WorldWideScience

Sample records for high taurocholate load

  1. Obese rats exhibit high levels of fat necrosis and isoprostanes in taurocholate-induced acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Javier Pereda

    Full Text Available BACKGROUND: Obesity is a prognostic factor for severity in acute pancreatitis in humans. Our aim was to assess the role of oxidative stress and abdominal fat in the increased severity of acute pancreatitis in obese rats. METHODOLOGY: Taurocholate-induced acute pancreatitis was performed in lean and obese Zucker rats. Levels of reduced glutathione, oxidized glutathione, L-cysteine, cystine, and S-adenosylmethionine were measured in pancreas as well as the activities of serine/threonine protein phosphatases PP1 and PP2A and tyrosin phosphatases. Isoprostane, malondialdehyde, triglyceride, and free fatty acid levels and lipase activity were measured in plasma and ascites. Lipase activity was measured in white adipose tissue with and without necrosis and confirmed by western blotting. FINDINGS: Under basal conditions obese rats exhibited lower reduced glutathione levels in pancreas and higher triglyceride and free fatty acid levels in plasma than lean rats. S-adenosyl methionine levels were markedly increased in pancreas of obese rats. Acute pancreatitis in obese rats led to glutathione oxidation and lower reduced glutathione levels in pancreas together with decreased activities of redox-sensitive phosphatases PP1, and PP2A. S-adenosyl methionine levels decreased but cystine levels increased markedly in pancreas upon pancreatitis. Acute pancreatitis triggered an increase in isoprostane levels in plasma and ascites in obese rats. Free fatty acid levels were extremely high in pancreatitis-associated ascitic fluid from obese rats and lipase was bound with great affinity to white adipose tissue, especially to areas of necrosis. CONCLUSIONS: Our results show that oxidative stress occurs locally and systemically in obese rats with pancreatitis favouring inactivation of protein phosphatases in pancreas, which would promote up-regulation of pro-inflammatory cytokines, and the increase of isoprostanes which might cause powerful pulmonary and renal

  2. A green access to highly pure single-walled carbon nanotubes by taurocholate-assistant dispersion and centrifugation

    Science.gov (United States)

    Lian, Yongfu

    2009-09-01

    Raw single-walled carbon nanotubes produced by arc discharge were oxidized in the air to eliminate amorphous carbon, and then dispersed in the aqueous solution of sodium taurocholate supersonically. Thus obtained stable dispersion was subjected to centrifugation, and the metal catalysts and varying carbon impurities were separated with carbon nanotubes. The efficiency of the above procedure was confirmed by scanning electron microscope observation, thermogravimetry, and optical absorption and Raman spectroscopic analyses. The advantage of this procedure lies in easiness, high purity, and no pollution to environment.

  3. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  4. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)

    2009-04-15

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  5. TE(01) High Power Disk Loaded Guide Load

    CERN Document Server

    Farkas, Zoltan D

    2005-01-01

    A method to design a matching section from a smooth guide to a disk loaded guide, using a variation of broadband matching* is described. Using this method, we show how to design high power loads, filters and attenuators. The load consists of a disk loaded coaxial guide, operating in the T01

  6. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  7. Polymer brushes under high load.

    Directory of Open Access Journals (Sweden)

    Suzanne M Balko

    Full Text Available Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties.

  8. APS high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  9. TE_01 High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2005-06-01

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads, attenuators and filters. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  10. High voltage load resistor array

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Monty Ray [Smithfield, VA

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  11. Histopathological Sequential Changes in Sodium Taurocholate-Induced Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Ashwinikumar Kudari

    2007-09-01

    Full Text Available Context Experimental models of acute pancreatitis have been developed in order to understand its pathophysiology and extrapancreatic manifestations. Objective The objective of our study was to study sequential changes in the pancreas and distant organs in sodium taurocholate-induced acute pancreatitis in a rat model. Animals Sixteen male Wistar rats weighing 250-300 g. Design The rats were distributed into two groups: induced acute pancreatitis (study group: 8 rats and a control group (8 rats. Within each group, the animals were divided into subgroups: those who were sacrificed early (24 h and 72 h; two each and those who were sacrificed late (120 h and 240 h; two each. Intervention Acute pancreatitis was induced in the rats by multiple intraparenchymal injections of 10% sodium taurocholate solution. In the controls, the same amount of normal saline was injected into the pancreatic parenchyma. Main outcome measures Pathological examination of the pancreas, lungs, kidneys, intestine and liver was done. Results In this model of taurocholate-induced acute pancreatitis, the early changes observed in the pancreas were focal hemorrhages, parenchymal necrosis and neutrophil infiltration. At 72 hours, the changes observed were acinar necrosis, edema, fibrin deposition and inflammatory cell infiltration. Late changes were fibrinoid necrosis and fibroblast proliferation. In the acute phase, the histological changes in the lungs were congestion, focal pulmonary edema and intraalveolar hemorrhages while, in the late stage, there was persistence of vascular congestion. The changes observed in the kidneys were vacuolization of tubular epithelium in the subcapsular region and areas of hemorrhage in the interstitium. Intestinal changes included degenerative changes in the villous epithelium in the acute phase with normalization of the histology in the late phase. Conclusion Our findings correlate with the clinical observation of multisystem organ failure in

  12. Effect of repeated oral administration on taurocholate on hepatic excretory function in the rat.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1981-07-01

    The effect of repeated administration of taurocholate on bile acid pool size, biliary composition and biliary excretory capacity for bile acids and two xenobiotics was determined. The bile acid pool was increased 50 to 60% by oral administration of sodium taurocholate (300--900 mg/kg, 10 ml/kg) every 12 hr for 2 days to male Sprague-Dawley rats. Bile flow, biliary excretion of bile acids, cholesterol and phospholipid and the concentrations of phospholipid and bile acids in bile were increased in rats treated with 750 mg of taurocholate per kg. No effect was observed on Na+,K+ or Cl- levels. The biliary transport maximum for taurocholate was increased by 30% in rats treated with 750 mg/kg. In contrast, the plasma disappearance and biliary excretion of phenol-3,6-dibromphthalein and ouabain were not affected by taurocholate administration.

  13. The effects of the adenosine A3 receptor agonist IB-MECA on sodium taurocholate-induced experimental acute pancreatitis.

    Science.gov (United States)

    Prozorow-Krol, Beata; Korolczuk, Agnieszka; Czechowska, Grazyna; Slomka, Maria; Madro, Agnieszka; Celinski, Krzysztof

    2013-09-01

    The role of adenosine A3 receptors and their distribution in the gastrointestinal tract have been widely investigated. Most of the reports discuss their role in intestinal inflammations. However, the role of adenosine A3 receptor agonist in pancreatitis has not been well established. The aim of this study is [corrected] to evaluate the effects of the adenosine A3 receptor agonist on the course of sodium taurocholate-induced experimental acute pancreatitis (EAP). The experiments were performed on 80 male Wistar rats, 58 of which survived, subdivided into 3 groups: C--control rats, I--EAP group, and II--EAP group treated with the adenosine A3 receptor agonist IB-MECA (1-deoxy-1-6[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl)-N-methyl-B-D-ribofuronamide at a dose of 0.75 mg/kg b.w. i.p. at 48, 24, 12 and 1 h before and 1 h after the injection of 5% sodium taurocholate solution into the biliary-pancreatic duct. Serum for α-amylase and lipase determinations and tissue samples for morphological examinations were collected at 2, 6, and 24 h of the experiment. In the IB-MECA group, α-amylase activity was decreased with statistically high significance compared to group I. The activity of lipase was not significantly different among the experimental groups but higher than in the control group. The administration of IB-MECA attenuated the histological parameters of inflammation as compared to untreated animals. The use of A3 receptor agonist IB-MECA attenuates EAP. Our findings suggest that stimulation of adenosine A3 receptors plays a positive role in the sodium taurocholate-induced EAP in rats.

  14. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter

    2010-01-01

    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  15. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    Science.gov (United States)

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  16. High power s-band vacuum load

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons, Inc., Batavia, IL (United States); Dudas, Alan [Muons, Inc., Batavia, IL (United States); Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-29

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matched pairs of rings were measured for assembly into the final load and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.

  17. The degradation processes in high loaded casts

    Directory of Open Access Journals (Sweden)

    E. Ďuriníková

    2010-01-01

    Full Text Available In this work are described structural changes of jet engine DV – 2 turbine blades and effect of degradation process. Turbine blades work in aggressively environs and because of that there are rate among high loaded cast stock. As an experimental material we have chose nickel superalloy ŽS6K with surface heat - resisting alitize layer. Evaluation is slant on largeness wearing over work of certain number of hour in operation. Effect working environs and overrun working temperatures is show changes measures as well as changes macrostructure of basic material blades. Evaluate is advance quantitative metallography through the medium metallographic software NIS element. Quantitative analysis evaluate thickness measures, quality control outer look and lack mixture in the seat, which is not splash, is precede by lack of near another applied protective layer. Allowance is knot on last examination in the area ratings protective heat-resisting layers and gives records for others possible ratings and experiments in this area.

  18. Preventive effect of hydrotalcite on gastric mucosal injury in rats induced by taurocholate

    OpenAIRE

    Yu, Bao-Ping; Sun, Jun; Li, Mu-Qi; Luo, He-Sheng; Yu, Jie-Ping

    2003-01-01

    AIM: To study the preventive effect of hydrotalcite on gastric mucosal injury in rat induced by taurocholate, and to investigate the relationship between the protective mechanism of hydrotalcite and the expression of trefoil factor family 2 (TFF2) mRNA and c-fos protein.

  19. ADENOSINE-TRIPHOSPHATE DEPENDENT TAUROCHOLATE TRANSPORT IN HUMAN LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    WOLTERS, H; KUIPERS, F; SLOOFF, MJH; VONK, RJ

    1992-01-01

    Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles iso

  20. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie

    2011-01-01

    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  1. Therapeutic effect of DA-9601 on chronic reflux gastritis induced by sodium taurocholate in rats

    Institute of Scientific and Technical Information of China (English)

    Tae Young Oh; Chang Yell Shin; Yong Sung Sohn; Dong Hwan Kim; Byoung Ok Ahn; Eun Bang Lee; Cho Hyun Park

    2005-01-01

    AIM: To investigate the therapeutic effects of DA-9601 on sodium taurocholate (TCA)-induced chronic reflux gastritis in SD rats.METHODS: In this study, we have investigated the therapeutic effects of DA-9601 on chronic erosive and atrophic gastritis induced by 6 mo of TCA administration (5 mmol/L in drinking water) in SD rats. RESULTS: Four weeks of DA-9601 administration (0.065%, 0.216% in rat chow), following the withdrawal of TCA treatment, resulted in a significant decrease in total length of erosions in rats in a dose-dependent manner. Furthermore, the indicators of atrophic gastritis, such as reduced mucosal thickness and reduction in the number of parietal cells, were improved by the administration of DA-9601 in a dose-related manner. DA-9601 also attenuated inflammatory cell infiltration and the proliferation of collagenous fiber in the gastric mucosa. The improvement in the reduction of the gastric mucus was observed in the rats receiving a high dose of DA-9601 (0.216%). The therapeutic effect of DA-9601 on experimental chronic erosive gastritis was superior to that of rebamipide (1.08% in rat chow). Biochemical analyses showed increased mucosal prostaglandin E2 and reduced glutathione levels by DA-9601 treatment. CONCLUSION: We suggest that DA-9601 is apromising agent for the treatment of chronic erosive and atrophic gastritis with an etiological factor of bile reflux. Increasedmucosal prostaglandin E2 and reduced glutathione by DA-9601 treatment may be therapeutic mechanisms for chronic erosive and atrophic gastritis.

  2. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  3. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  4. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    Science.gov (United States)

    2016-07-20

    REPORT NO: NAWCADPAX/TIM-2016/49 HIGH - FREQUENCY AXIAL FATIGUE TEST PROCEEDURES FOR SPECTRUM LOADING by David T. Rusk, AIR...OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TIM-2016/49 20 July 2016 HIGH - FREQUENCY AXIAL...Technical Information Memorandum 3. DATES COVERED 4. TITLE AND SUBTITLE High - Frequency Axial Fatigue Test Procedures for Spectrum Loading

  5. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  6. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    Science.gov (United States)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  7. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  8. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    bottoming cycle, and solar power plants. The high temperature cycle layouts are inherently more complex than the low temperature layouts due to the presence of a distillation-condensation subsystem, three pressure levels, and several heat exchangers. This paper presents a detailed approach to solve...... the Kalina cycle in part-load operating conditions for high temperature (a turbine inlet temperature of 500 °C) and high pressure (100 bar) applications. A central receiver concentrating solar power plant with direct vapour generation is considered as a case study where the part-load conditions are simulated...... by changing the solar heat input to the receiver. Compared with the steam Rankine cycle, the Kalina cycle has an additional degree of freedom in terms of the ammonia mass fraction which can be varied in order to maximize the part-load efficiency of the cycle. The results include the part-load curves...

  9. Preventive effect of hydrotalcite on gastric mucosal injury in rats induced by taurocholate

    Institute of Scientific and Technical Information of China (English)

    Bao-Ping Yu; Jun Sun; Mu-Qi Li; He-Sheng Luo; Jie-Ping Yu

    2003-01-01

    AIM: To study the preventive effect of hydrotalcite on gastric mucosal injury in rat induced by taurocholate, and to investigate the relationship between the protective mechanism of hydrotalcite and the expression of trefoil factor family 2 (TFF2) mRNA and c-fos protein.METHODS: Forty five male Wistar rats were randomly divided into hydrotalcite group, ranitidine group and control group. Gastric mucosal injury was induced by introgastric acidified taurocholate. OD value of TFF2 mRNA expression in gastric mucous cells was determined by hybridization and computer image analysis system. OD value of c-fos protein expression in gastric mucous cells was measured by immunohistochemistry and computer image analysis system.RESULTS: The gross mucosal injury index in hydrotalcite group was significantly lower than that in ranitidine group and control group (8.60±2.20 vs 16.32±4.27, 29.53±5.39;P<0.05, P<0.01). The expression level of TFF2 mRNA in hydrotalcite group was markedly higher than that in ranitidine group and control group (0.56±0.09 vs 0.30±0.05, 0.28±0.03,P<0.05). The OD value of c-fos protein in hydrotalcite group was higher than that in ranitidine group and control group (0.52±0.07 vs 0.31±0.04, 0.32±0.05, P<0.05).CONCLUSION: Hydrotalcite can protect gastric mucosal injury in rats induced by taurocholate, which may be related to the increased expression of TFF2 and c-fos protein.

  10. Automatic imitation? Imitative compatibility affects responses at high perceptual load.

    Science.gov (United States)

    Catmur, Caroline

    2016-04-01

    Imitation involves matching the visual representation of another's action onto the observer's own motor program for that action. However, there has been some debate regarding the extent to which imitation is "automatic"-that is, occurs without attention. Participants performed a perceptual load task in which images of finger movements were presented as distractors. Responses to target letter stimuli were performed via finger movements that could be imitatively compatible (requiring the same finger movement) or incompatible with the distractor movements: In this common stimulus-response compatibility manipulation, the stimulus set comprises images of the response movements, producing an imitative compatibility effect. Attention to the distractor movements was manipulated by altering perceptual load through increasing the number of nontarget letter stimuli. If imitation requires attention, then at high perceptual load, imitative compatibility should not affect response times. In contrast, imitative compatibility influenced response times at high perceptual load, demonstrating that distractor movements were processed. However, the compatibility effect was reversed, suggesting that longer response times at high perceptual load tap into an inhibitory stage of distractor movement processing. A follow-up experiment manipulating temporal delay between targets and distractor movements supported this explanation. Further experiments confirmed that nonmovement distractor stimuli in the same configuration produced standard perceptual load effects and that results were not solely due to effector compatibility. These data suggest that imitation can occur without attention. (PsycINFO Database Record

  11. Influence of load by high power on the optical coupler

    Science.gov (United States)

    Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2016-12-01

    Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.

  12. Micro-machined high capacity silicon load cells

    NARCIS (Netherlands)

    Zwijze, A.F.

