WorldWideScience

Sample records for high technology gems

  1. LHC collars - 12 million high technology gems

    CERN Multimedia

    2001-01-01

    Some 12 million steel collars will keep the LHC dipole magnet structures rigid. Their production has just begun. A huge job began last week: the high speed manufacturing of twelve million steel collars for the 1250 dipole magnets of the future Large Hadron Collider, LHC. The challenge is not only a matter of quantity: these collars are very high technology components because of the important role they play in the way the collider works. One of the main difficulties with the accelerator is that the magnetic field that keeps particles in orbit must have the same configuration and intensity in all the dipoles. But when the 8.33 tesla magnetic field is on -100.000 times the earth magnetic field - it produces a very strong force that can deform the 'soft' parts of the magnets, such as superconducting coils. The force loading one metre of dipole is almost comparable with the weight of a Boeing 747 - about 400 tonnes - so a huge deformation would occur without a mechanical component to keep the whole structure rigid...

  2. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  3. Developments and the preliminary tests of Resistive GEMs manufactured by a screen printing technology

    CERN Document Server

    Agócs, G; Oliveira, R; Martinego, P; Peskov, Vladimir; Pietropaolo, P; Picchi, P

    2008-01-01

    We report promising initial results obtained with new resistive-electrode GEM (RETGEM) detectors manufactured, for the first time, using screen printing technology. These new detectors allow one to reach gas gains nearly as high as with ordinary GEM-like detectors with metallic electrodes; however, due to the high resistivity of its electrodes the RETGEM, in contrast to ordinary hole-type detectors, has the advantage of being fully spark protected. We discovered that RETGEMs can operate stably and at high gains in noble gases and in other badly quenched gases, such as mixtures of noble gases with air and in pure air; therefore, a wide range of practical applications, including dosimetry and detection of dangerous gases, is foreseeable. To promote a better understanding of RETGEM technology some comparative studies were completed with metallic-electrode thick GEMs. A primary benefit of these new RETGEMs is that the screen printing technology is easily accessible to many research laboratories. This accessibilit...

  4. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  5. High voltage distribution scheme for large size GEM detector

    International Nuclear Information System (INIS)

    Saini, J.; Kumar, A.; Dubey, A.K.; Negi, V.S.; Chattopadhyay, S.

    2016-01-01

    Gas Electron Multiplier (GEM) detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton Ion Research (FAIR) at Darmstadt, Germany. The sizes of the detector modules in the Muon chambers are of the order of 1 metre x 0.5 metre. For construction of these chambers, three GEM foils are used per chamber. These foils are made by two layered 50μm thin kapton foil. Each GEM foil has millions of holes on it. In such a large scale manufacturing of the foils, even after stringent quality controls, some of the holes may still have defects or defects might develop over the time with operating conditions. These defects may result in short-circuit of the entire GEM foil. A short even in a single hole will make entire foil un-usable. To reduce such occurrences, high voltage (HV) segmentation within the foils has been introduced. These segments are powered either by individual HV supply per segment or through an active HV distribution to manage such a large number of segments across the foil. Individual supplies apart from being costly, are highly complex to implement. Additionally, CBM will have high intensity of particles bombarding on the detector causing the change of resistive chain current feeding the GEM detector with the variation in the intensity. This leads to voltage fluctuations across the foil resulting in the gain variation with the particle intensity. Hence, a low cost active HV distribution is designed to take care of the above discussed issues

  6. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Directory of Open Access Journals (Sweden)

    Garzia I.

    2018-01-01

    Full Text Available Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD, allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs. Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  7. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Science.gov (United States)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  8. Study of long-term operation of triple-GEM detectors for the high rate environment in CMS

    CERN Document Server

    Merlin, Jeremie Alexandre

    2013-01-01

    The CMS GEM collaboration is working on the possible instrumentation of the high-eta region of the CMS Endcap with Gas Electron Multiplier (GEM) detectors, a technology capable to sustain the hostile environment that will be encountered at the high-luminosity LHC. To ensure the long-term operation of large triple-GEM detectors in the CMS experiment, we are performing a set of studies in order to measure and understand the aging effect of triple-GEM Muon chambers. The aging includes all the processes that lead to a significant degradation of the performances of the detector gain drop, non-uniformity, dark current, discharges and resolution loss. The project is focused on monitoring continuously the response of the detector when irradiated by a source of Cs 137 at CERN in the Gamma Irradiation Facility (GIF). Moreover, the new technology employed for stretching the GEM foils, so called NS2, introduces new, carefully chosen materials and components in the detectors. Outgassing tests are performed in order to va...

  9. Progress in the development of photosensitive GEMs with resistive electrodes manufactured by a screen printing technology

    International Nuclear Information System (INIS)

    Peskov, V.; Martinengo, P.; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2009-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM-like amplification structure with double-layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen-printing technology on the top of the metallic strips's grid The inner metallic grid is used for 2-D position measurements whereas the resistive layer provides an efficient spark-protected operation at high gains close to the breakdown limit. Detectors with active areas of 10x10 and 10x20 cm 2 were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large-area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  10. Progress in the development of photosensitive GEMs with resistive electrodes manufactured by a screen printing technology

    CERN Document Server

    Peskov, V; Nappi, E; Oliveira, R; Paic, G; Pietropaolo, F; Picchi, P

    2009-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM-like amplification structure with double-layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen-printing technology on the top of the metallic strips's grid The inner metallic grid is used for 2-D position measurements whereas the resistive layer provides an efficient spark-protected operation at high gains close to the breakdown limit. Detectors with active areas of 10×10 and 10×20 cm2 were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large-area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  11. A new design using GEM-based technology for the CMS experiment

    Science.gov (United States)

    Ressegotti, M.

    2017-07-01

    The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than |η|> 2.4. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.

  12. A new design using GEM-based technology for the CMS experiment

    CERN Document Server

    Ressegotti, Martina

    2017-01-01

    The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than abs(${\\eta}$)${ > 2.4}$. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.

  13. Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students

    Science.gov (United States)

    2013-01-01

    find amusing but that we find of less educational value, like having the robots say comical things. Those who have more teaching time would doubtless...Gains in the Education of Mathematics and Science GEMS: Teaching Robotics to High School Students by Edward M. Measure and Edward Creegan...TR-6220 January 2013 Gains in the Education of Mathematics and Science (GEMS): Teaching Robotics to High School Students Edward M

  14. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  15. Development of a GEM-based high rate TPC

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, Sebastian; Hoeppner, Christian; Ketzer, Bernhard; Weitzel, Quirin; Paul, Stefan; Woerner, Lisa; Konorov, Igor; Mann, Alexander [Technische Universitaet Muenchen, Physik Department E18, Garching (Germany)

    2008-07-01

    A TPC is considered as the central tracker of the PANDA experiment, which is currently being planned at the new accelerator complex FAIR at Darmstadt. PANDA is designed as an internal target experiment at the antiproton storage ring HESR. The central tracker has to measure particle trajectories over a wide momentum range (0.1-8 GeV/c) from up to 2.10{sup 7} antiproton-proton annihilations/s. The continuous nature of the antiproton beam makes the use of a traditional ion gate impractical. Owing to their intrinsic ion suppression properties, GEM foils are planned as the amplification stage. A small prototype of this GEM-TPC (diameter 200 mm, drift length 77 mm) has been built and characterized with cosmic muons. Results such as spatial resolution, cluster distributions, and diffusion properties are presented in this talk.

  16. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gnanvo, Kondo, E-mail: kgnanvo@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Mitra, Debasis [Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes ({approx}0.03 L) using GEM-based Muon Tomography.

  17. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    International Nuclear Information System (INIS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (∼0.03 L) using GEM-based Muon Tomography.

  18. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  19. Not Your Ordinary GEM

    Science.gov (United States)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Stennis Space Center, Geophex devised a new design for broadband electromagnetic sensors. Geophex developed a patented sensing technology, capable not only of coastal monitoring, but also a variety of other functions, including environmental pollution characterization, groundwater contamination detection, archaeological study, and mineral detection. The new technology is offered in several of the company's products the GEM-2, GEM-2A, and the GEM-3. The Geophex products consist of two primary electromagnetic coils, which are stimulated by alternating currents that generate a magnetic field in the object targeted for investigation. GEM-2 is a handheld, lightweight, programmable, digital device. GEM-2A is an airborne version of the sensor. Suspended from a helicopter, the GEM-2A is used to search for mineral deposits and to survey large tracts of land. The GEM-3 is capable of detecting buried landmines and other active munitions. GEM-3 identifies landmines by their brand names. Because each landmine has its own unique electromagnetic response to the broad frequency band emitted by the GEM-3, bomb identification and disposal strategies are made easier.

  20. Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors

    CERN Document Server

    Gnanvo, K; Bittner, W; Costa, F; Grasso, L; Hohlmann, M; Locke, J B; Martoiu, S; Muller, H; Staib, M; Tarazona, A; Toledo, J

    2010-01-01

    Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\\times 2 \\times 2$ mm^3 voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 \\times 30$ cm^2 GEM detector for the next muon tomography prototype with final frontend electronics and DAQ...

  1. First measurements with new high-resolution gadolinium-GEM neutron detectors

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Etxegarai, Maddi; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Llamas-Jansa, Isabel; Oliveri, Eraldo; Oksanen, Esko; Robinson, Linda; Ropelewski, Leszek; Schmidt, Susann; Streli, Christina; Thuiner, Patrik

    2016-05-17

    European Spallation Source instruments like the macromolecular diffractometer, NMX, require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The {\\mu}TPC analysis, proven to improve the spatial resolution in the case of $^{10}$B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with an estimated efficiency of 10% at a wavelength of 2 {\\AA} and a position resolution better than 350 {\\mu}m.

  2. A GEM-TPC prototype with low-Noise highly integrated front-end electronics for linear collider studies

    CERN Document Server

    Kappler, Steffen; Kaminski, Jochen; Ledermann, Bernhard; Müller, Thomas; Ronan, Michael T; Ropelewski, Leszek; Sauli, Fabio; Settles, Ronald

    2004-01-01

    Connected to the linear collider project, studies on the readout of time projection chambers (TPCs) based on the gas electron multiplier (GEM) are ongoing. Higher granularity and intrinsically suppressed ion feedback are the major advantages of this technology. After a short discussion of these issues, we present the design of a small and very flexible TPC prototype, whose cylindrical drift volume can be equipped with endcaps of different gas detector types. An endcap with multi-GEM readout is currently set up and successfully operated with a low-noise highly integrated front-end electronics. We discuss results of measurements with this system in high intensity particle beams at CERN, where 99.3 plus or minus 0.2% single-pad-row efficiency could be achieved at an effective gain of 2.5 multiplied by 10**3 only, and spatial resolutions down to 63 plus or minus 3 mum could be demonstrated. Finally, these results are extrapolated to the high magnetic field in a linear collider TPC. 5 Refs.

  3. Development of a glass GEM

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Mitsuya, Yuki; Fujiwara, Takeshi; Fushie, Takashi

    2013-01-01

    Gas electron multipliers (GEMs) apply the concept of gas amplification inside many tiny holes, realizing robust and high-gain proportional counters. However, the polyimide substrate of GEMs prevents them from being used in sealed detector applications. We have fabricated and tested glass GEMs (G-GEMs) with substrates made of photosensitive glass material from the Hoya Corporation. We fabricated G-GEMs with several different hole diameters and thicknesses and successfully operated test G-GEMs with a 100×100 mm 2 effective area. The uniformity of our G-GEMs was good, and the energy resolution for 5.9 keV X-rays was 18.8% under uniform irradiation of the entire effective area. A gas gain by the G-GEMs of up to 6700 was confirmed with a gas mixture of Ar (70%)+CH 4 (30%). X-ray imaging using the charge division readout method was demonstrated

  4. Origins of GEMS Grains

    Science.gov (United States)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  5. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    Science.gov (United States)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  6. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  7. Metal-mediated gem-Difluoroallylation of N-Acylhydrazones: Highly Efficient Synthesis of a,a-Difluorohomoallylic Amines

    Institute of Scientific and Technical Information of China (English)

    YUE Xuyi; QIU Xiaolong; QING Fengling

    2009-01-01

    Indium-mediated gem-difluoroallylation of aldehyde-derived N-acylhydrazones 1a-1q and 4a-4g with 3-bromo-3,3-difluoropropene 2 afforded a,a-difluorohomoallylic hydrazides 3a-3q and 5a-5g in high yields, re-spectively. Functional groups such as nitro, phenolic hydroxyl, benzyloxy and even C=C bonds of a,fl-unsaturated aldehydes were compatible under this mild and operationally simple gem-difluoroallylic reaction condition. By means of substitution of Zn powder for indium, gem-difluoroallylation of ketone-derived N-acylhydrazones 6a-6d also provided the corresponding a,a-difluorohomoallylic hydrazides 7a-7d in medium yields. The N-N bond cleavage of the hydrazide 3a proceeded smoothly to give the corresponding primary gem-difluorohomoallylic amine 8, which could be converted to gem-difluoro-δ-substituted α,β-unsaturated lactam 11 via acryloylation fol-lowed by ring closing metathesis (RCM) reaction.

  8. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  9. Graphics gems

    CERN Document Server

    Glassner, Andrew S

    1993-01-01

    ""The GRAPHICS GEMS Series"" was started in 1990 by Andrew Glassner. The vision and purpose of the Series was - and still is - to provide tips, techniques, and algorithms for graphics programmers. All of the gems are written by programmers who work in the field and are motivated by a common desire to share interesting ideas and tools with their colleagues. Each volume provides a new set of innovative solutions to a variety of programming problems.

  10. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  11. Summer Student Project: GEM Simulation and Gas Mixture Characterization

    CERN Document Server

    Oviedo Perhavec, Juan Felipe

    2013-01-01

    Abstract This project is a numerical simulation approach to Gas Electron Multiplier (GEM) detectors design. GEMs are a type of gaseous ionization detector that have proposed as an upgrade for CMS muon endcap. The main advantages of this technology are high spatial and time resolution and outstanding aging resistance. In this context, fundamental physical behavior of a Gas Electron Multiplier (GEM) is analyzed using ANSYS and Garfield++ software coupling. Essential electron transport properties for several gas mixtures were computed as a function of varying electric and magnetic field using Garfield++ and Magboltz.

  12. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  13. Gas Electron Multipliers: Development of large area GEMs and spherical GEMs

    CERN Document Server

    Duarte Pinto, Serge; Brock, Ian

    2011-01-01

    Gaseous radiation detectors have been a crucial part of high-energy physics instrumentation since the 1960s, when the first multiwire proportional counters were built. In the 1990s the first micropattern gas detectors (MPGDs) saw the light; with sub-millimeter feature sizes these novel detectors were faster and more accurate than their predecessors. The gas electron multiplier (GEM) is one of the most successful of these technologies. It is a charge multiplication structure made from a copper clad polymer foil, pierced with a regular and dense pattern of holes. I will describe the properties and the application of GEMs and GEM detectors, and the research and development I have done on this technology. Two of the main objectives were the development of large area GEMs (~m^2) for particle physics experiments and GEMs with a spherical shape for x-ray or neutron diffraction detectors. Both have been realized, and the new techniques involved are finding their way to applications in research and industry.

  14. Gas electron multipliers. Development of large area GEMS and spherical GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Serge Duarte

    2011-08-15

    Gaseous radiation detectors have been a crucial part of high-energy physics instrumentation since the 1960s, when the first multiwire proportional counters were built. In the 1990s the first micropattern gas detectors (MPGDS) saw the light; with sub-millimeter feature sizes these novel detectors were faster and more accurate than their predecessors. The gas electron multiplier (GEM) is one of the most successful of these technologies. It is a charge multiplication structure made from a copper clad polymer foil, pierced with a regular and dense pattern of holes. I describe the properties and the application of GEMs and GEM. detectors, and the research and development I have done on this technology. Two of the main objectives were the development of large area GEMs ({proportional_to}m{sup 2}) for particle physics experiments and GEMs with a spherical shape for X-ray or neutron diffraction detectors. Both have been realized, and the new techniques involved are finding their way to applications in research and industry. (orig.)

  15. Gas electron multipliers: Development of large area GEMS and spherical GEMS

    International Nuclear Information System (INIS)

    Pinto, Serge Duarte

    2011-08-01

    Gaseous radiation detectors have been a crucial part of high-energy physics instrumentation since the 1960s, when the first multiwire proportional counters were built. In the 1990s the first micropattern gas detectors (MPGDS) saw the light; with sub-millimeter feature sizes these novel detectors were faster and more accurate than their predecessors. The gas electron multiplier (GEM) is one of the most successful of these technologies. It is a charge multiplication structure made from a copper clad polymer foil, pierced with a regular and dense pattern of holes. I describe the properties and the application of GEMs and GEM. detectors, and the research and development I have done on this technology. Two of the main objectives were the development of large area GEMs (∝m 2 ) for particle physics experiments and GEMs with a spherical shape for X-ray or neutron diffraction detectors. Both have been realized, and the new techniques involved are finding their way to applications in research and industry. (orig.)

  16. Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes

    Science.gov (United States)

    2015-01-01

    Hydrogen fluoride (HF) and selected nonbasic and weakly coordinating (toward cationic metal) hydrogen-bond acceptors (e.g., DMPU) can form stable complexes through hydrogen bonding. The DMPU/HF complex is a new nucleophilic fluorination reagent that has high acidity and is compatible with cationic metal catalysts. The gold-catalyzed mono- and dihydrofluorination of alkynes using the DMPU/HF complex yields synthetically important fluoroalkenes and gem-difluoromethlylene compounds regioselectively. PMID:25260170

  17. GEM Technical Design Report

    International Nuclear Information System (INIS)

    1993-01-01

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p T physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E T . The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p T physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds

  18. GEM Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-31

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  19. LHCb: A fast triple-GEM detector for high-rate charged-particle triggering

    CERN Multimedia

    2001-01-01

    - GEM: Principle of Operation - Time Performances - Detector Prototypes and Test Setup - Gas Mixtures - Fields Optimisation - Vgem Optimisation Ar/CO2 (70/30) - Vgem Optimisation Ar/CO2/CF4 (60/20/20) - Time Distributions - Future Tests and Developments

  20. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  1. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  2. Graphics gems

    CERN Document Server

    Heckbert, Paul S

    1994-01-01

    Graphics Gems IV contains practical techniques for 2D and 3D modeling, animation, rendering, and image processing. The book presents articles on polygons and polyhedral; a mix of formulas, optimized algorithms, and tutorial information on the geometry of 2D, 3D, and n-D space; transformations; and parametric curves and surfaces. The text also includes articles on ray tracing; shading 3D models; and frame buffer techniques. Articles on image processing; algorithms for graphical layout; basic interpolation methods; and subroutine libraries for vector and matrix algebra are also demonstrated. Com

  3. Development of a Diehard GEM using PTFE insulator substrate

    OpenAIRE

    Wakabayashi, M.; Komiya, K.; Tamagawa, T.; Takeuchi, Y.; Aoki, K.; Taketani, A.; Hamagaki, H.

    2014-01-01

    We have developed the gas electron multiplier (GEM) using polytetrafluoroethylene (PTFE) insulator substrate (PTFE-GEM). Carbonization on insulator layer by discharges shorts the GEM electrodes, causing permanent breakdown. Since PTFE is hard to be carbonized against arc discharges, PTFE-GEM is expected to be robust against breakdown. Gains as high as 2.6x10^4 were achieved with PTFE-GEM (50 um thick) in Ar/CO2 = 70%/30% gas mixture at V_GEM = 730V. PTFE-GEM never showed a permanent breakdown...

  4. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  5. Testing of self-triggered nXYTER electronics for integrating with GEM detector for high frequency operation

    International Nuclear Information System (INIS)

    Saini, J.; Dubey, A.K.; Chattopadhyay, S.; Singaraju, R.N.

    2013-01-01

    A GEM-based tracking system is planned to be used for muon tracking in the proposed CBM experiment at FAIR. The peak hit density in the central region of the chamber is expected to reach 1 MHz/cm 2 . For a detector to be operational at high intensity (upto MHz), it is useful to know the compatibility of the readout electronics with the detector. At very high rates and sufficiently large signal amplitude, there is a possibility of preamplifier saturation resulting in zero or distorted amplitude of the output signal

  6. A TPC-like readout method for high precision muon-tracking using GEM-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)

    2016-07-01

    Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.

  7. A Continuously Running High-Rate GEM-TPC for P-bar ANDA

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, F.V., E-mail: felix.valentin.boehmer@cern.ch [Technische Universitaet Muenchen Physik Department, James-Franck-Strasse, 85748 Garching (Germany); Angerer, H.; Dorheim, S.; Hoeppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Vandenbroucke, M.; Zhang, X. [Technische Universitaet Muenchen Physik Department, James-Franck-Strasse, 85748 Garching (Germany); Berger, M.; Cusanno, F.; Fabbietti, L.; Lalik, R. [Excellence Cluster Universe, Muenchen (Germany); Beck, R.; Kaiser, D.; Lang, M.; Schmitz, R.; Walther, D.; Winnebeck, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2011-06-15

    The P-bar ANDA fixed target experiment planned at FAIR will investigate fundamental questions of non-perturbative QCD. It makes use of a cooled antiproton beam (momentum: 1.5 to 15GeV/c) and will reach luminosities of up to 2.10{sup 32}cm{sup -2}s{sup -1}, yielding a p-bar p-annihilation rate of 2.10{sup 7}s{sup -1}. One option for the central tracker of P-bar ANDA is a cylindrical, ungated, continuously running TPC with GEM-based gas amplification stage.

  8. A Continuously Running High-Rate GEM-TPC for P-bar ANDA

    International Nuclear Information System (INIS)

    Boehmer, F.V.; Angerer, H.; Dorheim, S.; Hoeppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Vandenbroucke, M.; Zhang, X.; Berger, M.; Cusanno, F.; Fabbietti, L.; Lalik, R.; Beck, R.; Kaiser, D.; Lang, M.; Schmitz, R.; Walther, D.; Winnebeck, A.

    2011-01-01

    The P-bar ANDA fixed target experiment planned at FAIR will investigate fundamental questions of non-perturbative QCD. It makes use of a cooled antiproton beam (momentum: 1.5 to 15GeV/c) and will reach luminosities of up to 2.10 32 cm -2 s -1 , yielding a p-bar p-annihilation rate of 2.10 7 s -1 . One option for the central tracker of P-bar ANDA is a cylindrical, ungated, continuously running TPC with GEM-based gas amplification stage.

  9. Development of a Diehard GEM using PTFE insulator substrate

    International Nuclear Information System (INIS)

    Wakabayashi, M; Tamagawa, T; Takeuchi, Y; Aoki, K; Taketani, A; Komiya, K; Hamagaki, H

    2014-01-01

    We have developed the gas electron multiplier (GEM) using polytetrafluoroethylene (PTFE) insulator substrate (PTFE-GEM). Carbonization on insulator layer by discharges shorts the GEM electrodes, causing permanent breakdown. Since PTFE is hard to be carbonized against arc discharges, PTFE-GEM is expected to be robust against breakdown. Gains as high as 2.6 × 10 4 were achieved with PTFE-GEM (50 μm thick) in Ar/CO 2 = 70%/30% gas mixture at V GEM = 730 V. PTFE-GEM never showed a permanent breakdown even after suffering more than 40000 times discharges during the experiment. The result demonstrates that PTFE-GEM is really robust against discharges. We conclude that PTFE is an excellent insulator material for the GEM productions

  10. The cylindrical GEM detector of the KLOE-2 experiment

    International Nuclear Information System (INIS)

    Bencivenni, G.; Ciambrone, P.; De Lucia, E.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.; Branchini, P.; Cicco, A. Di; Czerwinski, E.

    2017-01-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  11. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  12. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first

  13. CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments.

    Science.gov (United States)

    Giffard, Philip M; Andersson, Patiyan; Wilson, Judith; Buckley, Cameron; Lilliebridge, Rachael; Harris, Tegan M; Kleinecke, Mariana; O'Grady, Kerry-Ann F; Huston, Wilhelmina M; Lambert, Stephen B; Whiley, David M; Holt, Deborah C

    2018-01-01

    Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phylogenetically coherent "classical ocular lineage". However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance.

  14. The gas electron multiplier (GEM)

    CERN Document Server

    Bouclier, Roger; Dominik, Wojciech; Hoch, M; Labbé, J C; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe operating priciples and results obtained with a new detector component: the Gas Electrons Multiplier (GEM). Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows to transfer the charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permit to obtain higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume has other advantages, as a built-in delay (useful for triggering purposes) and the possibility of applying high fields on the photo-cathode of ring imaging detectors to improve efficiency. Multiple GEM grids in the same gas volume allow to obtain large amplification factors in a succession of steps, leading to the realization of an effective ga...

  15. Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2

    Science.gov (United States)

    Senior, Catherine A.; Andrews, Timothy; Burton, Chantelle; Chadwick, Robin; Copsey, Dan; Graham, Tim; Hyder, Pat; Jackson, Laura; McDonald, Ruth; Ridley, Jeff; Ringer, Mark; Tsushima, Yoko

    2016-06-01

    Idealized climate change simulations with a new physical climate model, HadGEM3-GC2 from The Met Office Hadley Centre are presented and contrasted with the earlier MOHC model, HadGEM2-ES. The role of atmospheric resolution is also investigated. The Transient Climate Response (TCR) is 1.9 K/2.1 K at N216/N96 and Effective Climate Sensitivity (ECS) is 3.1 K/3.2 K at N216/N96. These are substantially lower than HadGEM2-ES (TCR: 2.5 K; ECS: 4.6 K) arising from a combination of changes in the size of climate feedbacks. While the change in the net cloud feedback between HadGEM3 and HadGEM2 is relatively small, there is a change in sign of its longwave and a strengthening of its shortwave components. At a global scale, there is little impact of the increase in atmospheric resolution on the future climate change signal and even at a broad regional scale, many features are robust including tropical rainfall changes, however, there are some significant exceptions. For the North Atlantic and western Europe, the tripolar pattern of winter storm changes found in most CMIP5 models is little impacted by resolution but for the most intense storms, there is a larger percentage increase in number at higher resolution than at lower resolution. Arctic sea-ice sensitivity shows a larger dependence on resolution than on atmospheric physics.

  16. GEM: Performance and aging tests

    International Nuclear Information System (INIS)

    Cho, H.S.; Kadyk, J.; Han, S.H.; Hong, W.S.; Perez-Mendez, V.; Wenzel, W.; Pitts, K.; Martin, M.D.; Hutchins, J.B.

    1999-01-01

    Performance and aging tests have been done to characterize Gas Electron Multipliers (GEMs), including further design improvements such as a thicker GEM and a closed GEM. Since the effective GEM gain is typically smaller than the absolute GEM gain, due to trapping of avalanche electrons at the bottom GEM electrode, the authors performed field simulations and measurements for better understanding, and discuss methods to eliminate this effect. Other performance parameters of the GEMs are also presented, including absolute GEM gain, short-term and long-term gain stabilities

  17. Gravity model improvement using GEOS-3 (GEM 9 and 10)

    Science.gov (United States)

    Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.

    1977-01-01

    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.

  18. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  19. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    coordinated global network of regional centers, with a high degree of interaction among the centers and the central secretariat. Broad acceptance of the models will be ensured by including local knowledge in all aspects of hazard and risk assessment and securing participation of local experts throughout development. All GEM efforts will be carried out using a common global software infrastructure and consensus standards. In accordance with principles of open-source development, and to ensure comprehensive global representation, contributions are welcomed and encouraged from a broad group of participants. To ensure uniformity and conformance with the highest scientific standards, all contributions, including models, tools, and data, will be rigorously vetted and independently tested. Recently the EUCENTRE in Pavia/Italy has been selected as the host institution of the GEM secretariat. The project will formally launch in early 2009 by creating the non-profit GEM foundation. While GEM serves a humanitarian imperative it is considered as offering a key to long-term economic development. GEM will enhance risk awareness at global, national and local scales. Greater risk awareness is a precondition for motivating public and private parties to investing into risk reduction and loss prevention, and to promote a greater use of financial risk transfer instruments.

  20. GEM the gas electron multiplier

    CERN Document Server

    Sauli, Fabio

    1997-01-01

    We describe the basic structure and operation of a new device, the Gas Electron Multiplier. Consisting in a polymer foil, metal-clad on both sides and perforated by a high density of holes, the GEM mesh allows to pre-amplify charges released in the gas with good uniformity and energy. Coupled to a micro-strip plate, the pre-amplification element allows to preserve high rate capability and resolution at considerably lower operating voltages, thus completely eliminating discharges and instabilities. Several GEM grids can be operated in cascade; charge gains are large enough to allow detection of signals in the ionization mode on the last element, permitting the use of a simple printed circuit as read-out electrode. Two-dimensional read-out can then be easily implemented. A new generation of simple, reliable and cheap fast position sensitive detectors seems at hand.

  1. Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    CERN Document Server

    Miyamoto, J; Peskov, V

    2010-01-01

    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.

  2. The gem anvil cell: high-pressure behaviour of diamond and related materials

    International Nuclear Information System (INIS)

    Xu Jian; Mao Hokwang; Hemley, Russell J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm -1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm -1 range were found, indicating that the phase is not diamond

  3. The gem anvil cell: high-pressure behaviour of diamond and related materials

    CERN Document Server

    Xu Jian; Hemley, R J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm sup - sup 1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm sup - sup 1 range were found, indicating that the phase is not diamond.

  4. Study of etching processes in the GEM detectors

    CERN Document Server

    Zavazieva, Darina

    2016-01-01

    Gaseous Electron Multiplier (GEM) detectors are known to operate stably at high gains and high particle fluxes. Though, at very high gains and fluxes it was observed that the insulating polyimide layer between the GEM electrodes gets etched, changing the original shape of the hole, and therefore varying the gain and the energy resolution of the detector. The idea of the project to observe degradation effect of the GEM foils during the Triple GEM detector operation in extreme conditions under X-ray radiation.

  5. A triple GEM gamma camera for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Balla, A. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Bencivenni, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Corradi, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); D' Ambrosio, C. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Domenici, D. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Felici, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Gatta, M. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Morone, M.C. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy); INFN - Sezione di Roma Tor Vergata (Italy); Murtas, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy)]. E-mail: fabrizio.murtas@lnf.infn.it; Schillaci, O. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy)

    2007-03-01

    A Gamma Camera for medical applications 10x10cm{sup 2} has been built using a triple GEM chamber prototype. The photon converters placed in front of the three GEM foils, has been realized with different technologies. The chamber, High Voltage supplied with a new active divider made in Frascati, is readout through 64 pads, 1mm{sup 2} wide, organized in a row of 8cm long, with LHCb ASDQ chip. This Gamma Camera can be used both for X-ray movie and PET-SPECT imaging; this chamber prototype is placed in a scanner system, creating images of 8x8cm{sup 2}. Several measurements have been performed using phantom and radioactive sources of Tc99m(140keV) and Na22(511keV). Results on spatial resolution and image reconstruction are presented.

