of inflammatory/oxidative stress parameters (both observed in our previous studies). The stored blood samples from 130 apparently healthy middle-aged males treated with fluvastatin (10 mg daily), valsartan (20 mg daily), fluvastatin and valsartan combination (10 and 20 mg), respectively, and placebo (control), were analyzed. The samples were taken before and after treatment lasting 30 days, and 5 months after treatment discontinuation. Telomerase activity was measured in blood leukocytes by a TaqMan Gene Expression Assay. Low-dose fluvastatin or valsartan increased telomerase activity (106.9% and 59.5% respectively; both p valsartan substantially increased telomerase activity, which significantly correlated with an improvement of endothelial function and a decrease of inflammation/oxidative stress. These findings could lead to a new innovative approach to arterial rejuvenation.

  13. Identification of Protein Components of Yeast Telomerase

    Science.gov (United States)

    2000-09-01

    cells past this limit senesce, or stop growing (reviewed in Hayflick 1997). This limit is imposed by the inactivity of telomerase, which results in...CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 15. NUMBER OF PAGES 55 16. PRICE CODE 20. LIMITATION ...one of which is the acquired capability of limitless replicative potential. Normal mammalian cells have an intrinsic limit to cellular division, and

  14. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    Science.gov (United States)

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.

  15. The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth

    Directory of Open Access Journals (Sweden)

    Agni Christodoulidou

    2013-02-01

    Full Text Available Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite, as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres, telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT and human telomerase RNA component (hTERC, exert both reverse transcriptase-related (canonical and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.

  16. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species.

    Science.gov (United States)

    Zhang, Huairong; Li, Binxiao; Sun, Zhaomei; Zhou, Hong; Zhang, Shusheng

    2017-12-01

    Cancer therapies based on reactive oxygen species (ROS) have emerged as promising clinical treatments. Electrochemiluminescence (ECL) technology has also attracted considerable attention in the field of clinical diagnosis. However, studies about the integration of ECL diagnosis and ROS cancer therapy are very rare. Here we introduce a novel strategy that employs ECL technology and ROS to fill the above vacancy. Briefly, an ITO electrode was electrodeposited with polyluminol-Pt NPs composite films and modified with aptamer DNA to capture HL-60 cancer cells with high specificity. After that, mesoporous silica nanoparticles (MSNs) filled with phorbol 12-myristate 13-acetate (PMA) were closed by the telomerase primer DNA (T-primer DNA) and aptamer. After aptamer on MSN@PMA recognized and combined with the HL-60 cancer cells with high specificity, T-primer DNA on MSN@PMA could be moved away from the MSN@PMA surface after extension by telomerase in the HL-60 cancer cells and PMA was released to induce the production of ROS by the HL-60 cancer cells. After that, the polyluminol-Pt NPs composite films could react with hydrogen peroxide (a major ROS) and generate an ECL signal. Thus the intracellular telomerase activity of the HL-60 cancer cells could be detected in situ . Besides, ROS could induce apoptosis in the HL-60 cancer cells with high efficacy by causing oxidative damage to the lipids, protein, and DNA. Above all, the designed platform could not only detect intracellular telomerase activity instead of that of extracted telomerase, but could also kill targeted tumors by ECL technology and ROS.

  17. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Chen Shaomin

    2012-04-01

    Full Text Available Abstract Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH using chromosome probes to TERC (3q26 and C-MYC (8q24. All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1, grade 2 (CIN2, grade 3 (CIN3 and squamous cervical cancer (SCC cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC cases than in the normal and CIN1 cases (p p p > 0.05. Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913.

  18. Does telomerase activity have an effect on infertility in patients with endometriosis?

    Science.gov (United States)

    Sofiyeva, Nigar; Ekizoglu, Seda; Gezer, Altay; Yilmaz, Handan; Kolomuc Gayretli, Tugba; Buyru, Nur; Oral, Engin

    2017-06-01

    This study aimed to investigate the role of telomerase activity in the development of endometriosis-related infertility by evaluation of the serum telomerase in eutopic and ectopic endometrial tissue. Eutopic endometrium, cystic wall/ovarian cortex, and venous blood were assessed in forty-seven patients. The following groups of patients were identified: females with endometriosis requiring surgical intervention and healthy control females. Patients with histopathologically confirmed endometriosis were further subdivided in the infertile (n=14) and fertile (n=17) groups. Patients who underwent hysterectomy and oophorectomy for benign gynecological conditions were enrolled in the healthy control group (n=16). Telomerase activity was evaluated with three-group, endometriosis-based and fertility-based designs. Analyses were performed regardless the menstrual cycle phase (Phase G), in proliferative (Phase P) (n=22) and secretory phases (Phase S) (n=25). Telomeric Repeat Amplification Protocol PCR was applied for telomerase activity assessment. All statistical analyses were performed with STATA 14.2, GraphPad Prisma 7.01. In analyses of the eutopic endometrium, with three-group design, a significant difference was not found in Phase G and P (p=0.58 and p=0.33, respectively). However, a statistical difference was shown in Phase S (p=0.008). A significant difference was not established in Phase G, P and S of endometriosis-based design (p=0.35, p=1.0, p=0.13, respectively). No difference was detected in Phase G and P of fertility-based design (p=0.66 and p=0.14, respectively), whereas in secretory phase difference was approved (p=0,049). Telomerase activity was not established in ectopic endometrium and in serum assessment. Telomerase activity is useless as a biomarker in peripheric blood analysis. The absence of activity in cystic wall approves the high differentiation of endometriosis tissue, what is the possible reason of low malignancy risk. The high rate of telomerase

  19. Re: Role of Telomeres and Telomerase in Cancer

    Directory of Open Access Journals (Sweden)

    Shay JW

    2016-03-01

    Full Text Available The most important difference between cancer and normall cells is the ability to continuous proliferation. This activation works due to telomeres and telomerase enzyme. Fifty years ago, Leonard Hayflick discovered that cultured normal humans cells have a limited capacity to divide. Today, this withdrawal from the cell cycle after a certain number of cellular divisions (replicative senescence is known to be triggered as a result of shortened telomeres. Studies on telomeres and telomerase have begun to provide additional information about aging and cancer development and have created new opportunities in the field of regenerative medicine for telomeropathies. Progressive telomere shortening from cell division (replicative aging provides a barrier for tumor progression. Continuous cell growth in malignancy correlates with the reactivation of telomerase. Telomerase is a cellular reverse transcriptase that adds new deoxyribonucleic acid (DNA onto the telomeres that are located at the ends of chromosomes. Telomeres consist of many kilobases of TTAGGG nucleotide repeats. The telomeric nucleotide repeats shorten with each cell division due to replication problems (DNA repair and oxidative damage. Quiescent/senescent state of the cell bypass can be accomplished by abrogating cell cycle checkpoint genes (such as TP53, p16INK4a, pRb. Telomerase is detected in approximately 90% of all malignant tumors. This telomerase activation has emerged as a target for cancer treatment. Telomerase therapeutics are classified as gene therapy (hTERT-telomerase catalytic protein component, hTR-telomerase functional, immunotherapy (Imetalstat-telomerase template antagonist, and small molecule inhibitors. In the near future, more specific researches on telomers and telomerase will contribute to aging/immortality studies (as stem cells and to discover new biomarkers for malignant tissue or anticancer therapeutics.

  20. Telomerase Inhibitors from Natural Products and Their Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-12-01

    Full Text Available Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.

  1. Protein composition of catalytically active human telomerase from immortal cells

    DEFF Research Database (Denmark)

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O

    2007-01-01

    Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on th...

  2. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... curcumin, could have important effect on treatment of lung cancer. Curcumin ... study inhibitory effect of C. longa total extract on telomerase in A549 lung cancer cell line as in vitro model of ..... If A > 2× (OD of negative control), then, telomerase activity ... radiation, chemotherapy, laser therapy, photodynamic.

  3. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK)

    International Nuclear Information System (INIS)

    Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G.

    2012-01-01

    telomerase activity was found in NFK. ► Increased intracellular superoxide levels and reduced cell growth was seen in both. ► PCB153 may damage telomerase expressing cells like stem cells.

  4. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    Directory of Open Access Journals (Sweden)

    Zijian Xiao

    Full Text Available This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  5. Telomerase: A Target for Therapeutic Effects of Curcumin and a Curcumin Derivative in Aβ1-42 Insult In Vitro

    Science.gov (United States)

    Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1–42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1–42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1. PMID:24983737

  6. A Smart DNA Tweezer for Detection of Human Telomerase Activity.

    Science.gov (United States)

    Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei

    2018-03-06

    Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n . TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.

  7. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    Science.gov (United States)

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Stefanou Nikolaos

    2010-08-01

    Full Text Available Abstract Background Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC. The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT, a known mediator of cellular immortalization. Methods We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3 and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes. Results We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on hTERT promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC. Conclusions We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.

  9. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  10. Tetrahymena telomerase protein p65 induces conformational changes throughout telomerase RNA (TER) and rescues telomerase reverse transcriptase and TER assembly mutants.

    Science.gov (United States)

    Berman, Andrea J; Gooding, Anne R; Cech, Thomas R

    2010-10-01

    The biogenesis of the Tetrahymena telomerase ribonucleoprotein particle (RNP) is enhanced by p65, a La family protein. Single-molecule and biochemical studies have uncovered a hierarchical assembly of the RNP, wherein the binding of p65 to stems I and IV of telomerase RNA (TER) causes a conformational change that facilitates the subsequent binding of telomerase reverse transcriptase (TERT) to TER. We used purified p65 and variants of TERT and TER to investigate the conformational rearrangements that occur during RNP assembly. Nuclease protection assays and mutational analysis revealed that p65 interacts with and stimulates conformational changes in regions of TER beyond stem IV. Several TER mutants exhibited telomerase activity only in the presence of p65, revealing the importance of p65 in promoting the correct RNP assembly pathway. In addition, p65 rescued TERT assembly mutants but not TERT activity mutants. Taken together, these results suggest that p65 stimulates telomerase assembly and activity in two ways. First, by sequestering stems I and IV, p65 limits the ensemble of structural conformations of TER, thereby presenting TERT with the active conformation of TER. Second, p65 acts as a molecular buttress within the assembled RNP, mutually stabilizing TER and TERT in catalytically active conformations.

  11. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    Science.gov (United States)

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  12. Clinical Outcomes of Lung Transplantation in Patients with Telomerase Mutations

    Science.gov (United States)

    Tokman, Sofya; Singer, Jonathan P.; Devine, Megan S.; Westall, Glen P.; Aubert, John-David; Tamm, Michael; Snell, Gregory I.; Lee, Joyce S.; Goldberg, Hilary J.; Kukreja, Jasleen; Golden, Jeffrey A.; Leard, Lorriana E.; Garcia, Christine K.; Hays, Steven R.

    2017-01-01

    Background Successful lung transplantation (LT) for patients with pulmonary fibrosis from telomerase mutations is limited by systemic complications of telomerase dysfunction including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes among 14 LT recipients with telomerase mutations. Methods Subjects underwent LT between February 2005 and April 2014 at 5 LT centers. We abstracted data from medical records, focusing on outcomes reflecting post-LT treatment effects likely to be complicated by telomerase mutations. Results The median age of subjects was 60.5 years (IQR 52.0–62.0), 64.3% were male, and the mean post-LT observation time was 3.2 years (SD ±2.9). Eleven subjects had a mutation in telomerase reverse transcriptase, 2 in telomerase RNA component, and 1 had an uncharacterized mutation. Ten subjects were leukopenic post-LT; leukopenia prompted cessation of mycophenolate mofetil in 5 and treatment with filgrastim in 4. Six subjects had recurrent lower respiratory tract infections (LRTI), 7 had acute cellular rejection (ACR) (A1), and 4 developed chronic lung allograft dysfunction (CLAD). Ten LT recipients developed chronic renal insufficiency and 8 experienced acute, reversible renal failure. Three developed cancer, none had cirrhosis. Thirteen subjects were alive at data censorship. Conclusions The clinical course for LT recipients with telomerase mutations is complicated by renal disease, leukopenia prompting a change in the immunosuppressive regimen, and recurrent LTRI. In contrast, cirrhosis was absent, ACR was mild, and development of CLAD was comparable to other LT populations. While posing challenges, lung transplantation may be feasible for patients with pulmonary fibrosis due to telomerase mutations. PMID:26169663

  13. Augmented telomerase activity, reduced telomere length and the presence of alternative lengthening of telomere in renal cell carcinoma: plausible predictive and diagnostic markers.

    Science.gov (United States)

    Pal, Deeksha; Sharma, Ujjawal; Khajuria, Ragini; Singh, Shrawan Kumar; Kakkar, Nandita; Prasad, Rajendra

    2015-05-15

    In this study, we analyzed 100 cases of renal cell carcinoma (RCC) for telomerase activity, telomere length and alternative lengthening of telomeres (ALT) using the TRAP assay, TeloTTAGGG assay kit and immunohistochemical analysis of ALT associated promyelocytic leukemia (PML) bodies respectively. A significantly higher (P=0.000) telomerase activity was observed in 81 cases of RCC which was correlated with clinicopathological features of tumor for instance, stage (P=0.008) and grades (P=0.000) but not with the subtypes of RCC (P = 0.355). Notwithstanding, no correlation was found between telomerase activity and subtypes of RCC. Strikingly, the telomere length was found to be significantly shorter in RCC (P=0.000) to that of corresponding normal renal tissues and it is well correlated with grades (P=0.016) but not with stages (P=0.202) and subtypes (P=0.669) of RCC. In this study, telomere length was also negatively correlated with the age of patients (r(2)=0.528; P=0.000) which supports the notion that it could be used as a marker for biological aging. ALT associated PML bodies containing PML protein was found in telomerase negative cases of RCC. It suggests the presence of an ALT pathway mechanism to maintain the telomere length in telomerase negative RCC tissues which was associated with high stages of RCC, suggesting a prevalent mechanism for telomere maintenance in high stages. In conclusion, the telomerase activity and telomere length can be used as a diagnostic as well as a predictive marker in RCC. The prevalence of ALT mechanism in high stages of RCC is warranted for the development of anti-ALT inhibitors along with telomerase inhibitor against RCC as a therapeutic approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Radhia M’kacher

    2018-05-01

    Full Text Available Background: We analyzed telomere maintenance mechanisms (TMMs in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30−/CD15− cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10−3, event-free survival (p < 10−4, and freedom from progression (p < 10−3 and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.

  15. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  16. Telomerase activity as a marker for malignancy in feline tissues.

    Science.gov (United States)

    Cadile, C D; Kitchell, B E; Biller, B J; Hetler, E R; Balkin, R G

    2001-10-01

    To establish the diagnostic significance of the telomeric repeat amplification protocol (TRAP) assay in detecting feline malignancies. Solid tissue specimens collected from 33 client-owned cats undergoing diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital between July 1997 and September 1999 and an additional 20 tissue samples were collected from 3 clinically normal control cats euthanatized at the conclusion of an unrelated study. The TRAP assay was used for detection of telomerase activity. Each result was compared to its respective histopathologic diagnosis. Twenty-nine of 31 malignant and 1 of 22 benign or normal tissue samples had telomerase activity, indicating 94% sensitivity and 95% specificity of the TRAP assay in our laboratory. The diagnostic significance of telomerase activity has been demonstrated in humans and recently in dogs by our laboratory. We tested feline samples to determine whether similar patterns of telomerase activity exist. On the basis of our results, the TRAP assay may be clinically useful in providing a rapid diagnosis of malignancy in cats. The telomerase enzyme may also serve as a therapeutic target in feline tumors.

  17. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    International Nuclear Information System (INIS)

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-01-01

    Research highlights: → In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. → The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. → The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. → P53 status is not associated with the occurrence of unsensitized clone. → Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC -/- cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC -/- clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  18. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.

    Science.gov (United States)

    Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J

    2018-01-25

    Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA.

    Science.gov (United States)

    Wang, Na; Liu, Tiantian; Sofiadis, Anastasios; Juhlin, C Christofer; Zedenius, Jan; Höög, Anders; Larsson, Catharina; Xu, Dawei

    2014-10-01

    The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis. The study included primary tumors from 58 patients initially diagnosed with follicular thyroid adenoma (FTA), a benign entity, 18 with atypical FTA (AFTA) having an uncertain malignant potential, and 52 with follicular thyroid carcinoma (FTC). Sanger sequencing was used to investigate the mutational status of the TERT promoter. Telomere length and TERT messenger RNA (mRNA) expression were determined using quantitative polymerase chain reaction (PCR). Telomerase activity was assessed using a Telomerase PCR enzyme-linked immunosorbent assay kit. The C228T mutation was identified in 1 of 58 FTA (2%) and 3 of 18 AFTA (17%) samples. These 4 tumors all expressed TERT mRNA and telomerase activity, whereas the majority of C228T-negative adenomas lacked TERT expression (C228T versus wild-type, P = .008). The C228T mutation was associated with NRAS gene mutations (P = .016). The patient with C228T-mutated FTA later developed a scar recurrence and died of FTC, whereas none of the remaining 57 patients with FTA had recurrence. No recurrence occurred in 3 patients with AFTA who carried C228T during the follow-up period (36-285 months). Nine of the 52 FTCs (17%) exhibited the TERT mutation (8 of 9 C228T and 1 of 9 C250T), and the presence of the mutation was associated with shorter patient survival. TERT promoter mutations may occur as an early genetic event in thyroid follicular tumors that have not developed malignant features on routine histopathological workup. © 2014 American Cancer Society.

  20. In Situ Synthesized Silver Nanoclusters for Tracking the Role of Telomerase Activity in the Differentiation of Mesenchymal Stem Cells to Neural Stem Cells.

    Science.gov (United States)

    Dong, Fangyuan; Feng, Enduo; Zheng, Tingting; Tian, Yang

    2018-01-17

    Human mesenchymal stem cells (hMSCs) have potential use in cell replacement therapy for central nervous system disorders. However, the factors that impacted the differentiation process are unclear at the present stage because the powerful analytical method is the bottleneck. Herein, a novel strategy was developed for self-imaging and biosensing of telomerase activity in stem cells, using in situ biosynthesized silver nanoclusters (AgNCs) full of C bases. The present AgNCs possess synthetic convenience, long-time stability, and cytocompatibility. The weak fluorescence of these AgNCs is quickly turned on when approaching telomerase because of the strong interaction between C bases on AgNCs and G bases in telomerase, resulting in telomerase-dependent fluorescent signals. The developed method demonstrated high sensitivity and selectivity and broad dynamic linear range with a low detection limit. Using this powerful tool, it was first discovered that telomerase activity plays important roles in the proliferation of hMSCs and neural stem cells (NSCs) as well as during the differentiation processes from hMSCs to NSCs.

  1. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    International Nuclear Information System (INIS)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-01-01

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-β-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells

  2. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin

    Science.gov (United States)

    Gardano, Laura; Holland, Linda; Oulton, Rena; Le Bihan, Thierry; Harrington, Lea

    2012-01-01

    Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions. PMID:22187156

  3. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    Science.gov (United States)

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    ). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose...... physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase...

  5. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    Telomerase is reactivated in lung cancer cells, the most prevalent cancer worldwide, but not normal cells. Therefore, targeting it, preferably with natural compounds derive from medicinal plant such as curcumin, could have important effect on treatment of lung cancer. Curcumin, derived from Curcuma longa rhizome, has ...

  6. Telomerase activity and apoptosis genes as parameters of ...

    African Journals Online (AJOL)

    Ekram Abdel-Salam

    2013-01-23

    Jan 23, 2013 ... ORIGINAL ARTICLE. Telomerase ... The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net ... membrane protein that belongs to the tumor necrosis factor superfamily and ... revision of the 1975 Helsinki Declaration. Methods ... Determination of Soluble Fas was in duplicate plasma sam- ples.

  7. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    Science.gov (United States)

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  8. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder.

    Science.gov (United States)

    Vail, Eric; Zheng, Xiaoyong; Zhou, Ming; Yang, Ximing; Fallon, John T; Epstein, Jonathan I; Zhong, Minghao

    2015-10-01

    Glandular lesions of the urinary bladder include a broad spectrum of entities ranging from completely benign to primary and secondary malignancies. The accurate diagnosis of these lesions is both important and challenging. Recently, studies suggest that telomerase reverse transcriptase (TERT) promoter mutations could be a biomarker for urothelial carcinoma (UC). We hypothesized that these mutations can distinguish UC with glandular differentiation from nephrogenic adenoma, primary adenocarcinoma of the urinary bladder (PAUB), or secondary malignancies. Twenty-five cases of benign glandular lesions (including nephrogenic adenoma); 29 cases of UC with glandular differentiation; 10 cases of PAUB; and 10 cases each of metastatic colon cancer, prostatic carcinoma, and carcinoma from Mullerian origin were collected. Slides were reviewed and selected to make sure the lesion was at least 10% to 20% of all tissue. Macrodissection was performed in some of cases, and genomic DNA was extracted from the tissue. Telomerase reverse transcriptase promoter mutations were determined by standard polymerase chain reaction sequencing. Twenty-one cases (72%) of UC with glandular differentiation were positive for TERT promoter mutations. However, none of the remaining cases (total 65 cases of benign lesions, PAUB, and metastatic carcinomas) was positive for TERT promoter mutation. Telomerase reverse transcriptase promoter mutations were highly associated with UC including UC with glandular differentiation but not other glandular lesions of bladder. Therefore, in conjunction with morphologic features, Immunohistochemistry stain profile, and clinical information, TERT promoter mutations could distinguish UC with glandular differentiation from other bladder glandular lesions. In addition, lack of TERT promoter mutations in primary adenocarcinoma of bladder suggests that this entity may have different origin or carcinogenesis from those of UC. Published by Elsevier Inc.

  9. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    Science.gov (United States)

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  10. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    Energy Technology Data Exchange (ETDEWEB)

    Her, Joonyoung [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  11. Telomerase Activity, Cytokeratin 20 and Cytokeratin 19 in Urine Cells of Bladder Cancer Patients

    International Nuclear Information System (INIS)

    Morsi, M.I.; Youssef, A.I.; El-Sedafi, A.S.; Ghazal, A.A.; Zaher, E.R.; Hassouna, M.E.