    2000-01-01

    The aim of the research presented in this thesis is to improve the performance of high capacity conventional load cells or force sensors by using silicon as the base material. Silicon is used because it offers the possibility of realising small, light, low cost and high performance mechanical sensor

  13. Protective Effect of Tetrandrine on Sodium Taurocholate-Induced Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Xian-lin Wu

    2015-01-01

    Full Text Available Tet is a type of alkaloid extracted from Stephania tetrandra, and it has recently been demonstrated that Tet can protect against inflammation and free radical injury and inhibit the release of inflammatory mediators. The present study was designed to observe the protective effect of Tet on sodium taurocholate-induced severe acute pancreatitis (SAP. The rat model of SAP was induced by retrograde bile duct injection of sodium taurocholate and then treated with Verapamil and Tet. The results showed that Tet can reduce NF-κB activation in pancreas issue, inhibit the SAP cascade, and improve SAP through inducing pancreas acinar cell apoptosis and stabilizing intracellular calcium in the pancreas, thus mitigating the damage to the pancreas. Our study revealed that Tet may reduce systemic inflammatory response syndrome (SIRS and multiple organ dysfunction syndromes (MODS to protect against damage, and these roles may be mediated through the NF-κB pathway to improve the proinflammatory/anti-inflammatory imbalance.

  14. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C. (New York Medical College, Valhalla (USA))

    1990-05-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of (14C)taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics.

  15. The effect of high load training on psychomotor speed

    NARCIS (Netherlands)

    Nederhof, E.; Lemmink, K.; Zwerver, J.; Mulder, T.

    The purpose of the present study was to investigate whether overreached athletes show psychomotor slowness after a period of high load training. Fourteen well-trained cyclists (10 male, 4 female, mean age 25.3 [SD = 4.1] years, mean maximal oxygen consumption 65.5 [SD=8.1] ml/ kg-min) performed a

  16. A Comparison of Increases in Volume Load Over 8 Weeks of Low-Versus High-Load Resistance Training

    OpenAIRE

    Schoenfeld; Ogborn; Contreras,, J. g.; Cappaert; Silva Ribeiro; Alvar; Vigotsky

    2016-01-01

    Background It has been hypothesized that the ability to increase volume load (VL) via a progressive increase in the magnitude of load for a given exercise within a given repetition range could enhance the adaptive response to resistance training. Objectives The purpose of this study was to compare changes in volume load (VL) over eight weeks of resistance training (RT) in high-versus low-load protocols. ...

  17. High functional load inhibits phonological contrast loss: a corpus study.

    Science.gov (United States)

    Wedel, Andrew; Kaplan, Abby; Jackson, Scott

    2013-08-01

    For nearly a century, linguists have suggested that diachronic merger is less likely between phonemes with a high functional load--that is, phonemes that distinguish many words in the language in question. However, limitations in data and computational power have made assessing this hypothesis difficult. Here we present the first larger-scale study of the functional load hypothesis, using data from sound changes in a diverse set of languages. Our results support the functional load hypothesis: phoneme pairs undergoing merger distinguish significantly fewer minimal pairs in the lexicon than unmerged phoneme pairs. Furthermore, we show that higher phoneme probability is positively correlated with merger, but that this effect is stronger for phonemes that distinguish no minimal pairs. Finally, within our dataset we find that minimal pair count and phoneme probability better predict merger than change in system entropy at the lexical or phoneme level.

  18. Atomistic simulations of high strain rate loading of nanocrystals

    Science.gov (United States)

    Bringa, E. M.; Tramontina, D.; Ruestes, C. J.; Tang, Y.; Meyers, M. A.; Gunkelmann, N.; Urbassek, H. M.

    2013-03-01

    Materials loaded at high strain rates can reach extreme temperature and pressure conditions. Most experiments on loading of simple materials use poly crystals, while most atomistic simulations of shock wave loading deal with single crystals, due to the higher computational cost of running polycrystal samples. Of course, atomistic simulations of polycrystals with micron-sized grains are beyond the capabilities of current supercomputers. On the other hand, nanocrystals (nc) with grain sizes below 50 nm can be obtained experimentally and modeled reasonably well at high strain rates, opening the possibility of nearly direct comparison between atomistic molecular dynamics (MD) simulations and experiments using high power lasers. We will discuss MD simulations and links to experiments for nc Cu and Ni, as model f.c.c. solids, and nc Ta and Fe, as model b.c.c. solids. In all cases, the microstructure resulting from loading depends strongly on grain size, strain rate and peak applied pressure. We will also discuss effects related to target porosity in nc's. E.M.B. thanks funding from PICT2008-1325.

  19. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...... bottoming cycle, and solar power plants. The high temperature cycle layouts are inherently more complex than the low temperature layouts due to the presence of a distillation-condensation subsystem, three pressure levels, and several heat exchangers. This paper presents a detailed approach to solve...... the Kalina cycle in part-load operating conditions for high temperature (a turbine inlet temperature of 500 °C) and high pressure (100 bar) applications. A central receiver concentrating solar power plant with direct vapour generation is considered as a case study where the part-load conditions are simulated...

  20. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    Science.gov (United States)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  1. High-speed seatbelt pretensioner loading of the abdomen.

    Science.gov (United States)

    Foster, Craig D; Hardy, Warren N; Yang, King H; King, Albert I; Hashimoto, Syuzo

    2006-11-01

    This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused. Peak anterior abdominal loads due to the seatbelt ranged from 2.8 kN to 10.1 kN. Peak abdominal penetration ranged from 49 mm to 138 mm. Peak penetration speed ranged from 4.0 m/s to 13.3 m/s. Three cadavers sustained liver injury: one AIS 2, and two AIS 3. Cadaver abdominal response corridors for the A and B system pretensioners are proposed. The results are compared to the data reported by Hardy et al. (2001) and Trosseille et al. (2002).

  2. High Hydrogen Loading of Thin Palladium Wires Through

    CERN Document Server

    Celani, F; Marini, P; Di Stefano, V; Nakamura, M; Pace, S; Vecchione, A; Mancini, A; Tripodi, P; Di Gioacchino, D

    2000-01-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic $9 H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, $9 containing small amounts of hydrochloric or sulphuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to $9 an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature $9 coefficient of the electrical resistivity. For this purpose a thin layer of Hg was galvanic...

  3. NASA/GE Highly-Loaded Turbine Research Program

    Science.gov (United States)

    Giel, Paul W.

    2008-01-01

    An overview of the NASA/GE Highly-Loaded Turbine Research Program at the NASA Glenn Research Center is presented. The program is sponsored by the Subsonic Fixed Wing Project of the Fundamental Aeronautics Program. The goals of the turbine research program are presented along with their relationship to the higher-level program goals. Two turbine research programs are described; the highly-loaded, single-stage high pressure turbine (HPT) and the highly loaded low pressure turbine (LPT). The HPT program is centered on an extremely high pressure ratio single-stage turbine with an engine stage pressure ratio of 5.5. It was designed with a 33% increase in stage loading. It has shown performance levels 2 points better than current engines operating at the higher work level. Some advantages of the turbine include reduced weight and parts count. Optimization of the blade shape to reduce shock losses is described. The LPT program utilizes a four-stage low pressure turbine with an integral first stage vane/transition duct strut; counterrotation; low-solidity blading; fully optimized flowpath including vanes, blades, and endwalls; and a fluidically controlled turbine vane frame/exit guide vane. The implementation of the LPT into GE s and NASA s test facilities is described. A description of NASA s Single Spool Turbine Facility that is currently under renovation is given. The new, upgraded facility is compared to its predecessor. Renovation design requirements are outlined. Facility limits on pressures, temperatures, flow rates, rotational speeds, and power absorption are described. The current renovation status is given.

  4. High Heat-Load Slits for the PLS Multipole Wiggler

    CERN Document Server

    Gil, Kyehwan; Kim, Young-Chan; Lee, Heung-Soo; Wha Chung, Chin

    2005-01-01

    The HFMX (High Flux Macromolecular X-ray crystallography) beamline under commissioning at Pohang Accelerator Laboratory uses beam from a multipole wiggler for MAD experiment. Two horizontal and vertical slits relevant to high heat load are installed at its front-end. In order to treat high heat load and to reduce beam scattering, the horizontal slit has two glidcop blocks with 10° of vertical inclination and its tungsten blades defining beam size are bolted on backsides of both blocks. The blocks of the slit are adjusted on fixed slides by two actuating bars, respectively. Water through channels machined along the actuating bars cool down the heat load of both blocks. The vertical slit has the same structure as the horizontal slit except its installation direction and angle of vertical inclination. The installed slits show stable operation performance and no alignment for the blocks is required by virtue of a pair of blocks translating on slides. The cooling performance of two slits is also shown to ...

  5. Behavior of high strength concrete columns under eccentric loads

    Directory of Open Access Journals (Sweden)

    Hany A. Kottb

    2015-04-01

    Full Text Available In recent decades, high strength concrete (HSC has been widely accepted by designers and contractors to be used in concrete structures, especially in high compressive stress elements. The research aims to study the behavior of high strength concrete columns under eccentric compression using experimental and analytical programs. The research is divided into two main parts; the first part is an experimental investigation for ten square columns tested at the Cairo University Concrete Research Laboratory. The main studied parameters were eccentricity of the applied load, column slenderness ratio; and ratios of longitudinal and transverse reinforcement. The second part is analytical analysis using nonlinear finite element program ANSYS11 on nineteen columns (ten tested square columns and nine rectangular section columns to study the effect of the previous parameters on the column ultimate load, mid-height displacement, and column cracking patterns. The analyzed columns revealed a good agreement with the experimental results with an average difference of 16% and 17% for column ultimate load and mid-height displacement respectively. Results showed an excellent agreement for cracking patterns. Predictions of columns capacities using the interaction diagrams based on ACI 318-08 stress block parameters indicated a safe design procedure of HSC columns under eccentric compression, with ACI 318-08 being more conservative for moderate reinforced HSC columns.

  6. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei; Yao Donggang [School of Polymer Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Zhang Qingwei; Lelkes, Peter I [School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104 (United States); Zhou, Jack G, E-mail: yao@gatech.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-09-15

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  7. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  8. Experimental investigation of bond strength under high loading rates

    Science.gov (United States)

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  9. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  10. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  11. A Comparison of Increases in Volume Load Over 8 Weeks of Low-Versus High-Load Resistance Training.

    Science.gov (United States)

    Schoenfeld, Brad J; Ogborn, Dan; Contreras, Bret; Cappaert, Tom; Silva Ribeiro, Alex; Alvar, Brent A; Vigotsky, Andrew D

    2016-06-01

    It has been hypothesized that the ability to increase volume load (VL) via a progressive increase in the magnitude of load for a given exercise within a given repetition range could enhance the adaptive response to resistance training. The purpose of this study was to compare changes in volume load (VL) over eight weeks of resistance training (RT) in high-versus low-load protocols. Eighteen well-trained men were matched according to baseline strength were randomly assigned to either a low-load RT (LOW, n = 9) where 25 - 35 repetitions were performed per exercise, or a high-load RT (HIGH, n = 9) where 8 - 12 repetitions were performed per exercise. Both groups performed three sets of seven exercises for all major muscles three times per week on non-consecutive days. After adjusting for the pre-test scores, there was a significant difference between the two intervention groups on post-intervention total VL with a very large effect size (F (1, 15) = 16.598, P = .001, ηp(2) = .525). There was a significant relationship between pre-intervention and post-intervention total VL (F (1, 15) = 32.048, P < .0001, ηp(2) = .681) in which the pre-test scores explained 68% of the variance in the post-test scores. This study indicates that low-load RT results in greater accumulations in VL compared to high-load RT over the course of 8 weeks of training.

  12. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  13. Survivability of MEMS Packages at High-G Loads

    Science.gov (United States)

    Pryputniewicz, Ryszard J.

    2014-10-01

    Advances in emerging technology of microelectromechanical systems (MEMS) are one of the most challenging tasks in today's experimental mechanics. More specifically, development of these miniature devices requires sophisticated design, analysis, fabrication, testing, and characterization tools that have multiphysics and multiscale capabilities, especially as MEMS are being developed for use at harsh conditions. In harsh-environment and high-performance (e.g., military) guidance applications inertial sensors must be sensitive to low rates of rotation yet survive the high blast loads associated with the initial launch. In this multi-year study, a set of tuning fork gyroscopes were subjected to a series of increasing g-loads (culminating at approximately 60,000 g's) with measurements of shape made after each test. A custom set of test sample packages (aka articles) were hermetically sealed with glass lids to allow optical inspection of components while preserving the operating environment (i.e., vacuum). Initial test measurements were made upon fabrication of the articles. Optical and interferometric measurements have been made prior to and after each shock g-loading. The shape of the tuning fork gyroscope (TFG) test articles was measured using a phase shifting Michelson interferometer with compensation for package cover glass. Full field shape was determined and traces of pertinent structures were extracted for comparison. Failure of the die was observed in the form of fractures below the chip surface as well as fractures in the glass lid sealing the package. Potential causes of the failure are discussed as well as a recommendation for modified packaging techniques to mitigate future component failures.

  14. Relative hypoglycemia of rectal insulin suppositories containing deoxycholic acid, sodium taurocholate, polycarbophil, and their combinations in diabetic rabbits.

    Science.gov (United States)

    Hosny, E A

    1999-06-01

    In this study, insulin suppositories containing 50 U insulin incorporated with 50 mg of deoxycholic acid, sodium taurocholate, or both were placed in the rectum of alloxan-induced hyperglycemic rabbits. A large decrease in plasma glucose concentrations was observed, and the relative hypoglycemias were calculated to be 38.0%, 34.9%, and 44.4%, respectively, compared with insulin subcutaneous (s.c.) injection (40 U). Insulin suppositories containing 50 mg polycarbophil alone or mixed with 50 mg deoxycholic acid produced relative hypoglycemia of 43.1% and 42.2%, respectively. The most pronounced effect was observed with the addition of polycarbophil to the suppository formulation containing a combination of deoxycholic acid and sodium taurocholate, which produced a 56% relative hypoglycemia compared with subcutaneous injection. These suppository formulations could be very promising alternatives to the current insulin injections, being roughly half as efficacious as subcutaneous injection.

  15. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  16. High load vortex oscillations developed in Francis turbines

    Science.gov (United States)

    Rodriguez, D.; Rivetti, A.; Lucino, C.

    2016-11-01

    Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.

  17. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide.

    Science.gov (United States)

    Stross, Claudia; Helmer, Angelika; Weissenberger, Katrin; Görg, Boris; Keitel, Verena; Häussinger, Dieter; Kubitz, Ralf

    2010-08-01

    Bile salts influence signaling and metabolic pathways. In hepatocytes, the sodium taurocholate cotransporting polypeptide (Ntcp) is a major determinant of intracellular bile salt levels. Short-term downregulation of Ntcp is not well characterized to date. FLAG and enhanced green fluorescent protein (EGFP) tags were cloned to the extra- and intracellular termini of Ntcp. Endocytosis of Ntcp in transfected HepG2 cells was visualized by fluorescence of EGFP, and membrane surface expression of Ntcp was quantified by flow cytometry with fluorochrome-labeled FLAG antibodies. Activation of protein kinase C (PKC) by phorbolester or thymeleatoxin an activator of Ca(2+)-dependent conventional PKCs (cPKCs), induced endocytosis of Ntcp, whereas the Na(+)-K(+)-ATPase remained in the plasma membrane. The PKC inhibitor BIM I and the cPKC-selective inhibitor Gö6976 abolished PMA-induced endocytosis. Because of this internalization, cell surface expression of Ntcp was reduced by 36 +/- 7%, bile salt uptake was decreased by 25%, and taurolithocholate sulfate-induced cell toxicity was prevented. In conclusion, Ca(2+)-dependent PKCs induce vesicular retrieval of Ntcp, thereby reducing bile salt uptake. This mechanism may protect hepatocytes from toxic intracellular bile salt concentrations.