  6. The TOTEM T2 telescope based on triple-GEM chambers

    CERN Document Server

    Bagliesi, M G; Brucken, E; Cecchi, R; David, E; Garcia, F; Greco, V; Heino, J; Hilden, T; Kurvinen, K; Lauhakangas, R; Lami, S; Latino, G; Magazzu, G; Oliveri, E; Pedreschi, E; Ropelewski, L; Scribano, A; Spinella, F; Turini, N; van Stenis, M

    2010-01-01

    The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier (GEM) technology for its T2 telescope which will provide charged track reconstruction in the pseudorapidity range 5.3<|η|<6.5 and a fully inclusive trigger for inelastic events. GEMs are gas filled detectors which combine good spatial resolution with very high rate capability and a good resistance to radiation. Preliminary results of cosmic ray tests performed at CERN on final T2 modules before installation are here presented. Comparisons between real and simulated detector performance are also shown.

  7. The TOTEM T2 telescope based on triple-GEM chambers

    Energy Technology Data Exchange (ETDEWEB)

    Bagliesi, M.G., E-mail: mg.bagliesi@pi.infn.i [University of Siena and INFN Pisa (Italy); Berretti, M. [University of Siena and INFN Pisa (Italy); Brucken, E. [Helsinki (Finland); Cecchi, R. [University of Siena and INFN Pisa (Italy); David, E. [CERN, Geneva (Switzerland); Garcia, F. [Helsinki (Finland); Greco, V. [University of Siena and INFN Pisa (Italy); Heino, J.; Hilden, T.; Kurvinen, K.; Lauhakangas, R. [Helsinki (Finland); Lami, S.; Latino, G.; Magazzu, G.; Oliveri, E.; Pedreschi, E. [University of Siena and INFN Pisa (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Scribano, A.; Spinella, F.; Turini, N. [University of Siena and INFN Pisa (Italy)

    2010-05-21

    The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier (GEM) technology for its T2 telescope which will provide charged track reconstruction in the pseudorapidity range 5.3<|{eta}|<6.5 and a fully inclusive trigger for inelastic events. GEMs are gas filled detectors which combine good spatial resolution with very high rate capability and a good resistance to radiation. Preliminary results of cosmic ray tests performed at CERN on final T2 modules before installation are here presented. Comparisons between real and simulated detector performance are also shown.

  8. GEM simulation methods development

    International Nuclear Information System (INIS)

    Tikhonov, V.; Veenhof, R.

    2002-01-01

    A review of methods used in the simulation of processes in gas electron multipliers (GEMs) and in the accurate calculation of detector characteristics is presented. Such detector characteristics as effective gas gain, transparency, charge collection and losses have been calculated and optimized for a number of GEM geometries and compared with experiment. A method and a new special program for calculations of detector macro-characteristics such as signal response in a real detector readout structure, and spatial and time resolution of detectors have been developed and used for detector optimization. A detailed development of signal induction on readout electrodes and electronics characteristics are included in the new program. A method for the simulation of charging-up effects in GEM detectors is described. All methods show good agreement with experiment

  9. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  10. SUPERCOLLIDER: A GEM of a detector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Now being prepared as a major experimental facility for the 87- kilometre Superconducting Supercollider (SSC) being built in Ellis County, Texas, is the GEM detector project. GEM thus becomes the companion to the Solenoidal Detector Collaboration (SDC), the first major SSC detector to emerge (March 1992, page 13). This is in keeping with the SSC Laboratory's aim of two major detectors with overlapping and complementary strengths. GEM is designed to observe all SSC signatures, with emphasis on precise measurement of electrons, photons and muons. Hence the name GEM - ''Gammas, Electrons and Muons.'' Design goals are clean signatures for leptons, jets, and missing transverse energy, maximum sensitivity to narrow resonances, and low backgrounds. Also important is maintaining significant capability at high luminosity (10 34 cm -2 s -1 ). GEM has some distinctive features. A key concept is the exterior magnet, surrounding all detector elements. Inside the magnet are a muon tracking system, a precision calorimeter, and a compact central tracker. This allows the muon momentum to be measured the air of the radiation shielded area outside the thick calorimeter, giving both high precision and robustness at high luminosity. A large magnet gives a large lever arm (at least 4 m) for precise muon momentum measurement. Placing the magnet outside also minimizes the material between tracker and calorimeters, so that the calorimeters are limited only by their inherent resolutions

  11. A GEM Detector System for an Upgrade of the High-eta Muon Endcap Stations GE1/1 + ME1/1 in CMS

    CERN Document Server

    Abbaneo, D; Aspell, P.; Bianco, S.; Hoepfner, K.; Hohlmann, M.; Maggi, M.; De Lentdecker, G.; Safonov, A.; Sharma, A.; Tytgat, M.

    2012-01-01

    Based on the CMS Upgrade R&D Proposal RD10.02, we describe the motivation and main features of the CMS GEM Project for LS2 and propose the addition of a full GE1/12 detector station comprising Gas Electron Multiplier (GEM) chambers to the forward muon system of CMS. The limitations of the currently existing forward muon detector when operating at increasingly high luminosity expected after LS1 are laid out followed by a brief description of the anticipated performance improvements achievable with a GE1/1 station. The second part describes the detector system followed by an overview of electronics and associated services including a discussion of the schedule and cost of the project. Plans for a precursor demonstrator installation in LS1 are presented. This proposal is intended as a concise follow-up of the detailed document CMS-IN-2012-023. If approved, this is to be followed by a detailed Technical Design Report.

  12. The GEM Detector projective alignment simulation system

    International Nuclear Information System (INIS)

    Wuest, C.R.; Belser, F.C.; Holdener, F.R.; Roeben, M.D.; Paradiso, J.A.; Mitselmakher, G.; Ostapchuk, A.; Pier-Amory, J.

    1993-01-01

    Precision position knowledge (< 25 microns RMS) of the GEM Detector muon system at the Superconducting Super Collider Laboratory (SSCL) is an important physics requirement necessary to minimize sagitta error in detecting and tracking high energy muons that are deflected by the magnetic field within the GEM Detector. To validate the concept of the sagitta correction function determined by projective alignment of the muon detectors (Cathode Strip Chambers or CSCs), the basis of the proposed GEM alignment scheme, a facility, called the ''Alignment Test Stand'' (ATS), is being constructed. This system simulates the environment that the CSCs and chamber alignment systems are expected to experience in the GEM Detector, albeit without the 0.8 T magnetic field and radiation environment. The ATS experimental program will allow systematic study and characterization of the projective alignment approach, as well as general mechanical engineering of muon chamber mounting concepts, positioning systems and study of the mechanical behavior of the proposed 6 layer CSCs. The ATS will consist of a stable local coordinate system in which mock-ups of muon chambers (i.e., non-working mechanical analogs, representing the three superlayers of a selected barrel and endcap alignment tower) are implemented, together with a sufficient number of alignment monitors to overdetermine the sagitta correction function, providing a self-consistency check. This paper describes the approach to be used for the alignment of the GEM muon system, the design of the ATS, and the experiments to be conducted using the ATS

  13. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  14. Graphics gems V (Macintosh version)

    CERN Document Server

    Paeth, Alan W

    1995-01-01

    Graphics Gems V is the newest volume in The Graphics Gems Series. It is intended to provide the graphics community with a set of practical tools for implementing new ideas and techniques, and to offer working solutions to real programming problems. These tools are written by a wide variety of graphics programmers from industry, academia, and research. The books in the series have become essential, time-saving tools for many programmers.Latest collection of graphics tips in The Graphics Gems Series written by the leading programmers in the field.Contains over 50 new gems displaying some of t

  15. Graphics Gems III IBM version

    CERN Document Server

    Kirk, David

    1994-01-01

    This sequel to Graphics Gems (Academic Press, 1990), and Graphics Gems II (Academic Press, 1991) is a practical collection of computer graphics programming tools and techniques. Graphics Gems III contains a larger percentage of gems related to modeling and rendering, particularly lighting and shading. This new edition also covers image processing, numerical and programming techniques, modeling and transformations, 2D and 3D geometry and algorithms,ray tracing and radiosity, rendering, and more clever new tools and tricks for graphics programming. Volume III also includes a

  16. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  17. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  18. Graphics gems II

    CERN Document Server

    Arvo, James

    1991-01-01

    Graphics Gems II is a collection of articles shared by a diverse group of people that reflect ideas and approaches in graphics programming which can benefit other computer graphics programmers.This volume presents techniques for doing well-known graphics operations faster or easier. The book contains chapters devoted to topics on two-dimensional and three-dimensional geometry and algorithms, image processing, frame buffer techniques, and ray tracing techniques. The radiosity approach, matrix techniques, and numerical and programming techniques are likewise discussed.Graphics artists and comput

  19. Game programming gems

    CERN Document Server

    DeLoura, Mark

    2000-01-01

    For the countless tasks involved in creating a game engine there are an equal number of possible solutions. But instead of spending hours and hours trying to develop your own answers, now you can find out how the pros do it! Game Programming Gems is a hands-on, comprehensive resource packed with a variety of game programming algorithms written by experts from the game industry and edited by Mark DeLoura, former software engineering lead for Nintendo of America, Inc. and now the newly appointed editor-in-chief of Game Developer magazine. From animation and artificial intelligence to Z-buffering, lighting calculations, weather effects, curved surfaces, mutliple layer Internet gaming, to music and sound effects, all of the major techniques needed to develop a competitive game engine are covered. Game Programming Gems is written in a style accessible to individuals with a range of expertise levels. All of the source code for each algorithm is included and can be used by advanced programmers immediately. For aspir...

  20. Complete Tem-Tomography: 3D Structure of Gems Cluster

    Science.gov (United States)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  1. Mexican gems as thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin N, J.

    1979-01-01

    The possibility of using naturally ocurring mexican gems as thermoluminescent dosimeters (TLD) was investigated. Twelve types of gems were irradiated with X and gamma rays in order to determinate their dosimetric properties. Three of these gems showed favorable thermoluminescent characteristics compared with commercial thermoluminescent dosimeters. The plots of their thermoluminescent response as a function of gamma dose are straight lines on full log paper in the dose range 10 -2 to 10 2 Gy. The energy dependence is very strong to low energies of the radiation. Their fading was found to be about 5%/yr. and they may be annealed as reused without loss in sensitivity. Therefore, these gems can be used as X and gamma radiation dosimeters. (author)

  2. GEMs with Double Layred Micropattern Electrodes and their Applications

    CERN Document Server

    Di Mauro, A.; Nappi, E.; Oliveira, R.; Peskov, V.; Pietropaolo, F.; Picchi, P.

    We have developed and tested several new designs of GEM detectors with micropattern electrodes manufactured by microelectronic technology. In one design, the inner layer of the detector electrode consists of thin metallic strips and the outer layer is made of a resistive grid manufactured by a screen printing technology. In other designs, the electrodes were made of metallic strips fed by HV via micro-resistors manufactured by a screen printing technology. Due to these features, the new detectors have several important advantages over conventional GEMs or ordinary thick GEMs. For example, the resistive grid (in the first design) and the screen printed resistors (in other designs) limited the current in case of discharges, making these detectors intrinsically spark-protected. We will here describe our tests with the photosensitive versions of these detectors (coated with CsI layers) and the efforts of implementing them in several applications. In particular, we will focus on our activity towards the ALICE RICH...

  3. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  4. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    Science.gov (United States)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  5. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  6. Recent Developments in GEM-Based Neutron Detectors

    International Nuclear Information System (INIS)

    Saenboonruang, K.

    2014-01-01

    The gas electron multiplier (GEM) detector is a relatively new gaseous detector that has been used for less than 20 years. Since the discovery in 1997 by F. Sauli, the GEM detector has shown excellent properties including high rate capability, excellent resolutions, low discharge probability, and excellent radiation hardness. These promising properties have led the GEM detector to gain popularity and attention amongst physicists and researchers. In particular, the GEM detector can also be modified to be used as a neutron detector by adding appropriate neutron converters. With properties stated above and the need to replace the expensive 3 He-based neutron detectors, the GEM-based neutron detector will be one of the most powerful and affordable neutron detectors. Applications of the GEM-based neutron detectors vary from researches in nuclear and particle physics, neutron imaging, and national security. Although several promising progresses and results have been shown and published in the past few years, further improvement is still needed in order to improve the low neutron detection efficiency (only a few percent) and to widen the possibilities for other uses.

  7. 3D Observation of GEMS by Electron Tomography

    Science.gov (United States)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  8. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  9. A large ungated TPC with GEM amplification

    Science.gov (United States)

    Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.

    2017-10-01

    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are

  10. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  11. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  12. Use of aluminium plates to simulate the dosimetry of gems during e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Marcio Z.; Sousa, Fernando N.C. de; Boente, Otavio C., E-mail: mzamboti@aceletron.com.b, E-mail: fernando.nuno@aceletron.com.b, E-mail: otavio@aceletron.com.b [Aceletron Irradiacao Industrial, Rio de Janeiro, RJ (Brazil); Sousa, Nuno R.A., E-mail: engenheiro.nuno.sousa@gmail.co [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    The e-beam technology is used in the industrial irradiation of several products like turf, sterilization of medical products, cosmetics, polymers, food, and gems. More than 70% of the gems commercialized in the world receive treatments similar to those present in nature, including heat, and irradiation, in order to improve their value. Since aluminum has a density similar to that of several commercial gems, this paper presents a study of the penetration of electrons in calibrated aluminum plates simulating several different thicknesses ranging from 5 to 30 mm, and comparing with the one obtained in gems. This allows the monitoring of the dose received by gems during irradiation with e-beam systems measuring the delivered surface dose. This procedure is very important for industrial processing of stones due to the irregularities present on most gems, what makes dosimetry a very complex task. The determination of the thicknesses of the gems for which the surface dose is the lowest dose on the whole product assures the precise determination of the minimum dose received by the gems during industrial processing. (author)

  13. First results of spherical GEMs

    CERN Document Server

    Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco

    2010-01-01

    We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...

  14. Overview of the GEM muon system cosmic ray test program at the SSCL

    International Nuclear Information System (INIS)

    Milner, E.C.

    1993-04-01

    Muon track resolution exceeding 75-μm per plane is one of the main strengths of the GEM detector design, and will be crucial in searches for Higgs Bosons, heavy Z-Bosons, technicolor, and supersymmetry. Achieving this resolution coal requires improved precision in muon chambers and their alignment. A cosmic ray test stand known as the Texas Test Rio, (TTR) has been created at the SSCL for studying candidate GEM muon chamber technologies. Test results led to selecting Cathode Strip Chambers (CSC) as the GEM muon system baseline chamber technology

  15. Investigations on Important Properties of the 10 cm x 10 cm GEM Prototype

    CERN Document Server

    Saenboonruang, Kiadtisak; Kulasri, Kittipong; Ritthirong, Anawat

    2015-01-01

    The Gas Electron Multiplier (GEM) detector is one of promising particle and radiation detectors that has been improved greatly from previous gas detectors. The improvement includes better spatial resolutions, higher detection rate capabilities, and flexibilities in designs. In particular, the 10 cm x 10 cm GEM prototype is designed and provided by the Gas Detectors Development group (GDD) at CERN, Switzerland. With its simplicity in operations and designs, while still maintaining high qualities, the GEM prototype is suitable for both start-up and advanced researches. This article aims to report the investigations on some important properties of the 10 cm x 10 cm GEM detector using current measurement and signal counting. Results have shown that gains of the GEM prototype exponentially increase as voltage supplied to the detector increases, while the detector reaches full efficiency (plateau region) when the voltage is greater than 4100 V. In terms of signal sharing between X and Y strips of the readout, X str...

  16. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  17. Progress on large area GEMs (VCI 2010)

    CERN Document Server

    Villa, Marco; Alfonsi, Matteo; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; Taureg, Hans; van Stenis, Miranda

    2011-01-01

    The Gas Electron Multiplier (GEM) manufacturing technique has recently evolved to allow the production of large area GEMs. A novel approach based on single mask photolithography eliminates the mask alignment issue, which limits the dimensions in the traditional double mask process. Moreover, a splicing technique overcomes the limited width of the raw material. Stretching and handling issues in large area GEMs have also been addressed. Using the new improvements it was possible to build a prototype triple-GEM detector of ~ 2000 cm2 active area, aimed at an application for the TOTEM T1 upgrade. Further refinements of the single mask technique give great control over the shape of the GEM holes and the size of the rims, which can be tuned as needed. In this framework, simulation studies can help to understand the GEM behavior depending on the hole shape.

  18. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China

    Science.gov (United States)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei

    2018-01-01

    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg

  19. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Directory of Open Access Journals (Sweden)

    Brücken Erik

    2018-01-01

    Full Text Available The ALICE (A Large Ion Collider Experiment experiment at the Large Hadron Collider (LHC at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2 the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC –based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz. The new ReadOut Chamber (ROC design is based on Gas Electron Multiplier (GEM technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  20. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Science.gov (United States)

    Brücken, Erik; Hildén, Timo

    2018-02-01

    The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC) of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2) the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC) -based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz). The new ReadOut Chamber (ROC) design is based on Gas Electron Multiplier (GEM) technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA) measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  1. Development of a time projection chamber using gas electron multipliers (GEM-TPC)

    International Nuclear Information System (INIS)

    Oda, S.X.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Isobe, T.; Gunji, T.; Morino, Y.; Saito, S.; Yamaguchi, Y.L.; Sawada, S.; Yokkaichi, S.

    2006-01-01

    We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with three kinds of gases (Ar(90%)-CH 4 (10%), Ar(70%)-C 2 H 6 (30%) and CF 4 ). Detection efficiency of 99%, and spatial resolution of 79μm in the pad-row direction and 313μm in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described

  2. GPU Computing Gems Emerald Edition

    CERN Document Server

    Hwu, Wen-mei W

    2011-01-01

    ".the perfect companion to Programming Massively Parallel Processors by Hwu & Kirk." -Nicolas Pinto, Research Scientist at Harvard & MIT, NVIDIA Fellow 2009-2010 Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines. GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including: Black hole simulations with CUDA GPU-accelerated computation and interactive display of

  3. The Forward GEM Tracker of STAR at RHIC

    OpenAIRE

    Simon, F.; Balewski, J.; Fatemi, R.; Hasell, D.; Kelsey, J.; Majka, R.; Page, B.; Plesko, M.; Underwood, D.; Smirnov, N.; Sowinski, J.; Spinka, H.; Surrow, B.; Visser, G.

    2008-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin str...

  4. The Gravity and Extreme Magnetism Small Explorer (GEMS)

    Science.gov (United States)

    Kallman, T. R.

    2011-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) was selected by NASA for flight in 2014 to make a sensitive search for X-ray polarization from a wide set of source classes, including stellar black holes, Seyfert galaxies and quasars, blazars, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. Among the primary scientific objectives are determining the effects of the spin of black holes and the geometry of supermassive black hole accretion, determining the configurations of the magnetic fields and the X-ray emission of magnetars, and determining the magnetic structure of the supernova shocks in which cosmic rays are accelerated. GEMS will observe 23 targets during a 16 month prime mission, in observations that will be able to reach predicted levels of polarization. The mission can be extended to provide a guest observer phase. The GEMS instrument has time projection chamber polarimeters with high 2-10 keV efficiency at the focus of thin foil mirrors. The 4.5 m focal length mirrors will be deployed on an extended boom. The spacecraft with the instrument is rotated with a period of about 10 minutes to enable measurement and correction of systematic errors. A small Bragg reflection soft X-ray experiment takes advantage of this rotation to obtain a measurement at 0.5 keV. The design of the GEMS instrument and the mission, the expected performance and the planned science program will be discussed.

  5. ROLE OF GEMS IN INDIAN MEDICINE

    Science.gov (United States)

    Murthy, S.R.N.

    1991-01-01

    This paper is the first attempt in introducing the medicinal importance of gems as found in the Sanskrit text ‘Rasaratnasamuccaya’, which has been rendered an English translation here. The modern physicians and gemologists will find this study quite useful in continuing research and, thus, develop a new field of gem medicine. PMID:22556526

  6. A GEM of an SSC detector

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The SSC Laboratory has decided to support the GEM (Gammas, Electrons, and Muons) detector collaboration in the next stage of its work, development of a Technical Design Report. Initial ideas for GEM as the second major SSC detector were aired last year

  7. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  8. Financial recognition of material misstatement risks of listed companies on GEM

    OpenAIRE

    Jie Ming; Yicong Jiang

    2017-01-01

    Listed companies on GEM are characterized by strong innovation, great growth ability, high risks and high yields. Starting from these characteristics, this paper carries out analysis by using the financial indicators that are effective to recognize the material misstatement risks and easy to be acquired, and combines with the sample data with high material misstatement risks on GEM in 2012 to 2014 to test the significance of spss difference, and finds that the material misstatement company an...

  9. Performance of gas electron multiplier (GEM) detector

    International Nuclear Information System (INIS)

    Han, S. H.; Moon, B. S.; Kim, Y. K.; Chung, C. E.; Kang, H. D.; Cho, H. S.

    2002-01-01

    We have investigated in detail the operating properties of Gas Electron Multiplier (GEM) detectors with a double conical and a cylindrical structure in a wide range of external fields and GEM voltages. With the double conical GEM, the gain gradually increased with time by 10%; whereas this surface charging was eliminated with the cylindrical GEM. Effective gains above 1000 were easily observed over a wide range of collection field strengths in a gas mixture of Ar/CO 2 (70/30). The transparency and electron collection efficiency were found to depend on the ratio of external field and the applied GEM voltage; the mutual influence of both drift and collection fields was found to be trivial

  10. Development, characterization and qualification of first GEM foils produced in India

    Science.gov (United States)

    Shah, Aashaq; Ahmed, Asar; Gola, Mohit; Sharma, Ram Krishna; Malhotra, Shivali; Kumar, Ashok; Naimuddin, Md.; Menon, Pradeep; Srinivasan, K.

    2018-06-01

    The increasing demand for Gas Electron Multiplier (GEM) foils has been driven by their application in many current and proposed high-energy physics experiments. Micropack, a Bengaluru-based company, has established and commercialized GEM foils for the first time in India. Micropack used the double-mask etching technique to successfully produce 10 cm × 10 cm GEM foil. In this paper, we report on the development as well as the geometrical and electrical properties of these foils, including the size uniformity of the holes and leakage current measurements. Our characterization studies show that the foils are of good quality and satisfy all the necessary quality control criteria.

  11. The development of neutron detectors for the GEM instrument at ISIS

    International Nuclear Information System (INIS)

    Rhodes, N.J.; Johnson, M.W.; Schooneveld, E.M.

    2001-01-01

    GEM is a new General Materials diffractometer now being commissioned at ISIS. To meet its broad based scientific programme GEM requires a large area position sensitive detector which covers a wide range of scattering angles and exhibits a high neutron count rate stability. This paper discusses the design of a ZnS/ 6 Li fibre coupled detector array that meets the GEM requirements. Typical detector characteristics are documented together with the current status of the project. Two thirds of the detector array are operational and from the results obtained to date it is already obvious that the impact of this instrument on neutron scattering studies will be profound. (author)

  12. Continuous health monitoring of Graphite Epoxy Motorcases (GEM)

    Science.gov (United States)

    Finlayson, Richard D.; Schaafsma, David T.; Shen, H. Warren; Carlos, Mark F.; Miller, Ronnie K.; Shepherd, Brent

    2001-07-01

    Following the explosion of Delta 241 (IIR-1) on January 17th, 1997, the failure investigation board concluded that the Graphite Epoxy Motorcases (GEM's) should be inspected for damage just prior to launch. Subsequent investigations and feedback from industry led to an Aerospace Corporation proposal to instrument the entire fleet of GEM's with a continuous health monitoring system. The period of monitoring would extend from the initial acceptance testing through final erection on the launch pad. As this proposal demonstrates, (along with the increasing use of advanced composite materials in aircraft, automobiles, military hardware, and aerospace components such as rocket motorcases) a sizable need for composite health assessment measures exist. Particularly where continuous monitoring is required for the detection of damage from impacts and other sources of high mechanical and thermal stresses. Even low-momentum impacts can lead to barely visible impact damage (BVID), corresponding to a significant weakening of the composite. This damage, undetectable by visual inspection, can in turn lead to sudden and catastrophic failure when the material is subjected to a normal operating load. There is perhaps no system with as much potential for truly catastrophic failure as a rocket motor. We will present an update on our ongoing efforts with the United States Air Force Delta II Program Office, and The Aerospace Corporation. This will cover the development of a local, portable, surface-mounted, fiberoptic sensor based impact damage monitor designed to operate on a Delta II GEM during transport, storage, and handling. This system is designed to continuously monitor the GEMs, to communicate wirelessly with base stations and maintenance personnel, to operate autonomously for extended periods, and to fit unobtrusively on the GEM itself.

  13. THE INCREASING PRODUCTIVITY AND VALUE ADDED FOR CRAFTSMEN GEM STONE IN SANGIRAN SRAGEN THROUGH ACCESS TECHNOLOGY, MANAGEMENT, AND UTILIZATION OF RESOURCES POWER BASED LOCAL WISDOM

    OpenAIRE

    Rahmawati; Soenarto; Sri Murni; Agung Nur Probohudono

    2016-01-01

    Small and Medium Enterprises (SMEs) could get great opportunities of ACFTA implementation. Formulation of the problem in this research are: How to design the industrial models of gemstones and fossils souvenirs align with the market taste? How to improve the utilization of the technology used in the low skills and business management of gemstones and fossils souvenirs industry? How to optimize the role of support institutions which are research, education, and banking i...

  14. High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using GemStone™ and Verity Cen-se'™ High-Definition t-SNE Mapping.

    Science.gov (United States)

    Bruce Bagwell, C

    2018-01-01

    This chapter outlines how to approach the complex tasks associated with designing models for high-dimensional cytometry data. Unlike gating approaches, modeling lends itself to automation and accounts for measurement overlap among cellular populations. Designing these models is now easier because of a new technique called high-definition t-SNE mapping. Nontrivial examples are provided that serve as a guide to create models that are consistent with data.

  15. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  16. Fast drift CRID with GEM

    CERN Document Server

    Vavra, J; McCulloch, M; Stiles, P; Sauli, Fabio

    1999-01-01

    The only available technique at the present time, to perform particle identification up to 40-50 GeV/c in a 4 pi solenoidal geometry using the Cherenkov ring imaging method is the use of gaseous detectors filled with either TMAE or TEA photocathodes, and a combination of the gaseous, and solid or liquid radiators. If one would consider building such a device, one may want to investigate alternative methods of building a single-electron detector. This paper investigates the feasibility of using the GEM together with a simple MWPC detector employing 33 mu m diameter carbon wires to obtain a second coordinate. The results are compared to the CRID single-electron detector.

  17. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    Science.gov (United States)

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  18. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

    Directory of Open Access Journals (Sweden)

    Kimberley A. Roper

    2013-09-01

    Full Text Available The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  19. Development of triple GEM detector for a heavy ion physics experiment

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Biswal, K.; Gupta, R.

    2015-01-01

    Building and testing of micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects, is an advance area of research in the field of detector development. We have carried out the long-term stability test and the uniformity of the relative gain over a GEM detector. The method of long-term test and uniformity of the relative gain and the results are presented in this article

  20. Performance Evaluation of the COBRA GEM for the Application of the TPC

    Science.gov (United States)

    Terasaki, Kohei; Hamagaki, Hideki; Gunji, Taku; Yamaguchi, Yorito

    2014-09-01

    Suppression of the back-drifting ions from avalanche region to drift space (IBF: Ion Backflow) is the key for a Time Projection Chamber (TPC) since IBF easily distorts the drift field. To suppress IBF, Gating Grid system is widely used for the TPC but this limits the data taking rate. Gas Electron Multiplier (GEM) has advantages in the reduction of IBF and high rate capability. By adopting GEM, it is possible to run a TPC continuously under high rate and high multiplicity conditions. Motivated by the study of IBF reduction for RICH with Thick COBRA, which has been developed by F. A. Amero et al., we developed COBRA GEMs for the application of a TPC. With a stack configuration, IBF reaches about 0.1 ~ 0.5%, which is ×5--10 better IBF than the standard GEMs. However, the measured energy resolution with COBRA is 20% (σ) and this is much worse than the resolution with standard GEMs. Measurement of long-time stability of gain indicates that gain of COBRA varies significantly due to charging up effect. Simulation studies based on Garfield++ are performed for understanding quantitatively the reasons of worse energy resolution and instability of gain. In this presentation, we will report the simulation studies together with the measured performance of the COBRA GEM.

  1. The TOTEM GEM Telescope (T2) at the LHC

    International Nuclear Information System (INIS)

    Quinto, M.; Berretti, M.; David, E.; Garcia, F.; Greco, V.; Heino, J.; Hilden, T.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Oliveri, E.; Ropelewski, L.; Scribano, A.; Turini, N.; Stenis, M. van

    2011-01-01

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  2. The TOTEM GEM Telescope (T2) at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, M. [INFN Sezione di Bari, Via E.Orabona n 4, 70126 Bari (Italy); Berretti, M. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); David, E. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Garcia, F. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Greco, V. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Heino, J.; Hilden, T.; Kurvinen, K. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Lami, S. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Latino, G. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Lauhakangas, R. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Oliveri, E. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Ropelewski, L. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Scribano, A.; Turini, N. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Stenis, M. van [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland)

    2011-06-15

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  3. Gender Evaluation Methodology (GEM) | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-10-28

    Oct 28, 2011 ... For more resources and access to the GEM Practitioners Network, ... Home · Resources · Publications ... The Association for Progressive Communications Women's Networking Support Programme (APC WNSP) developed ...

  4. Gas amplification properties of GEM foils

    International Nuclear Information System (INIS)

    Beck, Jeannine

    2009-01-01

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  5. Design of large size segmented GEM foils and Drift PCB for CBM MUCH

    International Nuclear Information System (INIS)

    Saini, J.; Dubey, A.K.; Chattopadhyay, S.

    2016-01-01

    Triple GEM (Gas Electron Multiplier), sector shaped detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at Anti-proton Ion Research (FAIR) facility at Darmstadt, Germany. The sizes of the detectors modules in the Muon Chambers (MUCH) are of the order of 1 meter with active area of about 75cms. Progressive pad geometry is chosen for the readout from these detectors. In construction of these chambers, three GEM foils are stacked on top of each other in a 3/2/2/2 gap configuration. The GEM foils are double layered copper clad 50μm thin Kapton foil. Each GEM foil has millions of holes on it. Foils of large surface area are prone to damages due to discharges owing to the high capacitance of the foil. Hence, these foils have their top surfaces divided into segments of about 100 sq.cm. Further segmentation may be necessary when there are high rate requirements, as in the case of CBM. For the GEM foils of CBM MUCH, a 24 segment layout has been adopted. Short-circuit in any of the GEM-holes will make entire foil un-usable. To reduce such occurrences, segment to segment isolation using opto-coupler in series with the GEM-foil segments has been introduced. Hence, a novel design for GEM chamber drift-PCB and foils has been made. In this scheme, each segment is powered and controlled individually. At the same time, the design takes into account, the space constraints, not only in x-y plane, but also in the z, due to compact assembly of MUCH detector layers

  6. GEM Building Taxonomy (Version 2.0)

    Science.gov (United States)

    Brzev, S.; Scawthorn, C.; Charleson, A.W.; Allen, L.; Greene, M.; Jaiswal, Kishor; Silva, V.