    2006-01-01

    cancer, representing the highest sensitivity and specificity, beside the radiological and histopathology. Meanwhile, telomerase, although it was a sensitive enough marker, it reflected a high false positive rate

  12. Structure-function relationships during transgenic telomerase expression in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Zachová, D.; Fojtová, Miloslava; Dvořáčková, Martina; Mozgová, I.; Lermontova, I.; Peška, Vratislav; Schubert, I.; Fajkus, Jiří; Sýkorová, Eva

    2013-01-01

    Roč. 149, č. 1 (2013), s. 114-126 ISSN 0031-9317 R&D Projects: GA AV ČR(CZ) IAA500040801; GA ČR(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : RNA-BINDING DOMAIN * REVERSE-TRANSCRIPTASE * NUCLEOLAR LOCALIZATION Subject RIV: BO - Biophysics Impact factor: 3.262, year: 2013

  13. Serum telomerase levels in smokers and smokeless tobacco users as Maras powder.

    Science.gov (United States)

    Bozkuş, Fulsen; Atilla, Nurhan; Şimşek, Seçil; Kurutaş, Ergül; Samur, Anıl; Arpağ, Hüseyin; Kahraman, Hasan

    2017-09-01

    To the best of our knowledge, no previous study regarding the serum telomerase levels in Maras powder users (MPUs) has been founded. The aim of the current study was to investigate serum telomerase levels in smokers and MPUs. The study was carried out with 98 patients (36 MPUs, 32 smokers and 30 non-smokers). Blood samples were collected, and after having measured the serum telomerase and malondialdehyde (MDA) levels of the patients, comparison were made between the groups. It has been observed that the serum telomerase and MDA levels of smokers (pnon-smoker control subjects. In addition, the levels of serum telomerase and MDA were observed to be higher in the MPU group compared to those of the smoker group (psmokers. In this context, it may be useful to further measure and assess telomerase activity in such patients in order to better determine the harmful effects associated with these habits.

  14. Telomerase as a potential anticancer target: growth inhibition and genomic instability.

    Science.gov (United States)

    Faraoni, Isabella; Graziani, Grazia

    2000-02-01

    Stabilization of telomere length in chromosomes by an RNA-dependent DNA polymerase (telomerase) appears to be responsible for the replicative immortality of cancer cells. These findings provide the rational basis for generating experimental models to develop anti-telomerase drugs. However, there is conflicting evidence in the literature about the outcome of telomerase inhibition. While tumor cytostatic and cytotoxic effects associated with telomerase inhibition have been described, absence of telomerase has been associated with genetic instability and tumor development. Therefore, a therapeutic strategy based on telomerase inhibition will likely have to cope with problems related to innate or acquired mechanisms of drug resistance and possibly to therapy-related tumors. Copyright 2000 Harcourt Publishers Ltd.

  15. Detection of telomerase activity in Plasmodium falciparum using a nonradioactive method

    Directory of Open Access Journals (Sweden)

    Rubiano Claudia C

    2003-01-01

    Full Text Available A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7 parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.

  16. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  17. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  18. A telomerase em células-tronco hematopoéticas Telomerase in hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Silvana Perini

    2008-02-01

    Full Text Available A proliferação das células-tronco hematopoéticas sofre a perda dos telômeros a cada divisão celular. Alguns autores discordam quanto à perda ou não do potencial proliferativo e capacidade de auto-renovação das células mais diferenciadas. Revisaremos aqui o papel da telomerase na biologia do sistema hematopoético, na diferenciação normal ou maligna, assim como no envelhecimento das células-tronco hematopoéticas. A constante renovação celular requerida pela hematopoese confere às células-tronco embrionárias, assim como à maioria das células tumorais, um aumento da capacidade proliferativa marcada pela detecção da enzima telomerase e possível manutenção dos telômeros. Estudos clínicos se farão necessários para esclarecer melhor a atividade da telomerase em células-tronco hematopoéticas, seu possível uso como marcador de diagnóstico e seu uso a fim de propósitos prognósticos.Hematopoietic stem cell proliferation leads to telomere length decreases at each cellular division. Some authors disagree about the telomere influence on the reduction of the proliferative potential and capacity of self renewal. Here we review telomerase function in the biology of the hematopoietic system, in normal or differentiation and its influence on the ageing of hematopoietic stem cells. The constant cellular renewal required to maintain the hematopoietic system, provides embryonic stem cells, as well as malignant cells, an increased proliferative capacity. This is marked by the detection of telomerase enzyme activity and possible telomere maintenance. Clinical trials will be required to clarify telomerase activity in hematopoietic stem cells, its possible use as a diagnostic marker and its use for prognostic purposes.

  19. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability.

    Science.gov (United States)

    Robart, Aaron R; O'Connor, Catherine M; Collins, Kathleen

    2010-03-01

    Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.

  20. Activity of telomerase and telomeric length in Aphis mellifera

    Czech Academy of Sciences Publication Activity Database

    Korandová, Michala; Čapková Frydrychová, Radmila

    2016-01-01

    Roč. 125, č. 3 (2016), s. 405-411 ISSN 0009-5915 R&D Projects: GA ČR GA14-07172S Grant - others:GA JU(CZ) 052/2013/P; European Union Seventh Framework(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : telomere * telomerase * Apis mellifera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.414, year: 2016

  1. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  2. Targeting telomerase and DNA repair in human cancers

    International Nuclear Information System (INIS)

    Prakash Hande, M.

    2014-01-01

    Telomerase reactivation is essential for telomere maintenance in human cancer cells ensuring indefinite proliferation. Targeting telomere homeostasis has become one of the promising strategies in the therapeutic management of tumours. One major potential drawback, however, is the time lag between telomerase inhibition and critically shortened telomeres triggering cell death, allowing cancer cells to acquire drug resistance. Numerous studies over the last decade have highlighted the role of DNA repair proteins such as Poly (ADP-Ribose) Polymerase-1 (PARP-1), and DNA-dependent protein kinase (DNA-PKcs) in the maintenance of telomere homoeostasis. Dysfunctional telomeres, resulting from the loss of telomeric DNA repeats or the loss of function of telomere-associated proteins trigger DNA damage responses similar to that observed for double strand breaks. We have been working on unravelling such synthetic lethality in cancer cells and this talk would be on one such recently concluded study that demonstrates that inhibition of DNA repair pathways, i.e., NHEJ pathway and that of telomerase could be an alternative strategy to enhance anti-tumour effects and circumvent the possibility of drug resistance. (author)

  3. Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection—The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress

    Science.gov (United States)

    Quryshi, Nabeel; Norwood Toro, Laura E.; Ait-Aissa, Karima; Kong, Amanda; Beyer, Andreas M.

    2018-01-01

    Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage. PMID:29534446

  4. Telomerase activity in patients with stage 2–5D chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Veysel Kidir

    2017-11-01

    Full Text Available Background: Molecular mechanisms of increased cardiovascular mortality in chronic kidney disease (CKD associated with biological age are not well understood. Recent studies support the hypothesis that common factors responsible for this phenomenon are cellular aging and telomere dysfunction. Objectives: The purpose of this study was to investigate the relation between telomerase activity and CKD stages. Methods: The study included 120 patients who were followed-up for CKD stage 2–5D, composed of 30 patients of each stage and 30 healthy volunteers without any known disease who were admitted to our hospital for routine check-ups. Telomerase activity in peripheral blood mononuclear cells (PBMC was measured using the TRAP assay. Results: A significant difference was observed for telomerase activity in PBMC between groups. The detected levels were lowest in the healthy control group (0.15 ± 0.02, and highest in CKD stage 5D patients (0.23 ± 0.04. In CKD patients, telomerase activity in PBMC was positively correlated with the CKD stage, serum creatinine, potassium and parathormone levels, and negatively correlated with estimated glomerular filtration rate (eGFR, body mass index (BMI, platelet count and serum calcium levels. According to the linear regression analysis, independent predictors for high telomerase activity in CKD patients were eGFR and BMI. Conclusion: Telomerase activity in PBMC increases with advancing CKD stage in CKD patients. Increased telomerase activity in PBMC is associated with eGFR and BMI. Resumen: Antecedentes: Los mecanismos moleculares responsables del aumento de la mortalidad cardiovascular en la enfermedad renal crónica (ERC asociada a la edad biológica no se conocen bien. Los estudios recientes apoyan la hipótesis de que los factores comunes responsables de este fenómeno son el envejecimiento celular y la disfunción telomérica. Objetivos: El objetivo de este estudio fue investigar

  5. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-01-01

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  6. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  7. Transcriptional activity of telomerase complex in CD34- stem cells of cord blood in dependence of preparation time.

    Directory of Open Access Journals (Sweden)

    M Bojdys-Szyndlar

    2009-12-01

    Full Text Available The aim of the study was to determine whether the expression of telomerase subunits encoding genes changes during the process of cord blood preparation. It should establish if the commonly accepted 24 hours time interval in stem cells kriopreservation procedure significantly influences their immortalization and so decreases the "quality" of cord blood stem cells. Investigation includes 69 women. Spontaneous labour was the inclusion condition. The material was collected at birth after clamping of umbilical cord by direct vasopuncture. CD34- cells were extracted from cord blood (MACS, Miltenyi Biotec; Bisley, Surrey, UK. The expression profile of telomerase activators and inhibitors encoding genes was determined using HG_U133A oligonucleotide microarray (Affymetrix. We used a real-time quantitative RT-PCR assay to quantify the telomerase TERT, hTR and TP1 subunits mRNA copy numbers in CD34- cells in 0, 6, 12 and 24 hours after cord blood collection. We observed significant decrease of numbers of copies of TERTA+B mRNA within the successive hours of observation. Significant decrease of numbers of TERTA mRNA copies was confirmed after 24 hours. However, we observed significant increase of numbers of copies of TERTB mRNA after 6 hours of observation. Similar level was maintained during another 6h. The significantly lower number of copies of TERTB mRNA was observed after 24h. We also observed significant increase of number of copies of TERT mRNA after 6 hours. Number of copies of TERT mRNA significantly decreased after another 6h, remaining, however, on a higher then initial one. The significant lower number of copies of TERT mRNA was observed 24h after delivery. The possible explanation of those results is discussed in the paper.

  8. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    DEFF Research Database (Denmark)

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich

    2012-01-01

    Human telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular...

  9. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  10. [The role of telomerase activity in non-invasive diagnostics of bladder cancer].

    Science.gov (United States)

    Glybochko, P V; Alyaev, J G; Potoldykova, N V; Polyakovsky, K A; Vinarov, A Z; Glukhov, A I; Gordeev, S A

    2016-08-01

    To evaluate the potentials of determining the telomerase activity (TA) in the cellular material of the urine for noninvasive diagnosis of bladder cancer (BC). Evaluation of TA was performed in the urine of 48 patients with bladder cancer (study group) before and after transurethral resection of the bladder wall (n=38), an open resection of the bladder (n=4), and cystectomy (n=6). TA was also evaluated in 48 tumor tissue samples obtained from these patients during removal of the bladder tumor. Each sample of the tumor tissue was separated into two parts, one of which was subjected to histological examination, and the latter was used to determine the telomerase activity. In all cases, the diagnosis of bladder cancer was confirmed morphologically. Determination of TA in the samples was performed by the modified TRAP-method (telomerase repeat amplification protocol), RT-PCR, PCR, and electrophoresis. As a control, cell material of the urine and tissue in 12 patients with chronic cystitis was investigated. TA before surgery was found in 45 (93.75%) of 48 samples of cellular material of the urine from patients with suspected bladder cancer. BC was histologically verified in all patients in this group. In the postoperative period, TA was not observed in the 48 samples of cellular material of the urine from patients with BC. In the control group of patients with histologically verified cystitis, weak TA was determined only in one sample of cellular material of the urine. The analysis indicates statistically significant predominance of patients with bladder cancer in case of TA in the urine (P=0.001). TA was detected in all samples of tumor tissue. We also analyzed the dependence of TA levels in urine and tissue on the degree of BC differentiation. In patients with highly differentiated BC, mean AT in the cellular materials of the urine was 0,61% (n=15), in patients with moderately differentiated BC - 0.95% (n=23), in patients with low-grade bladder cancer - 1.33% (n=10

  11. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation

    International Nuclear Information System (INIS)

    Shen, S.-C.; Yang, L.-Y.; Lin, H.-Y.; Wu, C.-Y.; Su, T.-H.; Chen, Y.-C.

    2008-01-01

    The effects of six arsenic compounds including As +3 , MMA +3 , DMA +3 , As +5 , MMA +5 , and DMA +5 on the viability of NIH3T3 cells were examined. As +3 and MMA +3 , but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As +3 and MMA +3 were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As +3 and MMA +3 treatments. An increase in the intracellular peroxide level was examined in As +3 - and MMA +3 -treated NIH3T3 cells, and As +3 - and MMA +3 -induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As +3 - and MMA +3 -induced cytotoxicity. Suppression of JNKs significantly inhibited As +3 - and MMA +3 -induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As +3 - and MMA +3 -induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As +3 or MMA +3 . These data provide the first evidence to indicate that apoptosis induced by As +3 and MMA +3 is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved

  12. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.

    Science.gov (United States)

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-04-18

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.

  13. Telomeres and Telomerase in Hematopoietic Dysfunction: Prognostic Implications and Pharmacological Interventions

    Directory of Open Access Journals (Sweden)

    Theresa Vasko

    2017-10-01

    Full Text Available Leukocyte telomere length (TL has been suggested as a marker of biological age in healthy individuals, but can also reflect inherited and acquired hematopoietic dysfunctions or indicate an increased turnover of the hematopoietic stem and progenitor cell compartment. In addition, TL is able to predict the response rate of tyrosine kinase inhibitor therapy in chronic myeloid leukemia (CML, indicates clinical outcomes in chronic lymphocytic leukemia (CLL, and can be used as screening tool for genetic sequencing of selected genes in patients with inherited bone marrow failure syndromes (BMFS. In tumor cells and clonal hematopoietic disorders, telomeres are continuously stabilized by reactivation of telomerase, which can selectively be targeted by telomerase-specific therapy. The use of the telomerase inhibitor Imetelstat in patients with essential thrombocythmia or myelofibrosis as well as the use of dendritic cell-based telomerase vaccination in AML patients with complete remissions are promising examples for anti-telomerase targeted strategies in hematologic malignancies. In contrast, the elevation in telomerase levels through treatment with androgens has become an exciting clinical intervention for patients with BMFS. Here, we review recent developments, which highlight the impact of telomeres and telomerase targeted therapies in hematologic dysfunctions.

  14. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  15. RAD51 and RTEL1 compensate telomere loss in the absence of telomerase.

    Science.gov (United States)

    Olivier, Margaux; Charbonnel, Cyril; Amiard, Simon; White, Charles I; Gallego, Maria E

    2018-03-16

    Replicative erosion of telomeres is naturally compensated by telomerase and studies in yeast and vertebrates show that homologous recombination can compensate for the absence of telomerase. We show that RAD51 protein, which catalyzes the key strand-invasion step of homologous recombination, is localized at Arabidopsis telomeres in absence of telomerase. Blocking the strand-transfer activity of the RAD51 in telomerase mutant plants results in a strikingly earlier onset of developmental defects, accompanied by increased numbers of end-to-end chromosome fusions. Imposing replication stress through knockout of RNaseH2 increases numbers of chromosome fusions and reduces the survival of these plants deficient for telomerase and homologous recombination. This finding suggests that RAD51-dependent homologous recombination acts as an essential backup to the telomerase for compensation of replicative telomere loss to ensure genome stability. Furthermore, we show that this positive role of RAD51 in telomere stability is dependent on the RTEL1 helicase. We propose that a RAD51 dependent break-induced replication process is activated in cells lacking telomerase activity, with RTEL1 responsible for D-loop dissolution after telomere replication.

  16. Telomerase as an emerging target to fight cancer--opportunities and challenges for nanomedicine.

    Science.gov (United States)

    Philippi, C; Loretz, B; Schaefer, U F; Lehr, C M

    2010-09-01

    Telomerase as an enzyme is responsible for the renewal of the chromosomal ends, the so-called telomeres. By preventing them from shortening with each cell cycle, telomerase is able to inhibit cellular senescence and apoptosis. Telomerase activity, which is detectable in the majority of cancer cells, allows them to maintain their proliferative capacity. The thus obtained immortality of those cells again is a key to their malignancy. Based on these discoveries, it is obvious that telomerase inhibitors would represent an innovative approach to fight cancer, and a variety of such candidate molecules are currently in the pipeline. Telomerase inhibitors largely fall in two classes of compounds: small synthetic molecules and nucleotide-based biologicals. For several candidates, some proof of concept studies have been demonstrated, either on cell cultures or in animal models. But the same studies also revealed that inefficient delivery is largely limiting the translational step into the clinic. The most appealing feature of telomerase inhibitors, which distinguishes them from conventional anticancer drugs, is probably seen in their intrinsic non-toxicity to normal cells. Nevertheless, efficient delivery to the target cells, i.e. to the tumor, is still required. Here, some well-known biopharmaceutical problems such as insufficient solubility, permeability or even metabolic stability are frequently encountered. To address these challenges, there is a clear need for adequate delivery technologies, for example by using nanomedicines, that would allow to overcome their biopharmaceutical shortcomings and to warrant a sufficient bioavailability at the target side. This review first briefly explains the concept of telomerase and telomerase inhibition in cancer therapy. It secondly aims to provide an overview of the different currently known telomerase inhibitors. Finally, the biopharmaceutical limitations of these molecules are discussed as well as the possibilities to overcome

  17. Antiproliferative Effect of the Isoquinoline Alkaloid Papaverine in Hepatocarcinoma HepG-2 Cells — Inhibition of Telomerase and Induction of Senescence

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2014-08-01

    Full Text Available Cancer cells are often immortal through up-regulation of the hTERT gene, which encodes the catalytic subunit of a special reverse transcriptase to overcome end-replication problem of chromosomes. This study demonstrates that papaverine, an isoquinoline alkaloid from the Papaveraceae, can overcome telomerase dependent immortality of HepG-2 cells that was used as a model of hepatocarcinoma. Although this alkaloid does not directly interact with telomeric sequences, papaverine inhibits telomerase through down-regulation of hTERT, which was analysed using thermal FRET and qRT-PCR, respectively. The IC50 values for the reduction of both telomerase activity and hTERT expression was 60 µM, while IC50 for cytotoxicity was 120 µM. Repeated treatments of the cells with very low non-toxic concentrations of papaverine resulted in growth arrest and strong reduction of population doublings after 40 days. This treatment induced senescent morphology in HepG-2 cells, which was evaluated by beta-galactosidase staining. Altogether, papaverine can be regarded as a promising model compound for drug design targeting cancer development.

  18. Telomerase activity, telomere length and hTERT DNA methylation in peripheral blood mononuclear cells from monozygotic twins with discordant smoking habits.

    Science.gov (United States)

    Marcon, Francesca; Siniscalchi, Ester; Andreoli, Cristina; Allione, Alessandra; Fiorito, Giovanni; Medda, Emanuela; Guarrera, Simonetta; Matullo, Giuseppe; Crebelli, Riccardo

    2017-10-01

    Increased telomerase expression has been implicated in the pathogenesis of lung cancer and, since the primary cause of lung cancer is smoking, an association between telomerase reactivation and tobacco smoke has been proposed. In this work an investigation has been performed to assess the relationship between tobacco smoke exposure and telomerase activity (TA) in peripheral blood mononuclear cells of healthy smokers. The methylation status of the catalytic subunit of telomerase hTERT was concurrently investigated to assess the possible association between epigenetic modifications of hTERT and TA. Besides, the association between smoke and telomere length (TL) has been evaluated. Healthy monozygotic twins with discordant smoking habits were selected as study population to minimize inter-individual differences because of demographic characteristics and genetic heterogeneity. Statistically significant higher values of TA and TL were observed in smokers compared to nonsmoker co-twins. The multivariate analysis of data showed, besides smoking habits (P = 0.02), an influence of gender (P = 0.006) and BMI (P = 0.001) on TA and a borderline effect of gender (P = 0.05) on TL. DNA methylation analysis, focused on 100 CpG sites mapping in hTERT, highlighted nine CpG sites differentially methylated in smokers. When co-twins were contrasted, selecting as variables the intra-twin difference in TA and hTERT DNA methylation, a statistically significant inverse correlation (P = 0.003) was observed between TA and DNA methylation at the cg05521538 site. In conclusion, these results indicate an association of tobacco smoke with TA and TL and suggest a possible association between smoke-induced epigenetic effects and TA in healthy smokers. Environ. Mol. Mutagen. 58:551-559, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation†

    Science.gov (United States)

    Selvam, Shanmugam P.; De Palma, Ryan M.; Oaks, Joshua J.; Oleinik, Natalia; Peterson, Yuri K.; Stahelin, Robert V.; Skordalakes, Emmanuel; Ponnusamy, Suriyan; Garrett-Mayer, Elizabeth; Smith, Charles D.; Ogretmen, Besim

    2015-01-01

    During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. Here, we found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear periphery in human and mouse fibroblasts. Docking predictions and mutational analyses revealed that binding occurred between a hydroxyl group (C′3-OH) in S1P and Asp684 in hTERT. Inhibiting or depleting SK2 or mutating the S1P binding site decreased the stability of hTERT in cultured cells and promoted senescence and loss of telomere integrity. S1P binding inhibited the interaction of hTERT with MKRN1, an E3 ubiquitin ligase that tags hTERT for degradation. Murine Lewis lung carcinoma (LLC) cells formed smaller tumors in mice lacking SK2 than in wild-type mice, and knocking down SK2 in LLC cells before implantation into mice suppressed their growth. Pharmacologically inhibiting SK2 decreased the growth of subcutaneous A549 lung cancer cell-derived xenografts in mice, and expression of wild-type hTERT, but not an S1P-binding mutant, restored tumor growth. Thus, our data suggest that S1P binding to hTERT allosterically mimicks phosphorylation, promoting telomerase stability and hence telomere maintenance, cell proliferation, and tumor growth PMID:26082434

  20. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  1. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  2. p53 and telomerase control rat myocardial tissue response to hypoxia and ageing

    Directory of Open Access Journals (Sweden)

    A. Cataldi

    2009-12-01

    Full Text Available Cellular senescence implies loss of proliferative and tissue regenerative capability. Also hypoxia, producing Reactive Oxygen Species (ROS, can damage cellular components through the oxidation of DNA, proteins and lipids, thus influencing the shortening of telomeres. Since ribonucleoprotein Telomerase (TERT, catalyzing the replication of the ends of eukaryotic chromosomes, promotes cardiac muscle cell proliferation, hypertrophy and survival, here we investigated its role in the events regulating apoptosis occurrence and life span in hearts deriving from young and old rats exposed to hypoxia. TUNEL (terminal-deoxinucleotidyl -transferase- mediated dUTP nick end-labeling analysis reveals an increased apoptotic cell number in both samples after hypoxia exposure, mainly in the young with respect to the old. TERT expression lowers either in the hypoxic young, either in the old in both experimental conditions, with respect to the normoxic young. These events are paralleled by p53 and HIF-1 ? expression dramatic increase and by p53/ HIF-1 ? co-immunoprecipitation in the hypoxic young, evidencing the young subject as the most stressed by such challenge. These effects could be explained by induction of damage to genomic DNA by ROS that accelerates cell senescence through p53 activation. Moreover, by preventing TERT enzyme down-regulation, cell cycle exit and apoptosis occurrence could be delayed and new possibilities for intervention against cell ageing and hypoxia could be opened.