  18. Impulsive Loading of Armour by High Explosive Squash Head Munition

    Directory of Open Access Journals (Sweden)

    P.U. Deshpande

    2003-10-01

    Full Text Available Results obtained by theoretical modelling studies involving classical stress-strain theories, duly validated by experimental investigation in understanding the mechanism of impulsive loading (scabbing and blast under dynamic and static conditions, are discussed. This concept has been used in designing a high explosive squash head ammunition being effective in defeating monolithic armour. Efforts have been made to carry out an in-depth study in understanding the mechanism of scabbing under static and dynamic (live firing conditions. For this purpose, a one-dimensional computer code has been used to predict the spread of explosive against time on the target. The simulations were carried out using a 2-D Lagrangian hydrodynamic code for scabbing effect. The blast effect that follows under static and dynamic conditions has also been studied. Blast parameters have been computed in terms of TNT equivalent and compared with experimental results. The events occurring during impulsive loading of 135 mm monolithic rolled homogenous armour have been illustrated.

  19. Application of high-turning bowed compressor stator to redesign of highly loaded fan stage

    Institute of Scientific and Technical Information of China (English)

    Shaobin LI; Jiexian SU; Zhongqi WANG

    2008-01-01

    A redesign of a highly loaded fan stage by using high-turning bowed compressor stator was conducted. The original tandem stator was replaced by the highly loaded bowed stator which was applicable to highly sub-sonic flow conditions. 3D contouring technique and local modification of blade were applied to the design of the bowed blade in order to improve the aerodynamic per-formance and the matching of the rotor and stator blade rows. Performance curves at different rotating speeds and performances at different operating points for both the original fan stage and redesigned fan stage were obtained by numerical simulations. The results show that the highly loaded bowed stator can be used not only to improve the structure and the aerodynamic performances at various operating points of the compressor stage but also to pro-vide high performances at off-design conditions. It is believed that the highly loaded bowed stator can advance the design of high-performance compressor.

  20. A Comparison of Increases in Volume Load Over 8 Weeks of Low-Versus High-Load Resistance Training

    Directory of Open Access Journals (Sweden)

    Schoenfeld

    2016-01-01

    Full Text Available Background It has been hypothesized that the ability to increase volume load (VL via a progressive increase in the magnitude of load for a given exercise within a given repetition range could enhance the adaptive response to resistance training. Objectives The purpose of this study was to compare changes in volume load (VL over eight weeks of resistance training (RT in high-versus low-load protocols. Materials and Methods Eighteen well-trained men were matched according to baseline strength were randomly assigned to either a low-load RT (LOW, n = 9 where 25 - 35 repetitions were performed per exercise, or a high-load RT (HIGH, n = 9 where 8 - 12 repetitions were performed per exercise. Both groups performed three sets of seven exercises for all major muscles three times per week on non-consecutive days. Results After adjusting for the pre-test scores, there was a significant difference between the two intervention groups on post-intervention total VL with a very large effect size (F (1, 15 = 16.598, P = .001, ηp2 = .525. There was a significant relationship between pre-intervention and post-intervention total VL (F (1, 15 = 32.048, P < .0001, ηp2 = .681 in which the pre-test scores explained 68% of the variance in the post-test scores. Conclusions This study indicates that low-load RT results in greater accumulations in VL compared to high-load RT over the course of 8 weeks of training.

  1. Pulmonary function changes in rats with taurocholate-induced pancreatitis are attenuated by pretreatment with melatonin.

    Science.gov (United States)

    Chou, Ting-Ywan; Reiter, Russel J; Chen, Kuan-Hao; Leu, Fur-Jiang; Wang, David; Yeh, Diana Y

    2014-03-01

    Melatonin is a free radical scavenger and broad-spectrum antioxidant with immunomodulatory effects. We studied the effects of melatonin on changes in lung function, oxidative/nitrosative stress, and inflammatory cell sequestration in an acute pancreatitis (AP)-associated lung inflammation model. Acute pancreatitis was induced by injection of 5% sodium taurocholate into the pancreatic duct of rats. Animals were randomized into control, AP, and a melatonin pretreatment (10 mg/kg)/AP group. Functional residual capacity (FRC), lung compliance (Cchord), expiratory flow rate at 50% (FEF50), airway resistance index (RI), and peak expiratory flow rate (PEF) were evaluated. White blood cell count (WBC) and hydrogen peroxide, lung lavage fluid WBC, methylguanidine, protein, lactic dehydrogenase (LDH), nitric oxide (NO), and leukotriene B4 (LTB4) levels were determined. Lung wet-to-dry weight ratio, peroxynitrite, and inducible nitric oxide synthase (NOS) mRNA and protein were measured. AP induction resulted in reductions in FRC, Cchord, FEF50, and PEF, and increase in RI and lung wet-to-dry weight ratio. Blood and lung lavage fluid WBC, lavage fluid LDH, protein, and blood hydrogen peroxide also increased. Levels of hydroxyl radicals, nitric oxide, and LTB4 in lung lavage fluid, inducible NOS mRNA, protein expression, and peroxynitrite in lung tissue also were significantly elevated. Pretreatment with melatonin attenuated obstructive and restrictive ventilatory insufficiency induced by AP. Blood and lavage WBC, lavage LDH and protein, lung edema, oxidative/nitrosative stress, and lipoxygenase pathway derivatives were also significantly attenuated by melatonin. We conclude that melatonin decreases AP-induced obstructive and restrictive lung function changes via its antioxidant and anti-inflammatory properties. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Rectangular Dielectric-loaded Structures for Achieving High Acceleration Gradients

    Science.gov (United States)

    Wang, Changbiao; Yakovlev, V. P.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    2006-11-01

    Rectangular dielectric-loaded structures are described that may sustain higher acceleration gradients than conventional all-metal structures with similar apertures. One structure is a test cavity designed to ascertain the breakdown limits of dielectrics, while a second structure could be the basis for a two-beam accelerator. CVD diamond is an attractive dielectric for a high-gradient structure, since the published DC breakdown limit for CVD diamond is ˜ 2 GV/m, although the limit has never been determined for RF fields. Here we present a design of a diamond-lined test cavity to measure the breakdown limit. The designed cavity operates at 34 GHz, where with 10-MW input power it is expected to produce an ˜800 MV/m field on the diamond surface—provided breakdown is avoided. The two channel rectangular dielectric-loaded waveguide could be a two-beam accelerator structure, in which a drive beam is in one channel and an accelerated beam is in the other. The RF power produced by drive bunches in the drive channel is continuously coupled to the acceleration channel. The ratio of fields in the channels (transformer ratio) for the operating mode can be designed by adjusting the dimensions of the structure. An example of the two-channel structure is described, in which a train of five 3-nC drive bunches excites wake fields in the accelerator channel of up to 1.3 GV/m with a transformer ratio of 10 for the design mode.

  3. Microfluidic generation of droplets with a high loading of nanoparticles.

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J; Anthony, John E; Sinko, Patrick J; Prudhomme, Robert K; Stone, Howard A

    2012-09-18

    Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (microfluidic approaches for directly making droplets with moderate (10-25 wt %) and high (>60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.

  4. Effect of taurocholic acid on fetoplacental arterial pressures in a dual perfusion placental cotyledon model: a novel approach to intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Dolinsky, Brad M; Zelig, Craig M; Paonessa, Damian J; Hoeldtke, Nathan J; Napolitano, Peter G

    2014-01-01

    To determine if continuous infusion of taurocholic acid into the fetoplacental and intervillous circulation of a placental cotyledon affects the fetal arterial pressure response after injection of the thromboxane mimetic U44619. Taurine conjugated bile acid is one bile acid putatively mediating intrahepatic cholestasis of pregnancy (ICP). We selected 5 placentas from normal, unlabored patients. Two cotyledons from each placenta were isolated and dually perfused. Taurocholic acid was continuously infused into the fetoplacental and intervillous circulation of the test cotyledon. After 30 minutes U44619 was injected into both the test and control cotyledon vascular circuits. Pressure excursions were measured and compared to baseline pressures using a paired Student's t test. There was significant attenuation of the pressure excursion in the cotyledons perfused with taurocholic acid as compared to controls after injection of U44619. The difference from baseline in the taurocholic cotyledon compared with controls was 44.2 mmHg vs. 71.8 mmHg (p = 0.009). The perfusion of taurocholic acid attenuated the pressure response to thromboxane mimetic U44619 in the fetoplacental arterial circulation of a placental cotyledon as compared to control. This finding in our ex-vivo model may represent changes that occur in the placental vasculature with intrahepatic cholestasis of pregnancy. These placentas may have dysregulated vascular tone, which could contribute to the adverse fetal effects observed in ICP.

  5. Participation of Flexible Loads in Load Frequency Control to Support High Wind Penetration

    DEFF Research Database (Denmark)

    uslu, umur; Zhang, Boyang; Pillai, Jayakrishnan Radhakrishna;

    2016-01-01

    The increasing amount of fluctuating wind power penetration in power systems presents many challenges to its operation and control. The new wind power plants are replacing many of the conventional large power plants that ensure power balancing and ancillary services for stable and reliable...... operation of the grid. Therefore, new solutions for power balancing reserves have to be explored and utilized by the grid utilities. To meet these challenges, large sizable loads like alkaline electrolysers, heat pumps and electric vehicles which are gaining popularity can provide system support to the grid...... through their inherent flexibility and energy storage characteristics. This paper investigates the possibilities and potential of such flexible loads to participate in power system frequency regulation in a wind dominated power system. The results show that these consumption units provide better...

  6. Sex differences in verbal working memory performance emerge at very high loads of common neuroimaging tasks.

    Science.gov (United States)

    Reed, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2017-04-01

    Working memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research. These tasks are typically used at loads that allow most healthy participants to perform well, which facilitates neuroimaging data collection. Critically, however, high performance at lower loads may obscure differences that emerge at higher loads. A key question not yet addressed at high loads concerns the effect of sex. Thoroughgoing investigation of high-load verbal WM is thus timely to test for potential hidden effects, and to provide behavioral context for effects of sex observed in WM-related brain structure and function. We tested 111 young adults, matched on genotype for the WM-associated COMT-Val(108/158)Met polymorphism, on three classic WM tasks using verbal information. Each task was tested at four WM loads, including higher loads than those used in previous studies of sex differences. All tasks loaded on a single factor, enabling comparison of verbal WM ability at a construct level. Results indicated sex effects at high loads across tasks and within each task, such that males had higher accuracy, even among groups that were matched for performance at lower loads.

  7. Participation of Flexible Loads in Load Frequency Control to Support High Wind Penetration

    DEFF Research Database (Denmark)

    Uslu, Umur; Zhang, Boyang; Pillai, Jayakrishnan Radhakrishna;

    2016-01-01

    The increasing amount of fluctuating wind power penetration in power systems presents many challenges to its operation and control. The new wind power plants are replacing many of the conventional large power plants that ensure power balancing and ancillary services for stable and reliable...... operation of the grid. Therefore, new solutions for power balancing reserves have to be explored and utilized by the grid utilities. To meet these challenges, large sizable loads like alkaline electrolysers, heat pumps and electric vehicles which are gaining popularity can provide system support to the grid...... performance for balancing the power than the conventional generation reserves....

  8. Effect of the ulcerogenic agents ethanol, acetylsalicylic acid and taurocholate on actin cytoskeleton and cell motility in cultured rat gastric mucosal cells

    Institute of Scientific and Technical Information of China (English)

    Siamak Bidel; Harri Mustonen; Giti Khalighi-Sikaroudi; Eero Lehtonen; Pauli Puolakkainen; Tuula Kiviluoto; Eero Kivilaakso

    2005-01-01

    AIM: To assess the effects of ulcerogenic agents on actin cytoskeleton and cell motility and the contribution of oxidative stress.METHODS: Rat gastric mucosal cell monolayers were cultured on coverslips. The cells were exposed, with or without allopurinol (2 mmol/L), for 15 min to ethanol (10-150 mL/L), ASA (1-20 mmol/L) or taurocholate (1-20 mmol/L), then the cells were processed for actin and vinculin staining. Cell migration after wounding was also measured.RESULTS: Exposure to 10 mL/L ethanol caused divergence of zonula adherens-associated actin bundles of adjacent cells and decreased rate of migration. These actions were opposed by xanthine oxidase inhibitor allopurinol. Exposure to 50 mL/L ethanol induced degradation and divergence of zonula adherens-associated vinculin from adjacent cells,which was, again, partially reverted by allopurinol. With 1 mmol/L ASA actin filaments became shorter and thicker.However, higher concentrations (10, 20 mmol/L) of ASA returned microfilaments thinner and longer, and decreased rate of migration. Zonula adherens-associated actin bundles were moderately distorted with 10 mmol/L ASA and with 10 mmol/L taurocholate. Exposure to taurocholate provoked changes resembling those of ASA. Taurocholate 5-20 mmol/L decreased the rate of migration dose dependently. The effects of ASA and taurocholate were not prevented by allopurinol.CONCLUSION: All ulcerogenic agents decreased the rate of migration dose dependently and induced divergence of zonula adherens-associated actin bundles of adjacent cells.In addition, ethanol and ASA caused degradation of actin cytoskeleton. Oxidative stress seems to underlie ethanol,but not ASA or taurocholate, induced cytoskeletal damage.

  9. Distribution of background equivalent static wind load on high-rise buildings

    Institute of Scientific and Technical Information of China (English)

    Jianguo ZHANG; Ming GU

    2009-01-01

    In this paper, the along-wind and cross-wind fluctuating load distributions along the height of high-rise buildings and their correlations are obtained through simultaneous pressure measurements in a wind tunnel.Some typical methods proposed in some relative litera-tures, i.e., load-response correlation (LRC), and quasi-mean load (QML) and gust load envelope (GLE) methods,are verified in terms of their accuracy in describing the background equivalent static wind load distribution on high-rise buildings. Based on the results, formulae of the distribution of background equivalent static load on high-rise buildings with typical shapes are put forward. It is shown that these formulae are of high accuracy and practical use.

  10. Pioglitazone attenuates the severity of sodium taurocholate-induced severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Ping Xu; Xiao-Jiang Zhou; Ling-Quan Chen; Jiang Chen; Yong Xie; Long-Hua Lv; Xiao-Hua Hou

    2007-01-01

    AIM: To determine the effect of pioglitazone, a specific peroxisome proliferator-activated receptor-γ (PPARγ)ligand, on development of severe acute pancreatitis (SAP) and expression of nuclear factor-kappa B (NF-κB)and intercellular adhesion molecule-1 (ICAM-1) in the pancreas.METHODS: Male Sprague-Dawley (SD) rats (160-200 g)were randomly allocated into three groups (n = 18in each group): severe acute pancreatitis group,pioglitazone group, sham group. SAP was induced by retrograde infusion of 1 mL/kg body weight 5% sodium taurocholate (STC) into the biliopancreatic duct of male SD rats. Pioglitazone was injected intraperitoneally two hours piror to STC infusion. Blood and ascites were obtained for detecting amylase and ascitic capacity. Pancreatic wet/dry weight ratio, expression of NF-κB and ICAM-1 in pancreatic tissues were detected by immunohistochemical staining. Pancreatic tissue samples were stained with hematoxylin and eosin (HE)for routine optic microscopy.RESULTS: Sham group displayed normal pancreatic structure. SAP group showed diffuse hemorrhage,necrosis and severe edema in focal areas of pancreas.There was obvious adipo-saponification in abdominal cavity. Characteristics such as pancreatic hemorrhage,necrosis, severe edema and adipo-saponification were found in pioglitazone group, but the levels of those injuries were lower in pioglitazone group than those in SAP group. The wet/dry pancreatic weight ratio,ascetic capacity, serum and ascitic activities of anylase in the SAP group were significantly higher than those in the sham group and pioglitazone group respectively (6969.50 ± 1368.99 vs 2104.67 ± 377.16, 3.99 ± 1.22 vs 2.48 ± 0.74, P < 0.01 or P < 0.05). According to Kusske criteria, the pancreatic histologic score showed that interstitial edema, inflammatory infiltration,parenchyma necrosis and parenchyma hommorrhage in SAP group significantly differed from those in the sham group and pioglitazone group (7.17 ± 1.83 vs 0.50 ±0.55, 7

  11. Muscular adaptations in low- versus high-load resistance training: A meta-analysis.

    Science.gov (United States)

    Schoenfeld, Brad J; Wilson, Jacob M; Lowery, Ryan P; Krieger, James W

    2016-01-01

    There has been much debate as to optimal loading strategies for maximising the adaptive response to resistance exercise. The purpose of this paper therefore was to conduct a meta-analysis of randomised controlled trials to compare the effects of low-load (≤60% 1 repetition maximum [RM]) versus high-load (≥65% 1 RM) training in enhancing post-exercise muscular adaptations. The strength analysis comprised 251 subjects and 32 effect sizes (ESs), nested within 20 treatment groups and 9 studies. The hypertrophy analysis comprised 191 subjects and 34 ESs, nested with 17 treatment groups and 8 studies. There was a trend for strength outcomes to be greater with high loads compared to low loads (difference = 1.07 ± 0.60; CI: -0.18, 2.32; p = 0.09). The mean ES for low loads was 1.23 ± 0.43 (CI: 0.32, 2.13). The mean ES for high loads was 2.30 ± 0.43 (CI: 1.41, 3.19). There was a trend for hypertrophy outcomes to be greater with high loads compared to low loads (difference = 0.43 ± 0.24; CI: -0.05, 0.92; p = 0.076). The mean ES for low loads was 0.39 ± 0.17 (CI: 0.05, 0.73). The mean ES for high loads was 0.82 ± 0.17 (CI: 0.49, 1.16). In conclusion, training with loads ≤50% 1 RM was found to promote substantial increases in muscle strength and hypertrophy in untrained individuals, but a trend was noted for superiority of heavy loading with respect to these outcome measures with null findings likely attributed to a relatively small number of studies on the topic.