    2013-01-01

    This report documents the development and applications of the Building Taxonomy for the Global Earthquake Model (GEM). The purpose of the GEM Building Taxonomy is to describe and classify buildings in a uniform manner as a key step towards assessing their seismic risk, Criteria for development of the GEM Building Taxonomy were that the Taxonomy be relevant to seismic performance of different construction types; be comprehensive yet simple; be collapsible; adhere to principles that are familiar to the range of users; and ultimately be extensible to non-buildings and other hazards. The taxonomy was developed in conjunction with other GEM researchers and builds on the knowledge base from other taxonomies, including the EERI and IAEE World Housing Encyclopedia, PAGER-STR, and HAZUS. The taxonomy is organized as a series of expandable tables, which contain information pertaining to various building attributes. Each attribute describes a specific characteristic of an individual building or a class of buildings that could potentially affect their seismic performance. The following 13 attributes have been included in the GEM Building Taxonomy Version 2.0 (v2.0): 1.) direction, 2.)material of the lateral load-resisting system, 3.) lateral load-resisting system, 4.) height, 5.) date of construction of retrofit, 6.) occupancy, 7.) building position within a block, 8.) shape of the building plan, 9.) structural irregularity, 10.) exterior walls, 11.) roof, 12.) floor, 13.) foundation system. The report illustrates the pratical use of the GEM Building Taxonomy by discussing example case studies, in which the building-specific characteristics are mapped directly using GEM taxonomic attributes and the corresponding taxonomic string is constructed for that building, with "/" slash marks separating attributes. For example, for the building shown to the right, the GEM Taxonomy string is: DX1/MUR+CLBRS+MOCL2/LWAL3/

  7. Study of relevant parameters of GEM-based detectors

    CERN Document Server

    Croci, Gabriele; Sauli, Fabio; Ragazzi, S

    2007-01-01

    The Gas Electron Multiplier consist of a thin Kapton insulating (50 $\\mu$m) foil copper-clad on both sides and perforated by a high density, regular matrix of holes (around 100 per square millimeter). Typically the distance between holes (pitch) is 140 $\\mu$m and diameters of about 70 $\\mu$m. The mesh is realised by conventional photolitographic methods as used for the fabrication of multi-layer board. Upon application of a potential difference between the GEM electrodes, a high dipole field develops in the holes focusing the field lines between the drift electrode and the readout element. Electron drift along the channel and the charge is amplified by a factor that depends on the field density and the length of the channel. Owing to their excellent position resolution and rate capability GEM-based detector are very suitable to be used in different applications: from the high energy physics to the medical field. The GEM temporal and rate gain stability was studied and it was discovered that the gain variation...

  8. GEMS: Underwater spectrometer for long-term radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sartini, Ludovica, E-mail: ludovica.sartini@ingv.i [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Genoa University, Genoa (Italy); Simeone, Francesco; Pani, Priscilla [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Lo Bue, Nadia; Marinaro, Giuditta [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Grubich, Andry; Lobko, Alexander [Institute for Nuclear Problems (INP), Belarus State University, Minsk (Belarus); Etiope, Giuseppe [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Capone, Antonio [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Favali, Paolo [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Gasparoni, Francesco; Bruni, Federico [Tecnomare S.p.A., Venice (Italy)

    2011-01-21

    GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by {sup 40}K decays but it can detect other natural (e.g., {sup 238}U,{sup 232}Th) and anthropogenic radio-nuclides (e.g., {sup 137}Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea.

  9. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  10. Export controls on high technology

    Energy Technology Data Exchange (ETDEWEB)

    Frank, N.K.

    1987-01-01

    A overview of the Export Administration Act of 1979 and subsequent regulations and amendments focuses on how licensing requirements and restrictions against boycott affect high technology exports. The purpose of these controls is to limit the export of technology with possible military applications, as well as to advance US foreign policy and protect the economy without imposing too great a restriction on the principles of free trade. Thus, the act encompasses political, economic, and security goals. Problems of predictability arise when embargoes or other controls are imposed for political or foreign policy reasons without regard to economic impacts. Amendments have attempted to streamline the exporting process, particularly in the area of computer and software licensing.

  11. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  12. Combined readout of a triple-GEM detector

    Science.gov (United States)

    Antochi, V. C.; Baracchini, E.; Cavoto, G.; Di Marco, E.; Marafini, M.; Mazzitelli, G.; Pinci, D.; Renga, F.; Tomassini, S.; Voena, C.

    2018-05-01

    Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of μm were measured on the GEM plane along with an energy resolution of 20%÷30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 μm. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.

  13. Gaseous elemental mercury (GEM fluxes over canopy of two typical subtropical forests in south China

    Directory of Open Access Journals (Sweden)

    Q. Yu

    2018-01-01

    Full Text Available Mercury (Hg exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM was used to continuously observe gaseous elemental mercury (GEM fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ and a moderately polluted site (Huitong, HT, near a large Hg mine in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m−2 h−1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT when compared with that in the mildly polluted site (QYZ may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration

  14. High technology and civil rights

    International Nuclear Information System (INIS)

    Lerche, P.

    1982-01-01

    Court decision reflect the widely felt lack of clarity about the present legal situation in the field of high technology. This confusion is also due to the fact that this legal situation is surrounded by civil rights constellations, which have more and more eroded the contours of our legal system in recent years: Today, civil rights are no longer specific, well-definable bulwarks for the citizen, but are more and more frequently interpreted by the supreme courts as sources of procedural requirements with more or less certain often vague consequences. This shifting of the accent in civil rights towards procedural matters is due to an innate logical necessity, however: The same civil right considered in the same situation, e.g., in planning for high technology, may give rise to very different, even contradictory individual claims. Therefore, one of the main modern objectives of civil rights becoming more and more apparent is the need to reconcile conflicting positions, which makes civil rights a driving force in balancing interests in the easiest possible way. Yet, one of the main deficiencies in this rapidly growing procedural approach is the one-sidedness often to be found as a result of isolated, punctual actions. This misses the objective of achieving adequate harmonization. As examples of such one-sided, isolated civil rights approaches, legal opinions are cited on the so-called public participation (possibility to object for those concerned) in the licensing procedures under the German Atomic Energy Act and for protection against environmental impacts. Quity rightly, this participation of the public is interpreted as an advance protection of civil rights. However, its consequences quite often are exaggerated. (orig.) [de

  15. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses

  16. Muon Chamber Endcap Upgrade of the CMS Experiment with Gas Electron Multiplier (GEM) Detectors and their Performance

    CERN Document Server

    Gola, Mohit

    2017-01-01

    As the CERN LHC is heading towards a high luminosity phase a very high flux is expected in the endcaps of the CMS Detector. The presence of muons in collision events can be due to rare or new physics so it is important to maintain the high trigger efficiency of the CMS muon system. The CMS Collaboration has proposed to instrument the high-eta region (1.6 lt IetaI lt 2.2) of the muon endcaps with Gas Electron Multiplier (GEM) detectors, referred to as GE1/1 chambers, during the LS2. This technology will help in maintaining optimum trigger performance with maximum selection efficiency of muons even in a high flux environment. We describe plans for a Slice Test to installa few GE1/1 chambers covering 50 degrees in azimuthal angle within the CMS detector in 2017, with subsequent operation during the current Run 2 of the LHC. We show the performance of the GE1/1 chambers to be installed during the slice test, specifically GEM foil leakage currents, chamber gas volume integrity, high voltage circuit performanc...

  17. Development of Large-Area GEM Detectors for the Forward Muon Endcap Upgrade of the CMS Experiment and Search for SM Higgs Boson Decay in the $H\\to\\tau^{+}\\tau^{-}\\to\\mu^{+}\\mu^{-}\\bar{\

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00366476; Gallo, Elisabetta; Raspereza, Alexei

    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the Compact Muon Solenoid (CMS) experiment in \\mbox{Phase II} of the CERN LHC. The first GEM Endcap (GE1/1) is going to be installed in the $1.5 < \\mid\\eta\\mid < 2.2$ region of the muon endcapˆ’ mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 453 $\\mu$rad pitch arranged in eight $\\eta$-sectors. A meter-long GE1/1 prototype-III was assembled at Florida Tech and tested in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 Scalable Readout System (SRS). Four GEM detectors with 2-D readout and an average measured azimuthal resolution of 36$\\mu$rad provided precise reference tracks. Construction of this GE1/1 prototype-III detector and its performance in the test beam are described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltag...

  18. The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review

    Science.gov (United States)

    Giuliani, Gaston; Dubessy, Jean; Ohnenstetter, Daniel; Banks, David; Branquet, Yannick; Feneyrol, Julien; Fallick, Anthony E.; Martelat, Jean-Emmanuel

    2018-01-01

    The mineral and fluid inclusions trapped by gemstones during the metamorphism of carbonate platform successions are precious markers for the understanding of gem genesis. The nature and chemical composition of inclusions highlight the major contribution of evaporites through dissolution or fusion, depending on the temperature of formation from greenschist to granulite facies. The fluids are highly saline NaCl-brines circulating either in an open system in the greenschist facies (Colombian and Afghan emeralds) and with huge fluid-rock metasomatic interactions, or sulphurous fluids (ruby, garnet tsavorite, zoisite tanzanite and lapis-lazuli) or molten salts formed in a closed system with a low fluid mobility (ruby in marble) in the conditions of the amphibolite to granulite facies. These chloride-fluoride-sulphate ± carbonate-rich fluids scavenged the metals essential for gem formation. At high temperature, the anions SO4 2-, NO3 -, BO3 - and F- are powerful fluxes which lower the temperature of chloride- and fluoride-rich ionic liquids. They provided transport over a very short distance of aluminium and/or silica and transition metals which are necessary for gem growth. In summary, the genetic models proposed for these high-value and ornamental gems underline the importance of the metamorphism of evaporites formed on continental carbonate shelves and emphasise the chemical power accompanying metamorphism at moderate to high temperatures of evaporite-rich and organic matter-rich protoliths to form gem minerals.

  19. Design of data acquisition system for GEM detector

    International Nuclear Information System (INIS)

    Lu Jianliang; Chen Ziyu; Shen Ji; Jin Xi

    2011-01-01

    It describes the design and realization of the USB 2.0 high speed data acquisition devise which is used in the readout electronics of the GEM (gas electron multiplier) detector. By using of the USB Microcontroller EZ-USB FX2 CY7C68013A, high speed ADC and FPGA, high-speed data rate of data acquisition and transmission was realized. The data rate reaches to 20 MByte/s, meeting the requirements of data acquisition and transmission of the detector. (authors)

  20. 3D simulation of electron and ion transmission of GEM-based detectors

    Science.gov (United States)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  1. GEM Detectors in the Experiments at e+e- Colliders in BINP

    CERN Document Server

    Maltsev, T V

    2017-01-01

    Micro-pattern gaseous detectors possess a high spatial resolution in tens micron scale together with high rate capability up to 107 cm-2s-1. In addition, they have all advantages of gaseous detectors, such as relatively low costs per unit area, the possibility to equip a large area as well as a high uniformity. Cascaded Gas Electron Multiplier (GEM) based detectors are used in the collider experiments at Budker Institute of Nuclear Physics (BINP), and they are being developed for a number of new projects. In this article the review of GEM based detectors for the tagging system of the KEDR experiment at the VEPP-4M collider and for the DEUTERON facility at the VEPP-3 storage ring is presented. The GEM detector application of the CMD-3 detector upgrade at the VEPP-2000 collider and the Super τ Factory detector are discussed.

  2. Financial recognition of material misstatement risks of listed companies on GEM

    Directory of Open Access Journals (Sweden)

    Jie Ming

    2017-11-01

    Full Text Available Listed companies on GEM are characterized by strong innovation, great growth ability, high risks and high yields. Starting from these characteristics, this paper carries out analysis by using the financial indicators that are effective to recognize the material misstatement risks and easy to be acquired, and combines with the sample data with high material misstatement risks on GEM in 2012 to 2014 to test the significance of spss difference, and finds that the material misstatement company and the normal company have significant difference in the profitability, solvency, growth ability and cash flow.

  3. Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar

    Directory of Open Access Journals (Sweden)

    F. Lin Sutherland

    2014-12-01

    Full Text Available Mogok gem corundum samples from twelve localities were analyzed for trace element signatures (LA-ICP-MS method and oxygen isotope values (δ18O, by laser fluorination. The study augmented earlier findings on Mogok gem suites that suggested the Mogok tract forms a high vanadium gem corundum area and also identified rare alluvial ruby and sapphire grains characterised by unusually high silicon, calcium and gallium, presence of noticeable boron, tin and niobium and very low iron, titanium and magnesium contents. Oxygen isotope values (δ18O for the ruby and high Si-Ca-Ga corundum (20‰–25‰ and for sapphire (10‰–20‰ indicate typical crustal values, with values >20‰ being typical of carbonate genesis. The high Si-Ca-Ga ruby has high chromium (up to 3.2 wt % Cr and gallium (up to 0. 08 wt % Ga compared to most Mogok ruby (<2 wt % Cr; <0.02 wt % Ga. In trace element ratio plots the Si-Ca-Ga-rich corundum falls into separate fields from the typical Mogok metamorphic fields. The high Ga/Mg ratios (46–521 lie well within the magmatic range (>6, and with other features suggest a potential skarn-like, carbonate-related genesis with a high degree of magmatic fluid input The overall trace element results widen the range of different signatures identified within Mogok gem corundum suites and indicate complex genesis. The expanded geochemical platform, related to a variety of metamorphic, metasomatic and magmatic sources, now provides a wider base for geographic typing of Mogok gem corundum suites. It allows more detailed comparisons with suites from other deposits and will assist identification of Mogok gem corundum sources used in jewelry.

  4. Ion feedback effect in the multi GEM structure

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Han, Sang Hyo; Ha, Jang Ho; Moon, Byung Soo; Chung, Chong Eun

    2003-01-01

    The feedback of positive ions in a gas electron multiplier (GEM) has to be suppressed to reduce the photocathode degradation in GEM photomultipliers and to prevent the field distortion in a time projection chamber (TPC). The ion feedback dependency on the drift electric field, the transfer field, the asymmetry in the voltages across the GEM, and the effective gain was carefully measured in various gases. The ion feedback is sensitive to the drift field and the effective gain. A model prediction of the ion feedback in a double GEM structure was compared with the measurement. Our systematic study of the ion feedback effect can lead to progress in gas detectors with GEMs.

  5. Proceedings of the GEM Collaboration Meeting

    International Nuclear Information System (INIS)

    Bojowald, J.; Ilieva, I.; Klimala, W.; Machner, H.; Razen, B.; Kliczewski, S.; Magiera, A.; Smyrski, J.; Roy, B.J.; Urban, J.

    1997-11-01

    The main subject of the GEM meeting were: meson production near threshold, mesic atoms, nuclear resonances, symmetry violation, light ions structure and interactions. Additionally some apparatus problems like electronic equipment and charged particle detector have been discussed. The volume contains copies of transparencies supplied by the authors which are not normal full texts of papers

  6. Quality control for the first large areas of triple-GEM chambers for the CMS endcaps

    Science.gov (United States)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2018-02-01

    The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&D and moving to production. An unprecedented large area of several 100 m2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.

  7. Quality control for the first large areas of triple-GEM chambers for the CMS endcaps

    Directory of Open Access Journals (Sweden)

    Abbaneo D.

    2018-01-01

    Full Text Available The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&D and moving to production. An unprecedented large area of several 100 m2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.

  8. Performance study of a GEM-TPC prototype using cosmic rays

    International Nuclear Information System (INIS)

    Li Yulan; Qi Huirong; Li Jin; Gao Yuanning; Li Yuanjing; Yang Zhenwei; Fujii, Keisuke; Matsuda, Takeshi

    2008-01-01

    Time projection chambers (TPCs) have been successfully used as the central tracking devices in a number of high-energy physics experiments. However, the performance requirements on TPCs for future high-energy physics experiments greatly exceed the abilities of traditional TPCs read out by multi-wire proportional chambers (MWPCs). Micro-pattern gas detectors (MPGDs), such as gas electron multipliers (GEMs) or micromegas, have great potential to improve TPC performance when used as readout detectors. In order to evaluate its feasibility, a GEM-based TPC prototype with a drift length up to 50 cm was designed. Measurements of the spatial resolution of cosmic-ray tracks without and with a magnetic field (B=1 T) are presented. A very good performance is achieved, matching the analytic formula for the spatial resolution of a MPGD-readout TPC. A dedicated study shows that the increase of GEM detector gain can improve the TPC's spatial resolution.

  9. Quality control for the first large areas of triple-GEM chambers for the CMS endcaps

    CERN Document Server

    AUTHOR|(CDS)2068936; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F.R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M.M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R.M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y.G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P.K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J.A.; Mitselmakher, G.; Mohanty, A.K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L.M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M.S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A.H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S.K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2015-01-01

    The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&D and moving to production. An unprecedented large area of several 100 m2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.

  10. Gravity model improvement using GEOS 3 /GEM 9 and 10/. [and Seasat altimetry data

    Science.gov (United States)

    Lerch, F. J.; Wagner, C. A.; Klosko, S. M.; Laubscher, R. E.

    1979-01-01

    Although errors in previous gravity models have produced large uncertainties in the orbital position of GEOS 3, significant improvement has been obtained with new geopotential solutions, Goddard Earth Model (GEM) 9 and 10. The GEM 9 and 10 solutions for the potential coefficients and station coordinates are presented along with a discussion of the new techniques employed. Also presented and discussed are solutions for three fundamental geodetic reference parameters, viz. the mean radius of the earth, the gravitational constant, and mean equatorial gravity. Evaluation of the gravity field is examined together with evaluation of GEM 9 and 10 for orbit determination accuracy. The major objectives of GEM 9 and 10 are achieved. GEOS 3 orbital accuracies from these models are about 1 m in their radial components for 5-day arc lengths. Both models yield significantly improved results over GEM solutions when compared to surface gravimetry, Skylab and GEOS 3 altimetry, and highly accurate BE-C (Beacon Explorer-C) laser ranges. The new values of the parameters discussed are given.

  11. Investigations of the long-term stability of a GEM-TPC

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchuk, Oleksiy [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Collaboration: LCTPC-Deutschland-Collaboration

    2016-07-01

    For the International Large Detector (ILD) at the planned International Linear Collider (ILC) a Time Projection Chamber (TPC) is foreseen as the main tracking detector. The gas amplification will be done by Micro Pattern Gaseous Detectors (MPGD). One option is to use Gas Electron Multipliers (GEM).While the applicability of GEMs for the gas amplification in a TPC readout has been shown, the focus of the current research is to improve the high voltage stability and reliability of the readout modules. This is a crucial requirement for the operation in the final ILD TPC. The main focus of the research presented in this talk is on studies of the discharge stability and operational features of large area 22 x 18 cm{sup 2} GEM foils. We present systematic studies of the stability of GEM foils under different operation conditions. These studies include measurements and calculations of the dynamic behavior of charges in the GEM foils after a trip. The results will be used to develop methods to avoid destructive discharges in the final readout module.

  12. For fashion and health (coloring of gems)

    International Nuclear Information System (INIS)

    Umeda, Iwao

    1998-01-01

    Artificial coloration of colorless jewel grade diamonds can be made by fast neutron irradiation using a research reactor or high energy electron beam bombardment by a linear accelerator. The irradiated color diamonds are from blue to green. After irradiation, the blue-green diamonds change color to yellow or orange by subsequent annealing using an electric furnace. The colored diamond hue depends on the treatment conditions. Fancy hue can be produced under some suitable conditions. Some special absorption bands in the spectrum obtained by a spectrophotometer can discriminate artificially colored diamonds from natural fancy color diamonds. Diamonds become to be radioactive immediately after irradiation by a reactor, but the radioactivity decay rapidly and become safe after a month. Some imported gems without diamond as blue topaz etc. are sometimes discovered to be radioactive artificially. Cultured pearls are covered by 0.4 mm thick nacreous layer on the pearl nucleus made of fresh-water unionidae thick shell. White pearls turn color to silver by 60 Co γ-ray irradiation. The pearl nucleus contained Mn turns color to brown by irradiation and absorbs red light from reflection on the surface, whereas the nacreous layer is little color change by irradiation because of small quantity of Mn and remains the luster. White pearls turn beautiful blue-silver of like natural color pearls seemingly, by γ-ray irradiation in suitable solution. Cubic zirconia made from ZrO 2 is a man-made colorless crystal looked like a diamond. The crystals turn color to orange by irradiation. (J.P.N)

  13. Gas amplification properties of GEM foils; Gasverstaerkungseigenschaften von GEM-Folien

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Jeannine

    2009-01-15

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  14. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  15. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    Alfonsi, M.; Bencivenni, G.; Brock, I.; Cerioni, S.; Croci, G.; David, E.; De Lucia, E.; De Oliveira, R.; De Robertis, G.; Domenici, D.; Duarte Pinto, S.; Felici, G.; Gatta, M.; Jacewicz, M.; Loddo, F.; Morello, G.; Pistilli, M.; Ranieri, A.; Ropelewski, L.; Sauli, F.

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm 2 . Now a single-mask technology is used allowing foils to be made as large as 450x2000mm 2 . The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm 2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  16. Resolution studies of a GEM-based TPC

    International Nuclear Information System (INIS)

    Killenberg, M.

    2006-01-01

    Currently there are four different concept studies trying to optimise the detector for the requirements at the ILC. In three of these detector concepts a time projection chamber (TPC) is foreseen as the main tracking device. To achieve the intended spatial resolution of 100 μm, micro pattern gas detectors (MPGD) are considered for gas amplification. The two different MPGDs discussed for the ILC TPC are Micro-Mesh Gaseous Detectors (Micromegas) and Gas Electron Multiplier foils (GEMs). The current thesis shows resolution studies with a TPC prototype equipped with a triple GEM readout structure. A hodoscope made up of silicon strip sensors gives a precision reference track, allowing an unbiased measurement of the spatial resolution. High statistics measurements have been conducted at the DESY test beam facility, which provides positrons with a tunable energy between 1 GeV and 6 GeV. Using the independent measurement of the hodoscope allows systematic studies of the homogeneity of the TPC's electric field. The fluctuations of the field in the chamber's central region were found to be ΔE/E=8.10 -3 . Field distortions have been determined and corrected, reducing the remaining deviations to a level well below the spatial resolution of the TPC. One important task is to reduce the number of ions drifting back into the sensitive volume. Special GEM settings with minimised ion backdrift have been examined with respect to their influence on the spatial resolution and it was found that the spatial resolution is not degraded using these special settings. The TPC prototype has been operated in a 4 T magnetic field, provided by a superconducting solenoid located at DESY Hamburg. Again the spatial resolution measured with the ion backdrift optimised settings is compared to that achieved with nonoptimised settings. In both cases the measured resolution is approximately 130 μm. (orig.)

  17. Resolution studies of a GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Killenberg, M.

    2006-12-15

    Currently there are four different concept studies trying to optimise the detector for the requirements at the ILC. In three of these detector concepts a time projection chamber (TPC) is foreseen as the main tracking device. To achieve the intended spatial resolution of 100 {mu}m, micro pattern gas detectors (MPGD) are considered for gas amplification. The two different MPGDs discussed for the ILC TPC are Micro-Mesh Gaseous Detectors (Micromegas) and Gas Electron Multiplier foils (GEMs). The current thesis shows resolution studies with a TPC prototype equipped with a triple GEM readout structure. A hodoscope made up of silicon strip sensors gives a precision reference track, allowing an unbiased measurement of the spatial resolution. High statistics measurements have been conducted at the DESY test beam facility, which provides positrons with a tunable energy between 1 GeV and 6 GeV. Using the independent measurement of the hodoscope allows systematic studies of the homogeneity of the TPC's electric field. The fluctuations of the field in the chamber's central region were found to be {delta}E/E=8.10{sup -3}. Field distortions have been determined and corrected, reducing the remaining deviations to a level well below the spatial resolution of the TPC. One important task is to reduce the number of ions drifting back into the sensitive volume. Special GEM settings with minimised ion backdrift have been examined with respect to their influence on the spatial resolution and it was found that the spatial resolution is not degraded using these special settings. The TPC prototype has been operated in a 4 T magnetic field, provided by a superconducting solenoid located at DESY Hamburg. Again the spatial resolution measured with the ion backdrift optimised settings is compared to that achieved with nonoptimised settings. In both cases the measured resolution is approximately 130 {mu}m. (orig.)

  18. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E., E-mail: nsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, T.F.; Luz, H. Natal da [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  19. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    International Nuclear Information System (INIS)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E.; Silva, T.F.; Luz, H. Natal da

    2017-01-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  20. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Science.gov (United States)

    Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.

    2018-03-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.

  1. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  2. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    Science.gov (United States)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  3. Where is high technology taking nuclear medicine

    International Nuclear Information System (INIS)

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  4. High technology revisited: definition and position

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2006-01-01

    This paper proposes a new approach to defining high technology by distinguishing two different aspects. First, complexity, which is a more or less a `static' view on high technology and is applied to both the final product as well as the production process. Second, the newness, relates to a

  5. [Nuclear medicine in Spain: high technology 2013].

    Science.gov (United States)

    Soriano Castrejón, A M; Prats Rivera, E; Alonso Farto, J C; Vallejo Casas, J A; Rodriguez Gasen, A; Setoain Perego, J; Arbizu Lostao, J

    2014-01-01

    This article details the high technology equipment in Spain obtained through a survey sent to the three main provider companies of equipment installed in Spain. The geographical distribution of high technology by Autonomous Communities and its antiquity have been analyzed. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  6. arXiv GEM Foil Quality Assurance For The ALICE TPC Upgrade

    CERN Document Server

    INSPIRE-00019412; Hildén, Timo

    2018-01-01

    The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC) of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2) the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC) –based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz). The new ReadOut Chamber (ROC) design is based on Gas Electron Multiplier (GEM) technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, nec...

  7. The Gem Infrasound Logger and Custom-Built Instrumentation

    International Nuclear Information System (INIS)

    Anderson, Jacob F.; Ronan, Timothy J.

    2017-01-01

    Here, we designed, built, and recorded data with a custom infrasound logger (referred to as the Gem) that is inexpensive, portable, and easy to use. We also describe its design process, qualities, and applications in this article. Field instrumentation is a key element of geophysical data collection, and the quantity and quality of data that can be recorded is determined largely by the characteristics of the instruments used. Geophysicists tend to rely on commercially available instruments, which suffice for many important types of fieldwork. However, commercial instrumentation can fall short in certain roles, which motivates the development of custom sensors and data loggers. Particularly, we found existing data loggers to be expensive and inconvenient for infrasound campaigns, and developed the Gem infrasound logger in response. In this article, we discuss development of this infrasound logger and the various uses found for it, including projects on volcanoes, high-altitude balloons, and rivers. Further, we demonstrate that when needed, scientists can feasibly design and build their own specialized instruments, and that doing so can enable them to record more and better data at a lower cost.

  8. High technology for radiation application

    International Nuclear Information System (INIS)

    Iida, Toshiyuki

    2005-03-01

    Fundamentals of radiations, radioactivity, and their applications in recent industrial, medical, agricultural and various research fields are reviewed. The book begins with historical description regarding to discovery of radiation at the end of 19th century and the exploration into the inside of an atom utilizing the radiation discovered, discovery of the neutron which finally leaded to nuclear energy liberation. Developments of radiation sources, including nuclear reactors, and charged-particle accelerators follow with simultaneous description on radiation measurement or detection technology. In medical fields, X-ray diagnosis, interventional radiology (IVR), nuclear medicine (PET and others), and radiation therapy are introduced. In pharmaceutical field, synthesis of labeled compounds and tracer techniques are explained. In industrial application, radiation-reinforced wires and heat-resistant cables whose economic effect can be estimated to amount to more than 10 12 yen, radiation mutation, food irradiation, and applied accelerators such as polymer modifications, decomposition of environmentally harmful substances, and ion-implantations important in semiconductor device fabrication. Finally, problems relating to general public such as radiation education and safety concept are also discussed. (S. Ohno)

  9. Studies of characteristics of triple GEM detector for the ALICE-TPC upgrade

    International Nuclear Information System (INIS)

    Patra, Rajendra Nath; Singaraju, R.N.; Ahammed, Z.; Nayak, T.K.; Biswas, S.

    2015-01-01

    Gas Electron Multiplier (GEM) is a novel gas detector in the field of radiation detection. GEM detectors have tremendous advantages over other types gas detectors like high rate handling capability with high efficiency and very low ion back flow (IBF). These detectors are most suitable for the use in the future experiments in high-energy proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) at CERN and Facility for Antiproton and Ion Research (FAIR) at GSI. A Large Ion Collider Experiment (ALICE) at the LHC is a dedicated experiment for the study of Quark Gluon Plasma (QGP). In few years, the data taking rate for Pb-Pb collisions will increase by 100 times to 50 KHz. The ALICE Time Projection Chamber (TPC) is the main tracking detector in ALICE. It is planned that by the year 2018, GEM detectors will replace the present readout planes of TPC. The goal of the present study is to characterize the GEM detector to achieve the performance goal of the TPC

  10. Characteristics of triple GEM detector for the ALICE TPC upgrade at CERN

    International Nuclear Information System (INIS)

    Patra, Rajendra Nath; Singaraju, R.N.; Ahammed, Z.; Nayak, T.K.; Viyogi, Y.P.; Biswas, S.

    2016-01-01

    Gas Electron Multiplier (GEM) detector, introduced by F. Sauliin 1997 and has been widely improved in last two decades for applications to high energy physics experiments and imaging. GEM detectors have several advantages, like good spatial resolution (∼100 μm), high detection efficiency (>98%), high rate handling capability (∼105 Hz/mm"2 ) and reasonable time response (∼5 ns). The unique features of the GEM detector make it suitable for experiments at Large Hadron Collider (LHC) at CERN and FAIR at GSI. With the increase of beam luminosity of LHC for its next phase of running from the year 2020, the ALICE experiment is planning to take data for PbPb collisions at a rate of 50 kHz. The ALICE Time Projection Chamber (TPC) will be upgraded by GEM based read-out to fulfil this future goal. In this report, results of a thorough test in the laboratory using a newly developed online data monitoring system are discussed

  11. Study of reconstruction methods for a time projection chamber with GEM gas amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Diener, R.

    2006-12-15

    A new e{sup +}e{sup -} linear collider with an energy range up to 1TeV is planned in an international collaboration: the International Linear Collider (ILC). This collider will be able to do precision measurements of the Higgs particle and of physics beyond the Standard Model. In the Large Detector Concept (LDC) - which is one proposal for a detector at the ILC - a Time Projection Chamber (TPC) is foreseen as the main tracking device. To meet the requirements on the resolution and to be able to work in the environment at the ILC, the application of new gas amplification technologies in the TPC is necessary. One option is an amplification system based on Gas Electron Multipliers (GEMs). Due to the - in comparison with older technologies - small spatial width of the signals, this technology poses new requirements on the readout structures and the reconstruction methods. In this work, the performance and the systematics of different reconstruction methods have been studied, based on data measured with a TPC prototype in high magnetic fields of up to 4T and data from a Monte Carlo simulation. The latest results of the achievable point resolution are presented and their limitations have been investigated. (orig.)