  3. Elevation of telomerase activity in chronic radiation ulcer of human skin

    International Nuclear Information System (INIS)

    Li Xiaoying; Zhao Po; Wang Dewen; Yang Zhixiang

    1997-01-01

    Objective: To investigate the levels of telomerase activity in chronic radiation ulcers of human skin and the possible relationship between the enzyme and cancer transformation. Method: Using nonisotopic telomere repeat amplification protocol (TRAP), detections were performed in 20 cases of chronic radiation ulcers of human skin, 5 cases of normal skin tissues and 5 cases of carcinoma. Results: The positive rates for telomerase activity were 30.0%(6/20), 0(0/5) and 100%(5/5) in chronic radiation ulcers of human skin, normal skin and carcinoma, respectively. The telomerase activity in radiation ulcer was weaker than in carcinoma. Conclusion: The telomerase activity assay might be used as a marker for predicting the prognosis and the effect of treatment in chronic radiation ulcer of human skin

  4. Shwachman-Diamond Syndrome Protein SBDS Maintains Human Telomeres by Regulating Telomerase Recruitment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-02-01

    Full Text Available Shwachman-Diamond syndrome (SDS is a rare pediatric disease characterized by various systemic disorders, including hematopoietic dysfunction. The mutation of Shwachman-Bodian-Diamond syndrome (SBDS gene has been proposed to be a major causative reason for SDS. Although SBDS patients were reported to have shorter telomere length in granulocytes, the underlying mechanism is still unclear. Here we provide data to elucidate the role of SBDS in telomere protection. We demonstrate that SBDS deficiency leads to telomere shortening. We found that overexpression of disease-associated SBDS mutants or knockdown of SBDS hampered the recruitment of telomerase onto telomeres, while the overall reverse transcriptase activity of telomerase remained unaffected. Moreover, we show that SBDS could specifically bind to TPP1 during the S phase of cell cycle, likely functioning as a stabilizer for TPP1-telomerase interaction. Our findings suggest that SBDS is a telomere-protecting protein that participates in regulating telomerase recruitment.

  5. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: A systematic review.

    Science.gov (United States)

    Deng, W; Cheung, S T; Tsao, S W; Wang, X M; Tiwari, A F Y

    2016-02-01

    To summarise and discuss the association between telomerase activity and psychological stress, mental disorders and lifestyle factors. A systematic review was carried out to identify prospective or retrospective studies and interventions published up to June 2015 that reported associations between telomerase activity and psychological stress, mental disorders and lifestyle factors. Electronic data bases of PubMed, ProQuest, CINAHL and Google Scholar were searched. Twenty six studies on humans measured telomerase activity in peripheral blood mononuclear cells (PBMCs) or leukocytes and examined its association with psychological stress, mental disorders and lifestyle factors. Of those studies, three reported significantly decreased telomerase activity in individuals under chronic psychological stress. Interestingly, one of the three studies found that acute laboratory psychological stress significantly increased telomerase activity. Nine studies reported mixed results on association between mental disorders and telomerase activity. Of the nine studies, five reported that major depressive disorder (MDD) was associated with significantly increased telomerase activity. In thirteen out of fourteen studies on lifestyle factors, it was reported that physical exercise, diet micronutrient supplementation, mindfulness meditation, Qigong practice or yoga mediation resulted in increase in telomerase activity. In addition, two studies on animal models showed that depression-like behaviour was associated with decreased hippocampus telomerase activity. Five animal studies showed that physical exercise increased telomerase activity by cell-type-specific and genotype-specific manners. Although multi-facet results were reported on the association between telomerase activity and psychological stress, mental disorders and lifestyle factors, there were some consistent findings in humans such as (1) decreased telomerase activity in individuals under chronic stress, (2) increased

  6. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  7. A Cajal body-independent pathway for telomerase trafficking in mice

    International Nuclear Information System (INIS)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M.; Terns, Michael P.

    2010-01-01

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  8. A Cajal body-independent pathway for telomerase trafficking in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M., E-mail: rterns@bmb.uga.edu; Terns, Michael P., E-mail: mterns@bmb.uga.edu

    2010-10-15

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  9. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    Science.gov (United States)

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  10. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  11. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  12. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  13. A telomerase immortalized human proximal tubule cell line with a truncation mutation (Q4004X in polycystin-1.

    Directory of Open Access Journals (Sweden)

    Brittney-Shea Herbert

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells.

  14. miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the emergence of an “ALT-like” phenotype in diffuse malignant peritoneal mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Graziella Cimino-Reale

    2017-07-01

    Full Text Available Abstract Background Understanding the molecular/cellular underpinnings of diffuse malignant peritoneal mesothelioma (DMPM, a fatal malignancy with limited therapeutic options, is of utmost importance for the fruitful management of the disease. In this context, we previously found that telomerase activity (TA, which accounts for the limitless proliferative potential of cancer cells, is prognostic for disease relapse and cancer-related death in DMPM patients. Consequently, the identification of factors involved in telomerase activation/regulation may pave the way towards the development of novel therapeutic interventions for the disease. Here, the capability of miR-380-5p, a microRNA negligibly expressed in telomerase-positive DMPM clinical specimens, to interfere with telomerase-mediated telomere maintenance and, hence, with cancer cell growth was assessed on preclinical models of DMPM. Methods DMPM cells were transfected with a miR-380-5p synthetic precursor, and the effects of miRNA replacement were evaluated in terms of growing capability, induction of apoptosis and interference with TA. Reiterated weekly transfections were also performed in order to analyse the phenotype arising upon prolonged miR-380-5p reconstitution in DMPM cells. Results The ectopic expression of miR-380-5p elicited a remarkable inhibition of TA and resulted in DMPM cell growth impairment and apoptosis induction. In particular, we demonstrated for the first time that these effects were the result of a molecular circuitry converging on telomerase associated protein 1 (TEP1, where the miRNA was able to target the gene both directly in unconventional targeting modality and indirectly via p53 accumulation consequent to miRNA-mediated downregulation of testis-specific protein, Y-encoded-like 5 gene. Moreover, miR-380-5p did not cause telomere attrition and cell growth arrest in long-term DMPM transfectants, which in turn showed slightly elongated telomeres and molecular

  15. Identification of highly synchronized subnetworks from gene expression data.

    Science.gov (United States)

    Gao, Shouguo; Wang, Xujing

    2013-01-01

    There has been a growing interest in identifying context-specific active protein-protein interaction (PPI) subnetworks through integration of PPI and time course gene expression data. However the interaction dynamics during the biological process under study has not been sufficiently considered previously. Here we propose a topology-phase locking (TopoPL) based scoring metric for identifying active PPI subnetworks from time series expression data. First the temporal coordination in gene expression changes is evaluated through phase locking analysis; The results are subsequently integrated with PPI to define an activity score for each PPI subnetwork, based on individual member expression, as well topological characteristics of the PPI network and of the expression temporal coordination network; Lastly, the subnetworks with the top scores in the whole PPI network are identified through simulated annealing search. Application of TopoPL to simulated data and to the yeast cell cycle data showed that it can more sensitively identify biologically meaningful subnetworks than the method that only utilizes the static PPI topology, or the additive scoring method. Using TopoPL we identified a core subnetwork with 49 genes important to yeast cell cycle. Interestingly, this core contains a protein complex known to be related to arrangement of ribosome subunits that exhibit extremely high gene expression synchronization. Inclusion of interaction dynamics is important to the identification of relevant gene networks.

  16. Ovarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex

    OpenAIRE

    He, Zhi-Yao; Deng, Feng; Wei, Xia-Wei; Ma, Cui-Cui; Luo, Min; Zhang, Ping; Sang, Ya-Xiong; Liang, Xiao; Liu, Li; Qin, Han-Xiao; Shen, Ya-Li; Liu, Ting; Liu, Yan-Tong; Wang, Wei; Wen, Yan-Jun

    2016-01-01

    Overexpression of folate receptor alpha (FR?) and high telomerase activity are considered to be the characteristics of ovarian cancers. In this study, we developed FR?-targeted lipoplexes loaded with an hTERT promoter-regulated plasmid that encodes a matrix protein (MP) of the vesicular stomatitis virus, F-LP/pMP(2.5), for application in ovarian cancer treatment. We first characterized the pharmaceutical properties of F-LP/pMP(2.5). The efficient expression of the MP-driven hTERT promoter in ...

  17. Telomerase Inhibition by a New Synthetic Derivative of the Aporphine Alkaloid Boldine

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2018-04-01

    Full Text Available Telomerase, the enzyme responsible for cell immortality, is an important target in anti-cancer drug discovery. Boldine, an abundant aporphine alkaloid of Peumus boldus, is known to inhibit telomerase at non-toxic concentrations. Cytotoxicity of N-benzylsecoboldine hydrochloride (BSB, a synthetic derivative of boldine, was determined using the MTT method in MCF7 and MDA-MB231 cells. Aliquots of cell lysates were incubated with various concentrations of BSB in qTRAP (quantitative telomere repeat amplification protocol-ligand experiments before substrate elongation by telomerase or amplification by hot-start Taq polymerase. The crystal structure of TERT, the catalytic subunit of telomerase from Tribolium castaneum, was used for docking and molecular dynamics analysis. The qTRAP-ligand data gave an IC50 value of about 0.17 ± 0.1 µM for BSB, roughly 400 times stronger than boldine, while the LD50 in the cytotoxicity assays were 12.5 and 21.88 µM, respectively, in cells treated for 48 h. Although both compounds interacted well with the active site, MD analysis suggests a second binding site with which BSB interacts via two hydrogen bonds, much more strongly than boldine. Theoretical analyses also evaluated the IC50 for BSB as submicromolar. BSB, with greater hydrophobicity and flexibility than boldine, represents a promising structure to inhibit telomerase at non-toxic concentrations.

  18. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  19. [The efficacy of autocatalytic casapse-3 driven by human telomerase reverse transcriptase promoter on human ovarian carcinoma].

    Science.gov (United States)

    Song, Yue; Shen, Keng; Yu, Jing-rong

    2007-11-06

    To construct recombinant adenoviral vector expressing autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp), and investigate its antitumor effect on ovarian cancer in vitro and in vivo. Recombinant adenovirus expressing autocatalytic caspase-3 (rev-csapase-3) driven by hTERTp, AdHT-rev-casp3, was constructed. Ad-rev-casp3 expressing rev-caspase-3 driven by cytomegalovirus promoter (CMVp) was used as a positive control. hTERT positive human ovarian cancer cells of the line AO and hTERT-negative human umbilical venous endothelial cells (HUVECs) were cultured and transfected with AdHT-rev-casp3, Ad-rev-casp3, or Ad-EGFG expressing enhanced green fluorescent protein as control group. Western blotting, Cell Counting Kit (CCK-8), flow cytometry, and TUNEL were used to detect the expression of p17, active subunit of caspase-3, and p85, a poly ADP-ribose polymerase (PARP) cleavage fragment, and they were also used to measure the cell survival rate and apoptotic rate. Western blotting was used to detect the expression of active caspase-3 and its substrate PARP in the AO cells and HUVECs. Twenty nude BALB/c mice were inoculated subcutaneously with AO cells to establish subcutaneous tumor models, when the tumor grew to the volume of 150 mm3 the rats were divided into 4 equal groups to undergo intra-tumor injection of AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, and phosphate-buffered saline (PBS) respectively, the survival rate tumor inhibition rate was observed, 72 days later the mice were killed with their livers and tumors taken out, and Western blotting was used to detect the expression of active caspase-3. Another 40 mice underwent intraperitoneal injection of AO cells to establish intraperitoneal transplanted tumor models, 21 days later the rats were divided into 4 equal groups to be injected intraperitoneally with AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, or PBS, the survival rate was observed, and the blood levels of alanine transaminase

  20. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  1. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    International Nuclear Information System (INIS)

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-01-01

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway

  2. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, Orit, E-mail: Oritu@clalit.org.il [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Kanfer, Gil [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Beery, Einat [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Yelin, Dana; Shepshelovich, Daniel [Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Bakhanashvili, Mary [Unit of Infectious Diseases, Sheba Medical Center, Tel-Hashomer (Israel); Nordenberg, Jardena [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Endocrinology Laboratory, Beilinson Medical Center, Petah-Tikva (Israel); Lahav, Meir [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel)

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  3. MMSET is highly expressed and associated with aggressiveness in neuroblastoma

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Skotte, Julie; Santoni-Rugiu, Eric

    2011-01-01

    tumor types as well. We have performed immunohistochemical staining of tissue microarrays and found that MMSET protein is frequently and highly expressed in neuroblastoma (MMSET positive in 75% of neuroblastomas, n=164). The expression level of MMSET in neuroblastomas was significantly associated...... with poor survival, negative prognostic factors, and metastatic disease. Moreover, a subset of neuroblastomas for which pre- and post-chemotherapy biopsies were available displayed a strong decrease in MMSET protein levels after chemotherapy. In agreement with neuroblastomas becoming more differentiated...... after treatment, we show that retinoic acid-induced differentiation of human neuroblastoma cells in vitro also leads to a strong decrease in MMSET levels. Furthermore, we demonstrate that the high levels of MMSET in normal neural progenitor cells are strongly downregulated during differentiation...

  4. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  5. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  6. High SHIP2 Expression Indicates Poor Survival in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2014-01-01

    Full Text Available SH2-containing inositol 5′-phosphatase 2 (SHIP2, which generally regulates insulin signaling, cytoskeleton remodeling, and receptor endocytosis, has been suggested to play a significant role in tumor development and progression. However, the associations between SHIP2 expression and the clinical features to evaluate its clinicopathologic significance in colorectal cancer (CRC have not been determined yet. In the present study, one-step quantitative real-time polymerase chain reaction (qPCR test and immunohistochemistry (IHC analysis with CRC tissue microarrays (TMA were employed to evaluate the mRNA and protein expression of SHIP2 in CRC. The results showed that SHIP2 expression in the mRNA and protein levels was significantly higher in CRC tissues than that in corresponding noncancerous tissues (both P<0.05. The expression of SHIP2 protein in CRC was related to lymph node metastasis (P=0.036, distant metastasis (P=0.001, and overall survival (P=0.009. Kaplan-Meier method and Cox multifactor analysis suggested that high SHIP2 protein level (P=0.040 and positive distant metastasis (P=0.048 were critically associated with the unfavorable survival of CRC patients. The findings suggested that SHIP2 may be identified as a useful prognostic marker in CRC and targeting CRC may provide novel strategy for CRC treatment.

  7. Antimetastatic Effects of a Novel Telomerase Inhibitor, GRN163L, on Human Prostate Cancer

    Science.gov (United States)

    2010-05-01

    Human Papilloma Virus Type 18 (HPV-18) DNA. PZ-HPV-7 cells are generally considered as non-tumorigenic in subcutaneous xenograft animal models...6481. [39] H.J. Sommerfeld, A.K. Meeker, M.A. Piatyszek, G.S. Bova, J.W. Shay, D.S. Coffey, Telomerase activity: a prevalent marker of malignant human ...6:192–8. 31. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS. Telomerase activity: a prevalent marker of malignant human prostate

  8. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  9. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  10. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    Science.gov (United States)

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  11. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    Science.gov (United States)

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  12. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  13. Antiaging Effects of an Intensive Mind and Body Therapeutic Program through Enhancement of Telomerase Activity and Adult Stem Cell Counts.

    Science.gov (United States)

    Rao, Krishna S; Chakraharti, Swarup K; Dongare, Vaishali S; Chetana, K; Ramirez, Christina M; Koka, Prasad S; Deb, Kaushik D

    2015-01-01

    Key modalities of integrative medicine known to rejuvenate the mind and body are meditation, yoga, and controlled diet. It has been shown previously that intensive or prolonged mind and body therapies (MBT) may have beneficial effects on the well-being of healthy people and in patients. Telomerase activity and levels of peripheral blood adult pluripotent stem cells (PB-APSC) are reliable markers of long-term well-being that are known to decrease with age. The objective of this study is to understand the effect of our MBT program on telomerase activity and stem cells in blood collected from the participants. Here, we have investigated the effects of an intensive three weeks MBT retreat on telomerase activity and the peripheral blood stem cells in participants before and after the MBT. A total of 108 people were enrolled in the study; 38 men and 70 women (aged 18-90) randomly assigned for the study. Telomerase activity was greater in retreat participants at the end of the MBT retreat. About 45% of people showed more than one-fold increase of telomerase activity after our MBT program. Furthermore, about 27% of people showed more pronounced fold increase (2-fold) in telomerase activity after the MBT. In addition, a substantial percentage of people (about 90%) exhibited increased stem cell counts after the MBT. The data suggest increased telomerase activity and stem cells count in peripheral blood from MBT retreat participants that may lead to increased longevity and better quality of life at latter age.

  14. Telomerase Activity in Breast Tumor Tissues and its Possible use for Detection of Circulating Carcinoma Cells

    Czech Academy of Sciences Publication Activity Database

    Šimíčková, M.; Nekulová, M.; Pecen, Ladislav; Vagundová, M.; Maláska, J.; Obermannová, R.; Lauerová, L.

    2002-01-01

    Roč. 5, - (2002), s. 98 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /4./. 13.02.2003-16.02.2003, Karlovy Vary] Institutional research plan: CEZ:AV0Z1030915 Keywords : telomerase activity * early detection of distant metastases * cancer reccurence Subject RIV: BB - Applied Statistics, Operational Research

  15. Reversibility of Defective Hematopoiesis Caused by Telomere Shortening in Telomerase Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Aparna Raval

    Full Text Available Telomere shortening is common in bone marrow failure syndromes such as dyskeratosis congenita (DC, aplastic anemia (AA and myelodysplastic syndromes (MDS. However, improved knowledge of the lineage-specific consequences of telomere erosion and restoration of telomere length in hematopoietic progenitors is required to advance therapeutic approaches. We have employed a reversible murine model of telomerase deficiency to compare the dependence of erythroid and myeloid lineage differentiation on telomerase activity. Fifth generation Tert-/- (G5 Tert-/- mice with shortened telomeres have significant anemia, decreased erythroblasts and reduced hematopoietic stem cell (HSC populations associated with neutrophilia and increased myelopoiesis. Intracellular multiparameter analysis by mass cytometry showed significantly reduced cell proliferation and increased sensitivity to activation of DNA damage checkpoints in erythroid progenitors and in erythroid-biased CD150hi HSC, but not in myeloid progenitors. Strikingly, Cre-inducible reactivation of telomerase activity restored hematopoietic stem and progenitor cell (HSPC proliferation, normalized the DNA damage response, and improved red cell production and hemoglobin levels. These data establish a direct link between the loss of TERT activity, telomere shortening and defective erythropoiesis and suggest that novel strategies to restore telomerase function may have an important role in the treatment of the resulting anemia.

  16. Quantitative Determination of Telomerase Activity in Breast Cancer and Benign Breast Diseases

    Czech Academy of Sciences Publication Activity Database

    Šimíčková, M.; Nekulová, M.; Pecen, Ladislav; Černoch, M.; Vagundová, M.; Pačovský, Z.

    2001-01-01

    Roč. 48, č. 4 (2001), s. 267-273 ISSN 0028-2685 R&D Projects: GA MZd NM17 Institutional research plan: AV0Z1030915 Keywords : telomerase activity * quantitative analysis * breast cancer * benign breast diseases * prognisis Subject RIV: BA - General Mathematics Impact factor: 0.637, year: 2001

  17. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell

    Czech Academy of Sciences Publication Activity Database

    Schrumpfová, P.; Schorová, Š.; Fajkus, Jiří

    2016-01-01

    Roč. 7, č. 851 (2016) ISSN 1664-462X R&D Projects: GA ČR(CZ) GA13-06943S Institutional support: RVO:68081707 Keywords : telomere * telomerase * telomeric proteins Subject RIV: BO - Biophysics Impact factor: 4.298, year: 2016

  18. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  19. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  20. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    Directory of Open Access Journals (Sweden)

    Piyanuch Piyatrakul

    Full Text Available The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  1. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Correlation between telomerase and mTOR pathway in cancer stem cells.