  12. LOADS INFLUENCE ANALYSIS ON NOVEL HIGH PRECISION FLEXURE PARALLEL POSITIONER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge. And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.

  13. Review of 20 years research in fatigue of high pressure loaded components

    Energy Technology Data Exchange (ETDEWEB)

    Thumser, Rayk [Bauhaus Univ. Weimar (Germany). Materialforschungs- und -pruefanstalt; Scheibe, Wolfgang

    2011-07-01

    This paper gives an overview of the research in fatigue of high pressure loaded components. In the last 20 years the main research was carried out in Germany. This research was mainly driven by the fatigue requirements for high pressure loaded Diesel engine injection parts as common rails, injectors and pipes. (orig.)

  14. Gearbox Reliability Collaborative Investigation of High-Speed-Shaft Bearing Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    The loads and contact stresses in the bearings of the high speed shaft section of the Gearbox Reliability Collaborative gearbox are examined in this paper. The loads were measured though strain gauges installed on the bearing outer races during dynamometer testing of the gearbox. Loads and stresses were also predicted with a simple analytical model and higher-fidelity commercial models. The experimental data compared favorably to each model, and bearing stresses were below thresholds for contact fatigue and axial cracking.

  15. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.

    Science.gov (United States)

    Enlow, Elizabeth M; Luft, J Christopher; Napier, Mary E; DeSimone, Joseph M

    2011-02-01

    Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT (particle replication in nonwetting templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere.

  16. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli

    2015-01-01

    subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from...... of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. Methods/Design: The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator...... home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Discussion: Previous studies of exercise treatment for SIS have not differentiated between...

  17. Three Months of Progressive High-Load Versus Traditional Low-Load Strength Training Among Patients With Rotator Cuff Tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim Gordon; Jensen, Steen Lund; Sørensen, Lilli

    2017-01-01

    BACKGROUND: Progressive high-load exercise (PHLE) has led to positive clinical results in patients with patellar and Achilles tendinopathy. However, its effects on rotator cuff tendinopathy still need to be investigated. PURPOSE: To assess the clinical effects of PHLE versus low-load exercise (LLE......) among patients with rotator cuff tendinopathy. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Patients with rotator cuff tendinopathy were recruited and randomized to 12 weeks of PHLE or LLE, stratified for concomitant administration of corticosteroid injection. The primary...... benefit from PHLE over traditional LLE among patients with rotator cuff tendinopathy. Further investigation of the possible interaction between exercise type and corticosteroid injection is needed to establish optimal and potentially synergistic combinations of these 2 factors. REGISTRATION: NCT01984203...

  18. Differential disposition of chenodeoxycholic acid versus taurocholic acid in response to acute troglitazone exposure in rat hepatocytes.

    Science.gov (United States)

    Marion, Tracy L; Perry, Cassandra H; St Claire, Robert L; Yue, Wei; Brouwer, Kim L R

    2011-04-01

    Inhibition of bile acid (BA) transport may contribute to the hepatotoxicity of troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist. Typically, studies use taurocholic acid (TCA) as a model substrate to investigate effects of xenobiotics on BA disposition. However, TRO may differentially affect the transport of individual BAs, potentially causing hepatocyte accumulation of more cytotoxic BAs. The effects of TRO on the disposition of [(14)C]-labeled chenodeoxycholic acid ([(14)C]CDCA), an unconjugated cytotoxic BA, were determined in suspended hepatocytes and sandwich-cultured hepatocytes (SCH) from rats. (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), a multidrug resistance-associated protein (MRP) inhibitor, was included to evaluate involvement of MRPs in CDCA disposition. Accumulation in cells + bile of total [(14)C]CDCA species in SCH was sixfold greater than [(3)H]TCA and unaffected by 1 and 10μM TRO; 100μM TRO and 50μM MK571 ablated biliary excretion and significantly increased intracellular accumulation of total [(14)C]CDCA species. Results were similar in Mrp2-deficient TR(-) rat hepatocytes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that taurine- and glycine-conjugated CDCA, in addition to unconjugated CDCA, accumulated in hepatocytes during the 10-min incubation. In suspended rat hepatocytes, initial [(14)C]CDCA uptake was primarily Na(+)-independent, whereas initial [(3)H]TCA uptake was primarily Na(+)-dependent; TRO and MK571 decreased [(14)C]CDCA uptake to a lesser extent than [(3)H]TCA. Unexpectedly, MK571 inhibited Na(+)-taurocholate cotransporting polypeptide and bile salt export pump. Differential effects on uptake and efflux of individual BAs may contribute to TRO hepatotoxicity. Although TCA is the prototypic BA used to investigate the effects of xenobiotics on BA transport, it may not be reflective of other

  19. Electronic system for high power load control. [solar arrays

    Science.gov (United States)

    Miller, E. L. (Inventor)

    1980-01-01

    Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.

  20. Maximum Likelihood Estimation of Time-Varying Loadings in High-Dimensional Factor Models

    DEFF Research Database (Denmark)

    Mikkelsen, Jakob Guldbæk; Hillebrand, Eric; Urga, Giovanni

    In this paper, we develop a maximum likelihood estimator of time-varying loadings in high-dimensional factor models. We specify the loadings to evolve as stationary vector autoregressions (VAR) and show that consistent estimates of the loadings parameters can be obtained by a two-step maximum...... likelihood estimation procedure. In the first step, principal components are extracted from the data to form factor estimates. In the second step, the parameters of the loadings VARs are estimated as a set of univariate regression models with time-varying coefficients. We document the finite...

  1. High heritability is compatible with the broad distribution of set point viral load in HIV carriers.

    Directory of Open Access Journals (Sweden)

    Sebastian Bonhoeffer

    2015-02-01

    Full Text Available Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis.

  2. Miniaturized MEMS-Based Gas Chromatograph for High Inertial Loads Associated with Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a rugged, miniaturized, low power MEMS-based gas chromatograph (GC) capable of handling the high inertial loads...

  3. Some important aspects in testing high-modulus fiber composite tubes designed for multiaxial loading.

    Science.gov (United States)

    Sullivan, T. L.; Chamis, C. C.

    1972-01-01

    Tubular specimens were potted in metal grips to determine the feasibility of this gripping method in applying multiaxial loads. Strain gage rosettes were used to assess grip transitional strains, through thickness strain variation and strain variations along the tube length and circumference. The investigation was limited to loading 0, 45, plus or minus 45, and 90 deg graphite/epoxy and glass/epoxy tubes in axial tension. Results include modifications made to the grips to reduce transitional strains, illustrations of the tube failure modes, and some material properties. The gripping concept shows promise as a satisfactory technique for applying multiaxial loads to high-strength, high-modulus fiber composite tubes.

  4. Preparation of Multiwall Carbon Nanotubes-supported High Loading Platinum for Vehicular PEMFC Application

    Institute of Scientific and Technical Information of China (English)

    Bing ZHANG; Li Juan CHEN; Kai Yong GE; Yan Chuan GUO; Bi Xian PENG

    2005-01-01

    Multiwall carbon nanotube-supported Pt (Pt/MWNTs) catalysts with high dispersion and high loading of Pt were prepared by chemical reduction method and the loading of Pt got to 40wt%. The average diameter of Pt nanoparticles on MWNTs was about 3.5 nm. When the hydrogen and air were used as reactant gases for PEMFC, Pt/MWNTs catalysts showed significantly higher performance than the Pt/XC-72 (carbon black) catalysts.

  5. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    Science.gov (United States)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an ambulatory control period. Average skin

  6. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    Institute of Scientific and Technical Information of China (English)

    ukasz Pejkowski; Dariusz Skibicki

    2016-01-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The cri-terion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S–N curves: tension–compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promis-ing. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  7. Surface modifications of W divertor components for EAST during exposure to high heat loads with He

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: lichun10@mails.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Yuan, Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhao, S.X.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Böswirth, B. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Fu, B.Q.; Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, X. [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Flat-type W/Cu plasma-facing components have been developed for the new generation divertor of the Chinese Experimental Advanced Superconducting Tokamak. Surface modifications of such actively water-cooled W components following short and long pulse high heat loading coupled with He particle loads with fluence of 3 × 10{sup 22} m{sup −2} have been investigated. An adiabatically loaded W block was investigated as a comparison and exposed to short pulse loads. Blistering was observed on all sample surfaces, but was less pronounced on the components than on the W block, due to the significant lower surface temperature caused by active cooling. For components, longer pulse loads gave rise to a rougher surface. Furthermore, most blisters on components are found to be less than 1 μm in diameter, with just a very few blisters larger than 1 μm, observed only in some near 〈1 1 1〉 grains.

  8. Highly Loaded Fan by Using Tandem Cascade Rotor Blade

    Science.gov (United States)

    Hasegawa, Hiroaki; Suga, Shinya; Matsuoka, Akinori

    For axial flow compressors and fans in the aircraft engines higher pressure ratio is required in order to attain the high thrust engines. In this study, the fan with the tandem cascades was introduced to increase the fan pressure ratio. The use of tandem cascades in the fan allows savings in length and weight and therefore a compact fan could be built. The design of fan with tandem cascades and the fan testing were carried out to develop the high pressure ratio fan for the Air Turbo Ramjet (ATR) propulsion system. The ATR is a combined cycle engine which performs like a turbojet engine at subsonic speeds and a ramjet at supersonic speeds. In particular, high fan pressure ratio contributes to increase the engine thrust during subsonic flight at which the engine does not make use of ram effect. The results of the fan testing indicate that the pressure ratio of 2.2 is achieved in single stage fan.

  9. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  10. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  11. Dynamic Response of RPC-Filled Steel Tubular Columns with High Load Carrying Capacity Under Axial Impact Loading

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhimin; WU Ping'an; JIA Jianwei

    2008-01-01

    Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted, and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of columns were obtained.

  12. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    Science.gov (United States)

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  13. High Nutrient Load Increases Biostabilization of Sediment by Biofilms

    Science.gov (United States)

    Valentine, K.; Mariotti, G.

    2016-12-01

    Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.

  14. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  15. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  16. Optimization of biomethanation focusing on high ammonia loaded processes

    DEFF Research Database (Denmark)

    Wang, Han

    , could theoretically mitigate the ammonia inhibition problem (Angelidaki et al., 1999). Therefore, the effect of co-digestion of cattle manure with lipids (i.e. glycerol trioleate (GTO)) under high ammonia levels (5 g NH4+-N·L-1) in anaerobic continuous stirred tank (CSTR) reactors (RGTO) was assessed....... Additionally, for comparison purposes, a soluble carbohydrate (i.e. glucose) was also used as a co-substrate in an identical CSTR reactor (RGLU). At 5 g NH4+-N·L-1, relative methane production of RGTO and RGLU, was 10.5% and 41% compared to the expected uninhibited production, respectively. At the same time...... control reactor (RCTL), only fed with manure, reached 32.7% compared to the uninhibited basis production. Therefore, the hypothesis that the co-digestion of manure with lipids could alleviate the ammonia inhibition was not supported by the results. However, an “ammonia-LCFA synergetic inhibitory effect...

  17. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    Science.gov (United States)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  18. High strain rate loading of polymeric foams and solid plastics

    Science.gov (United States)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  19. Hydrogen-Rich Saline Attenuates Acute Renal Injury in Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting ROS and NF-κB Pathway

    OpenAIRE

    Qiao Shi; Kang-Shu Liao; Kai-Liang Zhao; Wei-Xing Wang; Teng Zuo; Wen-Hong Deng; Chen Chen; Jia Yu; Wen-Yi Guo; Xiao-Bo He; Ablikim Abliz; Peng Wang; Liang Zhao

    2015-01-01

    Hydrogen (H2), a new antioxidant, was reported to reduce •OH and ONOO− selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group) or normal saline (SO and SAP group) through tail intravenously (6 mL/k...

  20. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    Science.gov (United States)

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  1. CFD simulations of transient load change on a high head Francis turbine

    Science.gov (United States)

    Jakobsen, Ken-Robert G.; Aasved Holst, Martin

    2017-01-01

    Motivated by the importance of better understanding the structural integrity of high-head hydraulic turbines operating at intermittent conditions, complete 360º steady-state and transient simulations of a Francis turbine are presented in this paper. The main target of the work has been to investigate different numerical approaches such as mesh deformation for different operating conditions. Steady-state simulations were performed at the best efficiency point (BEP) and used as initial conditions for the transient simulations considering load rejection from BEP to part load (BEP2PL) and during load acceptance from BEP to high load (BEP2HL). Simulation results were compared with experimental data available for the Francis-99 project where close agreement was found for the mesh independent solution. The transient load analyses showed general trends in accordance with the measurement reports, especially for the pressure in vaneless space that is of high importance regarding RSI effects. Some deviations were identified for the net head at load rejection for which further investigations will be conducted. All CFD simulations were performed at model scale with ANSYS CFX v. 17 at either 96 or 120 cores (2.60 GHz). The immersed boundary technique was tested during the initial stages of the project, but had to be abandoned due to severe memory requirements. Pressure amplitudes and other instantaneous results were not considered.

  2. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    Science.gov (United States)

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  3. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    Directory of Open Access Journals (Sweden)

    Antonia Torcasio

    Full Text Available Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  4. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    Science.gov (United States)

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  5. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  6. High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

    OpenAIRE

    Monireh Faraji; Hussein Gharibi; Masoumeh Javaheri

    2016-01-01

    Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, stacking of Graphene can be effectively prevented, promoting diffusion of oxygen molecules through the ...

  7. Similarity and cascade flow characteristics of a highly loaded helium compressor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin, E-mail: jiangbin_hrbeu@163.com [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Zhongliang [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Hang [AVIG Shenyang Engine Design and Research Institute, Shenyang 110015 (China); Zhang, Hai; Zheng, Qun [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China)

    2015-05-15

    Highlights: • The deviation of different similarity criteria is analyzed theoretically. • Flow difference between helium and air compressor cascades is analyzed numerically. • The analysis of calculated results validates the theoretical derivation. • Flow characteristics of highly loaded helium compressor blade profile are computed. - Abstract: Helium compressor is a major component of the Power Conversion Unit (PCU) used in a High Temperature Gas Cooled Reactor (HTGR). Because the high cost of closed cycle test and leakage problem of helium gas, air could be used as working fluid instead of helium in compressor performance tests. However, the properties of Helium are largely different from those of air, e.g. the adiabatic exponent of Helium is 1.6, while the adiabatic exponent itself is a criterion of similarity between the two compressors. The characteristics of compressor will be different due to the effect of the adiabatic exponent of working fluid, especially for highly loaded compressor working at higher inlet Mach number. In this paper, a theoretical study on the similarity between air compressor and a highly loaded helium compressor is carried out and the deviation of similarity is analyzed. Numerical simulations are then used to confirm the theoretical analysis. The results indicate that the similarity deviation could not be neglected for highly loaded compressor cascade, which means the experience and experimental results of those conventional air compressor cannot be applied directly to the design of highly loaded helium compressor. The flow characteristics of a highly loaded helium compressor at different Reynolds numbers, attack angles, Mach numbers and cascade geometries are then investigated.