  12. Study of reconstruction methods for a time projection chamber with GEM gas amplification system

    International Nuclear Information System (INIS)

    Diener, R.

    2006-12-01

    A new e + e - linear collider with an energy range up to 1TeV is planned in an international collaboration: the International Linear Collider (ILC). This collider will be able to do precision measurements of the Higgs particle and of physics beyond the Standard Model. In the Large Detector Concept (LDC) - which is one proposal for a detector at the ILC - a Time Projection Chamber (TPC) is foreseen as the main tracking device. To meet the requirements on the resolution and to be able to work in the environment at the ILC, the application of new gas amplification technologies in the TPC is necessary. One option is an amplification system based on Gas Electron Multipliers (GEMs). Due to the - in comparison with older technologies - small spatial width of the signals, this technology poses new requirements on the readout structures and the reconstruction methods. In this work, the performance and the systematics of different reconstruction methods have been studied, based on data measured with a TPC prototype in high magnetic fields of up to 4T and data from a Monte Carlo simulation. The latest results of the achievable point resolution are presented and their limitations have been investigated. (orig.)

  13. The germanium wall of the GEM detector system GEM Collaboration

    International Nuclear Information System (INIS)

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  14. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  15. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  16. MOOCs, High Technology, and Higher Learning

    Science.gov (United States)

    Rhoads, Robert A.

    2015-01-01

    In "MOOCs, High Technology, and Higher Learning," Robert A. Rhoads places the OpenCourseWare (OCW) movement into the larger context of a revolution in educational technology. In doing so, he seeks to bring greater balance to increasingly polarized discussions of massively open online courses (MOOCs) and show their ongoing relevance to…

  17. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  18. China's High-technology Standards Development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are several major technology standards, including audio video coding (AVS), automotive electronics, third generation (3G) mobile phones, mobile television, wireless networks and digital terrestrial television broadcasting, that have been released or are currently under development in China. This article offers a detailed analysis of each standard and studies their impact on China's high-technology industry.

  19. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    International Nuclear Information System (INIS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-01-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a 'keV-photon detector', which will allow diagnostic quality visualization of the patient, and a 'MeV-photon detector', that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT

  20. Simulation of space-charge effects in an ungated GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Böhmer, F.V., E-mail: felix.boehmer@tum.de; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-08-11

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P{sup ¯}ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm{sup −3} are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC.

  1. Simulation of space-charge effects in an ungated GEM-based TPC

    International Nuclear Information System (INIS)

    Böhmer, F.V.; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-01-01

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P ¯ ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm −3 are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC

  2. NPP operation and modern high technologies

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.

    1992-01-01

    Examples are considered of modern high technology introduction into daily practice of NPP operation, namely: satellite communication systems, robots, non-destructive testing, optical-fiber techniques, laser measuring means and others

  3. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  4. Marketing mix for consumer high technology products

    Directory of Open Access Journals (Sweden)

    Dovleac, L.

    2012-01-01

    Full Text Available This paper includes an analysis upon the variables of marketing mix for high technology products used for individual consumption. There are exposed the essential aspects related to marketing policies and strategies used by high technology companies for providing consumers the best solutions tailored to their needs. A special attention is given to the necessity for inclusion in the marketing mix of the fifth element – the assistance and informational support for customers.

  5. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  6. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    Science.gov (United States)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  7. Microstructured boron foil scintillating G-GEM detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Takeshi, E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Bautista, Unico [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Philippine Nuclear Research Institute-Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City (Philippines); Mitsuya, Yuki [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Takahashi, Hiroyuki [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK) (Japan); Otake, Yoshie; Taketani, Atsushi [Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Uesaka, Mitsuru [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Toyokawa, Hiroyuki [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2016-12-01

    In this study, a new simple neutron imaging gaseous detector was successfully developed by combining a micro-structured {sup 10}B foil, a glass gas electron multiplier (G-GEM), and a mirror–lens–charge-coupled device (CCD)–camera system. The neutron imaging system consists of a chamber filled with Ar/CF{sub 4} scintillating gas mixture. Inside this system, the G-GEM is mounted for gas multiplication. The neutron detection in this system is based on the reaction between {sup 10}B and neutrons. A micro-structured {sup 10}B is developed to overcome the issue of low detection efficiency. Secondary electrons excite Ar/CF{sub 4} gas molecules, and high-yield visible photons are emitted from those excited gas molecules during the gas electron multiplication process in the G-GEM holes. These photons are easily detected by a mirror–lens–CCD–camera system. A neutron radiograph is then simply formed. We obtain the neutron images of different materials with a compact accelerator-driven neutron source. We confirm that the new scintillating G-GEM-based neutron imager works properly with low gamma ray sensitivity and exhibits a good performance as a new simple digital neutron imaging device.

  8. Analysis of activation yields by INC/GEM

    International Nuclear Information System (INIS)

    Furihata, Shiori; Nakashima, Hiroshi

    2001-01-01

    Excitation functions of the nuclides produced from the reaction on nitrogen and oxygen target irradiated by nucleons are analyzed using INC/GEM. It is shown that INC/GEM reproduces most of the cross sections within a factor of two to three. (author)

  9. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  10. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  11. Extending the ISC-GEM Global Earthquake Instrumental Catalogue

    Science.gov (United States)

    Di Giacomo, Domenico; Engdhal, Bob; Storchak, Dmitry; Villaseñor, Antonio; Harris, James

    2015-04-01

    After a 27-month project funded by the GEM Foundation (www.globalquakemodel.org), in January 2013 we released the ISC-GEM Global Instrumental Earthquake Catalogue (1900 2009) (www.isc.ac.uk/iscgem/index.php) as a special product to use for seismic hazard studies. The new catalogue was necessary as improved seismic hazard studies necessitate that earthquake catalogues are homogeneous (to the largest extent possible) over time in their fundamental parameters, such as location and magnitude. Due to time and resource limitation, the ISC-GEM catalogue (1900-2009) included earthquakes selected according to the following time-variable cut-off magnitudes: Ms=7.5 for earthquakes occurring before 1918; Ms=6.25 between 1918 and 1963; and Ms=5.5 from 1964 onwards. Because of the importance of having a reliable seismic input for seismic hazard studies, funding from GEM and two commercial companies in the US and UK allowed us to start working on the extension of the ISC-GEM catalogue both for earthquakes that occurred beyond 2009 and for earthquakes listed in the International Seismological Summary (ISS) which fell below the cut-off magnitude of 6.25. This extension is part of a four-year program that aims at including in the ISC-GEM catalogue large global earthquakes that occurred before the beginning of the ISC Bulletin in 1964. In this contribution we present the updated ISC GEM catalogue, which will include over 1000 more earthquakes that occurred in 2010 2011 and several hundreds more between 1950 and 1959. The catalogue extension between 1935 and 1949 is currently underway. The extension of the ISC-GEM catalogue will also be helpful for regional cross border seismic hazard studies as the ISC-GEM catalogue should be used as basis for cross-checking the consistency in location and magnitude of those earthquakes listed both in the ISC GEM global catalogue and regional catalogues.

  12. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  13. Study and optimization of the light-yield of a triple-GEM detector

    CERN Document Server

    Campagnola, Roberto; Mazzitelli, Giovanni

    The high-resolution tracking of low energy release particles had a remarkable development in recent years and will give a crucial contribution in different fields, from medical uses to those in dark matter search. Characteristics, such as high space and time resolution, low material budget, large volumes, low costs, make gas detectors ideal candidates for this type of devices. A very promising technique involves the optical reading of the light produced by the de-excitation of gas molecules during the processes of electron multiplication. This type of detector has been made possible thanks to the great progresses achieved in last years in the performance in micro pattern gas detector and in the evolution of the CMOS technology which led to the production of sensors able of offering high sensitivity and granularity combined with a very low noise level. In this thesis the performance of a prototype where the light is produced through the multiplication of electrons in a triple GEM structure and acquired by a c...

  14. Role of high technology in the nuclear industry

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A discussion of high technology identifies the characteristics which distinguish it from conventional technologies, and the impact high technology will have in the nuclear power industry in the near future. The basic theme is that high technology is an ensemble of competing technological developments that shifts with time and technological innovation. The attributes which current distinguish high technology are compactness, plasticity, convergence, and intelligence. These high technology attributes are presented as a prelude to some examples of high technology developments which are just beginning to penetrate the nuclear industry. Concluding remarks address some of the challenges which must be faced in order to assure that high technology is successfully adapted and used

  15. Italian competitiveness in high technology industries

    International Nuclear Information System (INIS)

    Ferrari, S.; Palma, D.; Amendola, G.

    1993-01-01

    A sectoral analysis of 1978-1991 trends in the invention, manufacturing and marketing, in Italy, of high technology goods suggests the need for greater R ampersand D investment by government and private industry and a broadening of the number and type of industries now contributing to the strengthening of this nation's overall high technology industrial base. This is especially the case with regard to the electronics sector in view of the strategic importance of this vital industry and the strong competition being given by the newly industrialized countries located on the Pacific Rim. With reference to the European Communities common market strategies, intended as a buffer against future unified efforts by North American and Pacific Rim countries to consolidate global market share in high technology goods, recent investment trends reveal that Italy's response thus far has been slow and asymmetric

  16. How to reduce the ion feedback in GEM

    International Nuclear Information System (INIS)

    Park, S. H.; Kang, S. M.; Kim, Y. G.

    2003-01-01

    The feedback of positive ions in Gas Electron Multiplier(GEM) has to be suppressed to reduce the photocathode degradation in GEM photomultiplier and to prevent the field distortion in a Time Projection Chamber(TPC). The ion feedback dependency on the drift electric field, the transfer field, the asymmetry in the voltages across the GEM, and the effective gain was measured in various gases. The ion feedback is sensitive to the drift field and the effective gain. A model prediction of the ion feedback in multiple GEM was compared with the measurement. The ion gating method, which is being studyed in TPC, is introduced to reduce the ion feedback in GEM. With Maxwell and Garfield calculation, we obtained the reduction of the ion feedback by placing the wires between the drift plate and the GEM. We calculated the depedency of the ion feedback with respect to the bias voltage on the wire, the distance between the wires, and the distance between the wire and the GEM

  17. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  18. Gems of combinatorial optimization and graph algorithms

    CERN Document Server

    Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea

    2015-01-01

    Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science?   Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas.  Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks.   This ...

  19. Portable XRF: A Tool for the Study of Corundum Gems

    Directory of Open Access Journals (Sweden)

    Barone Germana

    2017-09-01

    Full Text Available Origin of gemstones is a key aspect not only in gemological field but also in Cultural Heritage studies, for the correct evaluation of precious artifacts. The studies on gems require the application of non-invasive and non-destructive methods; among them, portable spectroscopic techniques has been demonstrated as powerful tools, providing a fingerprint of gems for origin and provenance determination. In this study, portable XRF spectroscopy has been applied to test the potential of the technique for the origin determination of corundum gems. The obtained results allowed distinguishing natural and synthetic rubies and sapphires.

  20. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  1. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  2. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    CERN Document Server

    Gasik, Piotr

    2017-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019-2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of $\\sim$0.76 m$^2$ it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  3. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, P. [Physik Department E62, Technische Universität München, Garching (Germany); Excellence Cluster ‘Origin and Structure of the Universe’, Garching (Germany)

    2017-02-11

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019–2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of ∼0.76 m{sup 2} it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  4. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    International Nuclear Information System (INIS)

    Gasik, P.

    2017-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019–2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of ∼0.76 m 2 it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  5. The GEM detectors for the innermost region of the forward muon station of the LHCb experiment

    CERN Document Server

    Alfonsi, M

    The LHCb experiment will take place at the LHC accelerator at CERN and will start in 2008. It is dedicated to precision measurements of CP violation and rare decays in the b quark sec- tor. The apparatus is a single arm spectrometer and it is designed with a robust and flexible trigger in order to extensively gain access to a wide spread of differ ent physical processes involving beauty particles. This will allow to over-constrain the Standard M odel predictions about CP violation, and to discover any possible inconsistency, whi ch would reveal the presence of “New Physics” beyond the Standard Model. This thesis reports the work performed on two aspects of the L HCb experiment: the main contribution is the development and the construction of a de tector based on Gas Electron Multiplier (GEM) technology for the instrumentation of the high irradiated region around the beam pipe of the forward Muon Station; in the second part t he possibility of the search of the rare D 0 → + − decay at the LHCb exper...

  6. SYNTHESIS AND POLYMERIZATION OF GEM-METHYL(VINYLBENZYL)TETRACHLOROCYCLOTRIPHOSPHAZENE

    NARCIS (Netherlands)

    BOSSCHER, G; VANDEGRAMPEL, JC

    A new styrene-substituted chlorocyclotriphosphazene, gem-methyl(vinylbenzyl) tetrachlorocyclotriphosphazene, has been prepared from vinylbenzylmagnesium chloride and hexachlorocyclotriphosphazene. The organosubstituted chlorocyclotriphosphazene has been used in radical homo- and copolymerization

  7. A gravity model for crustal dynamics (GEM-L2)

    Science.gov (United States)

    Lerch, F. J.; Klosko, S. M.; Patel, G. B.; Wagner, C. A.

    1985-01-01

    The Laser Geodynamics Satellite (Lageos) was the first NASA satellite which was placed into orbit exclusively for laser ranging applications. Lageos was designed to permit extremely accurate measurements of the earth's rotation and the movement of the tectonic plates. The Goddard earth model, GEM-L2, was derived mainly on the basis of the precise laser ranging data taken on many satellites. Douglas et al. (1984) have demonstrated the utility of GEM-L2 in detecting the broadest ocean circulations. As Lageos data constitute the most extensive set of satellite laser observations ever collected, the incorporation of 2-1/2 years of these data into the Goddard earth models (GEM) has substantially advanced the geodynamical objectives. The present paper discusses the products of the GEM-L2 solution.

  8. Wits Post Graduate Symposium Poster - iGEM

    CSIR Research Space (South Africa)

    Millroy, L

    2010-08-01

    Full Text Available This document is a poster providing details of the 2010 International Genetically Engineered Machines (iGEM) competition. The origins of the competition, as well as criteria, judging, sponsors, topic and team, are briefly described....

  9. Toward improved guideline quality: using the COGS statement with GEM.

    Science.gov (United States)

    Shiffman, Richard N; Michel, Georges

    2004-01-01

    The Conference on Guideline Standardization (COGS) was convened to create a standardized documentation checklist for clinical practice guidelines in an effort to promote guideline quality and facilitate implementation. The statement was created by a multidisciplinary panel using a rigorous consensus development methodology. The Guideline Elements Model (GEM) provides a standardized approach to representing guideline documents using XML. In this work, we demonstrate the sufficiency of GEM for describing COGS components. Using the mapping between COGS and GEM elements we built an XSLT application to examine a guideline's adherence (or non-adherence) to the COGS checklist. Once a guideline has been marked up according to the GEM hierarchy, its knowledge content can be reused in multiple ways.

  10. Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    Czech Academy of Sciences Publication Activity Database

    Jardin, A.; Mazon, D.; O’Mullane, M.; Mlynář, Jan; Löffelmann, Viktor; Imríšek, Martin; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.; Bourdelle, C.; Malard, P.

    2016-01-01

    Roč. 11, July (2016), č. článku C07006. ISSN 1748-0221. [International Conference Frontiers in Diagnostics fix Technologies (ICFDT4). Frascati (Rome), 30.03.2016-01.04.2016] Institutional support: RVO:61389021 Keywords : GEM * SXR * tomography * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/07/C07006/pdf

  11. Performance of an optical readout GEM-based TPC

    International Nuclear Information System (INIS)

    Margato, L.M.S.; Fraga, F.A.F.; Fetal, S.T.G.; Fraga, M.M.F.R.; Balau, E.F.S.; Blanco, A.; Marques, R. Ferreira; Policarpo, A.J.P.L

    2004-01-01

    We report on the operation of a GEM-based small TPC using an optical readout. The detector was operated with a mixture of Ar+CF 4 using 5.48 MeV alpha particles obtained from a 241 Am source and the GEM scintillation was concurrently read by a CCD camera and a photomultiplier. Precision collimators were used to define the track orientation. Qualitative results on the accuracy of the track angle, length and charge deposition measurements are presented

  12. Morality and ethics in high technology

    International Nuclear Information System (INIS)

    Schroeter, K.U.

    2003-01-01

    The ethical debate about what is feasible culminates, for one side, in the indignant moral question whether man is allowed to do all he is able to do and, for the other side, in the very obligation to keep redefining the limits of creation, and to act accordingly. Consequently, the Young Generation, at their meeting in Gronau, Westphalia (about which we reported), discussed about ''High Technology - Responsible on Ethical and Moral Grounds?'' The paper presented to the participants by pastor Kai Uwe Schroeter reflects this dichotomy, but also takes a clear position in favor of the expansion of nuclear power. This issue of atw contains a revised version of the paper. It is published in the hope that it will furnish arguments for the philosophical and ethical debates about high technology. (orig.) [de

  13. Future Vehicle Technologies : high performance transportation innovations

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T. [Future Vehicle Technologies Inc., Maple Ridge, BC (Canada)

    2010-07-01

    Battery management systems (BMS) were discussed in this presentation, with particular reference to the basic BMS design considerations; safety; undisclosed information about BMS; the essence of BMS; and Future Vehicle Technologies' BMS solution. Basic BMS design considerations that were presented included the balancing methodology; prismatic/cylindrical cells; cell protection; accuracy; PCB design, size and components; communications protocol; cost of manufacture; and expandability. In terms of safety, the presentation addressed lithium fires; high voltage; high voltage ground detection; crash/rollover shutdown; complete pack shutdown capability; and heat shields, casings, and impact protection. BMS bus bar engineering considerations were discussed along with good chip design. It was concluded that FVTs advantage is a unique skillset in automotive technology and the development of speed and cost effectiveness. tabs., figs.

  14. PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors

    Science.gov (United States)

    Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny

    2016-08-01

    BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust

  15. Electronics, information, Communication and high technology

    International Nuclear Information System (INIS)

    1999-11-01

    The contents of this book are summary of investigation, investigation system, purpose of investigation, characteristic of this investigation, important studying and development filed, compare of the level of research and development, policy, characteristic of the respondent, a future illustration in 2025 cause of hindrance of realization, propel method of research and development, the prediction of the realization period the result of investigation in electronics, information communication and high technology.

  16. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  17. R\\&D results on a CsI-coated triple thick GEM-based photodetector

    CERN Document Server

    Martinengo, P; Paic, G; Paras, D M; Di Mauro, A; van Hoorne, J; Molnar, L; Peskov, V; Breskin, A

    2011-01-01

    The very high momentum particle identification detector proposed for the ALICE upgrade is a focusing RICH using a C(4)F(10) gaseous radiator. For the detection of Cherenkov photons, one of the options currently under investigation is to use a CsI-coated triple thick GEM with metallic or resistive electrodes. We will present results from the laboratory studies as well as preliminary results of beam tests of a RICH detector prototype consisting of a CaF(2) radiator coupled to a 10 x 10 cm(2) CsI-coated triple thick GEM equipped with a pad readout and GASSIPLEX-based front-end electronics. With such a prototype the detection of Cherenkov photons simultaneously with minimum ionizing particles has been achieved for the first time in a stable operation mode. (C) 2010 Elsevier B.V. All rights reserved.

  18. Aging measurements on triple-GEM detectors operated with $CF_{4}$-based gas mixtures

    CERN Document Server

    Alfonsi, M; De Simone, P; Murtas, F; Poli Lener, M P; Bonivento, W; Cardini, A; Raspino, D; Saitta, B; Pinci, D; Baccaro, S; 10.1016/j.nuclphysbps.2005.03.054

    2006-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV detectors performances have been measured with X-rays and with a 3 Ge V pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in a GEM detector during a strong irradiation.

  19. Aging measurements on triple-GEM detectors operated with $CF_{4}$- based gas mixtures

    CERN Document Server

    Alfonsi, M; Bencivenni, G; Bonivento, W; Cardini, A; Lener, M P; Murtas, F; Pinci, D; Raspino, D; Saitta, B; De Simone, P

    2004-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV gamma from a /sup 60/Co source. After the irradiation test the detectors performances have been measured with X-rays and with a 3 GeV pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in the GEM detector during the strong irradiation.

  20. A PHOTOMETRIC STUDY OF THE ALGOL-TYPE BINARY FG Gem

    International Nuclear Information System (INIS)

    Zhang, J.; Qian, S.-B.

    2013-01-01

    High-quality three-color light curves of the binary FG Gem were measured and analyzed. A new method based on extensive searching of isochrones was used to investigate possible parameters for the binary. FG Gem is found to be an Algol-type semi-detached binary system with a primary star temperature of 8200 K and a mass ratio of 0.41(1). The correctness and reliability of our result requires the verification of precision spectroscopy or standard star observations. We investigate a new possible cause for the orbital period variations based on times of minimum light data. It is suggested from the quantitative analysis that variations in the orbital period can be explained by intermittent mass transfer and angular momentum loss from stellar winds leaving the system on rotating magnetic fields.

  1. Commissioning and integration testing of the DAQ system for the CMS GEM upgrade

    CERN Document Server

    Castaneda Hernandez, Alfredo Martin

    2017-01-01

    The CMS muon system will undergo a series of upgrades in the coming years to preserve and extend its muon detection capabilities during the High Luminosity LHC.The first of these will be the installation of triple-foil GEM detectors in the CMS forward region with the goal of maintaining trigger rates and preserving good muon reconstruction, even in the expected harsh environment.In 2017 the CMS GEM project is looking to achieve a major milestone in the project with the installation of 5 super-chambers in CMS; this exercise will allow for the study of services installation and commissioning, and integration with the rest of the subsystems for the first time. An overview of the DAQ system will be given with emphasis on the usage during chamber quality control testing, commissioning in CMS, and integration with the central CMS system.

  2. Studies on GEM modules for a large prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2016-12-01

    The International Linear Collider (ILC) is a future electron-positron collider with centre of mass energy of 500-1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1-6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R and D; activities in order to prepare the next GEM module iteration are discussed.

  3. Studies on GEM modules for a Large Prototype TPC for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Tsionou, Dimitra, E-mail: dimitra.tsionou@desy.de

    2017-02-11

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  4. Studies on GEM modules for a Large Prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2017-01-01

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  5. Optical readout of a triple-GEM detector by means of a CMOS sensor

    Energy Technology Data Exchange (ETDEWEB)

    Marafini, M. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Patera, V. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Pinci, D., E-mail: davide.pinci@roma1.infn.it [INFN Sezione di Roma (Italy); Sarti, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Sciubba, A. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Spiriti, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2016-07-11

    In last years, the development of optical sensors has produced objects able to provide very interesting performance. Large granularity is offered along with a very high sensitivity. CMOS sensors with millions of pixels able to detect as few as two or three photons per pixel are commercially available and can be used to read-out the optical signals provided by tracking particle detectors. In this work the results obtained by optically reading-out a triple-GEM detector by a commercial CMOS sensor will be presented. A standard detector was assembled with a transparent window below the third GEM allowing the light to get out. The detector is supplied with an Ar/CF{sub 4} based gas mixture producing 650 nm wavelength photons matching the maximum quantum efficiency of the sensor.

  6. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  7. A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

    Science.gov (United States)

    Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans

    2011-10-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

  8. Study of the spatial resolution of low-material GEM tracking detectors

    Directory of Open Access Journals (Sweden)

    Kudryavtsev V.N.

    2018-01-01

    Full Text Available The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity. The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10−3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  9. Study of the spatial resolution of low-material GEM tracking detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2018-02-01

    The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity). The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10-3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  10. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    Science.gov (United States)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  11. GEM-E3: A computable general equilibrium model applied for Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, O. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Frei, C. [Ecole Polytechnique Federale de Lausanne (EPFL) and Paul Scherrer Inst. (Switzerland)

    2000-01-01

    The objectives of the European Research Project GEM-E3-ELITE, funded by the European Commission and coordinated by the Centre for European Economic Research (Germany), were to further develop the general equilibrium model GEM-E3 (Capros et al., 1995, 1997) and to conduct policy analysis through case studies. GEM-E3 is an applied general equilibrium model that analyses the macro-economy and its interaction with the energy system and the environment through the balancing of energy supply and demand, atmospheric emissions and pollution control, together with the fulfillment of overall equilibrium conditions. PSI's research objectives within GEM-E3-ELITE were to implement and apply GEM-E3 for Switzerland. The first objective required in particular the development of a Swiss database for each of GEM-E3 modules (economic module and environmental module). For the second objective, strategies to reduce CO{sub 2} emissions were evaluated for Switzerland. In order to develop the economic, PSI collaborated with the Laboratory of Applied Economics (LEA) of the University of Geneva and the Laboratory of Energy Systems (LASEN) of the Federal Institute of Technology in Lausanne (EPFL). The Swiss Federal Statistical Office (SFSO) and the Institute for Business Cycle Research (KOF) of the Swiss Federal Institute of Technology (ETH Zurich) contributed also data. The Swiss environmental database consists mainly of an Energy Balance Table and of an Emission Coefficients Table. Both were designed using national and international official statistics. The Emission Coefficients Table is furthermore based on know-how of the PSI GaBE Project. Using GEM-E3 Switzerland, two strategies to reduce the Swiss CO{sub 2} emissions were evaluated: a carbon tax ('tax only' strategy), and the combination of a carbon tax with the buying of CO{sub 2} emission permits ('permits and tax' strategy). In the first strategy, Switzerland would impose the necessary carbon tax to achieve

  12. GEM-E3: A computable general equilibrium model applied for Switzerland

    International Nuclear Information System (INIS)

    Bahn, O.; Frei, C.

    2000-01-01

    The objectives of the European Research Project GEM-E3-ELITE, funded by the European Commission and coordinated by the Centre for European Economic Research (Germany), were to further develop the general equilibrium model GEM-E3 (Capros et al., 1995, 1997) and to conduct policy analysis through case studies. GEM-E3 is an applied general equilibrium model that analyses the macro-economy and its interaction with the energy system and the environment through the balancing of energy supply and demand, atmospheric emissions and pollution control, together with the fulfillment of overall equilibrium conditions. PSI's research objectives within GEM-E3-ELITE were to implement and apply GEM-E3 for Switzerland. The first objective required in particular the development of a Swiss database for each of GEM-E3 modules (economic module and environmental module). For the second objective, strategies to reduce CO 2 emissions were evaluated for Switzerland. In order to develop the economic, PSI collaborated with the Laboratory of Applied Economics (LEA) of the University of Geneva and the Laboratory of Energy Systems (LASEN) of the Federal Institute of Technology in Lausanne (EPFL). The Swiss Federal Statistical Office (SFSO) and the Institute for Business Cycle Research (KOF) of the Swiss Federal Institute of Technology (ETH Zurich) contributed also data. The Swiss environmental database consists mainly of an Energy Balance Table and of an Emission Coefficients Table. Both were designed using national and international official statistics. The Emission Coefficients Table is furthermore based on know-how of the PSI GaBE Project. Using GEM-E3 Switzerland, two strategies to reduce the Swiss CO 2 emissions were evaluated: a carbon tax ('tax only' strategy), and the combination of a carbon tax with the buying of CO 2 emission permits ('permits and tax' strategy). In the first strategy, Switzerland would impose the necessary carbon tax to achieve the reduction target, and use the tax

  13. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  14. A Cylindrical GEM Detector with Analog Readout for the BESIII Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G. [BESIII CGEM group, INFN Ferrara (Italy)

    2015-07-01

    Inner Trackers (IT) are key detectors in Particle Physics experiments; excellent spatial resolution, radiation transparency and hardness, and operability under high occupancies are main requirements. We aim to design, build and commission by 2017 a Cylindrical GEM (CGEM) detector candidate to be the new IT of the BESIII spectrometer, hosted on BEPC2 in IHEP, Beijing; BESIII data taking will last until at least 2020. The IT itself will represent an evolution w.r.t. the state of the art of GEM detectors, since the use of new kind of mechanical supports for the GEM foils will reduce the total radiation length of the detector and improve its tracking performance; an innovative design of the CGEM anode will allow for smaller capacitance and hence for bigger signals. The relatively strong BESIII magnetic field requires a new analogue readout; full custom front-end electronics, including a dedicated ASIC, will be designed and produced for optimal data collection. Prototype Beam Test results showing the measurement of the spatial resolution in a 1 Tesla magnetic field will be presented among with the mechanical design and simulations. (authors)

  15. Test beam studies of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system

    CERN Document Server

    Sharma, Ram Krishna

    2017-01-01

    The High Luminosity LHC (HL-LHC) will provide exceptional high instantaneous and integrated luminosity. The forward region $\\mid \\eta \\mid \\geq 1.5$ of the CMS detector will face extremely high particle rates in tens of $KHz/cm^{2}$ and hence it will affect the momentum resolution and longevity of the muon detectors. To overcome these issues the CMS collaboration has decided to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region $(1.5 \\leq \\eta \\leq 2.2)$ of muon endcap during the LS2 of the LHC and the next one will be installed in the GE2/1 region $(1.6 \\leq \\eta \\leq 2.5)$, during the LS3. Towards this goal, full-size CMS Triple GEM prototype chambers have been fabricated and put under the test beam at the CERN SPS test beam facility. The GEM detectors were operated with two gas mixtures $Ar/CO_{2}$ (70/30) and $Ar/CO_{2}/CF_{4}$ (40/15/45). In 2014 and 2016, ...

  16. Technology Management within Product Lines in High Technology Markets

    Science.gov (United States)

    Sarangee, Kumar R.

    2009-01-01

    Understanding the nuances of product line management has been of great interest to business scholars and practitioners. This assumes greater significance for firms conducting business in technologically dynamic industries, where they face certain challenges regarding the management of multiple, overlapping technologies within their product lines.…

  17. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  18. Control and supervision of a time projection chamber with GEM readout; Steuerung und Ueberwachung einer Zeitprojektionskammer mit GEM-Auslese

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, David

    2014-02-03

    store several parameters - e.g. voltages, currents, temperatures or gas flows - with high precision during the beam times and test measurements carried out. The SlowControl- GUI features a good handling and a display of the measured values in real-time. From the data recorded with the GEM-TPC, the actual drift velocities of the electrons within the detector volume have been extracted and compared with the theoretical predictions of the simulation. Hence, the error in the reconstruction of the z component was minimized thus, improving further analysis of the data.

  19. CMS GEM detector material study for the HL-LHC

    CERN Document Server

    Muhammad, Saleh

    2017-01-01

    A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate and saturation level and the moisture effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the detector polyimide. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption on a sample. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties.