    Science.gov (United States)

    Dogan, Fatma; Biray Avci, Cigir

    2018-01-30

    Cancer stem cells (CSCs), which are defined as a subset of tumor cells, are able to self-renew, proliferate, differentiate similar to normal stem cells. Therefore, targeting CSCs has been considered as a new approach in cancer therapy. The mammalian target of rapamycin (mTOR) is a receptor tyrosine kinase which plays an important role in regulating cell proliferation, differentiation, cell growth, self-renewal in CSCs. On the other hand, hTERT overactivation provides replicative feature and immortality to CSCs, so the stemness and replicative properties of CSCs depend on telomerase activity. Therefore hTERT/telomerase activity may become a universal biomarker for anticancer therapy and it is an attractive therapeutic target for CSCs. It is known that mTOR regulates telomerase activity at the translational and post-translational level. Researchers show that mTOR inhibitor rapamycin reduces telomerase activity without changing hTERT mRNA activity. Correlation between mTOR and hTERT is important for survival and immortality of cancer cells. In addition, the PI3K/AKT/mTOR signaling pathway and hTERT up-regulation are related with cancer stemness features and drug resistance. mTOR inhibitor and TERT inhibitor combination may construct a novel strategy in cancer stem cells and it can make a double effect on telomerase enzyme. Consequently, inhibition of PI3K/AKT/mTOR signaling pathway components and hTERT activation may prohibit CSC self-renewal and surpass CSC-mediated resistance in order to develop new cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Syed M Meeran

    Full Text Available BACKGROUND: Sulforaphane (SFN, an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. PRINCIPAL FINDINGS: We found that SFN significantly inhibits the viability and proliferation of breast cancer cells in vitro while it has negligible effects on normal breast cells. Inhibition of telomerase has received considerable attention because of its high expression in cancer cells and extremely low level of expression in normal cells. SFN treatment dose- and time-dependently inhibited human telomerase reverse transcriptase (hTERT, the catalytic regulatory subunit of telomerase, in both MCF-7 and MDA-MB-231 human breast cancer cells. DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3a, were also decreased in SFN-treated breast cancer cells suggesting that SFN may repress hTERT by impacting epigenetic pathways. Down-regulation of DNMTs in response to SFN induced site-specific CpG demethylation occurring primarily in the first exon of the hTERT gene thereby facilitating CTCF binding associated with hTERT repression. Chromatin immunoprecipitation (ChIP analysis of the hTERT promoter revealed that SFN increased the level of active chromatin markers acetyl-H3, acetyl-H3K9 and acetyl-H4, whereas the trimethyl-H3K9 and trimethyl-H3K27 inactive chromatin markers were decreased in a dose-dependent manner. SFN-induced hyperacetylation facilitated the binding of many hTERT repressor proteins such as MAD1 and CTCF to the hTERT regulatory region. Depletion of CTCF using siRNA reduced the SFN-induced down-regulation of hTERT mRNA transcription in these breast cancer cells. In addition, down-regulation of hTERT expression facilitated the induction of cellular apoptosis in human breast

  4. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  5. MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yan [Third Military Medical University, Department of Radiology, XinQiao Hospital, ChongQing (China); The First Affiliated Hospital of ChengDu Medical College, Department of Radiology, ChengDu (China); Gong, Ming-fu; Yang, Hua; Zhang, Song; Wang, Guang-xian; Su, Tong-sheng; Wen, Li; Zhang, Dong [Third Military Medical University, Department of Radiology, XinQiao Hospital, ChongQing (China)

    2016-11-15

    Using the human telomerase reverse transcriptase (hTERT) promoter and the modified ferritin heavy chain (Fth) reporter gene, reporter gene expression for MRI was examined in telomerase positive and negative tumour cells and xenografts. Activity of the reporter gene expression vector Lenti-hTERT-Fth1-3FLAG-Puro was compared to constitutive CMV-driven expression and to the untransfected parental control in five tumour cell lines: A549, SKOV3, 293T, U2OS and HPDLF. In vitro, transfected cells were evaluated for FLAG-tagged protein expression, iron accumulation and transverse relaxation. In vivo, tumours transduced by lentiviral vector injection were imaged using T2*WI. Changes in tumour signal intensity were validated by histology. Only telomerase positive tumour cells expressed FLAG-tagged Fth and displayed an increase in R2* above the parental control, with a corresponding change in T2*WI. In addition, only telomerase positive tumours, transduced by injection of the reporter gene expression construct, exhibited a change in signal intensity on T2*WI. Tumour histology verified the expression of FLAG-tagged Fth and iron accumulation in telomerase positive tissue. Reporter gene expression for MRI, using the Fth reporter and the hTERT promoter, may be a useful strategy for the non-invasive diagnosis of many types of cancer. (orig.)

  6. CIP2A protein expression in high-grade, high-stage bladder cancer

    International Nuclear Information System (INIS)

    Huang, Lisa P; Savoly, Diana; Sidi, Abraham A; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-01-01

    Bladder cancer is one of the most common cancers in the United States. Numerous markers have been evaluated for suitability of bladder cancer detection and surveillance. However, few of them are acceptable as a routine tool. Therefore, there exists a continuing need for an assay that detects the presence of bladder cancer in humans. It would be advantageous to develop an assay with a protein that is associated with the development of bladder cancer. We have identified the cancerous inhibitor of PP2A (CIP2A) protein as a novel bladder cancer biomarker. In this study, Western blot analysis was used to assess the expression level of CIP2A protein in bladder cancer cell lines and bladder cancer patient tissues (n = 43). Our studies indicated CIP2A protein was abundantly expressed in bladder cancer cell lines but not in nontumor epithelial cell lines. Furthermore, CIP2A was specifically expressed in transitional cell carcinoma (TCC) of the bladder tumor tissues but not in adjacent nontumor bladder tissue. Our data showed that CIP2A protein detection in high-grade TCC tissues had a sensitivity of 65%, which is 3.4-fold higher than that seen in low-grade TCC tissues (19%). The level of CIP2A protein expression increased with the stage of disease (12%, 27%, 67%, and 100% for pTa, pT1, pT2, and pT3 tumor, respectively). In conclusion, our studies suggest that CIP2A protein is specifically expressed in human bladder tumors. CIP2A is preferentially expressed in high-grade and high-stage TCC tumors, which are high-risk and invasive tumors. Our studies reported here support the role of CIP2A in bladder cancer progression and its usefulness for the surveillance of recurrence or progression of human bladder cancer

  7. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  8. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  9. Food supplement 20070721-GX may increase CD34+ stem cells and telomerase activity.

    Science.gov (United States)

    Lin, Po-Cheng; Chiou, Tzyy-Wen; Liu, Po-Yen; Chen, Shee-Ping; Wang, Hsin-I; Huang, Pi-Chun; Lin, Shinn-Zong; Harn, Horng-Jyh

    2012-01-01

    Few rejuvenation and antiaging markers are used to evaluate food supplements. We measured three markers in peripheral blood to evaluate the antiaging effects of a food supplement containing placental extract. Samples were evaluated for CD34(+) cells, insulin-like growth factor 1 (IGF1), and telomerase activity, which are all markers related to aging. To control the quality of this food supplement, five active components were monitored. In total, we examined 44 individuals who took the food supplement from 1.2 months to 23 months; the average number of CD34(+) cells was almost 6-fold higher in the experimental group compared with the control group. Food supplement intake did not change serum IGF1 levels significantly. Finally, the average telomerase activity was 30% higher in the subjects taking this food supplement. In summary, our results suggest that the placental extract in the food supplement might contribute to rejuvenation and antiaging.

  10. Food Supplement 20070721-GX May Increase CD34+ Stem Cells and Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Po-Cheng Lin

    2012-01-01

    Full Text Available Few rejuvenation and antiaging markers are used to evaluate food supplements. We measured three markers in peripheral blood to evaluate the antiaging effects of a food supplement containing placental extract. Samples were evaluated for CD34+ cells, insulin-like growth factor 1 (IGF1, and telomerase activity, which are all markers related to aging. To control the quality of this food supplement, five active components were monitored. In total, we examined 44 individuals who took the food supplement from 1.2 months to 23 months; the average number of CD34+ cells was almost 6-fold higher in the experimental group compared with the control group. Food supplement intake did not change serum IGF1 levels significantly. Finally, the average telomerase activity was 30% higher in the subjects taking this food supplement. In summary, our results suggest that the placental extract in the food supplement might contribute to rejuvenation and antiaging.

  11. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    International Nuclear Information System (INIS)

    Jung, Kyung oh; Youn, Hyewon; Kim, Seung Hoo; Kim, Young-Hwa; Kang, Keon Wook; Chung, June-Key

    2016-01-01

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and "6"4Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  12. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  13. High Expressed Emotion and Schizophrenia: A Study of Illness ...

    African Journals Online (AJOL)

    Background: The prevention of relapse is one of the major aims of treatment of emotional disorders. Expressed emotion (EE) is one concept that has been associated with relapse. The study is aimed at studying the relationship between expressed emotion and the clinical characteristics of patients with schizophrenia.

  14. Mechanism of Telomerase Inhibition Using a Small Inhibitory RNAs and Induction of Breast Tumor Cell Sensitization

    Science.gov (United States)

    2007-04-01

    immunoprecipitation; TnT- transcription and translation. References Cited Barik , S. 2004. Control of nonsegmented negative-strand RNA virus replication by siRNA...Virus Res. 102: 27-35. Barquinero, J . et al. 2004. Retroviral vectors: new applications for an old tool. Gene Ther. 11(suppl 1): S3-S9...proteins and heterochromatin. Oncogene. 21: 553-563. Chen, J -L., Blasco, M.A., and Greider, C.W. 2000. Secondary structure of vertebrate telomerase RNA

  15. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  16. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Najdekrova Lucie

    2012-09-01

    Full Text Available Abstract Background Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. Results We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants, rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Conclusions Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  17. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana.

    Science.gov (United States)

    Najdekrova, Lucie; Siroky, Jiri

    2012-09-17

    Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  18. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    Directory of Open Access Journals (Sweden)

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  19. High expression of markers of apoptosis in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Petersen, Bodil Laub; Lundegaard, Pia Rengtved; Bank, M I

    2003-01-01

    53 and the number of cells in apoptosis detected with TUNEL. Langerhans cell histiocytosis cells showed strong expression of p53 and in some cases co-expression of Fas and Fas-L. The expression of Fas-L was significantly higher in infiltrates from patients with single-system disease. The actual...... number of pathological Langerhans cells in apoptosis as estimated by TUNEL was low. CONCLUSIONS: The low number of TUNEL-reactive cells can be explained by the rapid turnover of apoptotic cells in the tissue, not leaving the apoptotic cells long enough in the tissue to be detected. The co......-expression of Fas and Fas-L in some Langerhans cells can lead to an autocrine apoptotic shortcut, mediating the death of the double-positive cells. Our findings suggest that apoptosis mediated through the Fas/Fas-L pathway may contribute to the spontaneous regression of lesions in single-system disease. A delicate...

  20. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  1. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  2. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  3. High Rab27A expression indicates favorable prognosis in CRC.

    Science.gov (United States)

    Shi, Chuanbing; Yang, Xiaojun; Ni, Yijiang; Hou, Ning; Xu, Li; Zhan, Feng; Zhu, Huijun; Xiong, Lin; Chen, Pingsheng

    2015-06-13

    Rab27A is a peculiar member in Rab family and has been suggested to play essential roles in the development of human cancers. However, the association between Rab27A expression and clinicopathological characteristics of colorectal cancer (CRC) has not been elucidated yet. One-step quantitative real-time polymerase chain reaction (qPCR) test with 18 fresh-frozen CRC samples and immunohistochemistry (IHC) analysis in 112 CRC cases were executed to evaluate the relationship between Rab27A expression and the clinicopathological features of CRC. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for 112 CRC patients. The results specified that the expression levels of Rab27A mRNA and protein were significantly higher in CRC tissues than that in matched non-cancerous tissues, in both qPCR test (p = 0.029) and IHC analysis (p = 0.020). The IHC data indicated that the Rab27A protein expression in CRC was statistically correlated with lymph node metastasis (p = 0.022) and TNM stage (p = 0.026). Cox multi-factor analysis and Kaplan-Meier method suggested Rab27A protein expression (p = 0.012) and tumor differentiation (p = 0.004) were significantly associated with the overall survival of CRC patients. The data indicated the differentiate expression of Rab27A in CRC tissues and matched non-cancerous tissues. Rab27A may be used as a valuable prognostic biomarker for CRC patients.

  4. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  5. High-level expression, purification, polyclonal antibody preparation ...

    African Journals Online (AJOL)

    OprD is a specific porin which can binds imipenem and carbapenems in Pseudomonas aeruginosa. OprD loss plays a central role in mediating carbapenem resistance. Therefore, purification of oprD protein lays a pavement for the study in vivo and in vitro. In our study, the oprD gene was cloned into pQE30 expression ...

  6. High Expression of High-Mobility Group Box 1 in Menstrual Blood: Implications for Endometriosis.

    Science.gov (United States)

    Shimizu, Keiko; Kamada, Yasuhiko; Sakamoto, Ai; Matsuda, Miwa; Nakatsuka, Mikiya; Hiramatsu, Yuji

    2017-11-01

    Endometriosis is a benign gynecologic disease characterized by the presence of ectopic endometrium and associated with inflammation and immune abnormalities. However, the molecular basis for endometriosis is not well understood. To address this issue, the present study examined the expression of high-mobility group box (HMGB) 1 in menstrual blood to investigate its role in the ectopic growth of human endometriotic stromal cells (ESCs). A total of 139 patients were enrolled in this study; 84 had endometriosis and 55 were nonendometriotic gynecological patients (control). The HMGB1 levels in various fluids were measured by enzyme-linked immunosorbent assay. Expression of receptor for advanced glycation end products (RAGE) in eutopic and ectopic endometrium was assessed by immunohistochemistry, and RAGE and vascular endothelial growth factor ( VEGF) messenger RNA expression in HMGB1- and lipopolysaccharide (LPS)-treated ESCs was evaluated by real-time polymerase chain reaction. The HMGB1 concentration was higher in menstrual blood than in serum or peritoneal fluid ( P endometriosis following retrograde menstruation when complexed with other factors such as LPS by inducing inflammation and angiogenesis.

  7. Prediction of highly expressed genes in microbes based on chromatin accessibility

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2007-01-01

    BACKGROUND: It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed...

  8. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination.

    Science.gov (United States)

    Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.

  9. Telomerase reverse transcriptase promoter mutations in bladder cancer

    DEFF Research Database (Denmark)

    Allory, Yves; Beukers, Willemien; Sagrera, Ana

    2014-01-01

    for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). DESIGN, SETTING, AND PARTICIPANTS: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription...... surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease...... frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC...

  10. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  11. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  12. High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in

    Directory of Open Access Journals (Sweden)

    Amaneh Mohammadi Roushandeh

    2010-06-01

    Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.

  13. Evaluation of an oral telomerase activator for early age-related macular degeneration - a pilot study

    Directory of Open Access Journals (Sweden)

    Dow CT

    2016-01-01

    Full Text Available Coad Thomas Dow,1,2 Calvin B Harley3 1McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; 2Chippewa Valley Eye Clinic, Eau Claire, Wisconsin, WI, USA; 3Independent Telomere Biology Consultant, Murphys, CA, USA Purpose: Telomere attrition and corresponding cellular senescence of the retinal pigment epithelium contribute to the changes of age-related macular degeneration. Activation of the enzyme telomerase can add telomeric DNA to retinal pigment epithelium chromosomal ends and has been proposed as a treatment for age-related macular degeneration. We report the use of a small molecule, oral telomerase activator (TA-65 in early macular degeneration. This study, focusing on early macular degeneration, provides a model for the use of TAs in age-related disease.Method: Thirty-eight (38 patients were randomly assigned to a 1-year, double-blinded, placebo-controlled interventional study with arms for oral TA-65 or placebo. Macular functions via micro-perimetry were the primary measured outcomes.Results: The macular function in the arm receiving the TA-65 showed significant improvement relative to the placebo control. The improvement was manifest at 6 months and was maintained at 1 year: macular threshold sensitivity (measured as average dB [logarithmic decibel scale of light attenuation] improved 0.97 dB compared to placebo (P-value 0.02 and percent reduced thresholds lessened 8.2% compared to the placebo arm (P-value 0.04. Conclusion: The oral TA significantly improved the macular function of treatment subjects compared to controls. Although this study was a pilot and a larger study is being planned, it is noteworthy in that it is, to our knowledge, the first randomized placebo-controlled study of a TA supplement. Keywords: drusen, macular degeneration, micro-perimetry, senescence, telomerase activation, telomere

  14. Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss.

    Science.gov (United States)

    Zahoor, Muhammad; Westhrin, Marita; Aass, Kristin Roseth; Moen, Siv Helen; Misund, Kristine; Psonka-Antonczyk, Katarzyna Maria; Giliberto, Mariaserena; Buene, Glenn; Sundan, Anders; Waage, Anders; Sponaas, Anne-Marit; Standal, Therese

    2017-12-26

    Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α-dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients.

  15. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  16. Usherin expression is highly conserved in mouse and human tissues.

    Science.gov (United States)

    Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William

    2002-12-01

    Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.

  17. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Jurečková, J.; Sýkorová, Eva; Hafidh, Said; Honys, David; Fajkus, Jiří; Fojtová, M.

    2017-01-01

    Roč. 245, č. 3 (2017), s. 549-561 ISSN 0032-0935 R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : male gametophyte development * tobacco male gametophyte * allotetraploid nicotiana Subject RIV: EF - Botanics; EF - Botanics (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 3.361, year: 2016

  18. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  19. Construction of a high-EGFR expression cell line and its biological ...

    African Journals Online (AJOL)

    Targeted screening of EGFR compounds has become one of the medical research focuses for tumor therapy. A431, which naturally expresses high levels of EGFR, was compared with the stably high expressing EGFR cell line HEK293. Flow cytometry was used to analyze cell growth and Western blot was used to ...

  20. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    Science.gov (United States)

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  1. High-level expression of the native barley alpha-amylase/subtilisin inhibitor in Pichia pastoris

    DEFF Research Database (Denmark)

    Micheelsen, Pernille Ollendorff; Ostergaard, Peter Rahbek; Lange, Lene

    2008-01-01

    An expression system for high-level expression of the native Hordeum vulgare alpha-amylase/subtilisin inhibitor (BASI) has been developed in Pichia pastoris, using the methanol inducible alcohol oxidase 1 (AOX1) promoter. To optimize expression, two codon-optimized coding regions have been designed...... and expressed alongside the wild-type coding region. To ensure secretion of the native mature protein, a truncated version of the alpha mating factor secretion signal from Saccharomyces cerevisiae was used. In order to be able to compare expression levels from different clones, single insertion transformants...

  2. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    Science.gov (United States)

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-05-01

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC 50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  4. High-throughput cloning and expression in recalcitrant bacteria

    NARCIS (Netherlands)

    Geertsma, Eric R.; Poolman, Bert

    We developed a generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations. The method involves ligation-independent cloning in an intermediary Escherichia coli vector, which is rapidly converted via vector-backbone exchange (VBEx) into an

  5. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study.

    Science.gov (United States)

    Daubenmier, Jennifer; Lin, Jue; Blackburn, Elizabeth; Hecht, Frederick M; Kristeller, Jean; Maninger, Nicole; Kuwata, Margaret; Bacchetti, Peter; Havel, Peter J; Epel, Elissa

    2012-07-01

    Psychological distress and metabolic dysregulation are associated with markers of accelerated cellular aging, including reduced telomerase activity and shortened telomere length. We examined whether participation in a mindfulness-based intervention, and, secondarily, improvements in psychological distress, eating behavior, and metabolic factors are associated with increases in telomerase activity in peripheral blood mononuclear cells (PBMCs). We enrolled 47 overweight/obese women in a randomized waitlist-controlled pilot trial (n=47) of a mindfulness-based intervention for stress eating and examined changes in telomerase activity from pre- to post-intervention. In secondary analyses, changes in telomerase activity across the sample were examined in relation to pre- to post-intervention changes in psychological distress, eating behavior, and metabolic factors (weight, serum cortisol, fasting glucose and insulin, and insulin resistance). Both groups increased in mean telomerase activity over 4 months in intent-to-treat and treatment efficacy analyses (peating behavior, and metabolic health and increases in telomerase activity. These findings suggest that telomerase activity may be in part regulated by levels of both psychological and metabolic stress. Published by Elsevier Ltd.

  6. The TROVE module: A common element in Telomerase, Ro and Vault ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2003-10-01

    Full Text Available Abstract Background Ribonucleoproteins carry out a variety of important tasks in the cell. In this study we show that a number of these contain a novel module, that we speculate mediates RNA-binding. Results The TROVE module – Telomerase, Ro and Vault module – is found in TEP1 and Ro60 the protein components of three ribonucleoprotein particles. This novel module, consisting of one or more domains, may be involved in binding the RNA components of the three RNPs, which are telomerase RNA, Y RNA and vault RNA. A second conserved region in these proteins is shown to be a member of the vWA domain family. The vWA domain in TEP1 is closely related to the previously recognised vWA domain in VPARP a second component of the vault particle. This vWA domain may mediate interactions between these vault components or bind as yet unidentified components of the RNPs. Conclusions This work suggests that a number of ribonucleoprotein components use a common RNA-binding module. The TROVE module is also found in bacterial ribonucleoproteins suggesting an ancient origin for these ribonucleoproteins.

  7. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.

    Science.gov (United States)

    Zheng, Dong-Shu; Chen, Liang-Shu

    2017-10-01

    Nasopharyngeal carcinoma (NPC) is a malignant disease that threatens the health of humans. To find effective agents for the inhibition of Epstein-Barr virus (EBV) infection, which is associated with NPC, a phytochemical investigation of Ganoderma lucidum was carried out in the present study. Five triterpenoids were identified, including ganoderic acid A (compound 1), ganoderic acid B (compound 2), ganoderol B (compound 3), ganodermanontriol (compound 4), and ganodermanondiol (compound 5), on the basis of spectroscopic analysis. An inhibition of EBV antigens activation assay was implemented to elucidate the triterpenoids from G. lucidum and potentially prevent NPC. All the triterpenoids showed significant inhibitory effects on both EBV EA and CA activation at 16 nmol. At 3.2 nmol, all the compounds moderately inhibited the activation of the two antigens. The activity of telomerase was inhibited by these triterpenoids at 10 µM. Molecular docking demonstrated that compound 1 was able to inhibit telomerase as a ligand. In addition, the physicochemical properties of these compounds were calculated to elucidate their drug-like properties. These results provided evidence for the application of these triterpenoids and whole G. lucidum in the treatment of NPC.

  8. The TROVE module: a common element in Telomerase, Ro and Vault ribonucleoproteins.

    Science.gov (United States)

    Bateman, Alex; Kickhoefer, Valerie

    2003-10-16

    Ribonucleoproteins carry out a variety of important tasks in the cell. In this study we show that a number of these contain a novel module, that we speculate mediates RNA-binding. The TROVE module--Telomerase, Ro and Vault module--is found in TEP1 and Ro60 the protein components of three ribonucleoprotein particles. This novel module, consisting of one or more domains, may be involved in binding the RNA components of the three RNPs, which are telomerase RNA, Y RNA and vault RNA. A second conserved region in these proteins is shown to be a member of the vWA domain family. The vWA domain in TEP1 is closely related to the previously recognised vWA domain in VPARP a second component of the vault particle. This vWA domain may mediate interactions between these vault components or bind as yet unidentified components of the RNPs. This work suggests that a number of ribonucleoprotein components use a common RNA-binding module. The TROVE module is also found in bacterial ribonucleoproteins suggesting an ancient origin for these ribonucleoproteins.