  8. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading.

    Science.gov (United States)

    Adekanmbi, Isaiah; Zargar, Nasim; Hulley, Philippa

    2017-03-01

    The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units -7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.

  9. Beyond perception: testing for implicit conceptual traces in high-load tasks.

    Science.gov (United States)

    Ruz, María; Fuentes, Luis J

    2009-09-01

    The present commentary addresses the main results obtained in the Butler and Klein [Butler, B. C., & Klein, R. (2009). Inattentional blindness for ignored words: Comparison of explicit and implicit memory tasks. Consciousness and Cognition, 18, 811-819.] study and discusses them in relation to the Perceptual Load Theory of Lavie [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-68.]. The authors claim that the use of implicit indexes of conceptual distractor processing in high-load situations would be an important addition to the load literature, which would benefit the research field regardless of their positive or negative findings.

  10. High Powered Tests of Dielectric Loaded High Pressure RF Cavities for Use in Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [IIT, Chicago; Bowring, Daniel [Fermilab; Kochemirovskiy, Alexey [Chicago U.; Moretti, Alfred [Fermilab; Peterson, David [Fermilab; Tollestrup, Alvin [Fermilab; Torun, Yagmur [IIT, Chicago; Yonehara, Katsuya [Fermilab

    2016-06-01

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. Alumina of purities ranging from 96 to 99.8% was tested in a high pressure RF test cell at the MuCool Test Area at Fermilab. The results of breakdown studies with pure nitrogen gas, and oxygen-doped nitrogen gas indicate the peak surface electric field on the alumina ranges between 10 and 15 MV/m. How these results affect the design of a prototype cooling channel cavity will be discussed.

  11. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates

    Institute of Scientific and Technical Information of China (English)

    YANG Chunping; CHEN Hong; ZENG Guangming; ZHU Xueqing; SUIDAN Makram T

    2008-01-01

    Uneven distribution of volatile organic compounds (VOCs) and biomass,and excess biomass accumulation in some biofilters hinder the application of biofiltration technology.An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems.The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/rain.Diethyl ether was chosen as the model VOC.Performance of the RDB was evaluated at organic loading rates of 32.1,64.2,128,and 256 g ether/(m3·h) (16.06 g ether/(m3·h) ≈1.0 kg chemical oxygen demand (COD)/(m3·d)).The EBCT and organic loading rates were recorded on the basis of the medium volume.Results show that the ether removal efficiency decreased with an increased VOC loading rate.Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m3·h). However,when the VOC loading rate was increased to 256 g ether/(m3·h),the average removal efficiency dropped to 43%.Nutrient limitation possibly contributed to the drop in ether removal efficiency.High biomass accumulation rate was also observed in the medium at the two higher ether loading rates,and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.

  12. Total protein or high-abundance protein: Which offers the best loading control for Western blotting?

    Science.gov (United States)

    Thacker, Jonathan S; Yeung, Derrick H; Staines, W Richard; Mielke, John G

    2016-03-01

    Western blotting routinely involves a control for variability in the amount of protein across immunoblot lanes. Normalizing a target signal to one found for an abundantly expressed protein is widely regarded as a reliable loading control; however, this approach is being increasingly questioned. As a result, we compared blotting for two high-abundance proteins (actin and glyceraldehyde 3-phosphate dehydrogenase [GAPDH]) and two total protein membrane staining methods (Ponceau and Coomassie Brilliant Blue) to determine the best control for loading variability. We found that Ponceau staining optimally balanced accuracy and precision, and we suggest that this approach be considered as an alternative to normalizing with a high-abundance protein.

  13. High-voltage transmission tower-line system subjected to disaster loads

    Institute of Scientific and Technical Information of China (English)

    LI Hongnan; BAI Haifeng

    2006-01-01

    The high-voltage power transmission system is an important lifeline structure. It is significant for wide researches on the features and ability of the system subjected to earthquake and environmental loads. The promising prosperity of the system has been demonstrated around the world. The corresponding advances of the system with respect to the mechanism of loading action, analytical methods, experimental research measurements, structural vibration control, fatigue damage, lifetime prediction, and design methods are comprehensively discussed herein. Finally, further research work on dynamic response characteristics of high-voltage transmission towerline system in the near future is predicted.

  14. Better target detection in the presence of collinear flankers under high working memory load

    Directory of Open Access Journals (Sweden)

    Jan W. De Fockert

    2014-10-01

    Full Text Available There are multiple ways in which working memory can influence selective attention. Aside from the content-specific effects of working memory on selective attention, whereby attention is more likely to be directed towards information that matches the contents of working memory, the mere level of load on working memory has also been shown to have an effect on selective attention. Specifically, high load on working memory is associated with increased processing of irrelevant information. In most demonstrations of the effect to-date, this has led to impaired target performance, leaving open the possibility that the effect partly reflects an increase in general task difficulty under high load. Here we show that working memory load can result in a performance gain when processing of distracting information aids target performance. The facilitation in the detection of a low-contrast Gabor stimulus in the presence of collinear flanking Gabors was greater when load on a concurrent working memory task was high, compared to low. This finding suggests that working memory can interact with selective attention at an early stage in visual processing.

  15. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    Science.gov (United States)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  16. Microbial response and elimination capacity in biofilters subjected to high toluene loadings.

    Science.gov (United States)

    Song, JiHyeon; Kinney, Kerry A

    2005-09-01

    Elimination capacity (EC) is frequently used as a performance and design criterion for vapor-phase biofilters without further verification of the microbial quantity and activity. This study was conducted to investigate how biofilters respond to high pollutant loadings and ultimately how this affects the EC of the biofilter. Two identical laboratory-scale biofilters were maintained at an initial toluene loading rate of 46 g m-3 h-1 for a period of 24 days. After the initial biofilm development stage, the loading rates were increased to 91 g m-3 h-1 and 137 g m-3 h-1, respectively. Following a short period of pseudo-steady state, toluene removal efficiencies rapidly declined in both biofilters, with a concurrent decline in both critical and maximum ECs. The decline was mainly due to deterioration in the biodegradation activity of the biofilm and a decline in the toluene-degrading bacterial population within the biofilm phase. The findings imply that high toluene loadings accelerated the deterioration in overall performance due to a rapid accumulation of inactive biomass. As a result, care must be used when relying on EC values for biofilter design and operational purposes, since the values do not appropriately reflect the temporal changes in biodegradation activity and active biomass quantities that can occur in biofilters subjected to high inlet loadings.

  17. Thermal shock behaviour of tungsten after high flux H-plasma loading

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-11-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices tungsten tiles were exposed to high flux hydrogen-plasma in the linear plasma generator Pilot-PSI and the high heat flux ion beam test facility MARION. Subsequently, the cyclic transient heat load tests were done in the electron beam facility JUDITH 1. The induced damages after these combined tests were examined by microscopically means, profilometry and metallography. The comparison of the obtained results and damage characteristics with those obtained after thermal shock loading show that the preloading of tungsten targets with high flux hydrogen-plasma has significant influence on the thermal shock behaviour of tungsten in terms of crack distance, width, and depth as well as cracked area. Furthermore the plasma parameters, in particular pulse duration and sample temperature during loading, have strong impact on the damage pattern after thermal shock loading.

  18. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Elena; Calderón, Silvia [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, Luis J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, Jordi [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-05-01

    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells.

  19. Change in the locus of dynamic loading axis on the knee joint after high tibial osteotomy.

    Science.gov (United States)

    Kawakami, Hideo; Sugano, Nobuhiko; Yonenobu, Kazuo; Yoshikawa, Hideki; Ochi, Takahiro; Nakata, Ken; Toritsuka, Yukiyoshi; Hattori, Asaki; Suzuki, Naoki

    2005-04-01

    The purpose of this study was to visualise the locus of the dynamic loading axis on the knee joint, and to evaluate changes in this locus during gait after high tibial osteotomy (HTO) in three patients who underwent HTO for medial compartment osteoarthritis (OA) of a varus knee. The bone structure of the lower limb and the relative position of skin markers were acquired from CT images. Motion capture data was acquired using spherical skin markers. Skeletal model movement during gait was calculated based on the movement of the markers. The locus of the dynamic loading axis on the knee joint was defined as the point on the proximal tibia joint surface that intersected with the loading axis of the lower limb, which passed through the centre of the femoral head and the centroid of multiple points surrounded by the distal tibia joint surface contour. This system was able to visualise the locus of the dynamic loading axis on the knee joint and not only lateral but also anterior-posterior direction movement. After HTO, the locus shifted from a medial and posterior area of the medial joint edge of the knee to a central area of the knee joint surface. This indicates that HTO shifted the dynamic loading axis. Lateral movement of the dynamic loading axis in the early stance phase of gait was reduced within a year after HTO.

  20. A FAST BIT-LOADING ALGORITHM FOR HIGH SPEED POWER LINE COMMUNICATIONS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shengqing; Zhao Li; Zou Cairong

    2012-01-01

    Adaptive bit-loading is a key technology in high speed power line communications with the Orthogonal Frequency Division Multiplexing (OFDM) modulation technology.According to the real situation of the transmitting power spectrum limited in high speed power line communications,this paper explored the adaptive bit loading algorithm to maximize transmission bit number when transmitting power spectral density and bit error rate are not exceed upper limit.With the characteristics of the power line channel,first of all,it obtains the optimal bit loading algorithm,and then provides the improved algorithm to reduce the computational complexity.Based on the analysis and simulation,it offers a non-iterative bit allocation algorithm,and finally the simulation shows that this new algorithm can greatly reduce the computational complexity,and the actual bit allocation results close to optimal.

  1. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  3. Accumulative deformation in railway track induced by high-speed traffic loading of the trains

    Institute of Scientific and Technical Information of China (English)

    Bian Xuecheng; Jiang Hongguang; Chen Yunmin

    2010-01-01

    Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.

  4. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    Science.gov (United States)

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Continuous taurocholic acid exposure promotes esophageal squamous cell carcinoma progression due to reduced cell loss resulting from enhanced vascular development.

    Directory of Open Access Journals (Sweden)

    Sho Sato

    Full Text Available BACKGROUND: Refluxogenic effects of smoking and alcohol abuse may be related to the risk of esophageal squamous cell carcinoma (ESCC. The present study attempts to clarify the effects of continuous taurocholic acid (TCA exposure, which is neither mutagenic nor genotoxic, on ESCC progression. METHODS: A squamous carcinoma cell line (ESCC-DR was established from a tumor induced in a rat model of gastroduodenal reflux. ESCC-DR cells were incubated with 2 mM TCA for ≥2 months. The effects of continuous TCA exposure were evaluated in vitro on cell morphology, growth, and invasion and in vivo on xenograft tumor growth in nude mice. Moreover, the mean level of secreted transforming growth factor (TGF-β1 and vascular endothelial growth factor (VEGF proteins in cell culture supernatants and mRNA synthesis of TGF-β1 and VEGF-A of ESCC cells were measured. The angiogenic potential was further examined by a migration assay using human umbilical vein endothelial cells (HUVECs. RESULTS: Continuous TCA exposure induced marked formation of filopodia in vitro. Expression levels of angiogenic factors were significantly higher in the cells treated with TCA than in control cells. Tumor xenografts derived from cells pre-exposed to TCA were larger and more vascularized than those derived from control cells. In addition, TCA exposure increased HUVEC migration. CONCLUSION: Continuous TCA exposure enhanced ESCC progression due to reduced cell loss in vivo. Cell loss was inhibited by TCA-induced vascular endothelial cell migration, which was mediated by TGF-β1 and VEGF-A released from ESCC cells.

  6. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  7. Towards Cognitive-Aware Multimodal Presentation: The Modality Effects in High-Load HCI

    NARCIS (Netherlands)

    Cao, Yujia; Theune, Mariët; Nijholt, Anton; Harris, D,

    2009-01-01

    In this study, we argue that multimodal presentations should be created in a cognitive-aware manner, especially in a high-load HCI situation where the user task challenges the full capacity of the human cognition. An experiment was conducted to investigate the cognitive effects of modalities, using

  8. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...

  9. Fat oxidation before and after a high fat load in the obese insulin-resistant state

    NARCIS (Netherlands)

    Blaak, E.E.; Hul, G.; Verdich, C.; Stich, V.; Martinez, A.; Petersen, M.; Feskens, E.J.M.; Patel, K.; Oppert, J.M.; Barbe, P.; Toubro, S.; Anderson, I.; Polak, J.; Astrup, A.; Macdonald, I.A.; Holst, C.; Sørensen, T.I.; Saris, W.H.

    2006-01-01

    Background: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. Aim: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701) a

  10. A high-rate shape memory alloy actuator for aerodynamic load control on wind turbines

    NARCIS (Netherlands)

    Lara-Quintanilla, A.; Hulskamp, A.W.; Bersee, H.E.N.

    2013-01-01

    This paper discusses the development of a high rate shape memory alloy (SMA) driven actuator. The concept of the actuator was developed to act as aerodynamic load control surface on wind turbines. It was designed as a plate or beam-like structure with prestrained SMA wires embedded off its neutral a

  11. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.;

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  12. High HPV 16 viral load is associated with increased cervical dysplasia in Honduran women.

    NARCIS (Netherlands)

    Tabora, N.; Ferrera, A.; Bakkers, J.M.J.E.; Massuger, L.F.A.G.; Melchers, W.J.G.

    2008-01-01

    Cervical cancer is believed to have a co-factorial etiology in which high-risk human papillomavirus (HPV) infections are considered an essential factor and other elements play an ancillary role. Besides the importance of specific HPV genotypes, other viral cofactors as viral load may influence the

  13. Fat oxidation before and after a high fat load in the obese insulin-resistant state

    NARCIS (Netherlands)

    Blaak, E.E.; Hul, G.; Verdich, C.; Stich, V.; Martinez, A.; Petersen, M.; Feskens, E.J.M.; Patel, K.; Oppert, J.M.; Barbe, P.; Toubro, S.; Anderson, I.; Polak, J.; Astrup, A.; Macdonald, I.A.; Holst, C.; Sørensen, T.I.; Saris, W.H.

    2006-01-01

    Background: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. Aim: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701)

  14. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Temmink, B.G.; Zwijnenburg, A.; Kemperman, A.J.B.; Rijnaarts, H.

    2014-01-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable

  15. Acute Effects of Low-Load/High-Repetition Single-Limb Resistance Training in COPD.

    Science.gov (United States)

    Nyberg, André; Saey, Didier; Martin, Mickaël; Maltais, François

    2016-12-01

    Exercising small muscle groups at a time allows higher muscle specific workloads compared with whole body aerobic exercises in people with chronic obstructive pulmonary disease (COPD). Whether similar effects also occur with partitioning exercise during low load/high-repetition resistance exercises is uncertain.

  16. New impact specimen for adhesives: optimization of high-speed-loaded adhesive joints

    NARCIS (Netherlands)

    Bezemer, A.A.; Guyt, C.B.; Vlot, A.

    1998-01-01

    A new kind of joint specimen has been developed to load the adhesive in pure shear on impact. The specimen is tested with three adhesives at five layer thicknesses, and at three test speeds. From these tests it can be concluded that the rod-ring specimen is suitable for use in impact tests at high s

  17. Note: High resolution ultra fast high-power pulse generator for inductive load using digital signal processor.

    Science.gov (United States)

    Flaxer, Eli

    2014-08-01

    We present a new design of a compact, ultra fast, high resolution and high-powered, pulse generator for inductive load, using power MOSFET, dedicated gate driver and a digital signal controller. This design is an improved circuit of our old version controller. We demonstrate the performance of this pulse generator as a driver for a new generation of high-pressure supersonic pulsed valves.