  20. Development of single mask GEM foils in India

    International Nuclear Information System (INIS)

    Pant, L.M.; Mohanty, A.K.; Pinto, O.J.; Gadhadharan, S.; Menon, Pradeep; Sharma, Archana; Oliveira, Rui De; )

    2014-01-01

    There are various techniques available around the globe for making punch through holes for Micro Pattern Gas Detectors (MPGDs), such as Gas Electron Multipliers (GEMs). The GEM foils consists of 5 μm of Cu clad on both the sides of 50 μm polymide (PMMA/kapton) (5/50/5). At present these foils are developed in South Korea without having any adhesive between the Cu and polymide. The available techniques range from chemical etching, reactive plasma etching and laser etching. However, for GEM detectors, having an active area upto 5000 cm 2 , the chemical etching process using a Single Mask has been developed at CERN which is faster from the viewpoint of mass production of such foils for the upgrades which are foreseen in a couple of years with the Large Hadron Collider facility at CERN

  1. Irradiation study on GEM IPC preamp/shaper

    International Nuclear Information System (INIS)

    Kandasamy, A.

    1995-01-01

    The Preamplifier/Shaper Integrated Circuit for the GEM Interpolating Pad Chamber (IPC), designed by Paul. O'Connor, Brookhaven National Laboratory is for amplifying the charge signal from the Pad cathodes into a voltage pulse which goes to the Analog Random Access Memory (ARAM) integrated circuit. The GEM IPC integrated circuit has a SemiGaussian voltage pulse output with a 30ns shaping time. The integrated circuits were fabricated using Harris Semiconductors AVLSI1-RA process in-order for the electronics on the wafer to survive up to 2 mad of ionizing radiation during its operation life time. The details of the electronics on the GEM IPC integrated circuits is explained in the design memorandum by Paul. O'Connor. The purpose of this study is to determine the ability of the electronics on this IC fabricated using the above process to withstand ionizing radiation up to the above mentioned dose level

  2. Experimental and Theoretical Progress on the GEM Theory

    Science.gov (United States)

    Brandenburg, J. E.

    This paper reports experimental and theoretical progress on the GEM unification theory. In theoretical progress, the derivation of the GEM theory using it in a fully covariant form is achieved based on the principle of self-cancellation of the ZPF EM stress-momentum tensor. This derivation reveals that the final Gravity-EM system obeys a Helmholtz-like equation resembling that governing sound propagation. Finally an improved derivation of the formula for the Newton Gravitation constant is shown, qresulting in the formula G = e2/(4πɛ0 me mp) α exp (-2 (α-.86/σ2…) = 6.673443 x10-11 N-m2 kg-2 that agrees with experimental values to 3 parts per 100,000. Experiments have found parity violating weight reductions in gyroscopes driven by rotating EM fields. These experiments appear to confirm gravity modification using electromagnetism predicted by the GEM theory through the Vacuum Bernoulli Equation.

  3. Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband

    CERN Document Server

    AUTHOR|(CDS)2074269; Grasso, L; Locke, J B; Quintero, A; Mitra, D

    2009-01-01

    Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

  4. Lecture note on circuit technology for high energy physics experiment

    International Nuclear Information System (INIS)

    Ikeda, Hirokazu.

    1992-07-01

    This lecture gives basic ideas and practice of the circuit technology for high energy physics experiment. The program of this lecture gives access to the integrated circuit technology to be applied for a high luminosity hadron collider experiment. (author)

  5. Uniformity studies in large area triple-GEM based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Akl, M. Abi [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Bouhali, O., E-mail: othmane.bouhali@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Qatar Computing Research Institute, Hamad Bin Khalifa University, PO Box 5825, Doha (Qatar); Castaneda, A.; Maghrbi, Y.; Mohamed, T. [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar)

    2016-10-01

    Gas Electron Multiplier (GEM) based detectors have been used in many applications since their introduction in 1997. Large areas, e.g. exceeding 30×30 cm{sup 2}, of GEM detectors are foreseen in future experiments which puts stringent requirements on the uniformity of response across the detection area. We investigate the effect of small variations of several parameters that could affect the uniformity. Parameters such as the anode pitch, the gas gap, the size and the shape of the holes are investigated. Simulation results are presented and compared to previous experimental data.

  6. Measurement of CP-violation with the GEM detector

    International Nuclear Information System (INIS)

    Yamamoto, Hiroaki

    1993-01-01

    In this note, the feasibility of measuring CP-violation in the B-meson system with the GEM detector at SSC is described, using the decay mode B d → J/ψ + K 0 S → μ + μ - π + π - for the β angle measurement. In Section 2, the signature of the signal is discussed. Section 3 is devoted to a description of the GEM performance, including the estimation of the backgrounds. The rate of the signal is discussed in Section 4, and the summary is given in Section 5

  7. HydroGEM, a hydrogen fuelled utility vehicle. Case study

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Kraaij, G.J.; De Bruijne, M.; Weeda, M.

    2010-02-01

    This report describes the conversion of a Global Electric Motorcars (GEM, a Chrysler company) electric utility vehicle into a Fuel Cell Vehicle called HydroGEM, at the Energy research Centre of the Netherlands (ECN). The report is prepared as a case study within the framework of Task 18 on 'Evaluation of Integrated Hydrogen Systems' of the IEA Hydrogen Implementing Agreement. The vehicle's fuel cell system was designed in 2005, manufactured and built into the vehicle in 2006 and operated from 2007 onwards. The design-choices, assembly, operation and maintenance-issues are presented and discussed.

  8. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  9. Entrepreneurship in Ireland 2012: global entrepreneurship monitor (GEM)

    OpenAIRE

    Fitzsimons, Paula; O'Gorman, Colm

    2013-01-01

    Report on entrepreneurship in Ireland in the year 2012. Data used is the Global Entrepreneurship Monitor (GEM) data for Ireland and selected comparative countries. The report profiles entrepreneurs, reports on the rate of entrepreneurship in Ireland, discusses female entrepreneurship, and positions these results in the context of Irish entrepreneurship policy.

  10. Some Interesting Mathematical Gems -R-ES-ONANCE--Isep-te ...

    Indian Academy of Sciences (India)

    Same thing applies to results cho- sen here" I shall not refer to gems like Godel's incom- plete theorern or the ... ematics, theoretical computer science, probability and statistics. Based on an invited talk dedi- cated to Dr P L Bhatnagar,. Founder Professor of the Math- ematics Department (then known as Department of Ap-.

  11. Hard assets : The return on rare diamonds and gems

    NARCIS (Netherlands)

    Renneboog, L.D.R.; Spaenjers, C.

    2012-01-01

    This note examines the investment performance of diamonds and other gems (sapphires, rubies, and emeralds) over the period 1999–2010, using a novel data set of auction transactions. Over our time frame, the annualized real USD returns for white and colored diamonds equaled 6.4% and 2.9%,

  12. Hard Assets : The Returns on Rare Diamonds and Gems

    NARCIS (Netherlands)

    Renneboog, L.D.R.; Spaenjers, C.

    2011-01-01

    This paper examines the investment performance of diamonds and other gems (sapphires, rubies, and emeralds) over the period 1999-2010, using a novel data set of auction transactions. Between 1999 and 2010, the annualized real USD returns for white and colored diamonds equaled 6.4% and 2.9%,

  13. Hard assets : The return of rare diamonds and gems

    NARCIS (Netherlands)

    Renneboog, Luc; Spaenjers, Christophe; Grynberg, Roman; Mbayi, Letsema

    This note examines the investment performance of diamonds and other gems (sapphires, rubies, and emeralds) over the period 1999–2010, using a novel data set of auction transactions. Over our time frame, the annualized real USD returns for white and colored diamonds equaled 6.4% and 2.9%,

  14. Dijk- en oeverval aan den cal. Willem Annapolder (Gem. Kapelle)

    NARCIS (Netherlands)

    Verhagen, H.J.

    1936-01-01

    Foto's van de aanleg van de dijk- en oeverval aan den cal. Willem Annapolder (Gem. Kapelle) 3. Linkerhelft dijkval Willem Annapolder. 30 Dec. 1936 4. Rechtehelft dijkval Willem Annapolder. 30 Dec. 1936 5. Overzicht dijkval Willem Annaolder. 30 Dec. 1936 6. Kleikisting binnendijks aangebacht. 14/15

  15. Quality of the spare triple-GEM detectors

    CERN Document Server

    Lenci, Rosario; Paoletti, Emiliano; Pasquali, Luigi; Pinci, Davide; Piscitelli, Carmelo; Poli Lener, Marco; Sciubba, Adalberto; Tskhadadze, Edisher

    2017-01-01

    Triple-GEM chambers equip the inner region of the M1 muon station. In order to provide spare detectors in case of problems in the operating ones, new chambers have been assembled at the Frascati National Laboratories of the INFN. This note summarizes the results of the quality tests performed at the end of the production procedure.

  16. Climbing Up the Technology Ladder? High-Technology Exports in China and Latin America

    OpenAIRE

    Gallagher, Kevin P.; Porzecanski, Roberto

    2008-01-01

    In this paper we determine the “dynamic revealed competitiveness position” (DRCP) of nations for high technology exports between 1980 and 2005. We find that the developed world has lost significant market share in high technology and that China has climbed the high technology ladder during this period. In 1980 China was ranked 99th of all nations in terms of the percentage of global exports in high technology. By 2005 China climbed to second place in the world, first place if high technology ...

  17. Applications of Mapping and Tomographic Techniques in Gem Sciences

    Science.gov (United States)

    Shen, A. H.

    2014-12-01

    Gem Sciences are scientific studies of gemstones - their genesis, provenance, synthesis, enhancement, treatment and identification. As high quality forms of specific minerals, the gemstones exhibit unusual physical properties that are usually unseen in the regular counterparts. Most gemstones are colored by trace elements incorporated in the crystal lattice during various growth stages; forming coloration zones of various scales. Studying the spectral and chemical contrast across color zones helps elucidating the origins of colors. These are done by UV-visible spectrometers with microscope and LA-ICPMS in modern gemological laboratories. In the case of diamonds, their colored zones arise from various structural defects incorporated in different growth zones and are studied with FTIR spectrometers with IR microscope and laser photoluminescence spectrometers. Advancement in modern synthetic techniques such as chemical vapor deposition (CVD) has created some problem for identification. Some exploratory experiments in carbon isotope mapping were done on diamonds using SIMS. The most important issue in pearls is to identify one particular pearl being a cultured one or a natural pearl. The price difference can be enormous. Classical way of such identification is done by x-ray radiographs, which clearly show the bead and the nacre. Modern cultured pearl advancement has eliminated the need for an artificial bead, but a small piece of tissue instead. Nowadays, computer x-ray tomography (CT) scanning devices are used to depict the clear image of the interior of a pearl. In the Chinese jade market, filling fissures with epoxy and/or wax are very commonly seen. We are currently exploring Magnetic Resonance Imaging (MRI) technique to map the distribution of artificial resin within a polycrystalline aggregates.

  18. Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials.

    Science.gov (United States)

    Lahuerta, Juan-Jose; Paiva, Bruno; Vidriales, Maria-Belen; Cordón, Lourdes; Cedena, Maria-Teresa; Puig, Noemi; Martinez-Lopez, Joaquin; Rosiñol, Laura; Gutierrez, Norma C; Martín-Ramos, María-Luisa; Oriol, Albert; Teruel, Ana-Isabel; Echeveste, María-Asunción; de Paz, Raquel; de Arriba, Felipe; Hernandez, Miguel T; Palomera, Luis; Martinez, Rafael; Martin, Alejandro; Alegre, Adrian; De la Rubia, Javier; Orfao, Alberto; Mateos, María-Victoria; Blade, Joan; San-Miguel, Jesus F

    2017-09-01

    Purpose To perform a critical analysis on the impact of depth of response in newly diagnosed multiple myeloma (MM). Patients and Methods Data were analyzed from 609 patients who were enrolled in the GEM (Grupo Español de Mieloma) 2000 and GEM2005MENOS65 studies for transplant-eligible MM and the GEM2010MAS65 clinical trial for elderly patients with MM who had minimal residual disease (MRD) assessments 9 months after study enrollment. Median follow-up of the series was 71 months. Results Achievement of complete remission (CR) in the absence of MRD negativity was not associated with prolonged progression-free survival (PFS) and overall survival (OS) compared with near-CR or partial response (median PFS, 27, 27, and 29 months, respectively; median OS, 59, 64, and 65 months, respectively). MRD-negative status was strongly associated with prolonged PFS (median, 63 months; P < .001) and OS (median not reached; P < .001) overall and in subgroups defined by prior transplantation, disease stage, and cytogenetics, with prognostic superiority of MRD negativity versus CR particularly evident in patients with high-risk cytogenetics. Accordingly, Harrell C statistics showed higher discrimination for both PFS and OS in Cox models that included MRD (as opposed to CR) for response assessment. Superior MRD-negative rates after different induction regimens anticipated prolonged PFS. Among 34 MRD-negative patients with MM and a phenotypic pattern of bone marrow involvement similar to monoclonal gammopathy of undetermined significance at diagnosis, the probability of "operational cure" was high; median PFS was 12 years, and the 10-year OS rate was 94%. Conclusion Our results demonstrate that MRD-negative status surpasses the prognostic value of CR achievement for PFS and OS across the disease spectrum, regardless of the type of treatment or patient risk group. MRD negativity should be considered as one of the most relevant end points for transplant-eligible and elderly fit patients

  19. Analysis of GEM properties and development of a GEM support structure for the ILD time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Hallermann, Lea

    2010-04-15

    In the concept of the International Large Detector (ILD), developed for the International Linear Collider (ILC) a Time Projection Chamber (TPC) is envisaged as main tracking detector. Such gaseous detectors have to be equipped with amplification devices in order to enlarge the amount of charge, which is set free by ionization caused by traversing charged particles. Micro Pattern Gas Detectors (MPGDs) will be used in the ILD TPC as amplification stage. In this thesis, Gas Electron Multipliers (GEMs) - one specific MPGD species - are analyzed concerning various properties. Effective gains and energy resolutions are compared for GEM foils produced by different manufacturers. A good understanding of these observables is obtained by interpretation of the results with the help of geometrical parameters. Height profile measurements of GEM foils have been performed for the first time and the impact of non perfect flat GEMs is analyzed, especially on dE/dx determination and drift field quality. The results emphasize the need of a flat installation of GEMs in TPCs. As a consequence, a new mounting device has been developed to ensure flatness and to provide a method to cover large readout areas, as in the ILD TPC, by introducing the least possible amount of dead material into the detector. The developed structure has been tested in a TPC protoype, taking cosmic muon data. The influence of the mounting on track reconstruction, single point resolution, tracking efficiency and dE/dx measurements is quantified. The developed mounting is applicable in a large scale TPC, if some design considerations are taken into account. (orig.)

  20. Analysis of GEM properties and development of a GEM support structure for the ILD time projection chamber

    International Nuclear Information System (INIS)

    Hallermann, Lea

    2010-04-01

    In the concept of the International Large Detector (ILD), developed for the International Linear Collider (ILC) a Time Projection Chamber (TPC) is envisaged as main tracking detector. Such gaseous detectors have to be equipped with amplification devices in order to enlarge the amount of charge, which is set free by ionization caused by traversing charged particles. Micro Pattern Gas Detectors (MPGDs) will be used in the ILD TPC as amplification stage. In this thesis, Gas Electron Multipliers (GEMs) - one specific MPGD species - are analyzed concerning various properties. Effective gains and energy resolutions are compared for GEM foils produced by different manufacturers. A good understanding of these observables is obtained by interpretation of the results with the help of geometrical parameters. Height profile measurements of GEM foils have been performed for the first time and the impact of non perfect flat GEMs is analyzed, especially on dE/dx determination and drift field quality. The results emphasize the need of a flat installation of GEMs in TPCs. As a consequence, a new mounting device has been developed to ensure flatness and to provide a method to cover large readout areas, as in the ILD TPC, by introducing the least possible amount of dead material into the detector. The developed structure has been tested in a TPC protoype, taking cosmic muon data. The influence of the mounting on track reconstruction, single point resolution, tracking efficiency and dE/dx measurements is quantified. The developed mounting is applicable in a large scale TPC, if some design considerations are taken into account. (orig.)

  1. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  2. Limits of a spatial resolution of the cascaded GEM based detectors

    International Nuclear Information System (INIS)

    Kudryavtsev, V.N.; Maltsev, T.V.; Shekhtman, L.I.

    2017-01-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10–20 μm can be achieved with a gas mixture of Ar-CO 2 (75%–25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70–100 μm at a pitch of 450–500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  3. Limits of a spatial resolution of the cascaded GEM based detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-06-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10-20 μm can be achieved with a gas mixture of Ar-CO2 (75%-25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70-100 μm at a pitch of 450-500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  4. Comparison of Experiment and Simulation of the triple GEM-Based Fast Neutron Detector

    International Nuclear Information System (INIS)

    Wang Xiao-Dong; Luo Wen; Zhang Jun-Wei; Yang He-Run; Duan Li-Min; Lu Chen-Gui; Hu Rong-Jiang; Hu Bi-Tao; Zhang Chun-Hui; Yang Lei; Zhou Jian-Rong; An Lv-Xing

    2015-01-01

    A detector for fast neutrons based on a 10 × 10 cm"2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented. (paper)

  5. Agile Port and High Speed Ship Technologies

    Science.gov (United States)

    2009-12-31

    Alternative Shipboard Powering Systems for Naval and Regulatory Review • The Evaluation and Implementation Plan for Southern California Maglev ...Ackerman". CSULB Foundation Annual Report. CSULB Foundation, Long Beach, CA. December 2005. " Maglev Technology ’Conveys’ Port Transportation Solutions...34. Newsflash. College of Engineering, California State University, Long Beach. Cover page. Spring 2006 Hanson, Kristopher. "Engineers Tout Maglev at

  6. Innovative and basic researches for high temperature technologies at HTTR

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    1995-01-01

    The HTTR is the first HTGR which is under construction at JAERI. The objectives of the HTTR are to establish basic technologies for HTGRs, to upgrade technologies for HTGRs and to conduct innovative and basic researches for high temperature technologies. The first two are concerned with HTGR developments. The last one is not necessarily for HTGR developments, but for future innovative researches which are expected to be applied to various technologies. (author)

  7. Surface Features and Cathodoluminescence (CL) Characteristics of Corundum Gems from Eastern of Thailand

    Science.gov (United States)

    Boonsoong, A.

    2017-12-01

    Thailand has long been well known as a supplier of gemstones and also one of the world's color stone centers for decades. The principal gemstones are corundum, garnet and zircon. The corundum deposits of Chanthaburi-Trat Provinces form the most significant ruby-sapphire concentration in Thailand. Corundums are commonly found in secondary deposits (alluvium, elluvial, residual-soil and colluvium deposits as well as stream sediments) with the thickness of the gem-bearing layer varying from 10-100cm and the thickness of the overburden ranging up to 15m. A number of corundum samples were collected from each of the twenty-nine corundum deposits in the Chanthaburi-Trat gem fields, eastern of Thailand. Corundum varies in colour across the region with colours associated with three geographic zones; a western zone, characterized by blue, green and yellow sapphires; a middle zone with blue, green sapphires plus rubies; and an eastern zone yielding mainly rubies. This project has aim to study surface features and characterize the Cathodoluminescence (CL) of corundum gems in the Chanthaburi-Trat gem fields, Thailand. Surfaces of the corundums under a scanning electron microscope show triangular etch features and randomly oriented needle-like patterns. These reveal that the corundums have interacted with the magma during their ascent to the Earth's surface. Surface features attributable to transport and weathering processes are scratches, conchoidal fractures and a spongy surface appearance. Clay minerals and Fe-Ti oxide minerals deposited on the spongy surfaces of some corundums also indicate that these grains experienced chemical weathering or reacted with the soil solution while they were in the alluvium. Cathodoluminescence shows some blue sapphires to exhibit dull blue luminescence. The main cause of the CL appearance of sapphires is likely to be a quench centre, Fe2+ in their structure. The bright red luminescence in corundum reflects a high Cr3+ content and is always

  8. Has the First Global Financial Crisis Changed the Entrepreneurial Values in Digitalized Marketing-based Societies? The Case of GEM Latin American Countries

    OpenAIRE

    José Manuel Saiz Álvarez; Alicia Coduras Martínez; Carlos Cuervo Arango

    2017-01-01

    As the world economy is globalized, crises are rapidly spread due to the massive use of ICTs (Information and Communication Technologies), also affecting the entrepreneurial values involved in business creation processes. In this sense, digital marketing has a key role to play, as it can serve as a tool based on technology applied to foster nascent entrepreneurship. Using data for GEM Latin American countries, and applying clustering analysis based on the K-means method, the objective of this...

  9. Emerging technologies for high performance infrared detectors

    OpenAIRE

    Tan Chee Leong; Mohseni Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as...

  10. GEM1: First-year modeling and IT activities for the Global Earthquake Model

    Science.gov (United States)

    Anderson, G.; Giardini, D.; Wiemer, S.

    2009-04-01

    GEM is a public-private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) to build an independent standard for modeling and communicating earthquake risk worldwide. GEM is aimed at providing authoritative, open information about seismic risk and decision tools to support mitigation. GEM will also raise risk awareness and help post-disaster economic development, with the ultimate goal of reducing the toll of future earthquakes. GEM will provide a unified set of seismic hazard, risk, and loss modeling tools based on a common global IT infrastructure and consensus standards. These tools, systems, and standards will be developed in partnership with organizations around the world, with coordination by the GEM Secretariat and its Secretary General. GEM partners will develop a variety of global components, including a unified earthquake catalog, fault database, and ground motion prediction equations. To ensure broad representation and community acceptance, GEM will include local knowledge in all modeling activities, incorporate existing detailed models where possible, and independently test all resulting tools and models. When completed in five years, GEM will have a versatile, penly accessible modeling environment that can be updated as necessary, and will provide the global standard for seismic hazard, risk, and loss models to government ministers, scientists and engineers, financial institutions, and the public worldwide. GEM is now underway with key support provided by private sponsors (Munich Reinsurance Company, Zurich Financial Services, AIR Worldwide Corporation, and Willis Group Holdings); countries including Belgium, Germany, Italy, Singapore, Switzerland, and Turkey; and groups such as the European Commission. The GEM Secretariat has been selected by the OECD and will be hosted at the Eucentre at the University of Pavia in Italy; the Secretariat is now formalizing the creation of the GEM Foundation. Some of GEM's global

  11. The determination of the orbit of the Japanese satellite Ajisai and the GEM-T1 and GEM-T2 gravity field models

    Science.gov (United States)

    Sanchez, Braulio V.

    1990-01-01

    The Japanese Experimental Geodetic Satellite Ajisai was launched on August 12, 1986. In response to the TOPEX-POSEIDON mission requirements, the GSFC Space Geodesy Branch and its associates are producing improved models of the Earth's gravitational field. With the launch of Ajisai, precise laser data is now available which can be used to test many current gravity models. The testing of the various gravity field models show improvements of more than 70 percent in the orbital fits when using GEM-T1 and GEM-T2 relative to results obtained with the earlier GEM-10B model. The GEM-T2 orbital fits are at the 13-cm level (RMS). The results of the tests with the various versions of the GEM-T1 model indicate that the addition of satellite altimetry and surface gravity anomalies as additional data types should improve future gravity field models.

  12. Development of a GEM-based TPC for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, Christian; Ketzer, Bernhard; Konorov, Igor; Mann, Alexander; Neubert, Sebastian; Paul, Stephan; Weitzel, Quirin; Woerner, Lisa [Technische Universitaet Muenchen, Physik Department E18, 85748 Garching (Germany)

    2008-07-01

    A TPC is considered as the central tracker of the PANDA experiment, which is currently being planned at the new accelerator complex FAIR at Darmstadt. PANDA is designed as an internal target experiment at the antiproton storage ring HESR. The central tracker has to measure particle trajectories over a wide momentum range (0.1-8 GeV/c) from up to 2.10{sup 7} antiproton-proton annihilations/s. The continuous nature of the antiproton beam makes the use of a traditional ion gate impractical. Owing to their intrinsic ion suppression properties, GEM foils are planned as the amplification stage. A small prototype of this GEM-TPC (diameter 200 mm, drift length 77 mm) has been built and characterized with cosmic muons. Results such as spatial resolution, cluster distributions, and diffusion properties are presented in this talk.

  13. Ion space-charge effects in multi-GEM detectors: challenges and possible solutions for future applications

    CERN Document Server

    AUTHOR|(CDS)2079251; Streli, Christina

    Gaseous Electron Multiplier (GEM) detectors are well known both for stable operation under irradiation with high particle fluxes and high achievable effective gains. The aim of this thesis is two-fold: to investigate the limits of GEM detector operation due to space-charge effects, and to develop a means to reduce the magnitude of the observed effects and thus extend those limitations. The first part of the thesis presents a comprehensive study of the intrinsic limits of triple-GEM detectors under exposure to very high fluxes of soft X-rays or operation at very large effective gains. The behaviour of the effective gain, ion back-flow and the pulse-height spectra is explained in terms of the movement and accumulation of positive ions throughout the detector volume, resulting in distortions of the transfer and amplification fields. Numerical computations, and measurements on double-stage and single-stage detectors confirm the model describing the observed effects. Discussions on ways to extend the limits of gas...

  14. State investments in high-technology job growth.

    Science.gov (United States)

    Leicht, Kevin T; Jenkins, J Craig

    2017-07-01

    Since the early 1970's state and local governments have launched an array of economic development programs designed to promote high-technology development. The question our analysis addresses is whether these programs promote long-term high-technology employment growth net of state location and agglomeration advantages. Proponents talk about an infrastructure strategy that promotes investment in public research and specialized infrastructure to attract and grow new high technology industries in specific locations, and a more decentralized entrepreneurial strategy that reinforces local agglomeration capacities by investing in new enterprises and products, promoting the development of local networks and partnerships. Our results support the entrepreneurial strategy, suggesting that state governments can accelerate high technology development by adopting market-supportive programs that complement private sector initiatives. In addition to positive direct benefits of technology deployment/transfer programs and SBIR programs, entrepreneurial programs affect change in high-technology employment in concert with existing locational and agglomeration advantages. Rural (i.e. low population density) states tend to benefit by technology development programs. Infrastructure strategy programs also facilitate high technology job growth in places where local advantages already exist. Our results suggest that critics of industrial policy are correct that high technology growth is organic and endogenous, yet state governments are able to "pick winners and losers" in ways that grow their local economy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The R + D transfer in Spain: diagnostic based 2006 GEM

    International Nuclear Information System (INIS)

    Coduras Martinez, A.; Urbano Pulido, D.; Ruiz Navarro, J.

    2007-01-01

    The main purpose of this research is to analyse in the international context the situation today of the Spanish R and D transference from the scientific field to the firms, using 2006 GEM data as well as complementary data sources. The main findings of the study emphasize a difficult scenario concerning the R and D transference to the Spanish enterprises. Although these negative results, some data suggest a significant improvement in this area in the near future. (Author) 9 refs

  16. Serial data acquisition for GEM-2D detector

    International Nuclear Information System (INIS)

    Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Pawel; Mazon, Didier; Malard, Philippe; Herrmann, Albrecht; Vezinet, Didier

    2014-01-01

    This article debates about data fast acquisition and histogramming method for the X-ray GEM detector. The whole process of histogramming is performed by FPGA chips (Spartan-6 series from Xilinx). The results of the histogramming process are stored in an internal FPGA memory and then sent to PC. In PC data is merged and processed by MATLAB. The structure of firmware functionality implemented in the FPGAs is described. Examples of test measurements and results are presented. (authors)

  17. Characterization of a glass GEM for sealed detectors application and reduction of charging-up effects

    CERN Document Server

    Erdal, Eran

    2014-01-01

    Apart from high energy physics experiments, there has been a great effort in recent years to incorporate MPGDs in many other applications i.e. medical treatments and imaging and home land security. However, MPGDs (as most gaseous detectors) are normally operated under a constant flushing of the gas. Their use thus turns them expensive since they rely on a constant gas supply and a suitable infrastructure, but most important is the loss of their portability. These reasons have pushed the community to search for other solutions, aiming for the development of sealed detectors. The demands for such is to be made out of low outgassing rate materials and possibly the use of only noble gas to avoid aging due to chemical activity of the ionized gas of the avalanche. The default material for GEM detectors - Polyimide (Kapton), is not suitable for a sealed detector because of its high outgassing rate, thus calling for new solutions. Moreover, GEMs, being essentially made out of an insulating material, pose a problem in...

  18. The Shape of Long Outbursts in U Gem Type Dwarf Novae from AAVSO Data

    Science.gov (United States)

    Cannizzo, John K.

    2012-01-01

    We search the American Association of Variable Star Observers (AAVSO) archives of the two best studied dwarf novae in an attempt to find light curves for long out bursts that are extremely well-characterized. The systems are U Gem and S8 Cyg. Our goal is to search for embedded precursors such as those that have been found recently in the high fidelity Kepler data for superoutbursts of some members of the 8U UMa subclass of dwarf novae. For the vast majority of AAV80 data, the combination of low data cadence and large errors associated with individual measurements precludes one from making any strong statement about the shape of the long outbursts. However, for a small number of outbursts, extensive long term monitoring with digital photometry yields high fidelity light curves. We report the finding of embedded precursors in two of three candidate long outbursts. This reinforces van Paradijs' finding that long outbursts in dwarf novae above the period gap and superoutbursts in systems below the period gap constitute a unified class. The thermal-tidal instability to account for superoutbursts in the SU UMa stars predicts embedded precursors only for short orbital period dwarf novae, therefore the presence of embedded precursors in long orbital period systems - U Gem and SS Cyg - argues for a more general mechanism to explain long outbursts.

  19. Live event reconstruction in an optically read out GEM-based TPC

    Science.gov (United States)

    Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-04-01

    Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.

  20. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  1. A refined gravity model from Lageos /GEM-L2/

    Science.gov (United States)

    Lerch, F. J.; Klosko, S. M.; Patel, G. B.

    1982-01-01

    Lageos satellite laser ranging (SLR) data taken over a 2.5 yr period were employed to develop the Goddard Earth Model GEM-L2, a refined gravity field model. Additional data was gathered with 30 other satellites, resulting in spherical harmonics through degree and order 20, based on over 600,000 measurements. The Lageos data was accurate down to 10 cm, after which the GEM 9 data were used to make adjustments past order 7. The resolution of long wavelength activity, through degree and order 4, was made possible by the Lageos data. The GEM-L2 model features a 20 x 20 geopotential, tracking station coordinates (20), 5-day polar motion and A1-UT1 values, and a GM value of 398,600.607 cu km/sq sec. The accuracy of station positioning has been raised to within 6 cm total position globally and within 1.8 cm in baselines. It is concluded that SLR is useful for measuring tectonic plate motions and inter-plate deformations.

  2. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, D.; Berner, U.; Curti, E

    2004-03-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  3. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    International Nuclear Information System (INIS)

    Kulik, D.; Berner, U.; Curti, E.

    2004-01-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  4. Is Kyoto Fatally Flawed? An Analysis with MacGEM

    International Nuclear Information System (INIS)

    Eyckmans, J.; Van Regemorter, D.; Van Steenberghe, V.