  9. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  10. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  11. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    Science.gov (United States)

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  12. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    Directory of Open Access Journals (Sweden)

    Shuta Asai

    2014-10-01

    Full Text Available Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  13. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Directory of Open Access Journals (Sweden)

    Mason Philip J

    2004-06-01

    Full Text Available Abstract Background Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI anchored proteins due to a somatic mutation in the PIGA gene. Methods We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC. After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. Results Here we report the finding of a novel promoter mutation (-99C->G in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. Conclusions These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones.

  14. Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions.

    Science.gov (United States)

    Medina, M I; Botella, M A; Quesada, M A; Valpuesta, V

    1997-05-05

    A tomato peroxidase gene, TPX2, that is only weakly expressed in the roots of young tomato seedlings is highly expressed in tomato suspension cells adapted to high external NaCl concentration. The protein encoded by this gene, with an isolectric point value of approximately 9.6, is found in the culture medium of the growing cells. Our data suggest that the expression of TPX2 in the salt-adapted cells is not the result of the elicitation imposed by the in vitro culture or the presence of high NaCl concentration in the medium.

  15. Immunohistochemical expression of p53, p16 and hTERT in oral squamous cell carcinoma and potentially malignant disorders

    Directory of Open Access Journals (Sweden)

    Aline Correa Abrahao

    2011-02-01

    Full Text Available Oral carcinogenesis is a multi-step process. One possible step is the development of potentially malignant disorders known as leukoplakia and erytroplakia. The objective of this study was to use immunohistochemistry to analyze the patterns of expression of the cell-cycle regulatory proteins p53 and p16INK4a in potentially malignant disorders (PMD of the oral mucosa (with varying degrees of dysplasia and in oral squamous cell carcinomas (OSCC to correlate them with the expression of telomerase (hTERT. Fifteen PMD and 30 OSCC tissue samples were analyzed. Additionally, 5 cases of oral epithelial hyperplasia (OEH were added to analyze clinically altered mucosa presenting as histological hyperplasia without dysplasia. p53 positivity was observed in 93.3% of PMD, in 63.3% of OSCC and in 80% of OEH. Although there was no correlation between p53 expression and the grade of dysplasia, all cases with severe dysplasia presented p53 suprabasal immunoexpression. p16INK4a expression was observed in 26.7% of PMD, in 43.3% of OSCC and in 2 cases of OEH. The p16INK4a expression in OEH, PMD and OSCC was unable to differentiate non-dysplastic from dysplastic oral epithelium. hTERT positivity was observed in all samples of OEH and PMD and in 90% of OSCC. The high hTERT immunoexpression in all three lesions indicates that telomerase is present in clinically altered oral mucosa but does not differentiate hyperplastic from dysplastic oral epithelium. In PMD of the oral mucosa, the p53 immunoexpression changes according to the degree of dysplasia by mechanisms independent of p16INK4a and hTERT.

  16. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Science.gov (United States)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  17. Freedom of Expression Laws and the College Press: Lessons Learned from the High Schools.

    Science.gov (United States)

    Paxton, Mark

    This paper examines two recent attempts to enact state freedom of expression laws for public college and university students and discusses the prospects for such laws in the context of state scholastic freedom of expression laws covering high school journalists in six states. It examines the case of Kincaid v. Gibson, which decided that…

  18. Proinflammatory Cytokines IL-6 and TNF-α Increased Telomerase Activity through NF-κB/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Seyung S. Chung

    2017-01-01

    Full Text Available There are increasing evidences of proinflammatory cytokine involvement in cancer development. Here, we found that two cytokines, IL-6 and TNF-α, activated colorectal cancer cells to be more invasive and stem-like. Combined treatment of IL-6 and TNF-α phosphorylated transcription factors STAT3 in a synergistic manner. STAT3, STAT1, and NF-κB physically interacted upon the cytokine stimulation. STAT3 was bound to the promoter region of human telomerase reverse transcriptase (hTERT. IL-6 and TNF-α stimulation further enhanced STAT3 binding affinity. Stem cell marker Oct-4 was upregulated in colorectal cancer cells upon IL-6 and TNF-α stimulation. Withaferin A, an anti-inflammatory steroidal lactone, inhibited the IL-6- and TNF-α-induced cancer cell invasion and decreased colonosphere formation. Notably, withaferin A inhibited STAT3 phosphorylation and abolished the STAT3, STAT1, and NF-κB interactions. Oct-4 expression was also downregulated by withaferin A inhibition. The binding of STAT3 to the hTERT promoter region and telomerase activity showed reduction with withaferin A treatments. Proinflammatory cytokine-induced cancer cell invasiveness is mediated by a STAT3-regulated mechanism in colorectal cancer cells. Our data suggest that withaferin A could be a promising anticancer agent that effectively inhibits the progression of colorectal cancer.

  19. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  20. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    International Nuclear Information System (INIS)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D.; Laskowitz, D.T.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  1. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D. [Loma Linda Univ., CA (United States). Medical Center; Vazquez, M. [Brookhaven National Lab., Upton, NY (United States); Laskowitz, D.T. [Duke Univ., Durham, NC (United States). Medical Center

    2002-12-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  2. SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Yong Yan

    Full Text Available OBJECTIVES: To study the expression pattern and prognostic significance of SAMSN1 in glioma. METHODS: Affymetrix and Arrystar gene microarray data in the setting of glioma was analyzed to preliminarily study the expression pattern of SAMSN1 in glioma tissues, and Hieratical clustering of gene microarray data was performed to filter out genes that have prognostic value in malignant glioma. Survival analysis by Kaplan-Meier estimates stratified by SAMSN1 expression was then made based on the data of more than 500 GBM cases provided by The Cancer Genome Atlas (TCGA project. At last, we detected the expression of SAMSN1 in large numbers of glioma and normal brain tissue samples using Tissue Microarray (TMA. Survival analysis by Kaplan-Meier estimates in each grade of glioma was stratified by SAMSN1 expression. Multivariate survival analysis was made by Cox proportional hazards regression models in corresponding groups of glioma. RESULTS: With the expression data of SAMSN1 and 68 other genes, high-grade glioma could be classified into two groups with clearly different prognoses. Gene and large sample tissue microarrays showed high expression of SAMSN1 in glioma particularly in GBM. Survival analysis based on the TCGA GBM data matrix and TMA multi-grade glioma dataset found that SAMSN1 expression was closely related to the prognosis of GBM, either PFS or OS (P<0.05. Multivariate survival analysis with Cox proportional hazards regression models confirmed that high expression of SAMSN1 was a strong risk factor for PFS and OS of GBM patients. CONCLUSION: SAMSN1 is over-expressed in glioma as compared with that found in normal brains, especially in GBM. High expression of SAMSN1 is a significant risk factor for the progression free and overall survival of GBM.

  3. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    Bassma M. El Sabaa

    2012-01-13

    Jan 13, 2012 ... Eleven cases were low grade and 19 were high-grade cases. VEGF expression .... increasing microvascular permeability,26 degradation of extra- ...... soluble receptors in pre-invasive, invasive and recurrent cervical cancer.

  4. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes

    Directory of Open Access Journals (Sweden)

    Niu Deng-Ke

    2008-05-01

    Full Text Available Abstract Background In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. Results In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus. Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. Conclusion The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.

  5. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  6. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  7. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    (n = 1105, and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes and weakly expressed genes (bottom 5% expressed genes. We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst.

  8. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    Science.gov (United States)

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis

  9. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-T1b

    Directory of Open Access Journals (Sweden)

    Brosens Jan J

    2009-07-01

    Full Text Available Abstract Background Coordinated differentiation of the endometrial compartments in the second half of the menstrual cycle is a prerequisite for the establishment of pregnancy. Endometrial stromal cells (ESC decidualize under the influence of ovarian progesterone to accommodate implantation of the blastocyst and support establishment of the placenta. Studies into the mechanisms of decidualization are often hampered by the lack of primary ESC. Here we describe a novel immortalized human ESC line. Methods Primary ESC were immortalized by the transduction of telomerase. The resultant cell line, termed St-T1b, was characterized for its morphological and biochemical properties by immunocytochemistry, RT-PCR and immunoblotting. Its progestational response was tested using progesterone and medroxyprogesterone acetate with and without 8-Br-cAMP, an established inducer of decidualization in vitro. Results St-T1b were positive for the fibroblast markers vimentin and CD90 and negative for the epithelial marker cytokeratin-7. They acquired a decidual phenotype indistinguishable from primary ESC in response to cAMP stimulation. The decidual response was characterized by transcriptional activation of marker genes, such as PRL, IGFBP1, and FOXO1, and enhanced protein levels of the tumor suppressor p53 and the metastasis suppressor KAI1 (CD82. Progestins alone had no effect on St-T1b cells, but medroxyprogesterone acetate greatly enhanced the cAMP-stimulated expression of IGFBP-1 after 3 and 7 days. Progesterone, albeit more weakly, also augmented the cAMP-induced IGFBP-1 production but only after 7 days of treatment. The cell line remained stable in continuous culture for more than 150 passages. Conclusion St-T1b express the appropriate phenotypic ESC markers and their decidual response closely mimics that of primary cultures. Decidualization is efficiently induced by cAMP analog and enhanced by medroxyprogesterone acetate, and, to a lesser extent, by natural

  10. The influence of bovine milk high or low in isoflavones on hepatic gene expression in mice

    DEFF Research Database (Denmark)

    Skaanild, Mette Tingleff; Nielsen, Tina Skau

    2012-01-01

    Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes...... in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17β-estradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array q......PCR kit. It was revealed that Tween 80 and 17β-estradiol upregulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones...

  11. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    Science.gov (United States)

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  12. High SRPX2 protein expression predicts unfavorable clinical outcome in patients with prostate cancer

    Science.gov (United States)

    Zhang, Meng; Li, Xiaoli; Fan, Zhirui; Zhao, Jing; Liu, Shuzheng; Zhang, Mingzhi; Li, Huixiang; Goscinski, Mariusz Adam; Fan, Huijie; Suo, Zhenhe

    2018-01-01

    Background Sushi repeat-containing protein X-linked 2 (SRPX2) is overexpressed in a variety of different tumor tissues and correlated with poor prognosis in patients. Little research focuses on the role of SRPX2 expression in prostate cancer (PCa), and the clinicopathological significance of the protein expression in this tumor is relatively unknown. However, our previous transcriptome data from those cancer stem-like cells indicated the role of SRPX2 in PCa. Materials and methods In this study, RT-PCR and Western blotting were firstly used to examine the SRPX2 expression in three PCa cell lines including LNCaP, DU145, and PC3, and then SRPX2 protein expression was immunohistochemically investigated and statistically analyzed in a series of 106 paraffin-embedded PCa tissue specimens. Results Significantly lower levels of SRPX2 expression were verified in the LNCaP cells, compared with the expression in the aggressive DU145 and PC3 cells, in both mRNA and protein levels. Immunohistochemically, there were variable SRPX2 protein expressions in the clinical samples. Moreover, high levels of SRPX2 expression in the PCa tissues were significantly associated with Gleason score (P=0.008), lymph node metastasis (P=0.009), and distant metastasis (P=0.021). Furthermore, higher levels of SRPX2 expression in the PCa tissues were significantly associated with shorter overall survival (OS) (P<0.001). Conclusion Our results demonstrate that SRPX2 is highly expressed in aggressive PCa cells in vitro, and its protein expression in PCa is significantly associated with malignant clinical features and shorter OS, strongly indicating its prognostic value in prostate cancers. PMID:29881288

  13. High expression of testes-specific protease 50 is associated with poor prognosis in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zheng

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50 is normally expressed in testes and abnormally expressed in breast cancer, but whether TSP50 is expressed in colorectal carcinoma (CRC and its clinical significance is unclear. We aimed to detect TSP50 expression in CRC, correlate it with clinicopathological factors, and assess its potential diagnostic and prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: TSP50 mRNAs and proteins were detected in 7 CRC cell lines and 8 CRC specimens via RT-PCR and Western blot analysis. Immunohistochemical analysis of TSP50, p53 and carcinoembryonic antigen (CEA with tissue microarrays composed of 95 CRCs, 20 colorectal adenomas and 20 normal colorectal tissues were carried out and correlated with clinicopathological characteristics and disease-specific survival for CRC patients. There was no significant correlation between the expression levels of TSP50 and p53 (P = 0.751 or CEA (P = 0.663. Abundant expression of TSP50 protein was found in CRCs (68.4% while it was poorly expressed in colorectal adenomas and normal tissues (P<0.0001. Thus, CRCs can be distinguished from them with high specificity (92.5% and positive predictive value (PPV, 95.6%. The survival of CRC patients with high TSP50 expression was significantly shorter than that of the patients with low TSP50 expression (P = 0.010, specifically in patients who had early-stage tumors (stage I and II; P = 0.004. Multivariate Cox regression analysis indicated that high TSP50 expression was a statistically significant independent risk factor (hazard ratio  = 2.205, 95% CI = 1.214-4.004, P = 0.009. CONCLUSION: Our data demonstrate that TSP50 is a potential effective indicator of poor survival for CRC patients, especially for those with early-stage tumors.

  14. Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.

    Science.gov (United States)

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari

    2018-05-03

    Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.

  15. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.

    Science.gov (United States)

    Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir

    2017-05-12

    Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.

  16. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Telomerase activity and cellular aging might be positively modified by a yoga-based lifestyle intervention.

    Science.gov (United States)

    Kumar, Shiv Basant; Yadav, Rashmi; Yadav, Raj Kumar; Tolahunase, Madhuri; Dada, Rima

    2015-06-01

    Recent studies showed that a brief yoga-based lifestyle intervention was efficacious in reducing levels of oxidative stress and cellular aging in obese men. The objective of this case report was to assess the efficacy of this intervention in reducing the levels of biochemical markers of cellular ageing, oxidative stress, and inflammation at baseline (day 0), at the end of active intervention (day 10), and follow-up at day 90. Single case report from a prospective ongoing study with pre-post design assessing the level of various markers of cellular aging. Integral Health Clinic, an outpatient facility conducting meditation and yoga-based lifestyle intervention programs for management of chronic diseases. A 31-year-old man with class I obesity (body-mass index, 29.5 kg/m(2)) who presented to the medicine outpatient department at All India Institute of Medical Sciences, New Delhi, India, with a history of fatigue, difficulty losing weight, and lack of motivation. He noted a marked decrease in his energy level, particularly in the afternoon. A pretested intervention program included asanas (postures), pranayama (breathing exercises), stress management, group discussions, lectures, and individualized advice. From baseline (day 0) to day 90, the activity of telomerase and levels of β-endorphins, plasma cortisol, and interleukin-6 increased, and a sustained reduction in oxidative stress markers, such as reactive oxygen species and 8-hydroxy-2-deoxy-guanosine levels. Adopting yoga/meditation-based lifestyle modification causes reversal of markers of aging, mainly oxidative stress, telomerase activity, and oxidative DNA damage. This may not only delay aging and prolong a youthful healthy life but also delay or prevent onset of several lifestyle-related diseases, of which oxidative stress and inflammation are the chief cause. This report suggests this simple lifestyle intervention may be therapeutic for oxidative DNA damage and oxidative stress.

  18. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  19. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Nicola [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Baird, Duncan M. [Department of Pathology School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN (United Kingdom); Phillips, Ryan [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Crompton, Lucy A.; Caldwell, Maeve A. [Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY (United Kingdom); Rubio, Miguel A. [Center of Regenerative Medicine in Barcelona, CMRB Dr. Aiguader, 88, 7th Floor, 08003 Barcelona (Spain); Newson, Roger [Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 2 (Ireland); Lyng, Fiona [National Heart and Lung Institute, Imperial College London, London, SW7 2AZ (United Kingdom); Case, C. Patrick, E-mail: c.p.case@bristol.ac.uk [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom)

    2010-01-05

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  20. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    International Nuclear Information System (INIS)

    Cogan, Nicola; Baird, Duncan M.; Phillips, Ryan; Crompton, Lucy A.; Caldwell, Maeve A.; Rubio, Miguel A.; Newson, Roger; Lyng, Fiona; Case, C. Patrick

    2010-01-01

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  1. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  2. High expression of HEF1 is associated with poor prognosis in urinary bladder carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Q

    2014-07-01

    Full Text Available Qi Zhang,1 Hui-Ju Wang,2 Da-Hong Zhang,1 Guo-Qing Ru,3 Xu-Jun He,2 Ying-Yu Ma2 1Department of Urology, 2Key Laboratory of Gastroenterology of Zhejiang Province, 3Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China Abstract: Human enhancer of filamentation 1 (HEF1 is a multidomain scaffolding protein that has been thought to play an important role in the tumor progression of various cancers. HEF1 expression has not previously been reported in urinary bladder carcinoma, and little is known about its prognostic significance. The aim of this study was to evaluate the expression patterns of HEF1 in urinary bladder carcinoma and to investigate its prognostic significance. HEF1 expression was analyzed by immunohistochemistry using tissue microarray. A significant relationship between HEF1 expression and sex, tumor size, number of tumors, invasion depth, lymph node metastasis, and distant metastasis was found, and high expression of HEF1 was associated with worse overall survival when compared to low expression of HEF1. Multivariate analysis showed that HEF1 expression was an independent prognostic factor for overall survival in urinary bladder carcinoma. We investigated HEF1 expression in urinary bladder carcinoma and found that high HEF1 expression was associated with advanced stage, large tumor size, and shortened progression-free survival. Although the biologic function of HEF1 in urinary bladder carcinoma remains unknown, the expression of HEF1 can provide new prognostic information for disease progression. Keywords: human enhancer of filamentation 1, progression-free survival, immunohistochemistry, metastasis, bladder cancer

  3. Decreased FOXD3 Expression Is Associated with Poor Prognosis in Patients with High-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Wei Du

    Full Text Available The transcription factor forkhead box D3 (FOXD3 plays important roles in the development of neural crest and has been shown to suppress the development of various cancers. However, the expression and its potential biological roles of FOXD3 in high-grade gliomas (HGGs remain unknown.The mRNA and protein expression levels of FOXD3 were examined using real-time quantitative PCR and western blotting in 23 HGG and 13 normal brain samples, respectively. Immunohistochemistry was used to validate the expression FOXD3 protein in 184 HGG cases. The association between FOXD3 expression and the prognosis of HGG patients were analyzed using Kaplan-Meier survival curves and Cox proportional hazards regression models. In addition, we further examined the effects of FOXD3 on the proliferation and serum starvation-induced apoptosis of glioma cells.In comparison to normal brain tissues, FOXD3 expression was significantly decreased in HGG tissues at both mRNA and protein levels. Immunohistochemistry further validated the expression of FOXD3 in HGG tissues. Moreover, low FOXD3 expression was significantly associated with poor prognosis in HGG patients. Depletion of FOXD3 expression promoted glioma cell proliferation and inhibited serum starvation-induced apoptosis, whereas overexpression of FOXD3 inhibited glioma cell proliferation and promoted serum starvation-induced apoptosis.Our results indicated that FOXD3 might serve as an independent prognostic biomarker and a potential therapeutic target for HGGs, which warrant further investigation.

  4. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  5. High Expression of Osteopontin and CD44v6 in Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Yi-Ping Wang

    2009-04-01

    Conclusion: Binding of OPN to osteoclast cell membrane receptor integrin αv can activate the osteoclasts and increase their osteolytic activity. In addition, binding of OPN to OKC lining epithelial cell membrane receptor CD44v6 can enhance the motility, migration, invasion and spread of lining epithelial cells into the surrounding cancellous bone. Therefore, we suggest that the local aggressive behavior and high osteolytic ability of OKCs in the jawbone can be explained at least partially by high expression of OPN and CD44v6 in lining epithelial cells of OKCs and high expression of integrin αv in osteoclasts.

  6. Characteristics of High-Risk College Student Drinkers Expressing High and Low Levels of Distress

    Science.gov (United States)

    Graceffo, James M.; Hayes, Jeffrey A.; Chun-Kennedy, Caitlin; Locke, Benjamin D.

    2012-01-01

    The aim of this study was to identify variables that reliably differentiated between 2 groups of students who reported binge drinking at the same rate (6 to more than 10 times within the previous 2 weeks) but who exhibited different distress associated with their behavior. Results indicated that students who received an external expression of…

  7. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Næsted, Henrik

    2010-01-01

    biosynthesis by trimming of intermediate branched alpha-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha...

  8. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  9. Telomerase activity is spontaneously increased in lymphocytes from patients with atopic dermatitis and correlates with cellular proliferation

    DEFF Research Database (Denmark)

    Wu, Kehuai; Volke, Anne Rehné; Lund, Marianne

    1999-01-01

    blood mononuclear cells (PBMC) were isolated from 15 patients with AD and 13 healthy donors. Cells were stimulated with purified protein derivative (PPD) of tuberculin (10 microg/ml), interleukin 2 (IL-2) (100 U/ml), anti-CD3 monoclonal antibody (anti-CD3) (1 microg/ml), anti-CD3 plus IL-2......-thymidine incorporation. We found that telomerase activity in non-stimulated PBMC from patients with AD was significantly up-regulated without any stimulation during the 72 h of in vitro incubation. The most potent stimulator of telomerase activity was SEA, followed by anti-CD3 plus IL-2, anti-CD3 alone, and PPD. IL-2...

  10. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Christian Bär

    2016-01-01

    Full Text Available Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.

  11. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  12. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase

    Czech Academy of Sciences Publication Activity Database

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, L.-Y.; Gelvin, S.B.; Sýkorová, Eva

    2015-01-01

    Roč. 6, NOV2015 (2015) ISSN 1664-462X R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:GA MŠk(CZ) LH10352 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : telomerase * nuclear poly(A)-binding protein * telobox Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 4.495, year: 2015

  13. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  14. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  15. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells.

    Science.gov (United States)

    Dong, Wen; Wu, Lei; Sun, Houfang; Ren, Xiubao; Epling-Burnette, Pearlie K; Yang, Lili

    2016-11-01

    Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, pMDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, pMDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (pMDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.