  18. Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS

    Science.gov (United States)

    Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank

    2006-01-01

    This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.

  19. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    Directory of Open Access Journals (Sweden)

    Erice Borja

    2015-01-01

    Full Text Available Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  20. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    Science.gov (United States)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  1. Molecular dynamics simulation of materials response to high strain-rate loading

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J

    1999-07-22

    A molecular dynamics (MD) analysis of conservation of momentum through a shock front is presented. The MD model uses a non-traditional boundary condition that allows simulation in the reference frame of the shock front. Higher order terms proportional to gradients in the density are shown to be non-negligible at the shock front. The simulation is used to study the sequence of thermodynamic states during shock loading. Melting is observed in the simulations, though above the thermodynamic melt curve as is common in homogeneous simulations of melting. High strain-rate tensile loading is applied to the growth of nanoscale voids in copper. Void growth is found to occur by plasticity mechanisms with dislocations emerging from the void surface. [molecular dynamics, shock loading, conservation of momentum, shock melting, void growth

  2. Individual differences at high perceptual load: the relation between trait anxiety and selective attention.

    Science.gov (United States)

    Sadeh, Naomi; Bredemeier, Keith

    2011-06-01

    Attentional control theory (Eysenck et al., 2007) posits that taxing attentional resources impairs performance efficiency in anxious individuals. This theory, however, does not explicitly address if or how the relation between anxiety and attentional control depends upon the perceptual demands of the task at hand. Consequently, the present study examined the relation between trait anxiety and task performance using a perceptual load task (Maylor & Lavie, 1998). Sixty-eight male college students completed a visual search task that indexed processing of irrelevant distractors systematically across four levels of perceptual load. Results indicated that anxiety was related to difficulty suppressing the behavioural effects of irrelevant distractors (i.e., decreased reaction time efficiency) under high, but not low, perceptual loads. In contrast, anxiety was not associated with error rates on the task. These findings are consistent with the prediction that anxiety is associated with impairments in performance efficiency under conditions that tax attentional resources.

  3. The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage

    Science.gov (United States)

    Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali

    2016-06-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  4. The Effect of Variable Stator on Performance of a Highly Loaded Tandem Axial Flow Compressor Stage

    Institute of Scientific and Technical Information of China (English)

    Hamzeh Eshraghi; Masoud Boroomand; Abolghasem M.Tousi; Mohammad Toude Fallah; Ali Mohammadi

    2016-01-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds.Considering the high aerodynamic load effects and structural concerns in the design process,it is possible to obtain higher pressure ratios compared to conventional compressors.However,it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance.To avoid the loss increase,the boundary layer quality must be studied carefully over the blade suction surface.Employment of advanced shaped airfoils (like CDAs),slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades.Tandem cascade is a passive boundary layer control method,which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads.In fact,the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side.Also,in comparison to the single blade stators,tandem variable stators have more degrees of freedom,and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance.In the current study,a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage.Following,this design is numerically investigated using a CFD code and the stage characteristic map is reported.Also,the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed.To validate the CFD method,another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  5. Development and Application of Mullite Brick With High Refractoriness under Load and Low Creep

    Institute of Scientific and Technical Information of China (English)

    ZHANGSheng; WANGRuikun; 等

    2000-01-01

    This paper introduces of the development and applica-tion of heavily burned mullited brick with high reractoriness under load low creep,which is made of andalusie fine and coarse grains (as aggregate),high alumina bauxite produced in Yangquan county,clay produced in Guangxi provine,industrial alumina powder and silliman-ite powder (as matrix material) and a little amount of ad-ditives and bonded with synthetic bond.

  6. Correlation analysis of high-risk human papillomavirus viral load and cervical lesions

    Directory of Open Access Journals (Sweden)

    Xiao-xing MA

    2012-05-01

    Full Text Available Objective  To explore the association between high-risk human papillomavirus (HR-HPV viral load and pathological grades of cervical intraepithelial neoplasia (CIN and cervical cancer. Methods  A total of 1248 patients from General Hospital of PLA, who underwent colposcopy and surgery due to cervical lesions between Jan. 2006 and Aug. 2011 were enrolled in this study, and they were divided five groups: cervicitis, CIN Ⅰ, CIN Ⅱ-Ⅲ, stage Ⅰ cervical cancer and stage Ⅱ cervical cancer. HR-HPV viral load (RLU/CO was determined by the Hybrid Capture Ⅱ (HCⅡ system, and they were categorized into five groups: 0-0.99, 1.00-9.99, 10.00-99.99, 100.00-999.99, ≥1000.00. The mean value and standard deviation of different HR-HPV viral load in the patients with cervicitis or with CIN Ⅰ, CINⅡ-Ⅲ, stage Ⅰ cervical cancer or stage Ⅱ cervical cancer were compared, and the correlation of HR-HPV viral load and pathogenesis of cervical lesions was analyzed. Results  HPV viral loads were significantly higher in CINⅠ(842.1±983.9, CINⅡ-Ⅲ (690.1±795.0, stage Ⅰ cervical cancer (893.1±974.2 and stage Ⅱ cervical cancer (699.5±908.3 patients than in cervicitis patients (274.2±613.6, P < 0.05, and the HPV viral loads in CINⅠ(842.1±983.9 and stage Ⅰ cervical cancer patients were higher than those in CINⅡ-Ⅲ patients (P < 0.05. When HR-HPV viral load was ≥100RLU/CO, the risk of CIN and cervical cancer increased with the increase in viral load, but there was no correlation between the viral load and pathological grades of cervical lesions. In the patients with stage ⅠB-Ⅱ cervical squamous cell carcinoma, when the HR-HPV viral load was ≥100RLU/CO, the risk of lymph node metastasis increased (P < 0.05, and the number of patients with maximum diameter of the cervical tumor ≥4cm also increased (P < 0.05. However, the HR-HPV viral load was not correlated with patient age, pathological type of the lesion, depth of cancer

  7. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming

    Science.gov (United States)

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-01

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more ``free'' NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (~6.0 nm) and an abundant active nickel area (35.1 m2 gcat-1). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ~35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke.

  8. Prediction of Stress Concentration effect under Thermal and Dynamic loads on a High Pressure Turbine Rotor

    Directory of Open Access Journals (Sweden)

    R.Nagendra Babu

    2010-08-01

    Full Text Available Geometric discontinuities cause a large variation of stress and produce a significant increase in stress. The high stress due to the variation of geometry is called as ‘stress concentration’. This will increase when the loads are further applied. There are many investigators who have studied the stress distribution around the notches, grooves, and other irregularities of various machine components. This paper analyses the effects of thermal and fatigue load on a steam turbine rotor under the operating conditions. Stresses due to thermal and dynamic loads of High Pressure Steam Turbine Rotor of 210MW power station are found in two stages. A source code is developed for calculating the nominal stress at each section of HPT rotor. Maximum stress is obtained using FEA at the corresponding section. Thermal and Fatigue Stress Concentration Factors at each section are calculated. It is observed that the SCFdue to the combined effect of thermal and dynamic loads at the temperatures beyond 5400C is exceeding the safe limits.

  9. High efficiency WCDMA power amplifier with Pulsed Load Modulation (PLM) technique

    Science.gov (United States)

    Liao, Shu-Hsien

    In wireless communication, high data rate complex modulation is used for spectral efficiency. However, power efficiency of power amplifier degrades when complex modulation is applied. Therefore, efficiency enhancement is necessary to maintain the performance. However, conventional efficiency enhancement schemes are nonlinear and performance improvement can only be optimized over a small range of power level. In order to preserve linearity and power efficiency, we propose a new digital power amplification technique "Pulsed Load Modulation (PLM)" for high efficiency and linear amplification. The PLM technique realizes load impedance modulation in digital fashion which is insensitive to device nonlinearity. Furthermore, the optimum power efficiency can be maintained over a wide range of output power. In this work, a PLM power amplifier module has been fabricated and to demonstrate the ability of PLM to provide high efficiency and linear amplification.

  10. Progress on High Power Tests of Dielectric-Loaded Accelerating Structures

    CERN Document Server

    Jing, Chunguang; Gold, Steven H; Kinkead, Allen; Konecny, Richard; Power, John G

    2005-01-01

    This paper presents a progress report on a series of high-power rf experiments that were carried out to evaluate the potential of the Dielectric-Loaded Accelerating (DLA) structure for high-gradient accelerator operation. Since the last PAC meeting in 2003, we have tested DLA structures loaded with two different ceramic materials: Alumina (Al2O3) and MCT (MgxCa1-xTiO3). The alumina-based DLA experiments have concentrated on the effects of multipactor in the structures under high-power operation, and its suppression using TiN coatings, while the MCT experiments have investigated the dielectric joint breakdown observed in the structures due to local field enhancement. In both cases, physical models have been set up, and the potential engineering solutions are being investigated.

  11. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Suleyman B. Keskin; Gozde Ozerkan; Ismail O. Yaman [University of Gaziantep, Gaziantep (Turkey). Department of Civil Engineering

    2008-11-15

    This article discusses the effects of self-healing on self consolidating concretes incorporating high volumes of fly ash (HVFA-SCC) when subjected to continuous water exposure. For this purpose, self consolidating concretes with fly ash replacement ratios of 0%, 35%, and 55% were prepared having a constant water-cementitious material ratio of 0.35. A uniaxial compression load was applied to generate microcracks in concrete where cylindrical specimens were pre-loaded up to 70% and 90% of the ultimate compressive load determined at 28 days. Later, the extent of damage was determined as percentage of loss in mechanical properties and percentage of increase in permeation properties. After pre-loading, concrete specimens were stored in water for a month and the mechanical and permeation properties are monitored at every two weeks. It was observed that HVFA-SCC mixtures initially lost 27% of their strength when pre-loaded up to 90% of their ultimate strength, and after 30 days of water curing that reduction was only 7%, indicating a substantial healing. On the other hand, for SCC specimens without fly ash that were pre-loaded to the same level, the loss in strength was initially 19%, and after a month of moist curing it was only 13%. Similar observations were also made on the permeation properties with greater effects. As the HVFA-SCCs studied have an important amount of unhydrated fly ash available in their microstructure, these observations are attributed to the self-healing of the pre-existing cracks, mainly by hydration of anhydrous fly ash particles on the crack surfaces.

  12. Mechanical model for yield strength of nanocrystalline materials under high strain rate loading

    Institute of Scientific and Technical Information of China (English)

    朱荣涛; 周剑秋; 马璐; 张振忠

    2008-01-01

    To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

  13. Direct FEM-computation of load carrying capacity of highly loaded passive components; Direkte FEM - Berechnung der Tragfaehigkeit hochbeanspruchter passiver Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Staat, M.; Heitzer, M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1998-11-01

    Detailed, inelastic FEM analyses yield accurate information about the stresses and deformations in passive components. The local loading conditions, however, cannot be directly compared with a limit load in terms of structural mechanics. Concentration on the load carrying capacity is an approach simplifying the analysis. Based on the plasticity theory, limit and shakedown analyses calculate the load carrying capacities directly and exactly. The paper explains the implementation of the limit and shakedown data sets in a general FEM program and the direct calculation of the load carrying capacities of passive components. The concepts used are explained with respect to common structural analysis. Examples assuming high local stresses illustrate the application of FEM-based limit and shakedown analyses. The calculated interaction diagrams present a good insight into the applicable operational loads of individual passive components. The load carrying analysis also opens up a structure mechanics-based approach to assessing the load-to-collapse of cracked components made of highly ductile fracture-resistant material. (orig./CB) [Deutsch] Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung laesst sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragfaehigkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizitaetstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspielsaetze in ein allgemeines FEM Programm vorgestellt, mit der die Tragfaehigkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die uebliche Strukturanalyse erlaeutert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und

  14. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    YAMAMOTO; Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices,there are high secondary losses in highly loaded turbines.It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance.This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades.Two sets of highly loaded tur-bine cascades with the turning angles of 113° and 160°,and each with 7 bowed blade angles 0°(straight),±10°,±20° and ±30° were experimentally investigated.Both internal flow field measurement and flow visualization on the blade surfaces were conducted,and the effects of blade bowing on the flow topology,distribution of vorticity and the flow energy loss were discussed.The results show that,for the cascade with the turning angle of 113°,the appropriately positive bow angle could reduce the flow energy loss;whereas for the cascade with the turning angle of 160°,the well selected negative bow angle can give the better aerodynamic performance.

  15. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    TAN ChunQing; ZHANG HuaLiang; CHEN HaiSheng; DONG XueZhi; ZHAO HongLei; YAMAMOTO Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices, there are high secondary losses in highly loaded turbines. It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance. This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades. Two sets of highly loaded tur-bine cascades with the turning angles of 113°and 160°, and each with 7 bowed blade angles 0°(straight),±10°, ±20° and ±30° were experimentally investigated. Both internal flow field measurement and flow visualization on the blade surfaces were conducted, and the effects of blade bowing on the flow topology, distribution of vorticity and the flow energy loss were discussed. The results show that, for the cascade with the turning angle of 113°, the appropriately positive bow angle could reduce the flow energy loss; whereas for the cascade with the turning angle of 160°, the well selected negative bow angle can give the better aerodynamic performance.

  16. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men.

    Directory of Open Access Journals (Sweden)

    Nicholas A Burd

    Full Text Available BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2 performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM until volitional failure (90FAIL, 30% 1RM work-matched to 90%FAIL (30WM, or 30% 1RM performed until volitional failure (30FAIL. Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX, myofibrillar (MYO, and sarcoplasmic (SARC protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121% and MYO (87% protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199% above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023 and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025. Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05 only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237% and 30FAIL (312% conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02 regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.

  17. Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades

    Science.gov (United States)

    Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

    2014-02-01

    The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating under unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.

  18. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings.

    Science.gov (United States)

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy

    2015-07-06

    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  19. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings.

    Science.gov (United States)

    Bals, Bryan D; Gunawan, Christa; Moore, Janette; Teymouri, Farzaneh; Dale, Bruce E

    2014-02-01

    Ammonia fiber expansion (AFEX™) pretreatment can be performed at small depots, and the pretreated biomass can then be pelletized and shipped to a centralized refinery. To determine the feasibility of this approach, pelletized AFEX-treated corn stover was hydrolyzed at high (18-36%) solid loadings. Water absorption and retention by the pellets was low compared to unpelletized stover, which allowed enzymatic hydrolysis slurries to remain well mixed without the need for fed-batch addition. Glucose yields of 68% and xylose yields of 65% were obtained with 20 mg enzyme/g glucan and 18% solid loading after 72 h, compared to 61% and 59% for unpelletized corn stover. Pelletization also slightly increased the initial rate of hydrolysis compared to unpelletized biomass. The ease of mixing and high yields obtained suggests that pelletization after AFEX pretreatment could have additional advantages beyond improved logistical handling of biomass.

  20. EFFECTS OF HIGH-IMPACT MECHANICAL LOADING ON SYNOVIAL CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Hui Bin Sun

    2004-03-01

    Full Text Available Cartilage metabolism in response to mechanical loading is an important subject in sports science and medicine. In animal studies high-impact exercise is known to stimulate bone adaptation and increase bone mass. However, mechanical impacts potentially induce tissue swelling and occasionally degradation of connective tissues in synovium and articular cartilage. These detrimental outcomes should be properly evaluated clinically and biochemically. Using two synovial cell cultures derived from normal and rheumatic tissues, we examined the biochemical effects of impulsive mechanical loads on expression and activities of influential proteolytic enzymes in joints, matrix metalloproteinases (MMPs, and their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs. The molecular analysis demonstrates that an impact factor (Im, the ratio of the maximum force to weight, served as a good indicator for assessment of the inflammatory responses. The results showed that high impact above Im = 40 to 80 elevated not only expression but also enzymatic activities of MMPs

  1. Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [IIT, Chicago; Bowring, Daniel [Fermilab; Kochemirovskiy, Alexey [Chicago U.; Moretti, Alfred [Fermilab; Peterson, David [Fermilab; Tollestrup, Alvin [Fermilab; Torun, Yagmur [IIT, Chicago; Yonehara, Katsuya [Fermilab

    2016-06-01

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% alumina ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.