    2002-06-01

    In this paper we present some numerical simulations with the MacGEM model to evaluate the consequences of the recent Marrakesh agreements and the defection of the USA for the Kyoto Protocol. MacGEM is a global marginal abatement cost model for carbon emissions from fossil fuel use based on the GEM-E3-World general equilibrium. Nonparticipation of the USA causes the equilibrium carbon price in Annex B countries to fall by approximately 50% since an important share of permit demand falls out. Carbon sinks enhancement activities enable Parties to fulfil their reduction commitment at lower compliance costs and cause the equilibrium permit price to decrease by 40%. Finally, it is shown that the former Soviet Union and central European countries have substantial monopoly power in the Kyoto carbon permit market. We conclude that the recent accords have eroded completely the Kyoto Protocol's emission targets but that they have the merit to have saved the international climate change negotiation framework

  5. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  6. Artificial Intelligence Applications to High-Technology Training.

    Science.gov (United States)

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  7. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  8. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    Science.gov (United States)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  9. M.C. simulation of GEM neutron beam monitor with 10B

    International Nuclear Information System (INIS)

    Wang Yanfeng; Sun Zhijia; Liu Ben; Zhou Jianrong; Yang Guian; Dong Jing; Xu Hong; Zhou Liang; Huang Guangming; Yang Lei; Li Yi

    2010-01-01

    The neutron beam monitor based on GEM detector has been carefully studied with the Monte-Carlo method in this article. The simulation framework is including the ANSYS and the Garfield, which was used to compute the electric field of GEM foils and simulate the movement of electrons in gas mixture respectively. The GEM foils' focus and extract coefficients have been obtained. According to the primary results, the performing of the monitor is improved. (authors)

  10. Prototype sector magnets for the GeV electron microtron (GEM)

    International Nuclear Information System (INIS)

    Wehrle, R.B.; Norem, J.H.; Praeg, W.F.; Swanstrom, R.H.; Thompson, K.M.

    1983-01-01

    Three prototypes of the sector magnets for GeV Electon Microtron accelerators have been designed. One has been built and two are being constructed. The first is a full scale, 168 ton prototype for one-half of a 2 GeV Double Sided Microtron (DSM) sector magnet. The successful fabrication and testing of the pole pieces for this prototype has demonstrated that their required close tolerances for flatness and parallelism can be met. The second magnet is an approximate two-thirds scale model of one step at the low energy end of the hexatron sector magnet designed for the 4 GeV Electron Microtron (GEM). The measured fields demonstrate that the field falls off faster than an Enge-short-tail and error fields are at low levels and are controllable. A third prototype magnet exactly duplicates the full scale geometry of the first three full orbits of the GEM sector magnet from entrance to exit points. It will permit high precision measurements and corrections of field errors and verify the 3-D computer program, TOSCA

  11. The current status of the Gas Electron Multiplier (GEM) research at Kasetsart University, Thailand

    Science.gov (United States)

    Kumpiranon, P.; Kulasri, K.; Rittirong, A.; Saenboonruang, K.

    2017-06-01

    During the past decade, Gas Electron Multiplier (GEM) detectors have been greatly developed and utilized in numbers of applications including advanced nuclear and particle researches, medical imaging, astrophysics, and neutron detection for national security. Our GEM research group at the Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Thailand, realized in its excellent properties/potentials and started extensive researches on GEM detectors. To build a strong foundation on our research group, two 10 cm × 10 cm triple GEM detectors were characterized on their important properties including absolute gains and detection uniformity. Moreover, to widen applications of the GEM detector, our group had modified the GEM detector by introducing either solid or gaseous neutron converters to the detector so that the detector could effectively detect neutrons. These modifications included coating a thin film of 10B and natB to the GEM drift cathode for thermal neutron detection and flowing a gas mixture of He/CO2 (80:20 and 70:30) and C4H10/He/CO2 (7:70:23) for fast neutron detection. Results showed that the modified GEM-based neutron detector could detect both types of neutrons with different relative efficiencies and gains depending on thicknesses and types of neutron converters. This article discusses basic knowledge of the GEM detector, construction and testing procedures, results, and discussion.

  12. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  13. Emerging technologies for high performance infrared detectors

    Science.gov (United States)

    Tan, Chee Leong; Mohseni, Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  14. Emerging technologies for high performance infrared detectors

    Directory of Open Access Journals (Sweden)

    Tan Chee Leong

    2018-01-01

    Full Text Available Infrared photodetectors (IRPDs have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  15. A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR

    Science.gov (United States)

    García, F.; Grahn, T.; Hoffmann, J.; Jokinen, A.; Kaya, C.; Kunkel, J.; Rinta-Antila, S.; Risch, H.; Rusanov, I.; Schmidt, C. J.; Simon, H.; Simons, C.; Turpeinen, R.; Voss, B.; Äystö, J.; Winkler, M.

    2018-03-01

    The GEM-TPC described herein will be part of the standard beam-diagnostics equipment of the Super-FRS. This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z = 1 up to Z = 92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs on the middle plane with respect to the second one. In order to put this development in context, the evolution of previous prototypes will be described and its performances discussed. Finally, this chamber was tested at the University of Jyväskylä accelerator with proton projectiles and at GSI with Uranium, Xenon, fragments and Carbon beams. The results obtained have shown a position resolution between 120 to 300 μm at moderate counting rate under conditions of full tracking efficiency.

  16. Glycemic load, exercise, and monitoring blood glucose (GEM): A paradigm shift in the treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Cox, Daniel J; Taylor, Ann G; Singh, Harsimran; Moncrief, Matthew; Diamond, Anne; Yancy, William S; Hegde, Shefali; McCall, Anthony L

    2016-01-01

    This preliminary RCT investigated whether an integrated lifestyle modification program that focuses on reducing postprandial blood glucose through replacing high with low glycemic load foods and increasing routine physical activities guided by systematic self-monitoring of blood glucose (GEM) could improve metabolic control of adults with type 2 diabetes mellitus, without compromising other physiological parameters. Forty-seven adults (mean age 55.3 years) who were diagnosed with type 2 diabetes mellitus for less than 5 years (mean 2.1 years), had HbA1c ≥ 7% (mean 8.4%) and were not taking blood glucose lowering medications, were randomized to routine care or five 1-h instructional sessions of GEM. Assessments at baseline and 6 months included a physical exam, metabolic and lipid panels, and psychological questionnaires. The GEM intervention led to significant improvements in HbA1c (decreasing from 8.4 to 7.4% [69-57 mmol/mol] compared with 8.3 to 8.3% [68-68 mmol/mol] for routine care; Interaction ptype 2 diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of the influence of the TH-GEM detector components in dosimetric measurements of standard mammography beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natália F.; Castro, Maysa C.; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: maysadecastro@gmail.com, E-mail: fbelonsi@gmail.com, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, Tiago F.; Cintra, Felipe B.; Luz, Hugo N. da, E-mail: tfsilva@if.usp.br, E-mail: hugonluz@if.usp.br [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    GEM detectors have found applications in many areas due to their simplicity of construction, low cost, ruggedness and diversity of shape. A dosimeter with these qualities presents utility in several applications, as for example in diagnostic and therapeutic medicine, industrial radiography and nuclear meters. Furthermore, the high sensitivity provided by GEM detectors may extend their applications in low dose dosimetry. Based on these facts, it may be interesting to produce a prototype of a portable TH-GEM type detector with characteristics suitable for dosimetric use in X-rays with low and medium energies. The precise determination of the dosimeter characteristics is very important for laboratories of instrument calibration, as well as to determine how the various components of the detector may influence on the energy deposited in the sensitive volume. In this work, the results obtained about the influence of each one of the components present in this type of detector in standard mammography beams is presented. The code MCNP5 was used. The results allowed the adaptation of the detector to the desired conditions. (author)

  18. Technologies for highly miniaturized autonomous sensor networks

    NARCIS (Netherlands)

    Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; Hoof, C. van

    2006-01-01

    Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human

  19. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  20. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  1. The Relationship between Career Technology Education and High School Graduation

    Science.gov (United States)

    Schimpf, Patricia Lynn Garnto

    2011-01-01

    This study examined the relationship between programs in Career Technology and Agriculture Education (CTAE) utilized by a school district in northern Georgia and the relative effect the programs had on high school graduation. Career technology and agriculture education (CTAE) programs engage students and prepare them for college or career…

  2. High-Power Ion Thruster Technology

    Science.gov (United States)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  3. Application of the GEM Inventory Data Capture Tools for Dynamic Vulnerability Assessment and Recovery Modelling

    Science.gov (United States)

    Verrucci, Enrica; Bevington, John; Vicini, Alessandro

    2014-05-01

    A set of open-source tools to create building exposure datasets for seismic risk assessment was developed from 2010-13 by the Inventory Data Capture Tools (IDCT) Risk Global Component of the Global Earthquake Model (GEM). The tools were designed to integrate data derived from remotely-sensed imagery, statistically-sampled in-situ field data of buildings to generate per-building and regional exposure data. A number of software tools were created to aid the development of these data, including mobile data capture tools for in-field structural assessment, and the Spatial Inventory Data Developer (SIDD) for creating "mapping schemes" - statistically-inferred distributions of building stock applied to areas of homogeneous urban land use. These tools were made publically available in January 2014. Exemplar implementations in Europe and Central Asia during the IDCT project highlighted several potential application areas beyond the original scope of the project. These are investigated here. We describe and demonstrate how the GEM-IDCT suite can be used extensively within the framework proposed by the EC-FP7 project SENSUM (Framework to integrate Space-based and in-situ sENSing for dynamic vUlnerability and recovery Monitoring). Specifically, applications in the areas of 1) dynamic vulnerability assessment (pre-event), and 2) recovery monitoring and evaluation (post-event) are discussed. Strategies for using the IDC Tools for these purposes are discussed. The results demonstrate the benefits of using advanced technology tools for data capture, especially in a systematic fashion using the taxonomic standards set by GEM. Originally designed for seismic risk assessment, it is clear the IDCT tools have relevance for multi-hazard risk assessment. When combined with a suitable sampling framework and applied to multi-temporal recovery monitoring, data generated from the tools can reveal spatio-temporal patterns in the quality of recovery activities and resilience trends can be

  4. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  5. Recent developments in high pressure water technology

    International Nuclear Information System (INIS)

    Johnson, N.A.; Johnson, T.

    1992-01-01

    High Pressure Water Jetting has advanced rapidly in the last decade to a point where the field is splitting into specialised areas. This has left the end user or client in the dark as to whether water jetting will work and if so what equipment is best suited to their particular application. The aim of this paper is to give an overview of:-1. The way water is delivered to the surface and the parameters which control the concentration of energy available on impact. 2. The factors governing application driven selection of equipment. 3. The effects to technical advances in pumps and delivery systems on equipment selection with reference to their to their application to concrete removal and nuclear decontamination. (Author)

  6. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  7. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  8. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  9. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  10. High Energy Laser Joint Technology Office: a mission overview

    Science.gov (United States)

    Seeley, Don D.; Slater, John M.

    2004-10-01

    The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.

  11. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  12. Has the First Global Financial Crisis Changed the Entrepreneurial Values in Digitalized Marketing-based Societies? The Case of GEM Latin American Countries

    Directory of Open Access Journals (Sweden)

    José Manuel Saiz Álvarez

    2017-07-01

    Full Text Available As the world economy is globalized, crises are rapidly spread due to the massive use of ICTs (Information and Communication Technologies, also affecting the entrepreneurial values involved in business creation processes. In this sense, digital marketing has a key role to play, as it can serve as a tool based on technology applied to foster nascent entrepreneurship. Using data for GEM Latin American countries, and applying clustering analysis based on the K-means method, the objective of this work is to test if the actual First Global Financial Crisis (FGFC has altered the entrepreneurial values in Latin American firms. The main result of this work is that the traits of entrepreneurial activity in GEM Latin American countries have progressively shifted from quantity to quality, so digital marketing is having an increasing importance.

  13. Planning and Management of Technology Deployment Center

    International Nuclear Information System (INIS)

    Park, Jae Won; Joo, Po Kook; Kim, Jun Yeon and others

    2005-08-01

    The R and D contents are summarized as follows ; Models were set-up for transferring the developed technologies to the industry and managing technology deployment center to vitalize the commercialization and then the set-up model was tried to apply for transferring technologies for commercialization and to define interfaces between the R and D and industrial applications In this project, new products and processes were developed for promoting the commercialization. Infra-structures were firmly set-up for the venture company promotion and technology deployment developed during executing the proton Engineering frontier Project. Commercialization methodology connection with industrial companies were studied by outside specializing institute. Development of gem-stone coloring and new photo catalyst producing techniques are very high value-adding technologies, therefore, experimental and theoretical R and D were transacted simultaneously to obtain the originality of the technology. The theoretical R and D was committed to a specialist outside

  14. Managing quality inside a high-technology project organization

    OpenAIRE

    Jokinen, T. (Tauno)

    2004-01-01

    Abstract This action research addresses the deployment of Total Quality Management (TQM) principles in a high-technology new product development organisation. During the period of study, the organisation grew fast. High-technology product development and hypergrowth provided a unique combination of extreme conditions for the study. The existing concepts of TQM are presented as an organised map enabling strategic analysis for an implementation plan. The history of TQM dates back to the ...

  15. Technologies of high-performance thermography systems

    Science.gov (United States)

    Breiter, R.; Cabanski, Wolfgang A.; Mauk, K. H.; Kock, R.; Rode, W.

    1997-08-01

    A family of 2 dimensional detection modules based on 256 by 256 and 486 by 640 platinum silicide (PtSi) focal planes, or 128 by 128 and 256 by 256 mercury cadmium telluride (MCT) focal planes for applications in either the 3 - 5 micrometer (MWIR) or 8 - 10 micrometer (LWIR) range was recently developed by AIM. A wide variety of applications is covered by the specific features unique for these two material systems. The PtSi units provide state of the art correctability with long term stable gain and offset coefficients. The MCT units provide extremely fast frame rates like 400 Hz with snapshot integration times as short as 250 microseconds and with a thermal resolution NETD less than 20 mK for e.g. the 128 by 128 LWIR module. The unique design idea general for all of these modules is the exclusively digital interface, using 14 bit analog to digital conversion to provide state of the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. Device specific features like bias voltages etc. are identified during the final test and stored in a memory on the driving electronics. This concept allows an easy exchange of IDCAs of the same type without any need for tuning or e.g. the possibility to upgrade a PtSi based unit to an MCT module by just loading the suitable software. Miniaturized digital signal processor (DSP) based image correction units were developed for testing and operating the units with output data rates of up to 16 Mpixels/s. These boards provide the ability for freely programmable realtime functions like two point correction and various data manipulations in thermography applications.

  16. Green technology foresight of high technology: a social shaping of technology approach to the analysis of hopes and hypes

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Jørgensen, Ulrik

    2009-01-01

    Protection Agency with the purpose of acquiring knowledge about the environmental potentials and risks related to the three areas of technology. The foresight was organized with a social shaping of technology (SST) approach to the field in order to cater for the complex relationship between societal demands......, technology options, innovation dynamics and environmental impacts. The approach involved studying actor-networks, laboratory programs and technology trajectories as well as deconstructing different stakeholders’ high tech visions. The identified environmental potentials and risks related to the three areas...

  17. International Genetically Engineered Machine (iGEM) Competition

    CSIR Research Space (South Africa)

    Sparrow, RW

    2010-07-01

    Full Text Available . At this meeting it was requested that the CSIR act as the administrative co-ordinating arm of the team. Following from this meeting a brochure was produced advertising the iGEM competition inside Wits and for Honours student nominations to be team members.... The academic year in South Africa commences in February. By late February 2010 student nominations had been received from which the supervisors selected the team members. The first team meeting was held on 5th March 2010. After which the team...

  18. A time projection chamber with GEM-based readout

    Energy Technology Data Exchange (ETDEWEB)

    Attié, David [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Behnke, Ties [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); Bellerive, Alain [Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 (Canada); Bezshyyko, Oleg [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv 01601 (Ukraine); Bhattacharya, Deb Sankar [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); now at Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, Purba [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); now at National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha (India); Bhattacharya, Sudeb [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Caiazza, Stefano [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz (Germany); Colas, Paul [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Lentdecker, Gilles De [Inter University ULB-VUB, Av. Fr. Roosevelt 50, B1050 Bruxelles (Belgium); Dehmelt, Klaus [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Desch, Klaus [Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn (Germany); and others

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  19. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  20. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    Science.gov (United States)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  1. A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers

    CERN Document Server

    Di Mauro, Antonio; Martinengo, Paolo; Napri, Eugenio; Peskov, Vladimir; Periale, Luciano; Picchi, P.; Pietropaolo, Francesco; Rodionov, I.

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers: CuO or CrO. These detectors can operate stably at gains close to 10E5 and they are very robust. We discovered that the cathodes of these detectors could be coated by CsI layers and in such a way the detectors gain high efficiency for the UV photons. We also demonstrated that such detectors can operate stably in the cascade mode and high overall gains (~10E6) are reachable. This opens applications in several areas, for example in RICH or in noble liquid TPCs. Results from the first applications of these devices for UV photon detection at room and cryogenic temperatures are given.

  2. Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    CERN Document Server

    AUTHOR|(CDS)2071648; Bianco, S; Caponero, M; Muhammad, S; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G

    2015-01-01

    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.

  3. First tests of thick GEMs with electrodes made of a resistive kapton

    International Nuclear Information System (INIS)

    Oliveira, R.; Peskov, V.; Pietropaolo, F.; Picchi, P.

    2007-01-01

    We have developed a new design of a GEM-like detector with electrodes made of a resistive kapton. This detector can operate at gains close to 10 5 even in pure noble gases (Ar and Ne) and if transited to discharges at higher gains, due to the high resistivity of electrodes, they do not damage either the detector or the front-end electronics. Gains ∼10 6 can be achieved in a cascaded mode of operation. The detector can operate without gain degradation at counting rates of at least up to 10 4 Hz/cm 2 and it could thus be very useful in many applications requiring safe high-gain operation, for example, in RICH, TPCs, and calorimetry

  4. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Kyaw Myint Htoo; Tun Khin; Sein Htoon

    2004-05-01

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  5. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  6. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  7. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  8. Possible Gems and Ultra-Fine Grained Polyphase Units in Comet Wild 2.

    Science.gov (United States)

    Gainsforth, Z.; Butterworth, A. L.; Jilly-Rehak, C. E.; Westphal, A. J.; Brownlee, D. E.; Joswiak, D.; Ogliore, R. C.; Zolensky, M. E.; Bechtel, H. A.; Ebel, D. S.; hide

    2016-01-01

    GEMS and ultrafine grained polyphase units (UFG-PU) in anhydrous IDPs are probably some of the most primitive materials in the solar system. UFG-PUs contain nanocrystalline silicates, oxides, metals and sulfides. GEMS are rounded approximately 100 nm across amorphous silicates containing embedded iron-nickel metal grains and sulfides. GEMS are one of the most abundant constituents in some anhydrous CPIDPs, often accounting for half the material or more. When NASA's Stardust mission returned with samples from comet Wild 2 in 2006, it was thought that UFG-PUs and GEMS would be among the most abundant materials found. However, possibly because of heating during the capture process in aerogel, neither GEMS nor UFG-PUs have been clearly found.

  9. Development of Gas Electron Multiplier(GEM) for digital radiographic system

    International Nuclear Information System (INIS)

    Moon, B. S.; Chung, C. E.; Lee, J. W.

    2000-04-01

    Two computer programs SHOWFIELD and IMAGEQUAL have been developed. SHOWFIELD is used to draw electric field lines for GEM detectors and IMAGEQUAL is used to study the spatial resolution of x-ray images. Various simulation runs have been carried out using EGS4 to study the characteristics of electrons generated by micro-channel plates and Ar, Xe gases. A prototype GEM detector was developed through this project. The GEM detector is composed of a pair of GEM plates, a micro-channel plate, readout circuit in a gas filled chamber. GEM plate were made in CERN to meet KAERI's design specification and the micro-channel plates were purchased from Proxitronic company

  10. Gain uniformity experimental study performed on triple-GEM gas detector

    International Nuclear Information System (INIS)

    Dong Liyuan; Qi Huirong; Lu Xinyu; Ouyang Qun; Chen Yuanbo; Li Yuhong

    2012-01-01

    With the application of the two-dimensional GEM gaseous detector in X-ray imaging, the correction method of gain uniformity caused by triple-GEM avalanche structures and electric field uniformity should be studied. The paper reported the study of the triple-GEM detector with effective area 100 mm × 100 mm used the Pad's size of 9.5 mm × 9.5 mm. In the test, 100 readout channels were designed. Results showed that gain remained stable over time; at air flow increases, gain from increases obviously to changes very little. Particularly, triple-GEM's gain uniformity was very good (more than 80%) and the range of energy resolution was from 0.18 to 0.2. To improve gain consistency of results, the difference value revised was obtained to be about 0.1 by the least square method. It provided a better method to improve gain uniformity of GEM detector. (authors)

  11. Gas electron multiplier (GEM) operation with tissue-equivalent gases at various pressures

    International Nuclear Information System (INIS)

    Farahmand, M.; Bos, A.J.J.; Eijk, C.W.E. van

    2003-01-01

    We have studied the operation of two different Gas Electron Multiplier (GEM) structures in both methane and propane based Tissue-Equivalent (TE) gases at different pressures varying from 0.1 to 1 atm. This work was motivated to explore the possibility of using a GEM for a new type of Tissue Equivalent Proportional Counter. In methane based TE gas, a maximum safe GEM gain of 1.5x10 3 has been reached while in propane based TE gas this is 6x10 3 . These maxima have been reached at different gas pressures depending on GEM structure and TE gas. Furthermore, we observed a decrease of the GEM gain in time before it becomes stable. Charge up/polarisation effects can explain this

  12. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  13. Spatial resolution studies of a GEM-TPC

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Martin [TU Muenchen, 85748 Garching (Germany); Collaboration: GEM-TPC-Collaboration

    2015-07-01

    A GEM-TPC can exploit the intrinsic suppression of back drifting ions from the amplification stage of the GEM (Gas Electron Multiplier) foils to overcome the problem of drift-field distortions in an ungated operation. To explore the possibility of such a continuously running TPC (Time Projection Chamber) a large-size detector was built. This detector, with a drift length of 728 mm and a radius of 308 mm and a total of 10254 electronic channels, was designed as an upgrade for the FOPI experiment at GSI (Darmstadt, Germany) to improve the secondary vertex resolution especially for K{sup 0}{sub S}- and Λ-reconstruction and the PID capabilities. After commissioning a large statistics of cosmic data and beam-target reactions has been collected and the obtained tracks in the TPC have been used to improve the tracking algorithms. During the track finding and fitting procedure a clustering algorithm which takes into account the track topology as well as the full 3D spatial information is employed. The the clustering algorithm, the cluster error calculation and the tracking resolution are discussed in this contribution.

  14. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  15. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  16. Innovative technology summary report: High-speed clamshell pipe cutter

    International Nuclear Information System (INIS)

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19

  17. Development and first tests of GEM-like detectors with resistive electrodes

    CERN Document Server

    Peskov, Vladimir; Centro, Sandro; Di Mauro, A; Lund-Jensen, B; Martinengo, P; Nappi, E; Oliveira, R; Pietropaolo, F; Picchi, P; Periale, L; Rodionov, I; Ventura, Sandro

    2007-01-01

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers or completely made of resistive materials. These detectors can operate stably at gains close to 105. The resistive layers limit the energy of discharges appearing at higher gains thus making the detectors very robust. We demonstrated that the cathodes of some of these detectors could be coated by CsI or SbCs layers to enhance the detection efficiency for the UV and visible photons. We also discovered that such detectors can operate stably in the cascade mode and high overall gains ($~10^{6}$) are reachable. Applications in several areas, for example in RICH or in noble liquid TPCs are therefore possible. The first results from the detection of UV photons at room and cryogenic temperatures will be given.

  18. The use of high technology in STEM education

    Science.gov (United States)

    Lakshminarayanan, Vasudevan; McBride, Annette C.

    2015-10-01

    There has been a huge increase in the use of high technology in education. In this paper we discuss some aspects of technology that have major applications in STEM education, namely, (a) virtual reality systems, (b) personal electronic response systems aka "clickers", (c) flipped classrooms, (d) mobile learning "m-Learning", (e) massive open online courses "MOOCS", (f) internet-of-things and (g) cloud computing.

  19. Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the inner tracking system of HERA-B

    International Nuclear Information System (INIS)

    Bagaturia, Y.; Baruth, O.; Dreis, H.B.; Eisele, F.; Gorbunov, I.; Gradl, S.; Gradl, W.; Hausmann, S.; Hildebrandt, M.; Hott, T.; Keller, S.; Krauss, C.; Lomonosov, B.; Negodaev, M.; Richter, C.; Robmann, P.; Schmidt, B.; Straumann, U.; Truoel, P.; Visbeck, S.; Walter, T.; Werner, C.; Werthenbach, U.; Zech, G.; Zeuner, T.; Ziegler, M.

    2002-01-01

    The results of 5 years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about (20x20) cm 2 each. The detector is based on microstrip gas counters (MSGCs) with diamond-like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on the operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO 2 showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long-term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000

  20. Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the inner tracking system of HERA-B

    Energy Technology Data Exchange (ETDEWEB)

    Bagaturia, Y.; Baruth, O.; Dreis, H.B.; Eisele, F.; Gorbunov, I.; Gradl, S.; Gradl, W.; Hausmann, S.; Hildebrandt, M.; Hott, T.; Keller, S.; Krauss, C.; Lomonosov, B.; Negodaev, M.; Richter, C.; Robmann, P.; Schmidt, B.; Straumann, U.; Truoel, P.; Visbeck, S.; Walter, T.; Werner, C.; Werthenbach, U.; Zech, G. E-mail: zech@physik.uni-siegen.de; Zeuner, T.; Ziegler, M

    2002-09-01

    The results of 5 years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about (20x20) cm{sup 2} each. The detector is based on microstrip gas counters (MSGCs) with diamond-like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on the operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO{sub 2} showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long-term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000.

  1. The 2.3 GHz continuum survey of the GEM project

    Science.gov (United States)

    Tello, C.; Villela, T.; Torres, S.; Bersanelli, M.; Smoot, G. F.; Ferreira, I. S.; Cingoz, A.; Lamb, J.; Barbosa, D.; Perez-Becker, D.; Ricciardi, S.; Currivan, J. A.; Platania, P.; Maino, D.

    2013-08-01

    Context. Determining the spectral and spatial characteristics of the radio continuum of our Galaxy is an experimentally challenging endeavour for improving our understanding of the astrophysics of the interstellar medium. This knowledge has also become of paramount significance for cosmology, since Galactic emission is the main source of astrophysical contamination in measurements of the cosmic microwave background (CMB) radiation on large angular scales. Aims: We present a partial-sky survey of the radio continuum at 2.3GHz within the scope of the Galactic Emission Mapping (GEM) project, an observational program conceived and developed to reveal the large-scale properties of Galactic synchrotron radiation through a set of self-consistent surveys of the radio continuum between 408MHz and 10GHz. Methods: The GEM experiment uses a portable and double-shielded 5.5-m radiotelescope in altazimuthal configuration to map 60-degree-wide declination bands from different observational sites by circularly scanning the sky at zenithal angles of 30° from a constantly rotating platform. The observations were accomplished with a total power receiver, whose front-end high electron mobility transistor (HEMT) amplifier was matched directly to a cylindrical horn at the prime focus of the parabolic reflector. The Moon was used to calibrate the antenna temperature scale and the preparation of the map required direct subtraction and destriping algorithms to remove ground contamination as the most significant source of systematic error. Results: We used 484 h of total intensity observations from two locations in Colombia and Brazil to yield 66% sky coverage from to . The observations in Colombia were obtained with a horizontal HPBW of and a vertical HPBW of . The pointing accuracy was and the RMS sensitivity was 11.42 mK. The observations in Brazil were obtained with a horizontal HPBW of and a vertical HPBW of . The pointing accuracy was and the RMS sensitivity was 8.24 mK. The zero

  2. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  3. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  4. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  5. Monograph on safety in high power and high energy advanced technologies and medical applications of lasers

    International Nuclear Information System (INIS)

    2016-01-01

    This monograph is intended for creating awareness amongst the safety and health professionals of nuclear and radiation facilities on hazards involved in high power and high energy advanced technologies as well as on how development of advanced technologies can benefit the common people

  6. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    Science.gov (United States)

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

  7. Toward a sustainable biorefinery using high-gravity technology

    DEFF Research Database (Denmark)

    Xiros, Charilaos; Janssen, Matty; Bystrom, Roberth

    2017-01-01

    The realization of process solutions for a sustainable bioeconomy depends on the efficient processing of biomass. High-gravity technology is one important alternative to realizing such solutions. The aims of this work were to expand the knowledge-base on lignocellulosic bioconversion processes...... at high solids content, to advance the current technologies for production of second-generation liquid biofuels, to evaluate the environmental impact of the proposed process by using life cycle assessment (LCA), and to develop and present a technically, economically, and environmentally sound process....... Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd....

  8. Cost/benefit of high technology in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Goethlin, J.H.

    1987-08-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  9. Cost/benefit of high technology in diagnostic radiology

    International Nuclear Information System (INIS)

    Goethlin, J.H.

    1987-01-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  10. Reactivity worth of gas expansion modules (GEMs) in the fast flux test facility

    International Nuclear Information System (INIS)

    Campbell, L.R.; Nelson, J.V.; Burke, T.M.; Rawlins, J.A.; Daughtry, J.W.; Bennett, R.A.

    1986-01-01

    A new passive shutdown device called a gas expansion module (GEM) has been developed at Hanford Engineering Development Laboratory to insert negative reactivity during a primary system loss of flow in a liquid-metal reactor (LMR). A GEM is a hollow removable core component which is sealed at the top and open at the bottom. An argon gas bubble trapped inside the assembly expands when core inlet pressure decreases (caused by a flow reduction) and expels sodium from the assembly. The GEMs are designed so that the level of the liquid-sodium primary system coolant within a GEM is above the top of the core when the primary pumps are operating at full flow and is below the bottom of the core when the primary pumps are off. When a GEM is placed at the boundary of the core and radial reflector, the drop in sodium level increases core neutron leakage and inserts negative reactivity. The results of these measurements confirm the effectiveness of GEMs in adding negative reactivity in loss-of-flow situations. It follows, therefore, that the inherent safety of LMRs, comparable in size to the FFTF, can be enhanced by the use of GEMs

  11. Simulation of the dielectric charging-up effect in a GEM detector

    International Nuclear Information System (INIS)

    Alfonsi, M.; Croci, G.; Duarte Pinto, S.; Rocco, E.; Ropelewski, L.; Sauli, F.; Veenhof, R.; Villa, M.

    2012-01-01

    The charging up effect is well-known in detectors containing dielectric materials and it is due to electrons and ions liberated in an avalanche and collected on the dielectric surfaces. In particular in Gas Electron Multiplier (GEM) based detectors, charges can be captured by the Kapton that separates top and bottom electrodes. The collection of a substantial number of charges on the dielectric surfaces induces a modification of the field inside the GEM holes that implies important consequences on some fundamental parameters such as the electron transparency and the effective gain. The correct simulation of this effect opens new ways to the detailed study of the processes that happens in a GEM-based detector and gives the possibility to optimise the GEM geometry in order to avoid it. This paper compares results of the measurements and the simulations, with and without the introduction of the charging-up effect, of the GEM electron transparency in the case of a single GEM detector. The introduction of the charging up effect in the simulation resulted to be crucial in order to get the proper agreement with the measurements. The measurements and simulations of the GEM effective gain will be the subject of a future work.