  16. Expression and Effects of High-Mobility Group Box 1 in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoao Pang

    2014-05-01

    Full Text Available We investigated the significance of high- mobility group box1 (HMGB1 and T-cell-mediated immunity and prognostic value in cervical cancer. HMGB1, forkhead/winged helix transcription factor p3 (Foxp3, IL-2, and IL-10 protein expression was analyzed in 100 cervical tissue samples including cervical cancer, cervical intraepithelial neoplasia (CIN, and healthy control samples using immunohistochemistry. Serum squamous cell carcinoma antigen (SCC-Ag was immunoradiometrically measured in 32 serum samples from 37 cases of squamous cervical cancer. HMGB1 and SCC-Ag were then correlated to clinicopathological characteristics. HMGB1 expression tends to increase as cervical cancer progresses and it was found to be significantly correlated to FIGO stage and lymph node metastasis. These findings suggest that HMGB1 may be a useful prognostic indicator of cervical carcinoma. In addition, there were significant positive relationships between HMGB1 and FOXP3 or IL-10 expression (both p < 0.05. In contrast, HMGB1 and IL-2 expression was negatively correlated (p < 0.05. HMGB1 expression may activate Tregs or facilitate Th2 polarization to promote immune evasion of cervical cancer. Elevated HMGB1 protein in cervical carcinoma samples was associated with a high recurrence of HPV infection in univariate analysis (p < 0.05. HMGB1 expression and levels of SCC-Ag were directly correlated in SCC (p < 0.05. Thus, HMGB1 may be a useful biomarker for patient prognosis and cervical cancer prediction and treatment.

  17. High-Speed Video System for Micro-Expression Detection and Recognition

    Directory of Open Access Journals (Sweden)

    Diana Borza

    2017-12-01

    Full Text Available Micro-expressions play an essential part in understanding non-verbal communication and deceit detection. They are involuntary, brief facial movements that are shown when a person is trying to conceal something. Automatic analysis of micro-expression is challenging due to their low amplitude and to their short duration (they occur as fast as 1/15 to 1/25 of a second. We propose a fully micro-expression analysis system consisting of a high-speed image acquisition setup and a software framework which can detect the frames when the micro-expressions occurred as well as determine the type of the emerged expression. The detection and classification methods use fast and simple motion descriptors based on absolute image differences. The recognition module it only involves the computation of several 2D Gaussian probabilities. The software framework was tested on two publicly available high speed micro-expression databases and the whole system was used to acquire new data. The experiments we performed show that our solution outperforms state of the art works which use more complex and computationally intensive descriptors.

  18. MicroRNA-130a is highly expressed in the esophageal mucosa of achalasia patients.

    Science.gov (United States)

    Shoji, Hiroyuki; Isomoto, Hajime; Yoshida, Akira; Ikeda, Haruo; Minami, Hitomi; Kanda, Tsutomu; Urabe, Shigetoshi; Matsushima, Kayoko; Takeshima, Fuminao; Nakao, Kazuhiko; Inoue, Haruhiro

    2017-08-01

    Esophageal achalasia is considered as a risk factor of esophageal cancer. The etiologies of esophageal achalasia remain unknown. Peroral endoscopic myotomy (POEM) has recently been established as a minimally invasive method with high curability. The aims of the present study were to identify the microRNAs (miRs) specific to esophageal achalasia, to determine their potential target genes and to assess their alteration following POEM. RNA was extracted from biopsy samples from middle esophageal mucosa and analyzed using a microarray. Differentially expressed miRs in achalasia patients compared with control samples were identified and analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Correlations between specific miR expression levels and the patients' clinical background were also investigated. In addition, alterations of selected miR expression levels before and after POEM were analyzed. The results of RT-qPCR analysis demonstrated that the miR-130a expression levels were significantly higher in patients with achalasia (Pachalasia. However, no significant change in miR-130a expression was observed between before and after POEM. In conclusion, miR-130a is highly expressed in the esophageal mucosa of patients with achalasia and may be a biomarker of esophageal achalasia.

  19. Cyclin H expression is increased in GIST with very-high risk of malignancy

    International Nuclear Information System (INIS)

    Dorn, Julian; Spatz, Hanno; Schmieder, Michael; Barth, Thomas FE; Blatz, Annette; Henne-Bruns, Doris; Knippschild, Uwe; Kramer, Klaus

    2010-01-01

    Risk estimation of gastrointestinal stromal tumours (GIST) is based on tumour size and mitotic rate according to the National Institutes of Health consensus classification. The indication for adjuvant treatment of patients with high risk GIST after R 0 resection with small molecule inhibitors is still a controversial issue, since these patients represent a highly heterogeneous population. Therefore, additional prognostic indicators are needed. Here, we evaluated the prognostic value of cyclin H expression in GIST. In order to identify prognostic factors of GIST we evaluated a single centre cohort of ninety-five GIST patients. First, GISTs were classified with regard to tumour size, mitotic rate and localisation according to the NIH consensus and to three additional suggested risk classifications. Second, Cyclin H expression was analysed. Of ninety-five patients with GIST (53 female/42 male; median age: 66.78a; range 17-94a) risk classification revealed: 42% high risk, 20% intermediate risk, 23% low risk and 15% very low risk GIST. In patients with high risk GIST, the expression of cyclin H was highly predictive for reduced disease-specific survival (p = 0.038). A combination of cyclin H expression level and high risk classification yielded the strongest prognostic indicator for disease-specific and disease-free survival (p ≤ 0.001). Moreover, in patients with tumour recurrence and/or metastases, cyclin H positivity was significantly associated with reduced disease-specific survival (p = 0.016) regardless of risk-classification. Our data suggest that, in addition to high risk classification, cyclin H expression might be an indicator for 'very-high risk' GIST

  20. Histone H1x is highly expressed in human neuroendocrine cells and tumours

    International Nuclear Information System (INIS)

    Warneboldt, Julia; Haller, Florian; Horstmann, Olaf; Danner, Bernhard C; Füzesi, László; Doenecke, Detlef; Happel, Nicole

    2008-01-01

    Histone H1x is a ubiquitously expressed member of the H1 histone family. H1 histones, also called linker histones, stabilize compact, higher order structures of chromatin. In addition to their role as structural proteins, they actively regulate gene expression and participate in chromatin-based processes like DNA replication and repair. The epigenetic contribution of H1 histones to these mechanisms makes it conceivable that they also take part in malignant transformation. Based on results of a Blast data base search which revealed an accumulation of expressed sequence tags (ESTs) of H1x in libraries from neuroendocrine tumours (NETs), we evaluated the expression of H1x in NETs from lung and the gastrointestinal tract using immunohistochemisty. Relative protein and mRNA levels of H1x were analysed by Western blot analysis and quantitative real-time RT-PCR, respectively. Since several reports describe a change of the expression level of the replacement subtype H1.0 during tumourigenesis, the analysis of this subtype was included in this study. We found an increased expression of H1x but not of H1.0 in NET tissues in comparison to corresponding normal tissues. Even though the analysed NETs were heterogenous regarding their grade of malignancy, all except one showed a considerably higher protein amount of H1x compared with corresponding non-neoplastic tissue. Furthermore, double-labelling of H1x and chromogranin A in sections of pancreas and small intestine revealed that H1x is highly expressed in neuroendocrine cells of these tissues. We conclude that the high expression of histone H1x in NETs is probably due to the abundance of this protein in the cells from which these tumours originate

  1. Effects of BST and high energy diet on gene expression in mammary parenchyma of dairy heifers

    Directory of Open Access Journals (Sweden)

    Betina Joyce Lew

    2013-07-01

    Full Text Available The objective of this study was to determine the effects of dietary energy and recombinant bovine somatotropin (bST injection to identify genes that might control mammogenesis. Total RNA was extracted from the parenchymal tissue of 32 heifers randomly assigned to one of four treatments: two diets (a standard diet and a high energy, high protein diet, each with or without bST. To perform microarray experiments, RNA samples were pooled (2 animals/pool before reverse transcription and labeling with Cy3 or Cy5. A 4-node loop design was used to examine the differential gene expression among treatments using a bovine-specific cDNA microarray (National Bovine Functional Genomics Consortium Library, NBFGC containing 18,263 unique expressed sequence tags (EST. Significance levels of differential gene expression among treatments were assessed using a mixed model approach. Injection of bST altered the expression of 12 % of the genes on NBFGC slide related to tissue development, whereas 6% were altered by diet. Administration of bST increases the expression of genes positively related to cell proliferation and mammary parenchyma to a greater extent than a high energy diet.

  2. Reduced Variance of Gene Expression at Numerous Loci in a Population of Chickens Selected for High Feather Pecking

    DEFF Research Database (Denmark)

    Hughes, A L; Buitenhuis, A J

    2010-01-01

    among populations with respect to mean expression scores, but numerous transcripts showed reduced variance in expression scores in the high FP population in comparison to control and low FP populations. The reduction in variance in the high FP population generally involved transcripts whose expression...

  3. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  4. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial.

    Science.gov (United States)

    Pawełczyk, Tomasz; Grancow-Grabka, Marta; Trafalska, Elżbieta; Szemraj, Janusz; Żurner, Natalia; Pawełczyk, Agnieszka

    2018-04-20

    Schizophrenia is associated with shortening of the lifespan mainly due to cardiovascular events, cancer and chronic obstructive pulmonary disease. Both telomere attrition and decrease of telomerase levels were observed in schizophrenia. Polyunsaturated fatty acids (PUFA) influence multiple biochemical mechanisms which are postulated to accelerate telomere shortening and limit the longevity of patients with schizophrenia. Intervention studies based on add-on therapy with n-3 polyunsaturated fatty acids (n-3 PUFA) in patients with schizophrenia did not assess the changes in telomerase levels. A randomized placebo-controlled trial named OFFER was designed to compare the efficacy of a 26-week intervention composed of either 2.2g/day of n-3 PUFA or olive oil placebo with regard to symptom severity in first-episode schizophrenia patients. The secondary outcome measure of the study was to describe the association between the clinical effect of n-3 PUFA and changes in telomerase levels. Seventy-one patients aged 16-35 were enrolled in the study and randomly assigned to the study arms. The Positive and Negative Syndrome Scale (PANSS) was used to assess the change in symptom severity. Telomerase levels of peripheral blood mononuclear cells (PBMC) were assessed at three points: at baseline and at weeks 8 and 26 of the intervention. A significantly greater increase in PBMC telomerase levels in the intervention group compared to placebo was observed (p<0.001). Changes in telomerase levels significantly and inversely correlated with improvement in depressive symptoms and severity of the illness. The efficacy of a six-month intervention with n-3 PUFA observed in first-episode schizophrenia may be related to an increase in telomerase levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling.

    Directory of Open Access Journals (Sweden)

    Jianing Xu

    Full Text Available Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT cells or in the telomerase-resistant type IIR "runaway" RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability.

  6. Differential gene expression in patients with anal fistula reveals high levels of prolactin recepetor

    Directory of Open Access Journals (Sweden)

    Song Yi-Huan

    2017-01-01

    Full Text Available Background/Aim. There are limited data examining variations in the local expression of inflammatory mediators in anal fistulas where it is anticipated that an improved understanding of the inflammatory milieu might lead to the potential therapeutic option of instillation therapy in complicated cases. The aim of the present study was to examine prolactin receptors (PRLR as inflammatory markers and to correlate their expression with both the complexity of anal fistulas and the likelihood of fistula recurrence. Methods. Microarray was used to screen the differentially expressed gene profile of anal fistula using anal mucosa samples with hemorrhoids with ageand sex-matched patients as controls and then a prospective analysis of 65 patients was conducted with anal fistulas. PRLR immunohistochemistry was performed to define expression in simple, complex and recurrent anal fistula cases. The quantitative image comparison was performed combining staining intensity with cellular distribution in order to create high and low score PRLR immunohistochemical groupings. Results. A differential expression profile of 190 genes was found. PRLR expression was 2.91 times lower in anal fistula compared with control. Sixty-five patients were assessed (35 simple, 30 complex cases. Simple fistulas showed significantly higher PRLR expression than complex cases with recurrent fistulae showing overall lower PRLR expression than de novo cases (p = 0.001. These findings were reflected in measurable integrated optical density for complex and recurrent cases (complex cases, 8.31 ± 4.91 x 104 vs simple cases, 12.30 ± 6.91 x 104; p < 0.01; recurrent cases, 7.21 ± 3.51 x 104 vs primarily healing cases, 8.31 ± 4.91 x 104; p < 0.05. In univariate regression analysis, low PRLR expression correlated with fistula complexity; a significant independent effect maintained in multivariate analysis odds ratio [(OR low to high PRLR expression = 9.52; p = 0.001]. Conclusion. PRLR

  7. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho

    2008-01-01

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response

  8. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

  9. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  10. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  11. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Science.gov (United States)

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  12. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens.

    Science.gov (United States)

    Tang, Zhiru; Zhang, Youming; Stewart, Adrian Francis; Geng, Meimei; Tang, Xiangsha; Tu, Qiang; Yin, Yulong

    2010-10-01

    Bovine lactoferricin (LFC) and bovine lactoferrampin (LFA) are two active fragments located in the N(1)-domain of bovine lactoferrin. Recent studies suggested that LFC and LFA have broad-spectrum activity against Gram-positive and Gram-negative bacteria. To date, LFC and LFA have usually been produced from milk. We report here the high-level expression, purification and characterization of LFC and LFA using the Photorhabdus luminescens expression system. After the cipA and cipB genes were deleted by ET recombination, the expression host P. luminescens TZR(001) was constructed. A synthetic LFC-LFA gene containing LFC and LFA was fused with the cipB gene to form a cipB-LFC-LFA gene. To obtain the expression vector pBAD-cipB-LFC-LFA, the cipB-LFC-LFA gene was cloned on the L-arabinose-inducible expression vector pBAD24. pBAD-cipB-LFC-LFA was transformed into P. luminescens TZR(001). The cipB-LFC-LFA fusion protein was expressed under the induction of L-arabinose and its yield reached 12 mg L(-1) bacterial culture. Recombinant LFC-LFA was released from cipB by pepsin. The MIC of recombinant LFC-LFA toward E. coli 0149, 0141 and 020 was 6.25, 12.5 and 3.175 microg ml(-1), respectively. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis.

    Science.gov (United States)

    Izumi, Gentaro; Koga, Kaori; Takamura, Masashi; Makabe, Tomoko; Nagai, Miwako; Urata, Yoko; Harada, Miyuki; Hirata, Tetsuya; Hirota, Yasushi; Fujii, Tomoyuki; Osuga, Yutaka

    2017-01-01

    To characterize peritoneal dendritic cells (DCs) in endometriosis and to clarify their role in its etiology. Experimental. University hospital. Sixty-three women (35 patients with endometriosis and 28 control women) who had undergone laparoscopic surgery. Peritoneal DCs from endometriosis and control samples were analyzed for the expression of cell surface markers. Monocyte-derived dendritic cells (Mo-DCs) were cultured with dead endometrial stromal cells (dESCs) to investigate changes in phagocytic activity and cytokine expression. Cell surface markers and cytokine expression and identification with the use of flow cytometry or reverse-transcription polymerase chain reaction (RT-PCR). Changes in cytokine expression and phagocytic activity of Mo-DCs cultured with dESCs and d-mannan were measured with the use of flow cytometry and RT-PCR. The proportion of mannose receptor (MR)-positive myeloid DC type 1 was higher in endometriosis samples than in control samples. The blocking of MR reduced phagocytosis of dESCs by Mo-DCs. Mo-DCs cultured with dESCs expressed higher levels of interleukin (IL) 1β and IL-6 than control samples. Peritoneal DCs in endometriosis tissue express high levels of MR, which promotes phagocytosis of dead endometrial cells and thereby contributes to the etiology of endometriosis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Prediction of highly expressed genes in microbes based on chromatin accessibility

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2007-02-01

    Full Text Available Abstract Background It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes. Results We find that absolute gene expression levels are correlated with the position preference in many microbial genomes. It is postulated that in these regions, the DNA may be more accessible to the transcriptional machinery. Moreover, ribosomal proteins and ribosomal RNA are encoded by DNA having significantly lower position preference values than other genes in fast-replicating microbes. Conclusion This insight into DNA structure-dependent gene expression in microbes may be exploited for predicting the expression of non-translated genes such as non-coding RNAs that may not be predicted by any of the conventional codon usage bias approaches.

  15. Emotional Experience, Expression, and Regulation of High-Quality Japanese Elementary School Teachers

    Science.gov (United States)

    Hosotani, Rika; Imai-Matsumura, Kyoko

    2011-01-01

    The present study investigates the emotional experience, expression, and regulation processes of high-quality Japanese elementary school teachers while they interact with children, in terms of teachers' emotional competence. Qualitative analysis of interview data demonstrated that teachers had various emotional experiences including self-elicited…

  16. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    DEFF Research Database (Denmark)

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn

    2007-01-01

    Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low...

  17. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  18. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...

  19. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  20. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  1. A high resolution atlas of gene expression in the domestic sheep (Ovis aries).

    Science.gov (United States)

    Clark, Emily L; Bush, Stephen J; McCulloch, Mary E B; Farquhar, Iseabail L; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G; Wu, Chunlei; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C Bruce; Freeman, Tom C; Summers, Kim M; Archibald, Alan L; Hume, David A

    2017-09-01

    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.

  2. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  3. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    OpenAIRE

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2012-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimu...

  4. Rad51 expression levels predict synthetic lethality and metastatic potential in high grade breast cancers

    International Nuclear Information System (INIS)

    Wiegmans, A.P.; Al-Ejeh, F.; Khanna, K.K.

    2012-01-01

    Among women with breast cancer, 30-40% will develop metastatic disease and only achieve an overall survival of less than 5 years. Despite new-targeted therapy, breast tumors that harbour similar histology or molecular phenotype differ in their response to treatment. To uncover potential new therapeutic targets and improve outcome, we performed data mining of cancer micro array databases. We found that high expression of the homologous recombination protein, RAD51, was significantly associated with high-grade breast cancer, aggressive subtypes and increased risk of metastasis. We confirmed using immunohistochemistry that RAD5 1 was highly expressed in metastatic tumours and high-grade triple negative, HER2+ and luminal-B tumours. This provided a rationale for targeting RAD5 1 in high-grade, therapy-resistant breast cancers. Here, we report for the first time preclinical evaluation of RAD5 1 as a therapeutic target. We found that, in-vitro high RAD5 expressing cell lines were resistant to PARP inhibitor while knockdown reversed this resistance. In-vivo, knockdown of RAD5 1 inhibited metastatic progression using a syngeneic breast cancer model and the seeding of human xenografts to distant sites, including brain and lung. Concurrent PARP inhibition reduced primary tumor growth and delayed metastasis supporting synthetic lethality in-vivo. Together these insights provide pre-clinical data demonstrating RAD5 1 as a new biomarker and potential therapeutic target against aggressive metastatic breast cancer. (author)

  5. Cloning, high-level expression, purification and crystallization of peptide deformylase from Leptospira interrogans.

    Science.gov (United States)

    Li, Yikun; Ren, Shuangxi; Gong, Weimin

    2002-05-01

    A new peptide deformylase (PDF; EC 3.5.1.27) gene from Leptospira interrogans was identified and cloned into expression plasmid pET22b(+) and was highly expressed in Escherichia coli BL21(DE3). With DEAE-Sepharose anion-exchange chromatography followed by Superdex G-75 size-exclusion chromatography, 60 mg of PDF from L. interrogans was purified from 1 l of cell culture. Crystallization screening of the purified enzyme resulted in two crystal forms, from one of which a 3 A resolution X-ray diffraction data set has been collected.

  6. High-yield production of canine parvovirus virus-like particles in a baculovirus expression system.

    Science.gov (United States)

    Jin, Hongli; Xia, Xiaohong; Liu, Bing; Fu, Yu; Chen, Xianping; Wang, Huihui; Xia, Zhenqiang

    2016-03-01

    An optimized VP2 gene from the current prevalent CPV strain (new CPV-2a) in China was expressed in a baculovirus expression system. It was found that the VP2 proteins assembled into virus-like particles (VLPs) with antigenic properties similar to those of natural CPV and with an especially high hemagglutination (HA) titer (1:2(20)). Dogs intramuscularly or orally immunized with VLPs produced antibodies against CPV with >1:80 hemagglutination inhibition (HI) units for at least 3 months. The CPV VLPs could be considered for use as a vaccine against CPV or as a platform for research on chimeric VLP vaccines against other diseases.

  7. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    Science.gov (United States)

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  9. [Telomerase in lung cancer. Testing the activity of the "immortaligy enzyme" bronchial biopsies increases the diagnostic yield in cases of suspected peripheral bronchogenic carcinomas].

    Science.gov (United States)

    Freitag, L; Litterst, P; Obertrifter, B; Velehorschi, V; Kemmer, H P; Linder, A; Brightman, I

    2000-11-01

    The proliferative capability is time-limited in normal somatic cells by the shortening of their chromosomal ends, the telomeres (Hayflick limit). An important feature of malignant cells is their immortality. The probably most common mechanism of tumour cells to achieve unlimited replicability is the activation of the enzyme telomerase. The reverse transcriptase can compensate the loss of telomeres. Using a PCR-based TRAP assay we found telomerase activity in tumour biopsies, exsudates and bronchial washings in various thoracic malignancies. In 38 of 47 patients with suspected peripheral lung cancer eventually surgery or invasive procedures proved a malignancy. In fluoroscopically guided bronchial brushings from 25 of these 38 patients (66%) the TRAP assay revealed telomerase activity. There was a single false positive case (tuberculosis) and with a single exception, the simultaneously taken brushes of the contralateral lobes were all telomerase negative. In 23 patients (61%) tumour cells were found in the cytological examination. In 33 patients at least one marker was positive. Thus the combination of cytology and telomerase test in bronchial brush biopsies attained a diagnostic yield of 87%.

  10. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.

    Science.gov (United States)

    Kopera, Huira C; Moldovan, John B; Morrish, Tammy A; Garcia-Perez, Jose Luis; Moran, John V

    2011-12-20

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.