  2. Molecular dynamics simulation of functionalized graphene surface for high efficient loading of doxorubicin

    Science.gov (United States)

    Mirhosseini, Mohammad Masoud; Rahmati, Mahmoud; Zargarian, Seyed Shahrooz; Khordad, Reza

    2017-08-01

    Molecular dynamics simulations are performed to study the design and optimization of nanocarriers with high drug loading capacity. Functionalized graphene is considered as the nominated high capacity drug carrier and Dox as the drug model. The graphene surface functionalized with hydroxyl (- OH), carboxyl (- COOH), methyl (- CH3) and amine (- NH2) groups and their associated properties are investigated. The simulation results are illustrated that G - COOH surface absorbs Dox more effectively in comparison to other functionalized graphene surfaces due to the higher binding energy of carboxylic groups and the model drug. The effect of hydrogen bonding, temperature and surface porosity are also evaluated. The results show that binding energy and the solubility parameter are temperature-dependent. The simulation results in this present work reveal the underlying mechanisms of Dox loading on neat and functionalized graphene surfaces may be employed to design better graphene-based nanocarriers for the Dox delivery applications.

  3. Investigation of Internal Flow in Ultra—Highly Loaded Turbine Cascade by PIV Method

    Institute of Scientific and Technical Information of China (English)

    A.Senoo; S.MizukiandH.Tsujita; 等

    2000-01-01

    The highly loaded turbine blades are able to reduce both the number of blades and the stages of turbojet-engines.In this study,PIV(Particle Image Velocimetry)method is used for the measuremts of the secondary flow in ultra-highly loaded tubine blade casecades.The results obtained by the PIV method clearly show the complicated behavior of the secondary flow in the cascade.The horseshoe vortex and the passage vortex are observed inside the cascade,Moreover.the wake generated by the accumulation of the low energy fluid by the passage vortex near the suction side and that discharged toward downstream of the trailing edge has been recognized.

  4. The role of volume-load in strength and absolute endurance adaptations in adolescent's performing high- or low-load resistance training.

    Science.gov (United States)

    Steele, James; Fisher, James P; Assunção, Ari R; Bottaro, Martim; Gentil, Paulo

    2017-02-01

    This study compared high- (HL) and low-load (LL) resistance training (RT) on strength, absolute endurance, volume-load, and their relationships in untrained adolescents. Thirty-three untrained adolescents of both sexes (males, n = 17; females, n = 16; 14 ± 1 years) were randomly assigned into either (i) HL (n = 17): performing 3 sets of 4-6 repetitions to momentary concentric failure; or (ii) LL (n = 16): performing 2 sets of 12-15 repetitions to momentary concentric failure. RT was performed for 2×/week for 9 weeks. Change in maximum strength (1 repetition maximum) and absolute muscular endurance for barbell bench press was assessed. Weekly volume-load was calculated as sets (n) × repetitions (n) × load (kg). Ninety-five percent confidence intervals (CIs) revealed that both groups significantly increased in strength and absolute endurance with large effect sizes (d = 1.51-1.66). There were no between-group differences for change in strength or absolute endurance. Ninety-five percent CIs revealed that both groups significantly increased in weekly volume-load with large effect sizes (HL = 1.66, LL = 1.02). There were no between-group differences for change in volume-load though average weekly volume-load was significantly greater for LL (p strength (r = 0.650, p = 0.005) and absolute endurance (r = 0.552, p = 0.022) increases. Strength and absolute endurance increases do not differ between HL and LL conditions in adolescents when performed to momentary concentric failure. Under HL conditions greater weekly volume-load is associated with greater strength and absolute endurance increases.

  5. The effect of high-frequencies loading on the fatigue cracking of nodular cast iron

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests using high-frequency loading of nodular cast iron. Nodular cast iron GJS-500-7, GJS-600-3 and cast iron ADI with a tensile strength of Rm = 1 125 MPa were used for the tests. The fatigue tests were conducted on a resonance testing machine. For the cast iron grades under investigation, fatigue characteristics in high and ultra-high-cycle regions were experimentally determined. After the completion of the tests, the fractographic analysis of fatigue fractures was made with the aim of determining the fatigue crack initiation location and the fracture mechanism.

  6. Chilled ceiling and displacement ventilation system: Laboratory study with high cooling load

    OpenAIRE

    Schiavon, S.; Bauman, FS; Tully, B; Rimmer, J

    2015-01-01

    © 2015 ASHRAE.Radiant chilled ceilings with displacement ventilation represent a promising system that combines the energy efficiency of both subsystems with the opportunity for improved ventilation performance. Laboratory experiments were conducted for an interior zone office with a very high cooling load (91.0 W/m2) and with two different heat source heights to investigate their influence on thermal stratification and air change effectiveness. The results showed that displacement ventilatio...

  7. Local Release of Highly Loaded Antibodies from Functionalized Nanoporous Support for Cancer Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chenghong; Liu, P.; Chen, Baowei; Mao, Yumeng; Engelmann, Heather E.; Shin, Yongsoon; Jaffar, Jade; Hellstrom, Ingegerd; Liu, Jun; Hellstrom, Karl E.

    2010-05-26

    We report that antibodies can be loaded in functionalized mesoporous silica (FMS) with super-high density to provide long-lasting local release at a given site. Preliminary data indicate that FMS-antibody injected directly into a mouse melanoma induces a greater inhibition of tumor growth than seen in various controls, including the antibody injected intraperitoneally. Our findings introduce a novel approach for local delivery of therapeutically active proteins to tumors and potentially, other diseases.

  8. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    Energy Technology Data Exchange (ETDEWEB)

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P. [BMW AG Muenchen (Germany)

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  9. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.

    2009-07-01

    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  10. Theoretical research and experimental validation of elastic dynamic load spectra on bogie frame of high-speed train

    Science.gov (United States)

    Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua

    2016-05-01

    When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.

  11. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Takemiya, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Kawasaki, Takuji [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-01-01

    In parallel processing of Monte Carlo(MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  12. Light weight design of highly loaded components requires matching load assumptions; Leichtbau hoch beanspruchter Bauteile erfordert angepasste rechnerische Bauteilbemessung

    Energy Technology Data Exchange (ETDEWEB)

    Heinrietz, A.; Ehl, O. [Fraunhofer-Institut fuer Betriebsfestigkeit (LBF), Darmstadt (Germany); Hasselberg, P. [Volvo Truck Corporation (Sweden); Hamm, C.E. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven (Germany). Bereich Plankton Biomechanik und Marine Bionik

    2007-07-01

    The aim of safe light weight design requires increasing efforts for component design in the design process. A significant change of the component's topology in order to reach the aim of light weight design may lead to unsafe components, taking customer use into account. The component's light weight shape may become more sensitive to varying operational loads or to varying adjacent components. Computational methods can support the way to light weight design in an efficient way. (orig.)

  13. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  14. Hydrogen-Rich Saline Attenuates Acute Renal Injury in Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting ROS and NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Qiao Shi

    2015-01-01

    Full Text Available Hydrogen (H2, a new antioxidant, was reported to reduce •OH and ONOO− selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group or normal saline (SO and SAP group through tail intravenously (6 mL/kg and compensated subcutaneously (20 mL/kg after successful modeling. Results showed that hydrogen-rich saline attenuated the following: (1 serum Cr and BUN, (2 pancreatic and renal pathological injuries, (3 renal MDA, (4 renal MPO, (5 serum IL-1β, IL-6, and renal TNF-α, HMGB1, and (6 tyrosine nitration, IκB degradation, and NF-κB activation in renal tissues. In addition, it increased the level of IL-10 and SOD activity in renal tissues. These results proved that hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced acute pancreatitis, presumably because of its detoxification activity against excessive ROS, and inhibits the activation of NF-κB by affecting IκB nitration and degradation. Our findings highlight the potential value of hydrogen-rich saline as a new therapeutic method on acute renal injury in severe acute pancreatitis clinically.

  15. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-κB pathway.

    Science.gov (United States)

    Shi, Qiao; Liao, Kang-Shu; Zhao, Kai-Liang; Wang, Wei-Xing; Zuo, Teng; Deng, Wen-Hong; Chen, Chen; Yu, Jia; Guo, Wen-Yi; He, Xiao-Bo; Abliz, Ablikim; Wang, Peng; Zhao, Liang

    2015-01-01

    Hydrogen (H2), a new antioxidant, was reported to reduce (•)OH and ONOO(-) selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group) or normal saline (SO and SAP group) through tail intravenously (6 mL/kg) and compensated subcutaneously (20 mL/kg) after successful modeling. Results showed that hydrogen-rich saline attenuated the following: (1) serum Cr and BUN, (2) pancreatic and renal pathological injuries, (3) renal MDA, (4) renal MPO, (5) serum IL-1β, IL-6, and renal TNF-α, HMGB1, and (6) tyrosine nitration, IκB degradation, and NF-κB activation in renal tissues. In addition, it increased the level of IL-10 and SOD activity in renal tissues. These results proved that hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced acute pancreatitis, presumably because of its detoxification activity against excessive ROS, and inhibits the activation of NF-κB by affecting IκB nitration and degradation. Our findings highlight the potential value of hydrogen-rich saline as a new therapeutic method on acute renal injury in severe acute pancreatitis clinically.

  16. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  17. HIGH SOLID AND LOW ENZYME LOADING BASED SACCHARIFICATION OF AGRICULTURAL BIOMASS

    Directory of Open Access Journals (Sweden)

    Yu Zhang,

    2011-11-01

    Full Text Available Two agricultural biomass materials, namely wheat straw and sugarcane bagasse, were pretreated with NaOH and then used as substrates for enzymatic saccharification. After the pretreatment, the increase in glucan content and the decrease in lignin content were more than 65%, while less than 20% increase occurred in xylan content. The enzymatic saccharification was initiated with solid loading 9% (w/v, and then 8%, 7% and 6% (w/v solid was fed at 8, 24, and 48 h, respectively. The final enzyme solid loading was 9.60 FPU/g solid and 30% (w/v, respectively. At 144 h, the produced glucose, xylose, and reducing sugar concentrations for wheat straw were 81.88, 20.30, and 115.25 g/L, respectively, and for sugarcane bagasse they were 125.97, 8.66, and 169.50 g/L, respectively. The final conversions of wheat straw and sugarcane bagasse were 34.57% and 50.85%, respectively. SEM images showed that the surface structure of the two materials changed a lot via alkali-pretreatment and enzymatic hydrolysis. In summary, a high concentration sugar is produced from the two agricultural biomass materials by high solid and low enzyme loading. Compared to wheat straw, sugarcane bagasse is more suitable for use in sugar production.

  18. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...... martensite and the carbides M6C,V8C7 and M23C6. In the as heat treated condition the stress state is triaxial. The primary carbides M6C and V8C7 experience a compressive state of stress. Exposure to an alternating mechanical load, changes the states of stress of V8C7 and tempered martensite, but does...... not appear to change the state of stress in M6C....

  19. Study of stress ratio effect on titanium alloy fatigue under high-frequency loading

    Energy Technology Data Exchange (ETDEWEB)

    Voznyj, T.S.; Gurvich, Yu.V.; Kirillov, V.I.; Troyan, I.A. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-02-01

    Endurance of two titanium alloys, OT4 type ..cap alpha..-alloy and VT6 martensite class, (..cap alpha..+..beta..)-alloy was studied under symmetric and asymmetric tension-compression at 10 kHz frequency and room temperature using a magnetostriction resonance device. The tests were carried out in the air without water cooling usual in high-frequency tests, since a very low hysteresis dissipation of energy was observed under cyclic loading near the fatigue limit of these titanium alloys. Fatigue curves are obtained on the basis of 10/sup 9/ cycles. The ratio is found for the endurance limit based on 10/sup 7/ and 10/sup 8/ cycles to the ultimate strength under symmetric loading. An equation is given which satisfactorily describes limiting amplitude diagrams, and its coefficients are analyzed.

  20. Assessment of Gearbox Operational Loads and Reliability under High Mean Wind Speeds

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand

    2015-01-01

    wind turbine that operates in storm conditions with mean wind speeds less than 30 m/s is presented. In the study, normal shut-downs of a wind turbine in storm conditions were investigated. The analysis were conducted for two storm control strategies and different wind conditions from an extreme...... of the model was based on the experimental data provided by NREL for 750 kW prototype gearbox. Failures of gearboxes caused by high dynamic loads have a significant influence on the cost of operation of wind farms. For these reasons in the study, the probability of failure of the gearbox working in an offshore...... operating gust, normal turbulence model and extreme turbulence model. In the paper, loads in the planetary gear are quantified as well as the torsional moments in the main shaft. On the basis of simulation results the annual probability of failure of the gearbox in a wind turbine with soft storm controller...

  1. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    Science.gov (United States)

    Wei, Xiaoding; Latourte, Felix; Feinberg, Zack; Olson, Gregory; Espinosa, Horacio; Micro; Nanomechanics Laboratory Team; Olson Group Team

    2011-06-01

    To characterize the performance of naval structures, underwater blast experiments have been developed. Martensitic and austenitic steel alloys were designed to optimize the performance of structures subjected to impulsive loads. The deformation and fracture characteristics of the designed steel alloys were investigated experimentally and computationally. The experiments were based on an instrumented fluid structure interaction apparatus, in which deflection profiles were recorded. The computational study was based on a modified Gurson damage model able to accurately describe ductile failure under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed to maximize strength and fracture toughness while the austenitic steel (TRIP-120) was designed to maximize uniform ductility. The combined experimental-computational approach provided insight into the relationships between material properties and blast resistance of structures.

  2. High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2012-01-01

    Full Text Available An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.

  3. Automated load balancing in the ATLAS high-performance storage software

    CERN Document Server

    Le Goff, Fabrice; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment collects proton-proton collision events delivered by the LHC accelerator at CERN. The ATLAS Trigger and Data Acquisition (TDAQ) system selects, transports and eventually records event data from the detector at several gigabytes per second. The data are recorded on transient storage before being delivered to permanent storage. The transient storage consists of high-performance direct-attached storage servers accounting for about 500 hard drives. The transient storage operates dedicated software in the form of a distributed multi-threaded application. The workload includes both CPU-demanding and IO-oriented tasks. This paper presents the original application threading model for this particular workload, discussing the load-sharing strategy among the available CPU cores. The limitations of this strategy were reached in 2016 due to changes in the trigger configuration involving a new data distribution pattern. We then describe a novel data-driven load-sharing strategy, designed to automatical...

  4. Biofiltration of xylene using wood charcoal as the biofilter media under transient and high loading conditions.

    Science.gov (United States)

    Singh, Kiran; Giri, B S; Sahi, Amrita; Geed, S R; Kureel, M K; Singh, Sanjay; Dubey, S K; Rai, B N; Kumar, Surendra; Upadhyay, S N; Singh, R S

    2017-10-01

    The main objective of this study was to evaluate the performance of wood charcoal as biofilter media under transient and high loading condition. Biofiltration of xylene was investigated for 150days in a laboratory scale unit packed with wood charcoal and inoculated with mixed microbial culture at the xylene loading rates ranged from 12 to 553gm(-3)h(-1). The kinetic analysis of the xylene revealed absence of substrate inhibition and possibility of achieving higher elimination under optimum condition. The pH, temperature, pressure drop and CO2 production rate were regularly monitored during the experiments. Throughout experimental period, the removal efficiency (RE) was found to be in the range of 65-98.7% and the maximum elimination capacity (EC) was 405.7gm(-3)h(-1). Molecular characterization results show Bacillus sp. as dominating microbial group in the biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ionic modified crosslinked salep: a highly loaded and efficient heterogeneous organocatalyst.