  12. Alu Mobile Elements: From Junk DNA to Genomic Gems

    Directory of Open Access Journals (Sweden)

    Sami Dridi

    2012-01-01

    Full Text Available Alus, the short interspersed repeated sequences (SINEs, are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.

  13. Lingua(gem sob duas perspectivas teóricas

    Directory of Open Access Journals (Sweden)

    Lidiomar José Mascarello

    2010-02-01

    Destacaremos nesse breve percurso teórico dois olhares possíveis para esse fenômeno, a língua(gem, que é tão natural e ao mesmo tempo tão complexo de ser explicado e entendido. De um lado, questões psíquicas individuais, como um processo evolutivo que opera em escala de tempo e que depende da maturação dos processos neurais e de toda rede neuronial e da capacidade inata do sujeito, ou seja, uma visão com tendências mais cognitivista, e por outro, da exposição à interação sócio-ambiental, de cunho interacionista, pois, acreditamos que são complementares e não restritivas ou excludentes.

  14. Operation of a GEM-TPC with pixel readout

    CERN Document Server

    Brezina, C; Kaminski, J; Killenberg, M; Krautscheid, T

    2012-01-01

    A prototype time projection chamber with 26 cm drift length was operated with a short-spaced triple gas electron multiplier (GEM) stack in a setup triggering on cosmic muon tracks. A small part of the anode plane is read out with a CMOS pixel application-specified integrated circuit (ASIC) named Timepix, which provides ultimate readout granularity. Pixel clusters of charge depositions corresponding to single primary electrons are observed and analyzed to reconstruct charged particle tracks. A dataset of several weeks of cosmic ray data is analyzed. The number of clusters per track length is well described by simulation. The obtained single point resolution approaches 50 m at short drift distances and is well reproduced by a simple model of single-electron diffusion.

  15. GEM 10B Satellite gravity data and Nigerian oil prospects

    International Nuclear Information System (INIS)

    Garde, S.C.; Kim, W.Y.

    1984-11-01

    Extension of the hydrocarbon rich Benue depression and the Niger delta basin in the bight of Benin is construed from the gravity data of Gravity Earth Model (GEM) 10B Satellite, published by NASA, Godard Space Flight Centre in 1977. This interpretation is based on the supposition that: i) the depth of a buried horizontal cylinder can be estimated by the Fourier transform of the vertical gravity field [Odegard and Berg, Geophys., 30, No. 3, 424-438 (1965)]; and ii) the oil horizons of southern Nigeria are basically connected to the separation of South American and African plates [Burke et al., African Geology, Ibadan Univ. Press, Ibadan, Nigeria, p. 187-204 (1970)]. (author)

  16. Quench and protection characteristics of the GEM test coil

    International Nuclear Information System (INIS)

    Chaniotakis, E.A.; Marston, P.G.

    1994-01-01

    The GEM test coil, will be wound from 70 m of conductor identical to that used in the full scale magnet. The coil configuration will duplicate the field distribution of the full scale magnet and current control will duplicate full scale current decay characteristics. Therefore, quench/protection analysis of this coil will reveal very important information about the behavior of the full scale model. Due to the uncertainty associated with the contact between the cable, the conduit and the sheath, a parametric analysis has been performed in order to determine and bracket the behavior. With no electrical contact the quench evolves normally until, due to heat transfer from the sheath into the cable, the superconductor temperature becomes critical and the entire length becomes normal

  17. Synthesis and Biological Evaluation of Glycosidase Inhibitors: gem-Difluoromethylenated Nojirimycin Analogues

    DEFF Research Database (Denmark)

    Bols, Mikael; Wang, Ruo-Wen; Qiu, Xiao-Long

    2006-01-01

    In our ongoing program aimed at the design, synthesis, and biological evaluation of novel gem-difluoromethylenated glycosidase inhibitors, gem-4,4-difluoromethylenated iminosugars (5-9) were synthesized. The biological evaluation of these synthetic iminosugars showed that the gem....... It is proposed that the unprotonated iminosugar is the species preferably bound by beta-glucosidase, due to the lower pK(a) value of iminosugar 6 than of 1 or 36, leaving iminosugars 1 and 36 mostly protonated at pH 5.0, while iminosugar 6 is not. Iminosugar 6 also displayed good and selective inhibition of beta...

  18. GEM-based gaseous photomultipliers for UV and visible photon imaging

    International Nuclear Information System (INIS)

    Moermann, D.; Balcerzyk, M.; Breskin, A.; Chechik, R.; Singh, B.K.; Buzulutskov, A.

    2003-01-01

    We present the current status of our research on GEM-based gaseous photomultipliers. Detectors combining multi-GEM electron multipliers with semi-transparent and reflective photocathodes are discussed. We present recent progress in extending the sensitivity of these detectors into the visible range. We demonstrate the long-term stability of an argon-sealed bi-alkali photo-diode and provide preliminary results of a gas-sealed Kapton-GEM detector with a bi-alkali photocathode. The problem of ion-induced secondary electron emission is addressed

  19. Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-$\\eta$ muon system

    CERN Document Server

    Abbaneo, D; Armagnaud, C; Aspell, P; Ban, Y; Bally, S; Benussi, L; Berzano, U; Bianco, S; Bos, J; Bunkowski, K; Cai, J; Chatelain, J P; Christiansen, J; Colafranceschi, S; Colaleo, A; Conde Garcia, A; David, E; de Robertis, G; De Oliveira, R; Duarte Pinto, S; Ferry, S; Formenti, F; Franconi, L; Gnanvo, K; Gutierrez, A; Hohlmann, M; Karchin, P E; Loddo, F; Magazzú, G; Maggi, M; Marchioro, A; Marinov, A; Mehta, K; Merlin, J; Mohapatra, A; Moulik, T; Nemallapudi, M V; Nuzzo, S; Oliveri, E; Piccolo, D; Postema, H; Raffone, G; Rodrigues, A; Ropelewski, L; Saviano, G; Sharma, A; Staib, M J; Teng, H; Tytgat, M; Tupputi, S A; Turini, N; Smilkjovic, N; Villa, M; Zaganidis, N; Zientek, M

    2011-01-01

    Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6<| \\eta |<2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the pro...

  20. Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data

    Directory of Open Access Journals (Sweden)

    G. D. Hayman

    2014-12-01

    Full Text Available Wetlands are a major emission source of methane (CH4 globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a from an offline run driven with Climatic Research Unit–National Centers for Environmental Prediction (CRU-NCEP meteorological data and (b from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007 is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr−1 and lower emissions in other regions (by up to 10 Tg CH4 yr−1 compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2, we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991. Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb. Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES

  1. SAFT Li-ion Technology for High Rate Applications

    National Research Council Canada - National Science Library

    Nechev, Kamen; Deveney, Bridget; Guseynov, Teymur; Erbacher, John; Vukson, Stephen

    2006-01-01

    SAFT will present an update of its state-of-the art Very High Power (VHP) Lithium-ion (Li-ion) technology. The VHP cells are currently being qualified for use in military aircraft applications as well as in future military hybrid vehicles...

  2. Rapid single flux quantum logic in high temperature superconductor technology

    NARCIS (Netherlands)

    Shunmugavel, K.

    2006-01-01

    A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible

  3. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  4. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    Science.gov (United States)

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  5. Internationalization of high-technology ventures from emerging economies

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    This paper aims to contribute towards filling in the gap in the international entrepreneurhsip literature by exploring how and why new high-technology ventures internationalize from an emerging economy, namely Moldova. To address the above research questions, a multiple-case study strategy...

  6. The deadly sins of high technology: Superphenix, Eurotunnel, Ariane 5.

    International Nuclear Information System (INIS)

    Bell, R.; Jeanmougin, Ch.

    1998-01-01

    Based on a detailed analysis of civil or military high technology projects (Superphenix reactor, English Channel tunnel, Ariane 5 launcher, etc..), mainly of European origin, this book reveals seven systematic sins in the realization of these projects: an abolishment of controls, a premature construction, a manumission of suppliers, a no-share of risks attitude, political manipulations, fraudulence and secrecy. (J.S.)

  7. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  8. Identifying and Researching Market Opportunities for New High Technology Products.

    Science.gov (United States)

    Dunstan, Peter

    Using a product called the synchro-pulse welder as a case study example, this paper discusses the activities of CSIRO (Commonwealth Scientific and Industrial Research Organisation) in identifying and marketing new high-technology products. A general discussion of CSIRO's market research plans includes two goals to be attained within the next 5…

  9. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  10. HIGH SERVE - service for nuclear technology. Buyers' guide

    International Nuclear Information System (INIS)

    1986-01-01

    The Deutsches Atomforum e.V. (German Atomic Forum) has organised a specialist conference with the title 'HIGH SERVE - service for nuclear technology' for October 1986. In parallel with the conference, an exhibition will make it possible for interested firms to present their service and product ranges. The experience gained in the preparation of this exhibition has been used to produce the 'HIGH SERVE - buyers guide'. The intention is to make the market more comprehensible. (orig./HP) [de

  11. ENTREPRENEURIAL STRATEGIC INNOVATION MODEL FOR ATTAINING PREMIUM VALUE FOR THE SRI LANKAN GEM AND JEWELLERY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Shyamalie Ekanayake

    2010-07-01

    Full Text Available Entrepreneurial innovative action is a four-pronged strategic integration; it mitigates financial risk in knowledge transfer and technology transfer, it integrates manufacturing and business strategy, and it provides policy remedy to transform the assets and capabilities of the value system. The innovation process utilises market innovations to establish a competitive advantage, gathers intellectual assets, attains proprietary rights and fosters the ability to implement appropriate strategies and sustain a competitive advantage, thus generating premium value. The entrepreneur's commitment uncovers market opportunities and exploits the inventiveness of value-system technologies to result in market innovation. The integration of the above-mentioned four forces with changing market needs transforms the capabilities of the value system to allow it to sustain business value regeneration and thus generate premium value. The failure of either one or all four forces of entrepreneurs' innovative strategies will lead to a reduction in the market value of the products and disintegrate the industry value system. This phenomena was observed in the gem and jewellery industry in Sri Lanka, where the industry has been capable enough to develop a competitive product base but has been positioned to experience a reduction in market value. This reduction has resulted in the disintegration of the industry value system, forcing firms to work in isolation.

  12. High-level waste management technology program plan

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs

  13. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  14. Italian high technology shows its wares at CERN

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Italian industry held an exhibition at CERN on 14-17 November with 26 firms displaying innovative technological developments. In particular it featured categories such as mechanics, high-vacuum technologies, electronics for detectors, and electric and civil engineering. The exhibition was inaugurated in the presence of Guido Possa, vice-minister for education, universities and research. The event was organized by Sandro Centro, INFN researcher and Industrial Liaison Officer at CERN, along with Federico Ferrini, scientific officer for International Organizations of Geneva and the Italian Chamber of Commerce in Switzerland

  15. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  16. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  17. Development of Nano technology in High Performance Concrete

    International Nuclear Information System (INIS)

    Nima Farzadnia; Abang Abdullah Abang Ali; Ramazan Demirboga; Demirboga, R.

    2011-01-01

    Concrete is the most widely used building material all around the world which has been undergoing many changes aligned with technological advancement. The most recent available type of concrete is high performance concrete which is produced by employing different admixtures both chemical and mineral to enhance mechanical properties and durability. Recently, technology has made it easy for scientist to study nano sized admixtures and their effect on microstructure of concrete. This paper reviews nano particles in cement composites and how they can improve different properties of concrete. (author)

  18. Integrative Production Technology for High-Wage Countries

    CERN Document Server

    2012-01-01

    Industrial production in high-wage countries like Germany is still at risk. Yet, there are many counter-examples in which producing companies dominate their competitors by not only compensating for their specific disadvantages in terms of factor costs (e.g. wages, energy, duties and taxes) but rather by minimising waste using synchronising integrativity as well as by obtaining superior adaptivity on alternating conditions. In order to respond to the issue of economic sustainability of industrial production in high-wage countries, the leading production engineering and material research scientists of RWTH Aachen University together with renowned companies have established the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”. This compendium comprises the cluster’s scientific results as well as a selection of business and technology cases, in which these results have been successfully implemented into industrial practice in close cooperation with more than 30 companies of ...

  19. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  20. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  1. Application of high speed machining technology in aviation

    Science.gov (United States)

    Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert

    2018-05-01

    Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.

  2. Synthetic fiber technology evolving into a high-tech field

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Takao

    1988-07-01

    This paper reports the trend of synthetic fiber technology. Representative synthetic fibers are nylon, polyester, and acrylic. Researchers are studying the continuation of polymerization processes, high-efficiency catalysts, thin-film polymerization, the possibility of energy saving by interfacial polymerization, and small quantities of a large variety of items method. They are making considerable progress in accelerating, simplifying, and rationalizing production processes. As a result, they have already omitted the elongation chamber and realized the continuation of spinning and elongation processes. The textile industry is planning to adopt a super-fast spinning system. To meet customers' needs for a wider variety of advanced materials, researchers are developing differential, high-value-added materials. High functions are added to fibers during all processes including polymerization, spinning, thread or cotton making, knitting, and after-treatment. Researchers have developed new materials looking exactly like silk or wool, having aesthetic properties, artificial suede, and combining moisture permeability and waterproofness. New materials developed for high-technology purposes include carbon fiber, aramid fiber that obtains high strength and elasticity without being elongated, high-strength, and high-elasticity super-high-polymer polyethylene fiber. (3 figs, 1 tab)

  3. Analysis of current situation of information disclosure of listed companies on GEM

    Directory of Open Access Journals (Sweden)

    Zhirong Shen

    2017-03-01

    Full Text Available In the afternoon on October 23th, 2009, GEM was officially launched in our country. Due to the lack of experience in the market supervision, information disclosure violations frequently occurred. In April 2015, Shenzhen Stock Exchange puts forward morning information disclosure system to strengthen the reform of information disclosure system. Therefore, this paper deeply focuses on the current situation of information disclosure violations on GEM for the purpose of attracting more attention to the problems. Through studying the information disclosure violations of the listed companies on GEM from 2011 to September 30th, 2015, this paper divides the violations into the following four types: false record, misleading statement, material misstatement and delayed disclosure. On the other hand, we find that these types of violations are concurrent. From this discussion, we may safely draw the conclusion that the information disclosure of listed companies on GEM has the problem of untruthfulness, incorrectness, incompleteness and delay.

  4. First results with the general equilibrium model GEM-E3 Switzerland

    International Nuclear Information System (INIS)

    Bahn, O.; Frei, C.

    2000-01-01

    The GEM-E3 model has been implemented and applied for Switzerland. It has been in particular used to assess an ecological tax reform in Switzerland. Results of this analysis are presented here. (author)

  5. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  6. Patent Strategy at the Age of High Technology

    Science.gov (United States)

    Aoyama, Hirokazu

    This paper is a summary of the lecture which the author presented at the 5th Hokuriku Workshop for Study of Scientific and Technological Information Activities on the 17th of January in 1986. The author analyzed the present situation and made some suggestions on them ; (1) the role of patent system has shifted from introduction of foreign technologies to independent technological development at the age of high technology, (2) circumstances of rapidly increasing international patent war, particularly patent conflict between U.S. and Japan concerning U.S. ITC, (3) as the service of soft aspects of economy has been closed up, the new business has come to the fore front, and the move to consider technology as a good has been activated, (4) how patent specification should be written, the way of obtaining and protecting patent successfully, (5) basic pattern of patent strategy and what the strategy should be to respond to the enterprises level, (6) present situation of patent information service, effective use of patent maps and information strategy.

  7. Fix It with TAPE: Repurposing Technology to Be Assistive Technology for Students with High-Incidence Disabilities

    Science.gov (United States)

    Bouck, Emily C.; Shurr, Jordan C.; Tom, Kinsey; Jasper, Andrea D.; Bassette, Laura; Miller, Bridget; Flanagan, Sara M.

    2012-01-01

    This article discusses how practitioners can repurpose technology--common and socially desirable technology in particular--to be assistive technology for students with high-incidence disabilities. The authors provide a framework for practitioners to consider technology for repurposing: TAPE (Transportable, Available, Practical, Engaging) and…

  8. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  9. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  10. Systematic measurements of the gain and the energy resolution of single and double mask GEM detectors

    International Nuclear Information System (INIS)

    Biswas, S.; Schmidt, D.J.; Abuhoza, A.; Frankenfeld, U.; Garabatos, C.; Hehner, J.; Kleipa, V.; Morhardt, T.; Schmidt, C.J.; Schmidt, H.R.; Wiechula, J.

    2016-01-01

    Systematic studies on the gain and the energy resolution have been carried out by varying the voltage across the GEM foils for both single mask and double mask triple GEM detector prototypes. Variation of the gain and the energy resolution has also been measured by varying either the drift voltage, transfer voltage and induction voltage keeping other voltages constant. The results of the systematic measurements have been presented.

  11. Data Integration for Spatio-Temporal Patterns of Gene Expression of Zebrafish development: the GEMS database

    Directory of Open Access Journals (Sweden)

    Belmamoune Mounia

    2008-06-01

    Full Text Available The Gene Expression Management System (GEMS is a database system for patterns of gene expression. These patterns result from systematic whole-mount fluorescent in situ hybridization studies on zebrafish embryos. GEMS is an integrative platform that addresses one of the important challenges of developmental biology: how to integrate genetic data that underpin morphological changes during embryogenesis. Our motivation to build this system was by the need to be able to organize and compare multiple patterns of gene expression at tissue level. Integration with other developmental and biomolecular databases will further support our understanding of development. The GEMS operates in concert with a database containing a digital atlas of zebrafish embryo; this digital atlas of zebrafish development has been conceived prior to the expansion of the GEMS. The atlas contains 3D volume models of canonical stages of zebrafish development in which in each volume model element is annotated with an anatomical term. These terms are extracted from a formal anatomical ontology, i.e. the Developmental Anatomy Ontology of Zebrafish (DAOZ. In the GEMS, anatomical terms from this ontology together with terms from the Gene Ontology (GO are also used to annotate patterns of gene expression and in this manner providing mechanisms for integration and retrieval . The annotations are the glue for integration of patterns of gene expression in GEMS as well as in other biomolecular databases. At the one hand, zebrafish anatomy terminology allows gene expression data within GEMS to be integrated with phenotypical data in the 3D atlas of zebrafish development. At the other hand, GO terms extend GEMS expression patterns integration to a wide range of bioinformatics resources.

  12. 16 CFR 23.25 - Misuse of the word “gem.”

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misuse of the word âgem.â 23.25 Section 23... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.25 Misuse of the word “gem.” (a) It is unfair or deceptive to use the word “gem” to describe, identify, or refer to a ruby, sapphire, emerald, topaz, or...

  13. Using simulated maps to interpret the geochemistry, formation and quality of the Blue Gem Coal Bed, Kentucky, USA

    Science.gov (United States)

    Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio

    2013-01-01

    This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers

  14. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  15. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  16. Characterization of the allergen Sol gem 2 from the fire ant venom, Solenopsis geminata

    Directory of Open Access Journals (Sweden)

    S Sukprasert

    2012-01-01

    Full Text Available Sol i 2 is a potent allergen in Solenopsis invicta venom, and most humans exhibit reactivity to it. The Sol gem 2 allergen found in the venom of the Thai tropical fire ant Solenopsis geminata was analysed in the present study. The protein was present in higher amounts than other proteins, as determined by SDS-PAGE, and presumably has allergenic properties similar to those of Sol i 2. Sol gem 2 molecular weight is 28 and 15 kDa, respectively, under non-reducing and reducing conditions, indicating that its native form is a dimer. LC-MS/MS analysis confirmed its similarity to Sol i 2. The mono/dimeric form of Sol gem 2 was determined to be relevant by proteomic approach and immunoblotting. An anti-Sol gem 2 antibody was produced in mice, with a titer greater than 1:800 according to the Western blotting analysis. The Sol gem 2-neutralising activity of this antibody was determined in crickets. The paralytic dose 50 (PD50 of crude S. geminata venom was elevated from 0.18 mg/g of body weight to more than 0.90 mg/g of body weight after preincubation with antibody at a ratio of 1:1. These results suggest that Sol gem 2 plays an important role in mediating the effects of the piperidine derivatives in the venom.

  17. Operation and technology of high pulsed power generators

    International Nuclear Information System (INIS)

    Eyl, P.; Romary, P.

    1995-01-01

    In order to satisfy the needs of ''components and electronic circuits hardness'', a range of high pulsed power generators is available in the French Atomic Energy Commission. The goal of this paper is to present the general principles of operation and the main characteristics of the irradiation facilities which are operational at the CESTA center. Finally, we give a brief outline of the new technology developments. (authors). 6 refs., 16 figs

  18. Modern High Technology Solutions for Quality and Longterm Vegetable Preservation

    International Nuclear Information System (INIS)

    Nacheva, I.; Miteva, D.; Todorov, Y.; Loginovska, K.; Tsvetkov, Ts.

    2012-01-01

    In the publication the authors present the results of the applying of two modern technologies for long term and safe vegetable preservation – freeze-drying and gamma sterilization. The freeze-dried vegetables feature minimum moisture – from 2 – 5% and taste-aroma complex preserved to the highest degree. The carried out gamma sterilization ensures a high microbial purity of the vegetables and guarantees for their long term preservation - up to 5 years in polymer packing, under usual conditions

  19. Status of high-temperature heat-pipe technology

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1982-01-01

    This paper discusses the application of heat pipes to nuclear reactor space power systems. Characteristics of the device that favor such an application are described and recent results of current technology development programs are presented. Research areas that will need to be addressed in demonstrating that adequate lifetimes can be achieved with evaporation/condensation cycles operating at high temperatures in a reactor environment are also discussed

  20. Technological improvements to high temperature thermocouples for nuclear reactor applications

    International Nuclear Information System (INIS)

    Schley, R.; Leveque, J.P.

    1980-07-01

    The specific operating conditions of thermocouples in nuclear reactors have provided an incentive for further advances in high temperature thermocouple applications and performance. This work covers the manufacture and improvement of existing alloys, the technology of clad thermocouples, calibration drift during heat treatment, resistance to thermal shock and the compatibility of insulating materials with thermo-electric alloys. The results lead to specifying improved operating conditions for thermocouples in nuclear reactor media (pressurized water, sodium, uranium oxide) [fr

  1. Study on the novel neutron-to-proton convertor for improving the detection efficiency of a triple GEM based fast neutron detector

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yang Lei; Zhang Chunhui; Hu Bitao; Yang Herun; Zhang Junwei; Ren Zhongguo; Ha Ri-Ba-La; An Luxing

    2015-01-01

    A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier (GEM) detector, which, coupled with a novel multi-layered high-density polyethylene (HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with "5"5Fe X-ray source to ensure that it has a good performance. The effective gain and obtained energy resolution is 5.0 × 10"4 and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38. (authors)

  2. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    Science.gov (United States)

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  3. Development of superconductor electronics technology for high-end computing

    Energy Technology Data Exchange (ETDEWEB)

    Silver, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kleinsasser, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kerber, G [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Herr, Q [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Dorojevets, M [Department of Electrical and Computer Engineering, SUNY-Stony Brook, NY 11794-2350 (United States); Bunyk, P [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Abelson, L [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States)

    2003-12-01

    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm{sup -2}, 1.25 {mu}m junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s{sup -1}, both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density.

  4. Development of superconductor electronics technology for high-end computing

    International Nuclear Information System (INIS)

    Silver, A; Kleinsasser, A; Kerber, G; Herr, Q; Dorojevets, M; Bunyk, P; Abelson, L

    2003-01-01

    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm -2 , 1.25 μm junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s -1 , both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density

  5. Properties of thick GEM in low-pressure deuterium

    International Nuclear Information System (INIS)

    Lee, C S; Ota, S; Tokieda, H; Kojima, R; Watanabe, Y N; Uesaka, T

    2014-01-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241 Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 10 3 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time

  6. Properties of thick GEM in low-pressure deuterium

    Science.gov (United States)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  7. Development and application of high energy imaging technology

    International Nuclear Information System (INIS)

    Chen Shengzu

    1999-01-01

    High Energy Positron Imaging (HEPI) is a new technology. The idea of positron imaging can be traced back to early 1950's. HEPI imaging is formed by positron emitter radionuclide produced by cyclotron, such as 15 O, 13 N, 11 C and 18 F, which are most abundant elements in human body. Clinical applications of HEPI have been witnessed rapidly in recent years. HEPI imaging can be obtained by both PET and SPECT, namely high energy collimation imaging, Mdecular Coincidence Detection (MCD) and positron emission tomography

  8. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  9. A 32-channel front-end ASIC for GEM detectors used in beam monitoring applications

    Science.gov (United States)

    Ciciriello, F.; Altieri, P. R.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Lorusso, L.; Marzocca, C.; Matarrese, G.; Ranieri, A.; Stamerra, A.

    2017-11-01

    A multichannel, mixed-signal, front-end ASIC for GEM detectors, intended for beam monitoring in hadron therapy applications, has been designed and prototyped in a standard 0.35 μm CMOS technology. The analog channels are based on the classic CSA + shaper processing chain, followed by a peak detector which can work as an analog memory, to simplifiy the analog-to-digital conversion of the peak voltage of the output pulse, proportional to the energy of the detected event. The available hardware resources include an 8-bit A/D converter and a standard-cell digital part, which manages the read-out procedure, in sparse or serial mode. The ASIC is self-triggered and transfers energy and address data to the external DAQ via a fast 100 MHz LVDS link. Preliminary characterization results show that the non-linearity error is limited to 5% for a maximum input charge of about 70 fC, the measured ENC is about 1400e- and the time jitter of the trigger signal generated in response to an injected charge of 60 fC is close to 200 ps.

  10. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  11. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  12. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Directory of Open Access Journals (Sweden)

    Woody Craig

    2018-01-01

    Full Text Available A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ∼ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  13. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Science.gov (United States)

    Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai

    2018-02-01

    A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  14. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  15. Powder technological vitrification of simulated high-level waste

    International Nuclear Information System (INIS)

    Gahlert, S.

    1988-03-01

    High-level waste simulate from the reprocessing of light water reactor and fast breeder fuel was vitrified by powder technology. After denitration with formaldehyde, the simulated HLW is mixed with glass frit and simultaneously dried in an oil-heated mixer. After 'in-can calcination' for at least 24 hours at 850 or 950 K (depending on the type of waste and glass), the mixture is hot-pressed in-can for several hours at 920 or 1020 K respectively, at pressures between 0.4 and 1.0 MPa. The technology has been demonstrated inactively up to diameters of 30 cm. Leach resistance is significantly enhanced when compared to common borosilicate glasses by the utilization of glasses with higher silicon and aluminium content and lower sodium content. (orig.) [de

  16. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  17. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  18. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  19. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  20. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  1. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  2. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  3. Examining the Relationship among High-School Teachers' Technology Self-Efficacy, Attitudes towards Technology Integration, and Quality of Technology Integration

    Science.gov (United States)

    Gonzales, Stacey

    2013-01-01

    This quantitative study explored the relationships among high-school teachers' (n = 74) technology self-efficacy, teachers' attitudes towards technology integration, and quality of teachers' technology integration into instruction. This study offered the unique perspectives of in-service high-school teachers as they have first-hand experience…

  4. New technology for carbon dioxide at high pressure

    International Nuclear Information System (INIS)

    Hassina, Bazaze; Raouf, Zehioua; Menial, A. H.

    2006-01-01

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. T here are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called s upercritical . What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  5. A Case Study of Technology Choices by High School Students

    Science.gov (United States)

    Owens-Hartman, Amy R.

    2015-01-01

    The purpose of this case study was to examine student technology choices when given the freedom to choose technology devices to complete a project-based learning activity in a content area of study. The study also analyzed factors affecting technology choice as well as how technology proficiency scores aligned to technology choices. Patterns and…

  6. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    Science.gov (United States)

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P PANC-1 cells upregulated MRP2 level ( P PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  7. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  8. ESTADO DE LA EDUCACIÓN Y FORMACIÓN EMPRESARIAL EN LOS PAÍSES Y REGIONES ESPAÑOLAS DEL GEM

    Directory of Open Access Journals (Sweden)

    Ana Fernández Laviada

    2014-12-01

    Full Text Available Specialised literature presents education and training as a determining factor for entrepreneurship. However, time and time again experts at the Global Entrepreneurship Monitor (GEM have stated that it’s one lowest, and sometimes the least, valued elements in this area. Therefore, the objective of this study is to analyse the state of entrepreneurship education and training in its different stages within the countries and regions that participated in GEM 2012. Specifically, what is sought is, based on the opinion of the experts, the state of entrepreneurship training and education in each level analysed in GEM, generically as well as by country, while looking at the possible differences (strengths and weaknesses that appear in each one. Furthermore, this is paired with a national analysis that examines the situation of the different participating regions in the study. In order to carry out the analysis, the 2012 NES database is used. In that edition, a total of 69 countries participated and, in the case of Spain, there were 14 regions all with 36 experts in each. The data processing is carried out using the Rasch model for measurement. The preliminary results show that, in general, university level education geared towards entrepreneurship is more highly developed than at the lower levels of education, such as in secondary and primary education. Nevertheless, the individual analysis makes it possible to detect differences between countries and regions.

  9. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  10. Technological Challenges for High-Brightness Photo-Injectors

    CERN Multimedia

    Suberlucq, Guy

    2004-01-01

    Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.

  11. High-performance silicon photonics technology for telecommunications applications.

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  12. High-performance silicon photonics technology for telecommunications applications

    International Nuclear Information System (INIS)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Yamamoto, Tsuyoshi; Ishikawa, Yasuhiko; Wada, Kazumi

    2014-01-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. (review)

  13. High-performance silicon photonics technology for telecommunications applications

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  14. Development of structural technology for a high performance spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.

    2003-03-01

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 14 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates six are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models

  15. High surface area silicon materials: fundamentals and new technology.

    Science.gov (United States)

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  16. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  17. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  18. Control and supervision of a time projection chamber with GEM readout

    International Nuclear Information System (INIS)

    Kaiser, David

    2014-01-01

    .g. voltages, currents, temperatures or gas flows - with high precision during the beam times and test measurements carried out. The SlowControl- GUI features a good handling and a display of the measured values in real-time. From the data recorded with the GEM-TPC, the actual drift velocities of the electrons within the detector volume have been extracted and compared with the theoretical predictions of the simulation. Hence, the error in the reconstruction of the z component was minimized thus, improving further analysis of the data.