  11. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV: A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Directory of Open Access Journals (Sweden)

    Tanja S H Wingenbach

    Full Text Available Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES and termed the Bath Intensity Variations (ADFES-BIV. A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness and 3 complex emotions (contempt, embarrassment, pride that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu hit rates were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the

  12. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Science.gov (United States)

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author.

  13. Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions

    Science.gov (United States)

    Wingenbach, Tanja S. H.

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author

  14. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    Science.gov (United States)

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2013-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9D4) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of TR cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of TR cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human TR cells to express IL-10. PMID:22562448

  15. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    Science.gov (United States)

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2017-04-01

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation. © 2016 Stichting International Foundation for Animal Genetics.

  16. High interleukin-6 mRNA expression is a predictor of relapse in colon cancer

    DEFF Research Database (Denmark)

    Olsen, Jesper; Kirkeby, Lene T; Olsen, Jørgen

    2015-01-01

    AIM: To investigate the expression of interleukin-6 (IL6) in colon cancer tissue, and to examine if the risk of relapse is influenced by IL6 expression. MATERIALS AND METHODS: Fresh-frozen biopsies from tumor and normal adjacent tissues were taken from patients with colon cancer during surgery...... for clinicopathological characteristics (Hazard Ratio=2.16, 95% CI=1.07-4.40; pcolon cancer tissue at the transcriptional level and is significantly associated with increased risk of relapse....... to normal adjacent tissue (pcancer stage. We found a significant association between high IL6 expression and risk of relapse (Hazard Ratio=2.23, 95% CI=1.10-4.53; p

  17. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  18. Highly expressed genes within hippocampal sector CA1: implications for the physiology of memory

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer

    2014-06-01

    Full Text Available As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT. From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  19. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory.

    Science.gov (United States)

    Meyer, Michael A

    2014-04-22

    As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  20. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fanconi anemia genes are highly expressed in primitive CD34+ hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Brodeur Isabelle

    2003-06-01

    Full Text Available Abstract Background Fanconi anemia (FA is a complex recessive genetic disease characterized by progressive bone marrow failure (BM and a predisposition to cancer. We have previously shown using the Fancc mouse model that the progressive BM failure results from a hematopoietic stem cell defect suggesting that function of the FA genes may reside in primitive hematopoietic stem cells. Methods Since genes involved in stem cell differentiation and/or maintenance are usually regulated at the transcription level, we used a semiquantitative RT-PCR method to evaluate FA gene transcript levels in purified hematopoietic stem cells. Results We show that most FA genes are highly expressed in primitive CD34-positive and negative cells compared to lower levels in more differentiated cells. However, in CD34- stem cells the Fancc gene was found to be expressed at low levels while Fancg was undetectable in this population. Furthermore, Fancg expression is significantly decreased in Fancc -/- stem cells as compared to wild-type cells while the cancer susceptibility genes Brca1 and Fancd1/Brac2 are upregulated in Fancc-/- hematopoietic cells. Conclusions These results suggest that FA genes are regulated at the mRNA level, that increased Fancc expression in LTS-CD34+ cells correlates with a role at the CD34+ differentiation stage and that lack of Fancc affects the expression of other FA gene, more specifically Fancg and Fancd1/Brca2, through an unknown mechanism.

  2. High expression of BAG3 predicts a poor prognosis in human medulloblastoma.

    Science.gov (United States)

    Yang, Dong; Zhou, Ji; Wang, Hao; Wang, Yutao; Yang, Ge; Zhang, Yundong

    2016-10-01

    Bcl2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock protein (Hsp) 70, regulates various physiological and pathological processes. However, its role in human medulloblastoma has not been clarified. First of all, the expression of BAG3 was examined in formalin-fixed, paraffin-embedded specimens by immunohistochemical staining. And then, the prognostic role of BAG3 was analyzed in 51 medulloblastoma samples. Finally, the roles of BAG3 in the proliferation, migration, and invasion of Daoy medulloblastoma cell were investigated using a specific short hairpin RNA (shRNA). The expression of BAG3 in medulloblastoma tissues was higher than nontumorous samples. Furthermore, BAG3 overexpression significantly correlated with poor prognosis of patients with medulloblastoma. The overall survival and tumor-free survival in patients with BAG3 low expression were higher than high expression. Univariate and multivariate analysis showed that BAG3 overexpression was an independent prognostic marker for medulloblastoma. After the BAG3 knockdown, the Daoy cells exhibited decreased the ability to proliferate and form neurosphere. The preliminary mechanism study showed that overexpression of BAG3 might facilitate the cell cycle transition from G1 to S phase by modulating the cyclin-dependent kinase 2 (CDK2) and cyclin E expression. Additionally, we found that BAG3 might enhance the medulloblastoma cell migratory and invasive ability. In summary, BAG3 overexpression may regulate the survival and invasive properties of medulloblastoma and may serve as a potential therapy target for medulloblastoma.

  3. Advantage of the Highly Restricted Odorant Receptor Expression Pattern in Chemosensory Neurons of Drosophila.

    Science.gov (United States)

    Tharadra, Sana Khalid; Medina, Adriana; Ray, Anandasankar

    2013-01-01

    A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.

  4. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes

    NARCIS (Netherlands)

    Schepers, A.G.; Vries, R.G.J.; van den Born, M.M.W.; van de Wetering, M.L.; Clevers, H.

    2011-01-01

    Somatic cells have been proposed to be limited in the number of cell divisions they can undergo. This is thought to be a mechanism by which stem cells retain their integrity preventing disease. However, we have recently discovered intestinal crypt stem cells that persist for the lifetime of a mouse,

  5. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  6. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression.

    Science.gov (United States)

    Port, M; Abend, M; Römer, B; Van Beuningen, D

    2003-09-01

    International thresholds for exposure to non-ionizing radiation leading to non-thermal effects were conservatively set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The aim of this study was to examine whether biological effects such as different modes of cell death and gene expression modifications related to tumorgenesis are detectable above the threshold defined. Human leukaemia cells (HL-60) grown in vitro were exposed to electromagnetic fields (EMF; t 1/2(r) about 1 ns; field strength about 25 times higher than the ICNIRP reference levels for occupational exposure) leading to non-thermal effects using a high-voltage-improved GTEM cell 5302 (EMCO) connected to a pulse generator NP20 (C = 1 nF, U(Load) = 20kV). HL-60 cells were harvested at 0, 24, 48 and 72 h after radiation exposure. Micronuclei, apoptosis and abnormal cells (e.g. necrosis) were determined using morphological criteria. In parallel, the expression of 1176 genes was measured using Atlas Human 1.2. Array. Based on high data reproducibility calculated from two independent experiments (> 99%), array analysis was performed. No significant change in apoptosis, micronucleation, abnormal cells and differential gene expression was found. Exposure of HL-60 cells to EMFs 25 times higher than the ICNIRP reference levels for occupational exposure failed to induce any changes in apoptosis, micronucleation, abnormal morphologies and gene expression. Further experiments using EMFs above the conservatively defined reference level set by the ICNIRP may be desirable.

  7. Effect of high energy intake on carcass composition and hypothalamic gene expression in Bos indicus heifers

    Directory of Open Access Journals (Sweden)

    Juliane Diniz-Magalhães

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of high or low energy intake on carcass composition and expression of hypothalamic genes related to the onset of puberty. Twenty-four prepubertal Nellore heifers, 18-20- months-old, with 275.3±18.0 kg body weight (BW, and 4.9±0.2 (1-9 scale body condition score (BCS were randomly assigned to two treatments: high-energy diet (HE and low-energy diet (LE. Heifers were housed in two collective pens and fed diets formulated to promote average daily gain of 0.4 (LE or 1.2 kg (HE BW/day. Eight heifers from each treatment were slaughtered after the first corpus luteum detection - considered as age of puberty. The 9-10-11th rib section was taken and prepared for carcass composition analyses. Samples from hypothalamus were collected, frozen in liquid nitrogen, and stored at −80 °C. Specific primers for targets (NPY, NPY1R, NPY4R, SOCS3, OXT, ARRB1, and IGFPB2 and control (RPL19 and RN18S1 genes were designed for real-time PCR and then the relative quantification of target gene expression was performed. High-energy diets increased body condition score, cold carcass weight, and Longissimus lumborum muscle area and decreased age at slaughter. High-energy diets decreased the expression of NPY1R and ARRB1 at 4.4-fold and 1.5-fold, respectively. In conclusion, the hastening of puberty with high energy intake is related with greater body fatness and lesser hypothalamic expression of NPY1 receptor and of β-arrestin1, suggesting a less sensitive hypothalamus to the negative effects of NPY signaling.

  8. Expression profiling on high-density DNA grids to detect novel targets in dendritic cells

    International Nuclear Information System (INIS)

    Weissmann, M.

    2000-10-01

    Gene expression analyzes on a large scale using DNA microarrays is a novel approach to study transcription of thousands of genes in parallel. By comparing gene expression profiles of different cell-types and of cells in different activation, novel regulatory networks will be identified that are unique to a cell-type and hence, important in its biological function. Among the differentially expressed genes many novel drug targets will be found. The Genetic department of the Novartis Research Institute was following this approach to identify novel genes, which are critical in the antigen presenting function of DCs and could become promising drug targets. Drugs that modulate effector functions of DCs towards induction of energy or tolerance in T-cells could be useful in the treatment of chronic inflammatory or autoimmune diseases. By using specific robotics equipment high-density cDNA grids on nylon membranes have been produced for hybridizations with various radioactive labeled DNA probes. By our format, based on 384 well plates and limited by the resolution power of our current image analysis software, 27.648 cDNA clones, bacterial colonies or pure DNA, were spotted on one filter. For RNA profiling, we generated filters containing a collection of genes expressed in peripheral blood DCs or monocytes and characterized by oligonucleotide fingerprinting (ONF) as being differentially expressed. The gene collection contained many unknown genes. Sequence analysis of to date 18.000 cDNA clones led to an estimate of 5.000 non-redundant genes being represented in the collection. 10 % of them are either completely unknown or homologous to rare ESTs (expressed sequence tags) in the public EST database. These clones occurred predominantly in small fingerprint clusters and were therefore assumed to be rarely expressed in DCs or monocytes. Some of those genes may become novel drug targets if their expression is DC specific or induced by external stimuli driving DCs into

  9. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  10. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  11. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO2 Nanocomposites and Application to Real-Time Monitoring of Telomerase Activity in Differentiation of Stem Cells.

    Science.gov (United States)

    Zheng, Tingting; Feng, Enduo; Wang, Zhiqiang; Gong, Xueqing; Tian, Yang

    2017-10-25

    With a burst development of new nanomaterials for plasmon-free surface-enhanced Raman scattering (SERS), the understanding of chemical mechanism (CM) and further applications have become more and more attractive. Herein, a novel SERS platform was specially designed through electrochemical deposition of graphene onto TiO 2 nanoarrays (EG-TiO 2 ). The developed EG-TiO 2 nanocomposite SERS platform possessed remarkable Raman activity using copper phthalocyanine (CuPc) as a probe molecule. X-ray photoelectron spectroscopy measurement revealed that the chemical bond Ti-O-C was formed at the interface between graphene and TiO 2 in EG-TiO 2 nanocomposites. Both experimental and theoretical results demonstrated that the obvious Raman enhancement was attributed to TiO 2 -induced Fermi level shift of graphene, resulting in effective charge transfer between EG-TiO 2 nanocomposites and molecules. Taking advantage of a marked Raman response of the CuPc molecule on the EG-TiO 2 nanocomposite surface as well as specific recognition of CuPc toward multiple telomeric G-quadruplex, EG-TiO 2 nanocomposites were tactfully employed as the SERS substrate for selective and ultrasensitive determination of telomerase activity, with a low detection limit down to 2.07 × 10 -16 IU. Interestingly, the self-cleaning characteristic of EG-TiO 2 nanocomposites under visible light irradiation successfully provided a recycling ability for this plasmon-free EG-TiO 2 substrate. The present SERS biosensor with high analytical performance, such as high selectivity and sensitivity, has been further explored to determine telomerase activity in stem cells as well as to count the cell numbers. More importantly, using this useful tool, it was discovered that telomerase activity plays an important role in the proliferation and differentiation from human mesenchymal stem cells to neural stem cells. This work has not only established an approach for gaining fundamental insights into the chemical mechanism (CM

  12. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    International Nuclear Information System (INIS)

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith

    2005-01-01

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian

  13. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  14. Analytical expression for the phantom generated bremsstrahlung background in high energy electron beams

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Hyoedynmaa, S; Brahme, A.

    1995-01-01

    Qualification of the bremsstrahlung photon background generated by an electron beam in a phantom is important for accurate high energy electron beam dosimetry in radiation therapy. An analytical expression has been derived for the background of phantom generated bremsstrahlung photons in plane parallel electron beams normally incident on phantoms of any atomic number between 4 and 92 (Be, C, H 2 O, Al, Cu, Ag, Pb and U). The expression can be used with fairly good accuracy in the energy range between 1 and 50 MeV. The expression is globally based on known scattering power and radiation and collision stopping power data for the phantom material at the mean energy of the incident electrons. The depth dose distribution due to the bremsstrahlung generated in the phantom is derived by folding the bremsstrahlung energy fluence with a simple analytical one-dimensional photon energy deposition kernel. The energy loss of the primary electrons and the generation, attenuation and absorption of bremsstrahlung photons are taken into account in the analytical formula. The photon energy deposition kernel is used to account for the bremsstrahlung produced at one depth that will contribute to the down stream dose. A simple analytical expression for photon energy deposition kernel is consistent with the classical analytical relation describing the photon depth dose distribution. From the surface to the practical range the photon dose increases almost linearly due to accumulation and buildup of the photon produced at different phantom layers. At depths beyond the practical range a simple exponential function can be use to describe the bremsstrahlung attenuation in the phantom. For comparison Monte Carlo calculated distributions using ITS3 Monte Carlo Code were used. Good agreement is found between the analytical expression and Monte Carlo calculation. Deviations of 5% from Monte Carlo calculated bremmstrahlung background are observed for high atomic number materials. The method can

  15. Sperm protein 17 is highly expressed in endometrial and cervical cancers

    International Nuclear Information System (INIS)

    Li, Fang-qiu; Liu, Qun; Han, Yan-ling; Wu, Bo; Yin, Hong-lin

    2010-01-01

    Sperm protein 17 (Sp17) is a highly conserved mammalian protein in the testis and spermatozoa and has been characterized as a tumor-associated antigen in a variety of human malignancies. Many studies have examined the role of Sp17 in tumorigenesis and the migration of malignant cells. It has been proposed as a useful target for tumor-vaccine strategies and a novel marker to define tumor subsets and predict drug response. This study aimed to investigate the expression of Sp17 in endometrial and cervical cancer specimens, its possible correlation with the pathological characteristics, and its value in the diagnosis and immunotherapy of the related cancers. The monoclonal antibodies against human Sp17 were produced as reagents for the analysis and immunohistochemistry was used to study two major kinds of paraffin-embedded gynecological cancer specimens, including 50 cases of endometrial cancer (44 adenous and 6 adenosquamous) and 31 cases of cervical cancer (15 adenous and 16 squamous). Normal peripheral endometrial and cervical tissues were used as controls. Sp17 was found in 66% (33/50) of the patients with endometrial cancer and 61% (19/31) of those with cervical cancer. Its expression was found in a heterogeneous pattern in the cancer tissues. The expression was not correlated with the histological subtype and grade of malignancy, but the staining patterns were different in endometrial and cervical cancers. The hyperplastic glands were positive for Sp17 in the normal peripheral endometrial and cervical tissues in 10% (8/81) of the patients. Sp17 is highly expressed in human endometrial and cervical cancers in a heterogeneous pattern. Although the expression frequency of Sp17 is not correlated with the histological subtype, the staining pattern may help to define endometrial and cervical cancers. Sp17 targeted immunotherapy of tumors needs more accurate validation

  16. FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    International Nuclear Information System (INIS)

    Pašaliç, Z; Greif, P A; Jurinoviç, V; Mulaw, M; Kakadia, P M; Tizazu, B; Fröhlich-Archangelo, L; Krause, A; Bohlander, S K

    2011-01-01

    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

  17. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mandy Y M Lo

    Full Text Available Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.

  18. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    Science.gov (United States)

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  19. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Science.gov (United States)

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  20. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2011-04-01

    Full Text Available Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta. Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  1. High Level Expression and Purification of the Clinically Active Antimicrobial Peptide P-113 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kuang-Ting Cheng

    2018-03-01

    Full Text Available P-113, which was originally derived from the human saliva protein histatin 5, is a histidine-rich antimicrobial peptide with the sequence AKRHHGYKRKFH. P-113 is currently undergoing phase II clinical trial as a pharmaceutical agent to fight against fungal infections in HIV patients with oral candidiasis. Previously, we developed a new procedure for the high-yield expression and purification of hG31P, an analogue and antagonist of human CXCL8. Moreover, we have successfully removed lipopolysaccharide (LPS, endotoxin associated with hG31P in the expression with Escherichia coli. In this paper, we have used hG31P as a novel fusion protein for the expression and purification of P-113. The purity of the expressed P-113 is more than 95% and the yield is 4 mg P-113 per liter of E. coli cell culture in Luria-Bertani (LB medium. The antimicrobial activity of the purified P-113 was tested. Furthermore, we used circular dichroism (CD and nuclear magnetic resonance (NMR spectroscopy to study the structural properties of P-113. Our results indicate that using hG31P as a fusion protein to obtain large quantities of P-113 is feasible and is easy to scale up for commercial production. An effective way of producing enough P-113 for future clinical studies is evident in this study.

  2. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  3. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises.

    Science.gov (United States)

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz; Żychowska, Małgorzata

    2017-01-01

    The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise.

  4. Masked expression of life-history traits in a highly variable environment

    Science.gov (United States)

    DeBoer, Jason A.; Fontaine, Joseph J.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Differing life-history strategies may act as a constraint on reproductive expression that ultimately limits the ability of individual species to respond to changes in the magnitude or frequency of environmental variation, and potentially underlies the variation often inherent in phenotypic and evolved responses to anthropogenic change. Alternatively, if there are environmental cues that predict reproductive potential, differential expression of life-history strategies may represent differences in the adaptive capacity to optimize current reproductive value given variation in environmental conditions. We compared several aspects of walleye Sander vitreus spawning ecology at two reservoirs that differ in environmental variability (i.e., annual water-level fluctuation) to identify the capacity of phenotypic expression and the corresponding association with age. Despite significant differences in female body and liver masses between reservoirs that differ in environmental variability, we found no difference in reproductive investment measured by egg size and fecundity. Walleye in a highly variable environment appear to exhibit reproductive traits more typical of a short-lived life-history strategy, which may be resultant from the interaction of environmental and anthropogenic pressures. This finding emphasizes the need to identify the degree to which life-history expression represents physiological constraints versus ecological optimization, particularly as anthropogenic change continues to alter environmental conditions. 

  5. Expression and mechanism of high mobility group box protein-1 in retinal tissue of diabetic rats

    Directory of Open Access Journals (Sweden)

    Shuang Jiang

    2016-05-01

    Full Text Available AIM:To investigate the expression and mechanism of high mobility group box protein-1(HMGB1in the retina of diabetic rats. METHODS:Sixty SD rats were randomly divided into diabetic group and control group. Diabetic rat model was produced by intraperitioneal injection of 1% STZ with 60mg/Kg weight. The rats in control group received intraperitioneal injection of normal saline with same dosage. After injection, the rats were sacrificed and eyeballs were enucleated for HE staining, the retina fluorescence angiography, TUNEL and Western Blot detection at 1, 2 and 4mo for the expressions of HMGB1 and NF-κB. RESULTS:Compared with the control group, the retinal cells disorder, cell densities decreases, microvasculars occlusion were founded with inner and outer nuclear layer thinning and ganglion cell apoptosis. The fluorescence angiography showed that peripheral capillaries became circuitous and vascular occlusion and non-perfusion area could be seen. The expressions of HMGB1 and NF-κB were higher than those of control with time dependence and they had significant positive correlations(PCONCLUSION:The expression of HMGB1 increases in diabetic rat retina, which may involve in the occurrence of diabetic retinopathy through the NF- κB pathway.

  6. Sparse Bayesian classification and feature selection for biological expression data with high correlations.

    Directory of Open Access Journals (Sweden)

    Xian Yang

    Full Text Available Classification models built on biological expression data are increasingly used to predict distinct disease subtypes. Selected features that separate sample groups can be the candidates of biomarkers, helping us to discover biological functions/pathways. However, three challenges are associated with building a robust classification and feature selection model: 1 the number of significant biomarkers is much smaller than that of measured features for which the search will be exhaustive; 2 current biological expression data are big in both sample size and feature size which will worsen the scalability of any search algorithms; and 3 expression profiles of certain features are typically highly correlated which may prevent to distinguish the predominant features. Unfortunately, most of the existing algorithms are partially addressing part of these challenges but not as a whole. In this paper, we propose a unified framework to address the above challenges. The classification and feature selection problem is first formulated as a nonconvex optimisation problem. Then the problem is relaxed and solved iteratively by a sequence of convex optimisation procedures which can be distributed computed and therefore allows the efficient implementation on advanced infrastructures. To illustrate the competence of our method over others, we first analyse a randomly generated simulation dataset under various conditions. We then analyse a real gene expression dataset on embryonal tumour. Further downstream analysis, such as functional annotation and pathway analysis, are performed on the selected features which elucidate several biological findings.

  7. Identification of a Polyomavirus microRNA Highly Expressed in Tumors

    Science.gov (United States)

    Chen, Chun Jung; Cox, Jennifer E.; Azarm, Kristopher; Wylie, Karen N.; Woolard, Kevin D.; Pesavento, Patricia A.; Sullivan, Christopher S.

    2014-01-01

    Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors. PMID:25514573

  8. Machine learning in computational biology to accelerate high-throughput protein expression

    DEFF Research Database (Denmark)

    Sastry, Anand; Monk, Jonathan M.; Tegel, Hanna

    2017-01-01

    and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide...... the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. Availability and implementation: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template...

  9. Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Tomohiro; Koda, Risa; Adachi, Daisuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Nakashima, Kazunori [Kobe Univ. (Japan). Organization of Advanced Science and Technology; Wada, Junpei; Bogaki, Takayuki [Ozeki Co., Nishinomiya-shi, Hyogo (Japan)

    2011-05-15

    In the present study, a system with high lipase expression in Aspergillus oryzae was developed using an improved enolase promoter (P-enoA124) and the 5{sup '} untranslated region of a heat-shock protein (Hsp-UTR). P-enoA142 enhanced the transcriptional level of a heterologous lipase gene and Hsp-UTR improved its translational efficiency. Fusarium heterosporum lipase (FHL) was inserted into a pSENSU-FHL expression vector harboring P-enoA142 and Hsp-UTR and was transformed into an A. oryzae NS4 strain. Transformants possessing pSENSU-FHL in single (pSENSU-FHL1) and double copies (pSENSU-FHL2) were selected to evaluate the lipase activity of the whole-cell biocatalyst. The two strains, pSENSU-FHL1 and 2, showed excellent lipase activity in hydrolysis compared with the strain transformed with conventional expression vector pNAN8142-FHL. Furthermore, by using pSENSU-FHL2, methanolysis could proceed much more effectively without deactivation, which allowed a swift addition of methanol to the reaction mixture, thereby reducing reaction time. (orig.)

  10. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes.

    Science.gov (United States)

    Pu, Meng; Wang, Jianlin; Huang, Qike; Zhao, Ge; Xia, Congcong; Shang, Runze; Zhang, Zhuochao; Bian, Zhenyuan; Yang, Xishegn; Tao, Kaishan

    2017-07-01

    Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.

  11. Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer

    DEFF Research Database (Denmark)

    Magnusson, Cecilia; Mezhybovska, Maryna; Lörinc, Ester

    2010-01-01

    Colorectal cancer is the third most common cancer type in the Western world. In search of new treatment possibilities, the inflammation mediators, know as cysteinyl leukotrienes (CysLTs), have been shown to regulate intestinal epithelial cell survival and proliferation via the CysLT(1)R, and cell...... microarray of 329 colorectal patients. We found that high nuclear expression of CysLT(1)R is associated with a poor prognosis, whereas high nuclear expression of CysLT(2)R is associated with a good prognosis. We also observed that patients with colorectal tumours characterised by high CysLT(1)R but low Cys...

  12. EFEK EKSTRAK SAMBILOTO (ANDROGRAPHIS PANICULATA NEES PADA EKSPRESI TELOMERASE DARI KANKER PAYUDARA TIKUS YANG DIINDUKSI DENGAN DMBA

    Directory of Open Access Journals (Sweden)

    Yurika Sastyarina

    2010-12-01

    Full Text Available ABSTRACT   It has been well documented that chemical carcinogen, 7.12 dimethylbenz(aanthracene (DMBA,  plays a role in the incidence and growth of mammary cancer. Present study was designed to investigate the influence of Andrographis paniculata extract on telomerase activities on DMBA induced breast cancer in the female rat Sprague Dawley strain. DMBA-induced mammary cancer is a useful model to investigate the changes of epithelial cells that occur during mammary cancer progression. Mammary cancer model was induced 10 times twice a week by oral DMBA 20 mg/kg body weight. Mammary cancer occurred in 75 % animals nine weeks after oral administration of DMBA, it was represented with nodule on the mammary gland and the increasing of mammary gland volume compare with normal control F(1.8 = 731.711; p < 0.001. This study was also designed to investigate the effect of Andrographis paniculata extract mammary carcinoma induced by DMBA. Administration of three different dose of Andrographis paniculata (100 mg/kg, 300 mg/kg and 1000 mg/kg had statistically different with mammary gland volume of DMBA treated rat F (4.17 = 92.777; p<0.05. So, Andrographis paniculata has significant effect on the treatment of DMBA-induced mammary carcinoma. The Epithelial cells were harvested on day 90 and stained with routine histology staining, hematoxylineosin, for morphological qualitative analysis, immunohistochemical examination. The lesions observed from the removed samples ranged widely from benign to malignant. The results showed that DMBA induce cell proliferation, nuclear irregularities, and numerous mitoses and induced cell necrosis. The effect of Andrographis paniculata inhibits cell proliferation and induces apoptosis in cancer cells. On immunohistochemical examination, it shows that Andrographis paniculata can stimulate of telomerase enzyme.   Key word: Andrographis paniculata, DMBA, mammary cancer, cell proliferation     ABSTRAK   Telah dilakukan

  13. The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients

    Science.gov (United States)

    Rampazzo, Enrica; Del Bianco, Paola; Bertorelle, Roberta; Boso, Caterina; Perin, Alessandro; Spiro, Giovanna; Bergamo, Francesca; Belluco, Claudio; Buonadonna, Angela; Palazzari, Elisa; Leonardi, Sara; De Paoli, Antonino; Pucciarelli, Salvatore; De Rossi, Anita

    2018-01-01

    Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT=T0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4–8 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (P<0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73–0.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10–4.11)-fold and 4.55 (95% CI 1.48–13.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy. PMID:29449673

  14. New prognostic factor telomerase reverse transcriptase promotor mutation presents without MR imaging biomarkers in primary glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Tunc F.; Simon, Matthias [University Hospital Bonn, Department of Neurosurgery and Stereotaxy, Bonn (Germany); Ev. Krankenhaus Bielefeld, Department of Neurosurgery, Bielefeld (Germany); Keil, Vera C.; Hadizadeh, Dariusch R.; Schild, Hans H. [University Hospital Bonn, Department of Radiology, Bonn (Germany); Gielen, Gerrit H.; Waha, Andreas [University Hospital Bonn, Institute of Neuropathology, Bonn (Germany); Fimmers, Rolf [IMBIE, University Hospital Bonn, Bonn (Germany); Heidenreich, Barbara; Kumar, Rajiv [DFKZ, Department of Molecular Genetic Epidemiology, Heidelberg (Germany)

    2017-12-15

    Magnetic resonance (MR) imaging biomarkers can assist in the non-invasive assessment of the genetic status in glioblastomas (GBMs). Telomerase reverse transcriptase (TERT) promoter mutations are associated with a negative prognosis. This study was performed to identify MR imaging biomarkers to forecast the TERT mutation status. Pre-operative MRIs of 64/67 genetically confirmed primary GBM patients (51/67 TERT-mutated with rs2853669 polymorphism) were analyzed according to Visually AcceSAble Rembrandt Images (VASARI) (https: //wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project) imaging criteria by three radiological raters. TERT mutation and O{sup 6}-methylguanine-DNA methyltransferase (MGMT) hypermethylation data were obtained through direct and pyrosequencing as described in a previous study. Clinical data were derived from a prospectively maintained electronic database. Associations of potential imaging biomarkers and genetic status were assessed by Fisher and Mann-Whitney U tests and stepwise linear regression. No imaging biomarkers could be identified to predict TERT mutational status (alone or in conjunction with TERT promoter polymorphism rs2853669 AA-allele). TERT promoter mutations were more common in patients with tumor-associated seizures as first symptom (26/30 vs. 25/37, p = 0.07); these showed significantly smaller tumors [13.1 (9.0-19.0) vs. 24.0 (16.6-37.5) all cm{sup 3}; p = 0.007] and prolonged median overall survival [17.0 (11.5-28.0) vs. 9.0 (4.0-12.0) all months; p = 0.02]. TERT-mutated GBMs were underrepresented in the extended angularis region (p = 0.03), whereas MGMT-methylated GBMs were overrepresented in the corpus callosum (p = 0.03) and underrepresented temporomesially (p = 0.01). Imaging biomarkers for prediction of TERT mutation status remain weak and cannot be derived from the VASARI protocol. Tumor-associated seizures are less common in TERT mutated glioblastomas. (orig.)

  15. Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.

    Science.gov (United States)

    Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria

    2011-05-01

    A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011

  16. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  17. LncRNA Expression Profile of Human Thoracic Aortic Dissection by High-Throughput Sequencing.

    Science.gov (United States)

    Sun, Jie; Chen, Guojun; Jing, Yuanwen; He, Xiang; Dong, Jianting; Zheng, Junmeng; Zou, Meisheng; Li, Hairui; Wang, Shifei; Sun, Yili; Liao, Wangjun; Liao, Yulin; Feng, Li; Bin, Jianping

    2018-01-01

    In this study, the long non-coding RNA (lncRNA) expression profile in human thoracic aortic dissection (TAD), a highly lethal cardiovascular disease, was investigated. Human TAD (n=3) and normal aortic tissues (NA) (n=3) were examined by high-throughput sequencing. Bioinformatics analyses were performed to predict the roles of aberrantly expressed lncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the results. A total of 269 lncRNAs (159 up-regulated and 110 down-regulated) and 2, 255 mRNAs (1 294 up-regulated and 961 down-regulated) were aberrantly expressed in human TAD (fold-change> 1.5, PTAD than in NA. The predicted binding motifs of three up-regulated lncRNAs (ENSG00000248508, ENSG00000226530, and EG00000259719) were correlated with up-regulated RUNX1 (R=0.982, PTAD. These findings suggest that lncRNAs are novel potential therapeutic targets for human TAD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......-based gene-lookup webservices, called HemaExplorer and BloodSpot. These web-services support the aim of making data and analysis of haematopoietic cells from mouse and human accessible for researchers without bioinformatics expertise. Finally, in order to aid the analysis of the very limited number...

  19. High Expression of SQSTM1/p62 Protein Is Associated with Poor Prognosis in Epithelial Ovarian Cancer

    International Nuclear Information System (INIS)

    Iwadate, Reiko; Inoue, Jun; Tsuda, Hitoshi; Takano, Masashi; Furuya, Kenichi; Hirasawa, Akira; Aoki, Daisuke; Inazawa, Johji

    2014-01-01

    High expression of SQSTM1/p62 (p62) protein, which functions as a hub for various cellular signaling pathways, has been detected in several human cancers. However, the clinicopathological impact of high p62 expression is largely unknown in epithelial ovarian cancer (EOC). Here, the expression level of p62 in primary EOCs (n=266) was assessed by immunohistochemistry, and its clinical significance was analyzed. Univariate and multivariate analyses were used to determine the impact of p62 expression on overall survival. p62 was expressed in the cytoplasm (Cyto) and/or nucleus (Nuc) in primary EOCs, and an expression subtype (Cyto High /Nuc Low ), showing high expression in the cytoplasm but low expression in the nucleus, was significantly correlated with serous carcinoma (P<0.001), advanced stage (P=0.005), presence of residual tumor (P<0.001), and low overall survival rate (P=0.013). Furthermore, in serous carcinomas (n=107), the p62 Cyto High /Nuc Low subtype was significantly correlated with low overall survival rate (P=0.019) as an independent factor (P=0.044). Thus, our findings suggest that high expression of cytoplasmic p62 may be a novel prognostic biomarker in EOC, particularly in serous carcinoma

  20. Lewis x is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision.

    Science.gov (United States)

    Croce, María V; Isla-Larrain, Marina; Rabassa, Martín E; Demichelis, Sandra; Colussi, Andrea G; Crespo, Marina; Lacunza, Ezequiel; Segal-Eiras, Amada

    2007-01-01

    An immunohistochemical analysis was employed to determine the expression of carbohydrate antigens associated to mucins in normal epithelia. Tissue samples were obtained as biopsies from normal breast (18), colon (35) and oral cavity mucosa (8). The following carbohydrate epitopes were studied: sialyl-Lewis x, Lewis x, Lewis y, Tn hapten, sialyl-Tn and Thomsen-Friedenreich antigen. Mucins were also studied employing antibodies against MUC1, MUC2, MUC4, MUC5AC, MUC6 and also normal colonic glycolipid. Statistical analysis was performed and Kendall correlations were obtained. Lewis x showed an apical pattern mainly at plasma membrane, although cytoplasmic staining was also found in most samples. TF, Tn and sTn haptens were detected in few specimens, while sLewis x was found in oral mucosa and breast tissue. Also, normal breast expressed MUC1 at a high percentage, whereas MUC4 was observed in a small number of samples. Colon specimens mainly expressed MUC2 and MUC1, while most oral mucosa samples expressed MUC4 and MUC1. A positive correlation between MUC1VNTR and TF epitope (r=0.396) was found in breast samples, while in colon specimens MUC2 and colonic glycolipid versus Lewis x were statistically significantly correlated (r=0.28 and r=0.29, respectively). As a conclusion, a defined carbohydrate epitope expression is not exclusive of normal tissue or a determined localization, and it is possible to assume that different glycoproteins and glycolipids may be carriers of carbohydrate antigens depending on the tissue localization considered.

  1. Myostatin, follistatin and activin type II receptors are highly expressed in adenomyosis.

    Science.gov (United States)

    Carrarelli, Patrizia; Yen, Chih-Fen; Arcuri, Felice; Funghi, Lucia; Tosti, Claudia; Wang, Tzu-Hao; Huang, Joseph S; Petraglia, Felice

    2015-09-01

    To evaluate the expression pattern of activins and related growth factor messenger RNA (mRNA) levels in adenomyotic nodules and in their endometrium. Prospective study. University hospital. Symptomatic premenopausal women scheduled to undergo hysterectomy for adenomyosis. Samples from adenomyotic nodules and homologous endometria were collected. Endometrial tissue was also obtained from a control group. Quantitative real-time polymerase chain reaction (PCR) analysis and immunohistochemical localization of activin-related growth factors (activin A, activin B, and myostatin), binding protein (follistatin), antagonists (inhibin-α, cripto), and receptors (ActRIIa, ActRIIb) were performed. Myostatin mRNA levels in adenomyotic nodule were higher than in eutopic endometrium and myostatin, activin A, and follistatin concentrations were higher than in control endometrium. No difference was observed for inhibin-α, activin B, and cripto mRNA levels. Increased mRNA levels of ActRIIa and ActRIIb were observed in adenomyotic nodules compared with eutopic endometrium and control endometrium. Immunofluorescent staining for myostatin and follistatin confirmed higher protein expression in both glands and stroma of patients with adenomyosis than in controls. The present study showed for the first time that adenomyotic tissues express high levels of myostatin, follistatin, and activin A (growth factors involved in proliferation, apoptosis, and angiogenesis). Increased expression of their receptors supports the hypothesis of a possible local effect of these growth factors in adenomyosis. The augmented expression of ActRIIa, ActRIIb, and follistatin in the endometrium of these patients may play a role in adenomyosis-related infertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    Science.gov (United States)

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  3. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  4. Expression of human apolipoprotein A-I epitopes in high density lipoproteins and in serum

    International Nuclear Information System (INIS)

    Marcel, Y.L.; Jewer, D.; Vezina, C.; Milthorp, P.; Weech, P.K.

    1987-01-01

    The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125 I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125 I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125 I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125 I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors

  5. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    Directory of Open Access Journals (Sweden)

    Rui-Rong Tan

    2015-08-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg on embryo development day (EDD 1. Proanthocyanidins (1 and 10 nmol/egg were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  6. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Therapeutic Cell-Cycle-Decoy Efficacy of a Telomerase-Dependent Adenovirus in an Orthotopic Model of Chemotherapy-Resistant Human Stomach Carcinomatosis Peritonitis Visualized With FUCCI Imaging.

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-11-01

    We have established an orthotopic nude-mouse model of gastric cancer carcinomatosis peritonitis, a recalcitrant disease in human patients. Human MKN45 poorly-differentiated human gastric cancer cells developed carcinomatosis peritonitis upon orthotopic transplantation in nude mice. The MKN45 cells expressed the fluorescent ubiquitination-based cell cycle indicator (FUCCI) that color codes the phases of the cell cycle. The intra-peritoneal tumors and ascites contained mostly quiescent G 1 /G o cancer cells visualized as red by FUCCI imaging. Cisplatinum (CDDP) treatment did not reduce bloody ascites, and larger tumors formed in the peritoneal cavity after CDDP treatment in an early-stage carcinomatosis peritonitis orthotopic mouse model. Paclitaxel-treated mice had reduced ascites, but also had large tumor masses in the peritonium after treatment with cancer cells mostly in G 0 /G 1 , visualized by FUCCI red. In contrast, OBP-301 telomerase-dependent adenovirus-treated mice had no ascites and only small tumor nodules consisting of cancer cells mostly in S/G 2 phases in the early-stage carcinomatosis peritonitis model, visualized by FUCCI green. Furthermore, OBP-301 significantly reduced the size of tumors (P < 0.01) and ascites even in a late-stage carcinomatosis peritonitis model. These results suggest that quiescent peritoneally-disseminated gastric cancer cells are resistant to conventional chemotherapy, but OBP-301 significantly reduced the weight of the tumors and increased survival, suggesting clinical potential. J. Cell. Biochem. 118: 3635-3642, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. High endothelin-converting enzyme-1 expression independently predicts poor survival of patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun

    2017-09-01

    Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression

  9. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains

    Directory of Open Access Journals (Sweden)

    Masaru Nakata

    2017-12-01

    Full Text Available Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by

  10. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression.

    Science.gov (United States)

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-08-06

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed.

  11. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    International Nuclear Information System (INIS)

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-01-01

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed

  12. A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria

    DEFF Research Database (Denmark)

    Ferro, Roberto; Rennig, Maja; Hernández Rollán, Cristina

    2018-01-01

    with a long history in food fermentation. We have developed a synbio approach for increasing gene expression in two Gram-positive bacteria. First of all, the gene of interest was coupled to an antibiotic resistance gene to create a growth-based selection system. We then randomised the translation initiation...... region (TIR) preceding the gene of interest and selected clones that produced high protein titres, as judged by their ability to survive on high concentrations of antibiotic. Using this approach, we were able to significantly increase production of two industrially relevant proteins; sialidase in B....... subtilis and tyrosine ammonia lyase in L. lactis. Gram-positive bacteria are widely used to produce industrial enzymes. High titres are necessary to make the production economically feasible. The synbio approach presented here is a simple and inexpensive way to increase protein titres, which can be carried...

  13. MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Lin Bai

    Full Text Available Human telomerase reverse transcriptase (hTERT plays a crucial role in ovarian cancer (OC progression. However, the mechanisms underlying hTERT upregulation in OC, and the specific microRNAs (miRNAs involved in the regulation of hTERT in OC cells, remains unclear. We performed a bioinformatics search to identify potential miRNAs that bind to the 3'-untranslated region (3'-UTR region of the hTERT mRNA. We examined the expression levels of miR-532/miR-3064 in OC tissues and normal ovarian tissues, and analyzed the correlation between miRNA expression and OC patient outcomes. The impacts of miR-532/miR-3064 on hTERT expression were evaluated by western blot analysis and hTERT 3'-UTR reporter assays. We investigated the effects of miR-532/miR-3064 on proliferation and invasion in OC cells. We found that miR-532 and miR-3064 are down-regulated in OC specimens. We observed a significant association between reduced miR-532/miR-3064 expression and poorer survival of patients with OC. We confirmed that in OC cells, these two miRNAs downregulate hTERT levels by directly targeting its 3'-UTR region, and inhibited proliferation, EMT and invasion of OC cells. In addition, the overexpression of the hTERT cDNA lacking the 3'-UTR partially restored miR-532/miR-3064-inhibited OC cell proliferation and invasion. The silencing of hTERT by siRNA oligonucleotides abolished these malignant features, and phenocopied the effects of miR-532/miR-3064 overexpression. Furthermore, overexpression of miR-532/miR-3064 inhibits the growth of OC cells in vivo. Our findings demonstrate a miR-532/miR-3064-mediated mechanism responsible for hTERT upregulation in OC cells, and reveal a possibility of targeting miR-532/miR-3064 for future treatment of OC.

  14. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2012-11-01

    Full Text Available Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.

  15. High Expression of PHGDH Predicts Poor Prognosis in Non–Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jinhong Zhu

    2016-12-01

    Full Text Available Tumors have exceptionally high demands for energy and anabolism because of their rapid growth. The de novo serine synthesis pathway initiated by phosphoglycerate dehydrogenase (PHGDH has been recognized as a hallmark of metabolic adaption in carcinogenesis. The oncogenic role and prognostic value of PHGDH have been investigated in multiple cancer types, including breast cancer, melanoma, cervical cancer, and colon cancer. Due to the importance of PHGDH in cancer, we attempted to determine the clinical significance of PHGDH in 319 patients with non–small cell lung cancer (NSCLC. We evaluated the mRNA and protein expression levels of PHGDH gene, using quantitative reverse transcriptase polymerase chain reaction and tissue array–based immunohistochemistry, respectively. Significantly increased PHGDH expression in mRNA and protein levels was identified in tumor tissues versus matched adjacent nontumor tissues. More interestingly, immunohistochemical expression of PHGDH was significantly associated with lymph node metastasis (P = .021 and TNM stage (P = .016. Kaplan-Meier survival analysis indicated that NSCLC patients with low levels of PHGDH outperformed patients with high levels of PHGDH regarding 5-year overall survival. Significantly longer survival in the former suggested the prognostic implication of PHGDH in NSCLC. Multivariate survival analysis using Cox regression model demonstrated that high PHGDH levels and advanced TNM stage (III + IV were independent predictors of prognosis in NSCLC. Moreover, bioinformatics analysis confirmed the increase in PHGDH transcripts (data from The Cancer Genome Atlas and its prognostic value (Kaplan-Meier plotter in NSCLC. In conclusion, this study suggested the clinical implication of PHGDH in NSCLC. PHGDH may be a promising therapeutic target in NSCLC.

  16. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The impact of high trait social anxiety on neural processing of facial emotion expressions in females.

    Science.gov (United States)

    Felmingham, Kim L; Stewart, Laura F; Kemp, Andrew H; Carr, Andrea R

    2016-05-01

    A cognitive model of social anxiety predicts that an early attentional bias leads to greater cognitive processing of social threat signals, whereas the vigilance-avoidance model predicts there will be subsequent reduction in cognitive processing. This study tests these models by examining neural responses to social threat stimuli using Event-related potentials (ERP). 19 women with high trait social anxiety and 19 women with low trait social anxiety viewed emotional expressions (angry, disgusted, happy and neutral) in a passive viewing task whilst ERP responses were recorded. The HSA group revealed greater automatic attention, or hypervigilance, to all facial expressions, as indexed by greater N1 amplitude compared to the LSA group. They also showed greater sustained attention and elaborative processing of all facial expressions, indexed by significantly increased P2 and P3 amplitudes compared to the LSA group. These results support cognitive models of social anxiety, but are not consistent with predictions of the vigilance-avoidance model. Copyright © 2016. Published by Elsevier B.V.