  19. The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results

    Directory of Open Access Journals (Sweden)

    N. Glatthor

    2013-02-01

    Full Text Available Starting on 7 February 2009, southeast Australia was devastated by large bushfires, which burned an area of about 3000 km2 on this day alone. This event was extraordinary, because a large number of combustion products were transported into the uppermost troposphere and lower stratosphere within a few days. Various biomass burning products released by the fire were observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on the Envisat satellite. We tracked the plume using MIPAS C2H2, HCN and HCOOH single-scan measurements on a day-to-day basis. The measurements were compared with a high-resolution model run of the Global Environmental Multiscale Air Quality (GEM-AQ model. Generally there is good agreement between the spatial distribution of measured and modelled pollutants. Both MIPAS and GEM-AQ show a fast southeastward transport of the pollutants to New Zealand within one day. During the following 3–4 days, the plume remained northeastward of New Zealand and was located at altitudes of 15 to 18 km. Thereafter its lower part was transported eastward, followed by westward transport of its upper part. On 17 February the eastern part had reached southern South America and on 20 February the central South Atlantic. On the latter day a second relic of the plume was observed moving eastward above the South Pacific. Between 20 February and the first week of March, the upper part of the plume was transported westward over Australia and the Indian Ocean towards southern Africa. First evidence for entry of the pollutants into the stratosphere was found in MIPAS data of 11 February, followed by larger amounts on 17 February and the days thereafter. From MIPAS data, C2H2/HCN and HCOOH/HCN enhancement ratios of 0.76 and 2.16 were calculated for the first days after the outbreak of the fires, which are considerably higher than the emission ratios assumed for the model run and at

  20. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  1. Technologies for the exploration of highly mineralized geothermal resources

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  2. Application of laser cutting technology to high radiation environments

    International Nuclear Information System (INIS)

    Pauley, K.A.; Mitchell, M.R.; Saget, S.N.

    1996-01-01

    A 2 kW Nd:YAG laser system manufactured by the Lumonics Corporation will be used to cut various metals during the fall of 1996 as part of a United States Department of Energy (DOE)-funded technology demonstration at the Hanford Site. The laser cutting demonstration will focus on an evaluation of two issues as the technology applies to the decontamination and decommissioning (D ampersand D) of aging nuclear facilities. An assessment will be made as to the ability of laser end effectors to be operated using electromechanical remote manipulators and the ability of both end effector and fiber optics to withstand the damage created by a high radiation field. The laser cutting demonstration will be conducted in two phases. The first phase will be a non-radioactive test to ensure the ability of hot cell remote manipulators to use the laser end effector to successfully cut the types of materials and geometries found in the hot cell. The second phase will introduce the laser end effector and the associated fiber optic cable into the hot cell radiation environment. The testing in the hot cell will investigate the degradation of the optical portions of the end effector and transmission cable in the high radiation field. The objective of the demonstration is to assess the cutting efficiency and life limitations of a laser cutting system for radioactive D ampersand D operations. A successful demonstration will, therefore, allow the laser cutting technology to be integrated into the baseline planning for the D ampersand D of DOE facilities throughout the nation

  3. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  4. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  5. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  6. Application of high precision temperature control technology in infrared testing

    Science.gov (United States)

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  7. Department of Nuclear Equipment 'High Technology Center - HITEC' - Overview

    International Nuclear Information System (INIS)

    Kopec, J.

    2009-01-01

    Full text: The main activities of the Department for Nuclear Equipment High Technology Centre in 2008 were focused on the development of specialized systems using linear accelerators for medical applications, realized within the frame of the Innovative Economy Operational Program: · Calculations, simulations and design of accelerator structures and beam shaping devices · Design of a model of carrying structures · Building stands for carrying out critical component examinations and tests A new evolutionary algorithm has been implemented in a three-dimensional treatment planning system for intensity modulated radiotherapy (IMRT) planning optimization. A design for a multi leaf collimator, second model, was worked out. The Department received an Award for the Polkam TBI therapeutic table in the first edition of the '' Teraz-Polska '' national contest for the best Polish innovative product. Equipment manufactured by the High Technology Centre and especially for total body irradiation techniques was presented for the first time during the Biennial Meeting of the European Society for Therapeutic Radiology and Oncology in Goeteborg, Sweden. The second edition of the School of Medical Accelerator Physics organized in October 2008 was well received by medical physicists and physicians. (author)

  8. Development of Very High Temperature Reactor Design Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, K. S.

    2007-05-01

    To develop design technologies for the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature for an efficient hydrogen production, key studies were performed, which include evaluation technology for the performance and safety of VHTR, and development of design and analysis codes. First, to evaluate the performance of VHTR, a series of analyses has been carried out for core characteristics at 950 .deg. C, cooled-vessel adopting internal flow path through the graphite structure, compact heat exchanger with periodic channel configuration, intermediate loop system, risk/performance-informed method, and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC, safety evaluation of both VHTR and RCCS has been also performed. In addition, prototype codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  9. Evaluation of High-Performance Network Technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K.; Kolaric, P.; Sabjan, R.; Zagar, A. [Cosylab d.d., Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, Meisterschwanden (Switzerland)

    2009-07-01

    To facilitate fast feedback control of plasma, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, four types of high-performance communication have been identified. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024*1024) and frame rate (30 Hz). In this article, we present some combinations of common off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time LINUS operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming. This document is composed of an abstract followed by the presentation transparencies. (authors)

  10. Evaluation of high-performance network technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K., E-mail: klemen.zagar@cosylab.co [Cosylab d.d., 1000 Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, 5616 Meisterschwanden (Switzerland); Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J. [Cosylab d.d., 1000 Ljubljana (Slovenia)

    2010-07-15

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  11. Evaluation of high-performance network technologies for ITER

    International Nuclear Information System (INIS)

    Zagar, K.; Hunt, S.; Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J.

    2010-01-01

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  12. Gaseous elemental mercury (GEM emissions from snow surfaces in northern New York.

    Directory of Open Access Journals (Sweden)

    J Alexander Maxwell

    Full Text Available Snow surface-to-air exchange of gaseous elemental mercury (GEM was measured using a modified Teflon fluorinated ethylene propylene (FEP dynamic flux chamber (DFC in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2 hr(-1 to 9.89 ng m(-2 hr(-1. For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  13. Gaseous elemental mercury (GEM) emissions from snow surfaces in northern New York.

    Science.gov (United States)

    Maxwell, J Alexander; Holsen, Thomas M; Mondal, Sumona

    2013-01-01

    Snow surface-to-air exchange of gaseous elemental mercury (GEM) was measured using a modified Teflon fluorinated ethylene propylene (FEP) dynamic flux chamber (DFC) in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg) vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2) hr(-1) to 9.89 ng m(-2) hr(-1). For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  14. The HadGEM2 family of Met Office Unified Model climate configurations

    Directory of Open Access Journals (Sweden)

    The HadGEM2 Development Team: G. M. Martin

    2011-09-01

    Full Text Available We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.

  15. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  16. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  17. Achieving High Reliability with People, Processes, and Technology.

    Science.gov (United States)

    Saunders, Candice L; Brennan, John A

    2017-01-01

    High reliability as a corporate value in healthcare can be achieved by meeting the "Quadruple Aim" of improving population health, reducing per capita costs, enhancing the patient experience, and improving provider wellness. This drive starts with the board of trustees, CEO, and other senior leaders who ingrain high reliability throughout the organization. At WellStar Health System, the board developed an ambitious goal to become a top-decile health system in safety and quality metrics. To achieve this goal, WellStar has embarked on a journey toward high reliability and has committed to Lean management practices consistent with the Institute for Healthcare Improvement's definition of a high-reliability organization (HRO): one that is committed to the prevention of failure, early identification and mitigation of failure, and redesign of processes based on identifiable failures. In the end, a successful HRO can provide safe, effective, patient- and family-centered, timely, efficient, and equitable care through a convergence of people, processes, and technology.

  18. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...

  19. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  20. Top-down/bottom-up description of electricity sector for Switzerland using the GEM-E3 computable general equilibrium model

    International Nuclear Information System (INIS)

    Krakowski, R. A.

    2006-06-01

    Participation of the Paul Scherrer Institute (PSI) in the advancement and extension of the multi-region, Computable General Equilibrium (CGE) model GEM-E3 (CES/KUL, 2002) focused primarily on two top-level facets: a) extension of the model database and model calibration, particularly as related to the second component of this study, which is; b) advancement of the dynamics of innovation and investment, primarily through the incorporation of Exogenous Technical Learning (ETL) into he Bottom-Up (BU, technology-based) part of the dynamic upgrade; this latter activity also included the completion of the dynamic coupling of the BU description of the electricity sector with the 'Top-Down' (TD, econometric) description of the economy inherent to the GEM-E3 CGE model. The results of this two- component study are described in two parts that have been combined in this single summary report: Part I describes the methodology and gives illustrative results from the BUTD integration, as well as describing the approach to and giving preliminary results from incorporating an ETL description into the BU component of the overall model; Part II reports on the calibration component of task in terms of: a) formulating a BU technology database for Switzerland based on previous work; incorporation of that database into the GEM-E3 model; and calibrating the BU database with the TD database embodied in the (Swiss) Social Accounting Matrix (SAM). The BUTD coupling along with the ETL incorporation described in Part I represent the major effort embodied in this investigation, but this effort could not be completed without the calibration preamble reported herein as Part II. A brief summary of the scope of each of these key study components is given. (author)

  1. Top-down/bottom-up description of electricity sector for Switzerland using the GEM-E3 computable general equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R. A

    2006-06-15

    Participation of the Paul Scherrer Institute (PSI) in the advancement and extension of the multi-region, Computable General Equilibrium (CGE) model GEM-E3 (CES/KUL, 2002) focused primarily on two top-level facets: a) extension of the model database and model calibration, particularly as related to the second component of this study, which is; b) advancement of the dynamics of innovation and investment, primarily through the incorporation of Exogenous Technical Learning (ETL) into he Bottom-Up (BU, technology-based) part of the dynamic upgrade; this latter activity also included the completion of the dynamic coupling of the BU description of the electricity sector with the 'Top-Down' (TD, econometric) description of the economy inherent to the GEM-E3 CGE model. The results of this two- component study are described in two parts that have been combined in this single summary report: Part I describes the methodology and gives illustrative results from the BUTD integration, as well as describing the approach to and giving preliminary results from incorporating an ETL description into the BU component of the overall model; Part II reports on the calibration component of task in terms of: a) formulating a BU technology database for Switzerland based on previous work; incorporation of that database into the GEM-E3 model; and calibrating the BU database with the TD database embodied in the (Swiss) Social Accounting Matrix (SAM). The BUTD coupling along with the ETL incorporation described in Part I represent the major effort embodied in this investigation, but this effort could not be completed without the calibration preamble reported herein as Part II. A brief summary of the scope of each of these key study components is given. (author)

  2. Liquid crystals: high technology materials for potential applications

    International Nuclear Information System (INIS)

    Saeed, M.A.; Badaruddin; Rizvi, T.Z.

    1993-01-01

    Liquid crystals have very rapidly emerged as a basis of many high technology fields within the last few decades. These materials because of their intriguing physical properties are regarded as the fourth state of matter. At present the applications of liquid crystals are established in digital display devices, electro-optical switches, optical computing, acousto-optics, thermo-indicators, laser thermo-recording, photo-chemical image recording and optical communication networks. More recently due to the concept of molecularly based electronics (MBE): the logical extreme for miniaturization of electronic device, liquid crystals are foreseen to play a vital role in the future optics based technologies. This paper gives a brief introduction to liquid crystals, the types of meso phases found in these materials together with their applications in research and industry. Some technical details of the construction liquid crystal cells for some typical applications in digital displays and other electro optical devices have also been discussed with special emphasis on relevant physical processes occurring at molecular level. (author)

  3. Intelligent technologies in process of highly-precise products manufacturing

    Science.gov (United States)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  4. Technological and licensing challenges for high burnup fuel

    International Nuclear Information System (INIS)

    Gross, H.; Urban, P.; Fenzlein, C.

    2002-01-01

    Deregulation of electricity markets is driving electricity prices downward as well in the U.S. as in Europe. As a consequence high burnup fuel will be demanded by utilities using either the storage or the reprocessing option. At a minimum, burnups consistent with the current political enrichment limit of 5 w/o will be required for both markets.Significant progress has been achieved in the past by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges posed by the increased burnup are mainly related to the corrosion and hydrogen pickup of the clad, the high burnup properties of the fuel and the dimensional changes of the fuel assembly structure. Clad materials with increased corrosion resistance appropriate for high burnup have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity with burnup, the rim effect of the pellet and the increase of fission gas release with burnup can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. Materials with increased corrosion resistance are also helpful controlling the dimensional changes of the fuel assembly structure. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved - some of them are still in the process of verification - or the solutions are visible. This fact is largely acknowledged by regulators too. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  5. La Gemäldegalerie di Dresda. Evoluzione dal Settecento a fine Ottocento

    Directory of Open Access Journals (Sweden)

    Aloisia Marzotto Caotorta

    2015-12-01

    Full Text Available Since its foundation, the Gemäldegalerie (Old Masters Picture Gallery in Dresden has been considered one of the most magnificent picture galleries in Europe. Not only during the Augustan Age there was a keen interest in the arts, but also a strong understanding of the arts as a means of political power claims. In this context, the Gemäldegalerie was the most representative display of this phenomenon. This article aims to explore the complex role played by the galleries of royal and aristocratic residences in Saxony, concentrating on the Gemäldegalerie between the 18th and 19th centuries as a case study, as well as focusing on its impact on contemporary German literature.

  6. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls

    International Nuclear Information System (INIS)

    McManus, Catherine E.; McMillan, Nancy J.; Harmon, Russell S.; Whitmore, Robert C.; De Lucia, Frank C. Jr.; Miziolek, Andrzej W.

    2008-01-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be3Al2Si6O18) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo no. 1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance

  7. Study of gain variation as a function of physical parameters of GEM foil

    CERN Document Server

    Das, Supriya

    2015-01-01

    The ALICE experiment at LHC has planned to upgrade the TPC by replacing the MWPC with GEM based detecting elements to restrict the IBF to a tolerable value. However the variation of the gain as a function of physical parameters of industrially produced large size GEM foils is needed to be studied as a part of the QA procedure for the detector. The size of the electron avalanche and consequently the gain for GEM based detectors depend on the electric field distribution inside the holes. Geometry of a hole plays an important role in defining the electric field inside it. In this work we have studied the variation of the gain as a function of the hole diameters using Garfield++ simulation package.

  8. An aging study of triple GEMs in Ar-CO sub 2

    CERN Document Server

    Guirl, L; May, J; Miyamoto, J; Shipsey, I

    2002-01-01

    An aging study was performed using triple GEMs and a print circuit board (PCB) with an intense X-ray radiation source. The GEM chamber consists of three identical GEMs and a large gas gain (6000) was shared by them. The chamber and its gas circulation line was carefully cleaned and constructed with stainless steel materials. The detector was irradiated continuously about 750 h without interruption until a large amount of charge was accumulated. A single-wire counter served as a monitoring device to check the beam and ambient conditions. The quality of the Ar-CO sub 2 gas was checked by gas chromatography and no measurable amount of hydrocarbons were found. 27 mC/mm sup 2 was accumulated with no noticeable degradation and no deposit or discoloration was found in an optical check.

  9. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Vuong Huu Tan; Le Hong Khiem

    2011-01-01

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  10. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes

    Directory of Open Access Journals (Sweden)

    Nakayama Yoichi

    2006-03-01

    Full Text Available Abstract Background Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. Results We developed the Genome-based Modeling (GEM System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. Conclusion The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  11. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    Science.gov (United States)

    Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik

    2018-02-01

    ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  12. Improved model of the Earth's gravitational field: GEM-T1

    International Nuclear Information System (INIS)

    Marsh, J.G.; Lerch, F.J.; Christodoulidis, D.C.

    1987-07-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

  13. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.

    Directory of Open Access Journals (Sweden)

    Meric Ataman

    2017-07-01

    Full Text Available In the post-genomic era, Genome-scale metabolic networks (GEMs have emerged as invaluable tools to understand metabolic capabilities of organisms. Different parts of these metabolic networks are defined as subsystems/pathways, which are sets of functional roles to implement a specific biological process or structural complex, such as glycolysis and TCA cycle. Subsystem/pathway definition is also employed to delineate the biosynthetic routes that produce biomass building blocks. In databases, such as MetaCyc and SEED, these representations are composed of linear routes from precursors to target biomass building blocks. However, this approach cannot capture the nested, complex nature of GEMs. Here we implemented an algorithm, lumpGEM, which generates biosynthetic subnetworks composed of reactions that can synthesize a target metabolite from a set of defined core precursor metabolites. lumpGEM captures balanced subnetworks, which account for the fate of all metabolites along the synthesis routes, thus encapsulating reactions from various subsystems/pathways to balance these metabolites in the metabolic network. Moreover, lumpGEM collapses these subnetworks into elementally balanced lumped reactions that specify the cost of all precursor metabolites and cofactors. It also generates alternative subnetworks and lumped reactions for the same metabolite, accounting for the flexibility of organisms. lumpGEM is applicable to any GEM and any target metabolite defined in the network. Lumped reactions generated by lumpGEM can be also used to generate properly balanced reduced core metabolic models.

  14. Technological aspects of high-$T_{c}$ superconductors

    CERN Document Server

    Mamalis, A G

    2000-01-01

    The applications of the dynamic or shock-wave compaction in the area of processing of high-T/sub c/ superconducting materials are presented and discussed. The basic aspects of explosive technology and also the various features of the related experimental techniques are reported. On the other hand, the influence of the shock-wave phenomena on macro-/microstructure and physico-chemical properties of the compacted ceramic, and the quality-performance of the final superconducting component are overviewed for certain industrial applications. Finally, some basic theoretical and empirical models describing the dynamic state of the material under shock and the stress-wave propagation are also included, in order to understand the dominant compaction mechanisms. (44 refs).

  15. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  16. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  17. Recent developments in high average power driver technology

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J.

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kV and 700 kV range are reported. A 250 kV, 1.5 kA/cm 2 , 30 ns electron beam diode has operated stably for 1.6 x 10 5 pulses

  18. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  19. Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search

    Science.gov (United States)

    Monteiro, C. M. B.; Fernandes, L. M. P.; Veloso, J. F. C. A.; Oliveira, C. A. B.; dos Santos, J. M. F.

    2012-07-01

    The search for alternatives to PMTs as photosensors in optical TPCs for rare event detection has significantly increased in the last few years. In particular, in view of the next generation large volume detectors, the use of photosensors with lower natural radioactivity, such as large area APDs or GM-APDs, with the additional possibility of sparse surface coverage, triggered the intense study of secondary scintillation production in micropattern electron multipliers, such as GEMs and THGEMs, as alternatives to the commonly used uniform electric field region between two parallel meshes. The much higher scintillation output obtained from the electron avalanches in such microstructures presents an advantage in those situations. The accurate knowledge of the amount of such scintillation is important for correct detector simulation and optimization. It will also serve as a benchmark for software tools developed and/or under development for the calculation of the amount of such scintillation.The secondary scintillation yield, or electroluminescence yield, in the electron avalanches of GEMs and THGEMs operating in gaseous xenon and argon has been determined for different gas pressures. At 1 bar, THGEMs deliver electroluminescence yields that are more than one order of magnitude higher when compared to those achieved in GEMs and two orders of magnitude when compared to those achieved in a uniform field gap. The THGEM electroluminescence yield presents a faster decrease with pressure when comparing to the GEM electroluminescence yield, reaching similar values to what is achieved in GEMs for xenon pressures of 2.5 bar, but still one order of magnitude higher than that produced in a uniform field gap. Another exception is the GEM operating in argon, which presents an electroluminescence yield similar to that produced in a uniform electric field gap, while the THGEM achieves yields that are more than one order of magnitude higher.

  20. Formation of GEMS from shock-accelerated crystalline dust in Superbubbles

    International Nuclear Information System (INIS)

    Westphal, A; Bradley, J P

    2004-01-01

    Interplanetary dust particles (IDPs) contain enigmatic sub-micron components called GEMS (Glass with Embedded Metal and Sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS; they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca and Fe (relative to solar abundances), most have normal (solar) oxygen isotopic compositions, they exhibit a strikingly narrow size distribution (0.1-0.5 (micro)m diameter), and some of them contain ''relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble, and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury and Ellison have proposed that galactic cosmic rays originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for galactic cosmic rays. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last thirty years

  1. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study.

    Science.gov (United States)

    Liu, Jie; Platts-Mills, James A; Juma, Jane; Kabir, Furqan; Nkeze, Joseph; Okoi, Catherine; Operario, Darwin J; Uddin, Jashim; Ahmed, Shahnawaz; Alonso, Pedro L; Antonio, Martin; Becker, Stephen M; Blackwelder, William C; Breiman, Robert F; Faruque, Abu S G; Fields, Barry; Gratz, Jean; Haque, Rashidul; Hossain, Anowar; Hossain, M Jahangir; Jarju, Sheikh; Qamar, Farah; Iqbal, Najeeha Talat; Kwambana, Brenda; Mandomando, Inacio; McMurry, Timothy L; Ochieng, Caroline; Ochieng, John B; Ochieng, Melvin; Onyango, Clayton; Panchalingam, Sandra; Kalam, Adil; Aziz, Fatima; Qureshi, Shahida; Ramamurthy, Thandavarayan; Roberts, James H; Saha, Debasish; Sow, Samba O; Stroup, Suzanne E; Sur, Dipika; Tamboura, Boubou; Taniuchi, Mami; Tennant, Sharon M; Toema, Deanna; Wu, Yukun; Zaidi, Anita; Nataro, James P; Kotloff, Karen L; Levine, Myron M; Houpt, Eric R

    2016-09-24

    Diarrhoea is the second leading cause of mortality in children worldwide, but establishing the cause can be complicated by diverse diagnostic approaches and varying test characteristics. We used quantitative molecular diagnostic methods to reassess causes of diarrhoea in the Global Enteric Multicenter Study (GEMS). GEMS was a study of moderate to severe diarrhoea in children younger than 5 years in Africa and Asia. We used quantitative real-time PCR (qPCR) to test for 32 enteropathogens in stool samples from cases and matched asymptomatic controls from GEMS, and compared pathogen-specific attributable incidences with those found with the original GEMS microbiological methods, including culture, EIA, and reverse-transcriptase PCR. We calculated revised pathogen-specific burdens of disease and assessed causes in individual children. We analysed 5304 sample pairs. For most pathogens, incidence was greater with qPCR than with the original methods, particularly for adenovirus 40/41 (around five times), Shigella spp or enteroinvasive Escherichia coli (EIEC) and Campylobactor jejuni o C coli (around two times), and heat-stable enterotoxin-producing E coli ([ST-ETEC] around 1·5 times). The six most attributable pathogens became, in descending order, Shigella spp, rotavirus, adenovirus 40/41, ST-ETEC, Cryptosporidium spp, and Campylobacter spp. Pathogen-attributable diarrhoeal burden was 89·3% (95% CI 83·2-96·0) at the population level, compared with 51·5% (48·0-55·0) in the original GEMS analysis. The top six pathogens accounted for 77·8% (74·6-80·9) of all attributable diarrhoea. With use of model-derived quantitative cutoffs to assess individual diarrhoeal cases, 2254 (42·5%) of 5304 cases had one diarrhoea-associated pathogen detected and 2063 (38·9%) had two or more, with Shigella spp and rotavirus being the pathogens most strongly associated with diarrhoea in children with mixed infections. A quantitative molecular diagnostic approach improved population

  2. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    Directory of Open Access Journals (Sweden)

    É. Gaborit

    2017-09-01

    Full Text Available This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the

  3. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    Science.gov (United States)

    Gaborit, Étienne; Fortin, Vincent; Xu, Xiaoyong; Seglenieks, Frank; Tolson, Bryan; Fry, Lauren M.; Hunter, Tim; Anctil, François; Gronewold, Andrew D.

    2017-09-01

    This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE √ (Nash-Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE √ in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the

  4. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  5. Novel High Pressure Pump-on-a-Chip Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  6. Development of High Temperature Superconducting Josephson Junction Device Technology

    National Research Council Canada - National Science Library

    Myers, Kirsten

    1998-01-01

    The DuPont program was successful in generating useful knowledge about thallium cuprate materials, photoresist reflow processing, and radiant heater technology though it did not lead to a new junction technology...

  7. Quality assurance of GEM foils in the framework of the TPC upgrade in the ALICE experiment

    CERN Document Server

    Ozcelik, Melih Arslan

    2016-01-01

    In the framework of the TPC upgrade of the ALICE Experiment, new readout chambers will be installed during the LHC long shutdown 2, which is scheduled to start in July 2018. The current MWPCs (Multi Wire Proportional Chambers) will be replaced by readout chambers consisting of GEM (Gas Electron Multipliers) foils in order to meet the increasing readout rate requirements. QA (Quality Assurance) tests on the GEMs are performed to classify the foils. In this report we present the work done during the CERN Summer Student Programme 2016.

  8. High- and low-pressure operation of the gas electron multiplier

    International Nuclear Information System (INIS)

    Bondar, A.; Buzulutskov, A.; Shekhtman, L.; Sauli, F.

    1998-01-01

    We have studied the operation of the gas electron multiplier (GEM) in gas mixtures Xe-CO 2 , Ar-CO 2 and CH 4 at different pressures varying from 0.1 to 5 atm. In Ar- and Xe-based mixtures, the maximum GEM gain considerably decreases with pressure, from a few hundreds at 1 atm to below 10 at 5 atm. Combined gain of GEM and the micro-strip gas chamber (MSGC) can exceed values of 10000 at 1 atm and 100 at 5 atm. High GEM gains, of above 1000, were obtained in CH 4 at low pressures. We have observed the effect of the avalanche confinement in GEM micro-holes, resulting in violation of the pressure scaling and in the possibility of GEM operation in pure noble gases. (author)

  9. Teaching and technology: the traits and attitudes of highly rated ...

    African Journals Online (AJOL)

    The emergence of Information and Communications Technology in education, which includes online learning, leads to a 'technological imperative' for institutions of higher learning. A barrier to the successful adoption of online learning is the willingness of lecturers to utilise such technology for learning. In this article we ...

  10. The GEM code. A simulation program for the evaporation and the fission process of an excited nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori [Mitsubishi Research Institute Inc., Tokyo (Japan); Niita, Koji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Meigo, Shin-ichiro; Ikeda, Yujiro; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The GEM code is a simulation program which describes the de-excitation process of an excited nucleus, which is based on the Generalized Evaporation Model and the Atchison fission model. It has been shown that the combination of the Bertini intranuclear cascade model and GEM accurately predicts the cross sections of light fragments, such as Be produced from the proton-induced reactions. It has also been shown that the use of the reevaluated parameters in the Atchison model improves predictions of cross sections of fission fragments produced from the proton-induced reaction on Au. In this report, we present details and the usage of the GEM code. Furthermore, the results of benchmark calculations are shown by using the combination of the Bertini intranuclear cascade model and the GEM code (INC/GEM). Neutron spectra and isotope production cross sections from the reactions on various targets irradiated by protons are calculated with INC/GEM. Those results are compared with experimental data as well as the calculation results with LAHET. INC/GEM reproduces the experiments of double differential neutron emissions from the reaction on Al and Pb. The isotopic distributions for He, Li, and Be produced from the reaction on Ag are in good agreement with experimental data within 50%, although INC/GEM underestimates those of heavier nuclei than O. It is also shown that the predictions with INC/GEM for isotope production of light fragments, such as Li and Be, are better than those calculation with LAHET, particularly for heavy target. INC/GEM also gives better estimates of the cross sections of fission products than LAHET. (author)

  11. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  12. Development of very high temperature reactor design technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, Jan Man

    2012-04-01

    or an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, fission product/tritium transport analysis, core thermo-fluid analysis, system layout analysis, graphite structure seismic analysis and hydrogen exposion analysis, and they are being verified and validated through a lot of international collaborations

  13. Development of a tracker based on GEM optically readout

    CERN Document Server

    Torchia, Natalia

    The high-resolution tracking of low energy release particles had a remarkable development in recent years and will give a crucial contribution in different sectors, from medical applications to those in dark matter search. Thanks to their characteristics (high space and time resolution, low material budget, large volumes, low costs) the gas detectors have shown to be ideal candidates for this type of trackers. In particular, a very promising technique regards the optical reading of the light produced by the de-excitation of gas molecules during the processes of electron multiplication. This type of detector has been made possible thanks to the great progresses achieved in last years in the performance in micro pattern gas detector and in the evolution of the CMOS technology which led to the production of sensors able of offering high sensitivity and granularity combined with a very low noise level. In this thesis I studied the performance of a two prototypes where the light is produced through the multiplicat...

  14. 3-D Mapping Technologies For High Level Waste Tanks

    International Nuclear Information System (INIS)

    Marzolf, A.; Folsom, M.

    2010-01-01

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  15. High-level Waste Long-term management technology development

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kang, C. H.; Ko, Y. K.

    2012-02-01

    The purpose of this project is to develop a long-term management system(A-KRS) which deals with spent fuels from domestic nuclear power stations, HLW from advanced fuel cycle and other wastes that are not admitted to LILW disposal site. Also, this project demonstrate the feasibility and reliability of the key technologies applied in the A-KRS by evaluating them under in-situ condition such as underground research laboratory and provide important information to establish the safety assessment and long-term management plan. To develop the technologies for the high level radioactive wastes disposal, demonstrate their reliability under in-situ condition and establish safety assessment of disposal system, The major objects of this project are the following: Ο An advanced disposal system including waste containers for HLW from advanced fuel cycle and pyroprocess has been developed. Ο Quantitative assessment tools for long-term safety and performance assessment of a radwaste disposal system has been developed. Ο Hydrological and geochemical investigation and interpretation methods has been developed to evaluate deep geological environments. Ο The THMC characteristics of the engineered barrier system and near-field has been evaluated by in-situ experiments. Ο The migration and retardation of radionuclides and colloid materials in a deep geological environment has been investigated. The results from this project will provide important information to show HLW disposal plan safe and reliable. The knowledge from this project can also contribute to environmental conservation by applying them to the field of oil and gas industries to store their wastes safe

  16. GREEN TECHNOLOGY FORESIGHT OF HIGH TECHNOLOGY: HYPE OR POTENTIALS - THE CHALLENGES FROM NANOTECHNOLOGY, BIOTECHNOLOGY AND ICT

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2004-01-01

    The paper describes the theoretical and methodological approach in an ongoing Danish technology foresight project focusing on the environmental potentials and risks of nanotechnology, biotechnology, and information and communication technology (ICT). The paper gives a short overview of some...

  17. "Physics Stories": How the Early Technologies of High Voltage and High Vacuum Led to "Modern Physics"

    Science.gov (United States)

    Greenslade, Thomas B.

    2018-05-01

    Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections seem to be stretched at times, and led to a book by Burke. In a number of talks that I have given over the years, I have made somewhat less fanciful connections that suggest how the technologies of high vacuum and high voltage led to what used to be called "modern physics." Today we might limit the "modern" era to the years from 1890 to 1920 that gave the first workable theories of small-scale physics.

  18. High-Performance Secure Database Access Technologies for HEP Grids

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Vranicar; John Weicher

    2006-04-17

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist’s computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.” There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the

  19. High-Performance Secure Database Access Technologies for HEP Grids

    International Nuclear Information System (INIS)

    Vranicar, Matthew; Weicher, John

    2006-01-01

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist's computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that 'Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications'. There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure

  20. High definition TV projection via single crystal faceplate technology

    Science.gov (United States)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.