    Science.gov (United States)

    Pourjavadi, Ali; Hosseini, Seyed Hassan; Fakoorpoor, Seyed Mahmoud

    2013-02-15

    In this work, a novel heterogeneous organocatalyst was synthesized by immobilization of hydroxide ions on the modified salep as a natural polymer. Because of the grafting of ionic polymer chains onto the salep backbone, catalyst has high loading level of hydroxide ions (3.01 mmol/g). The resulting catalyst shows excellent activity in the synthesis of 4H-benzo[b]pyrans in water at room temperature in short reaction times. The present catalyst and protocol represent a simple, ecologically safe and cost-effective route to synthesize 4H-benzo[b]pyrans with high product yield, as well as easy catalyst recycling.

  6. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  7. Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines

    Institute of Scientific and Technical Information of China (English)

    Dieter BOHN; Robert KREWINKEL; Shuqing TIAN

    2009-01-01

    In order to increase efficiency and achieve a further CO2-reduction, the next generation of power plant turbines will have steam turbine inlet temperatures that are considerably higher than the current ones. The high pressure steam turbine inlet temperature is expected to be increased up to approximately 700℃ with a live steam pressure of 30 MPa. The elevated steam parameters in the high and intermediate pressure turbines can be encountered with Ni-base alloys, but this is a costly alternative associated with many manufacturing difficulties. Colla-borative research centre 561 "Thermally Highly Loaded,Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants" at RWTH Aachen University proposes cooling the highly loaded turbines instead, as this would necessitate the application of far less Ni-base alloys.To protect the thermally highly loaded components, a sandwich material consisting of two thin face sheets and a core made from a woven wire mesh is used to cover the walls of the steam turbine casing. The cooling steam is led through the woven wire mesh between the two face sheets to achieve a cooling effect. The wire mesh provides the grid-sheet with structural rigidity under varying operating conditions.In the present work, the cooling performance of the grid-sheets will be investigated applying the conjugate heat transfer method to ultra-supercritical live and cooling steam conditions for a section of the cooling structure. The behaviour of the flow and the heat transfer in the grid-sheet will be analyzed in detail using a parameter variation. The numerical results should give a first prediction of the cooling performance under future operating conditions.

  8. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    Science.gov (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  9. Clinical efficacy of entecavir combined with adefovir in chronic hepatitis B patients with high viral load

    Directory of Open Access Journals (Sweden)

    ZHANG Wen

    2014-11-01

    Full Text Available ObjectiveTo investigate the efficacy and safety of entecavir (ETV combined with adefovir (ADV in chronic hepatitis B (CHB patients with high viral load. MethodsEighty CHB patients with high viral load who were admitted to our hospital from December 2008 to December 2011 were equally and randomly divided into observation group and control group. The control group was given ETV, while the observation group was treated with ETV combined with ADV. HBV DNA load, HBsAg or HBeAg seroconversion, alanine aminotransferase (ALT normalization, and adverse reactions before and after 3, 6, 12, and 24 months of treatment were evaluated. Comparison of continuous data between the two groups was made by independent-samples t test, and comparison of categorical data was made by chi-square test. ResultsCompared with the control group, the observation group had significantly lower HBV DNA load after 6, 12, and 24 months of treatment (3.7±0.3 vs 3.4±0.4 log copies/ml, t=3.339, P<0.05; 2.9±0.4 vs 2.6±0.3 log copies/ml, t=5.657, P<0.05; 1.6±0.7 vs 1.2±0.4 log copies/ml, t=2.806, P<0.05. The HBV DNA clearance rate and HBeAg clearance rate in observation group were significantly higher than those in control group after 12 months of treatment (87.5% vs 70.0%, P<0.05; 80.0% vs 55.0%, P<0.05 and 24 months of treatment (95.0% vs 77.5%, P<0.05; 90.0% vs 70.0%, P<0.05. The observation group had significantly higher HBeAg seroconversion rate and ALT normalization rate than the control group after 24 months of treatment (77.5% vs 50.0%, P<0.05; 82.5% vs 55.0% P<005. During the treatment, there was no significant difference in the incidence of adverse reactions between the two groups (P>0.05, but the observation group had a significantly lower viral breakthrough rate than the control group (0 vs 10.0%, P<0.05. ConclusionFor CHB patients with high viral load, ETV combined with ADV has strong antiviral activity, reduces drug resistance and poor

  10. Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading

    Science.gov (United States)

    Wang, Jiaojiao; Shi, Gang; Shi, Yongjiu

    2014-12-01

    To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.

  11. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high.

  12. Transient pressure measurements at part load operating condition of a high head model Francis turbine

    Indian Academy of Sciences (India)

    RAHUL GOYAL; CHIRAG TRIVEDI; B K GANDHI; MICHEL J CERVANTES; OLE G DAHLHAUG

    2016-11-01

    Hydraulic turbines are operating at part load conditions depending on availability of hydraulic energy or to meet the grid requirements. The turbine experiences more fatigue during the part load operating conditions due to flow phenomena such as vortex breakdown in the draft tube and flow instability in the runner.The present paper focuses on the investigation of a high head model Francis turbine operating at 50% load.Pressure measurements have been carried out experimentally on a model Francis turbine. Total six pressure sensors were mounted inside the turbine and other two pressure sensors were mounted at the turbine inlet pipe. It is observed that the turbine experiences significant pressure fluctuations at the vaneless space and the runner.Moreover, a standing wave is observed between the pressure tank outlet and the turbine inlet. Analysis of the data acquired by the pressure sensors mounted in the draft tube showed the presence of vortex breakdown corotating with the runner. The detailed analysis showed the rotating and plunging components of the vortex breakdown. The influence of the rotating component was observed in the entire hydraulic circuit includingdistributor and turbine inlet but not the plunging one.

  13. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    Science.gov (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  14. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.

    2009-01-01

    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  15. Dynamics and Control of High-Rise Buildings under Multidirectional Wind Loads

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2011-01-01

    Full Text Available This paper presents a procedure for the response prediction and reduction in high-rise buildings under multidirectional wind loads. The procedure is applied to a very slender tall building that is instructive. The structure is exposed to both cross-wind and along-wind loads obtained from pressure measurements on a rigid model (scaled 1 : 100 that was tested in a wind tunnel with two different configurations of the surroundings. In the theoretical formulation, dynamic equations of the structure are introduced by finite element and 3D lumped mass modeling. The lateral responses of the building in the two directions are controlled at the same time using tuned mass dampers (TMDs and active tuned mass dampers (ATMDs commanded by LQR and fuzzy logic controllers, while the effects of the uncontrolled torsional response of the structure are simultaneously considered. Besides their simplicity, fuzzy logic controllers showed similar trend as LQR controllers under multidirectional wind loads. Nevertheless, the procedure presented in this study can help decision makers, involved in the design process, to choose among innovative solutions like structural control, different damping techniques, modifying geometry, or even changing materials.

  16. Constructing An Event Based Aerosol Product Under High Aerosol Loading Conditions

    Science.gov (United States)

    Levy, R. C.; Shi, Y.; Mattoo, S.; Remer, L. A.; Zhang, J.

    2016-12-01

    High aerosol loading events, such as the Indonesia's forest fire in Fall 2015 or the persistent wintertime haze near Beijing, gain tremendous interests due to their large impact on regional visibility and air quality. Understanding the optical properties of these events and further being able to simulate and predict these events are beneficial. However, it is a great challenge to consistently identify and then retrieve aerosol optical depth (AOD) from passive sensors during heavy aerosol events. Some reasons include:1). large differences between optical properties of high-loading aerosols and those under normal conditions, 2) spectral signals of optically thick aerosols can be mistaken with surface depending on aerosol types, and 3) Extremely optically thick aerosol plumes can also be misidentified as clouds due to its high optical thickness. Thus, even under clear-sky conditions, the global distribution of extreme aerosol events is not well captured in datasets such as the MODIS Dark-Target (DT) aerosol product. In this study, with the synthetic use of OMI Aerosol Index, MODIS cloud product, and operational DT product, the heavy smoke events over the seven sea region are identified and retrieved over the dry season. An event based aerosol product that would compensate the standard "global" aerosol retrieval will be created and evaluated. The impact of missing high AOD retrievals on the regional aerosol climatology will be studied using this newly developed research product.

  17. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  18. Release of Inattentional Blindness by High Working Memory Load: Elucidating the Relationship between Working Memory and Selective Attention

    Science.gov (United States)

    de Fockert, Jan W.; Bremner, Andrew J.

    2011-01-01

    An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…

  19. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N [Forschungszentrum Karlsruhe (Germany). Inst. for Pulsed Power and Microwave Technology; Safronov, V.M. [Troitsk Inst. for Innovation and Fusion Research (TRINITI) (Russian Federation); Garkusha, I.E. [Kharkov Inst. of Physics and Technology (KIPT) (Ukraine). Inst. of Plasma Physics

    2004-08-01

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 10{sup 2} MJ/m{sup 2} on a time scale {tau} of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q {approx} 3MJ/m{sup 2} and {tau}{approx}0.3 ms; deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q=10-30MJ/m{sup 2} and {tau} = 0.03-0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  20. Effect of various loads on the force-time characteristics of the hang high pull.

    Science.gov (United States)

    Suchomel, Timothy J; Beckham, George K; Wright, Glenn A

    2015-05-01

    The purpose of this study was to investigate the effect of various loads on the force-time characteristics associated with peak power during the hang high pull (HHP). Fourteen athletic men (age: 21.6 ± 1.3 years; height: 179.3 ± 5.6 cm; body mass: 81.5 ± 8.7 kg; 1 repetition maximum [1RM] hang power clean [HPC]: 104.9 ± 15.1 kg) performed sets of the HHP at 30, 45, 65, and 80% of their 1RM HPC. Peak force, peak velocity, peak power, force at peak power, and velocity at peak power were compared between loads. Statistical differences in peak force (p = 0.001), peak velocity (p < 0.001), peak power (p = 0.015), force at peak power (p < 0.001), and velocity at peak power (p < 0.001) existed, with the greatest values for each variable occurring at 80, 30, 45, 80, and 30% 1RM HPC, respectively. Effect sizes between loads indicated that larger differences in velocity at peak power existed as compared with those displayed by force at peak power. It seems that differences in velocity may contribute to a greater extent to differences in peak power production as compared with force during the HHP. Further investigation of both force and velocity at peak power during weightlifting variations is necessary to provide insight on the contributing factors of power production. Specific load ranges should be prescribed to optimally train the variables associated with power development during the HHP.

  1. Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin.

    Science.gov (United States)

    Slane, Joshua; Gietman, Bradley; Squire, Matthew

    2017-09-06

    Two-stage revision treatment of prosthetic joint infection (PJI) frequently employs the use of a temporary bone cement spacer loaded with multiple antibiotic types. Tobramycin and vancomycin are commonly used antibiotics in cement spacers, however, there is no consensus on the relative concentrations and combinations that should be used. Therefore, the purpose of this study was to investigate the influence of dual antibiotic loading on the total antibiotic elution and compressive mechanical properties of acrylic bone cement. Varying concentrations of tobramycin (0-3 g) and vancomycin (0-3 g) were added either alone or in combination to acrylic cement (Palacos R), resulting in 12 experimental groups. Samples were submerged in 37°C saline for 28 d and sampled at specific time points. The collected eluent was analyzed to determine the cumulative antibiotic release. In addition, the cement's compressive mechanical properties and porosity were characterized. Interestingly, the cement with the highest concentration of antibiotics did not possess the best elution properties. Cement samples containing both 3 g of tobramycin and 2 g vancomycin demonstrated the highest cumulative antibiotic release after 28 d, which was coupled with a significant decrease in the mechanical properties and an increased porosity. The collected data also suggests that tobramycin elutes more effectively than vancomycin from cement. In conclusion, this study demonstrates that high antibiotic loading in cement does not necessarily lead to enhanced antibiotic elution. Clinically this information may be used to optimize cement spacer antibiotic loading so that both duration and amount of antibiotics eluted are optimized. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Development of high drug-loading nanomicelles targeting steroids to the brain.

    Science.gov (United States)

    Zheng, Sijia; Xie, Yanqi; Li, Yuan; Li, Ling; Tian, Ning; Zhu, Wenbo; Yan, Guangmei; Wu, Chuanbin; Hu, Haiyan

    2014-01-01

    The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of 'like dissolves like', cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate- cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of drug loading was increased due to the cholesteryl inner cores of the nanomicelles, and the higher the grafting ratio was, the lower the critical micelle concentration (CMC) value of SACD, and the higher drug loading. The in vitro drug release, studied by bulk-equilibrium dialysis in 20 mL of 6% hydroxypropyl-β-cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood-brain barrier for the treatment of brain diseases.

  3. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Science.gov (United States)

    Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  4. A Method for Load Frequency Control using Battery in Power System with Highly Penetrated Photovoltaic Generation

    Science.gov (United States)

    Nagoya, Hiroyuki; Komami, Shintaro; Ogimoto, Kazuhiko

    It is generally believed that a large amount of battery system will be needed to store surplus electric energy due to high penetration of renewable energy (RE) such as photovoltaic generation (PV). Since main objective of high penetration of REs is to reduce amount of CO2 emission, reducing kWh output of thermal generation that does emit large amount of CO2 in power system should be considered sufficiently. However, thermal generation takes a important role in load frequency control (LFC) of power system. Therefore, if LFC could be done with battery and hydro generation, kWh output of thermal generation would be reduced significantly. This paper presents a method for LFC using battery in power system with highly penetrated PVs. Assessment of the effect of the proposed method would be made considering mutual smoothing effect of highly penetrated PVs.

  5. A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor

    Science.gov (United States)

    Cai, Hua-Lin; Yang, Yi; Zhang, Yi-Han; Zhou, Chang-Jian; Guo, Cang-Ran; Liu, Jing; Ren, Tian-Ling

    2014-03-01

    In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.

  6. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli; Jørgensen, Hans Ri; Jensen, Steen Lund; Rasmussen, Sten; Søgaard, Karen; Juul-Kristensen, Birgit

    2015-01-27

    Shoulder pain is the third most common musculoskeletal disorder, often affecting people's daily living and work capacity. The most common shoulder disorder is the subacromial impingement syndrome (SIS) which, among other pathophysiological changes, is often characterised by rotator cuff tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Previous studies of exercise treatment for SIS have not differentiated between subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from other regions of the body, and to clearly describe the intervention in a methodologically strong study. The trial was registered with Clinicaltrials.gov ( NCT01984203 ) on 31 October 2013.

  7. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  8. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...... batch SSF, prehydrolysis followed by batch SSF and fed-batch SSF. Batch-SSF resulted in an ethanol yield of 75-76% and an ethanol concentration of 53 g/L. Prehydrolysis prior to batch SSF did not improve the ethanol yield compared with batch SSF. Fedbatch SSF, on the other hand, increased the yield...

  9. Online Load Operating Mode of Oil Film Bearing in High Speed Wire Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    LI Yugui; PANG Siqing; HUANG Qingxue; WANG Jianmei; ZHAO Chunjiang

    2006-01-01

    To study the mechanism of burnt damage of oil film bearing in high-speed wire rolling mill, reasonable temperature sensors are designed and calibrated, pressure block of rolling mill has been transformed into pressure sensors. Online temperature and load of oil film bearing in a domestic precision rolling F15 have been tested. Consequently, a large sum of valuable test data was obtained. The distributions rules of pressure and temperature under continuous online rolling state are recorded in detail. Theoretical and experimental results are beneficial to damage mechanism of oil film bearing, thus its service life could be prolonged. Moreover, such results could provide an important reference for online test and control.

  10. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  11. CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes

    KAUST Repository

    Adams, Ryan T.

    2011-02-01

    Mixed matrix membranes (MMMs) with low particle loadings have been shown to improve the properties of pure polymers for many gas separations. Comparatively few reports have been made for high particle loading (≥50vol.%) MMMs. In this work, CO2-CH4 feeds were used to study the potential of 50vol.% zeolite 4A-poly(vinyl acetate) (PVAc) MMMs for natural gas separations. A low CO2 partial pressure mixed feed probed MMM performance below the plasticization pressure of PVAc and a high CO2 partial pressure mixed feed probed MMM performance at industrially relevant conditions above the plasticization pressure.Under both mixed feed conditions at 35°C, substantial improvements in overall separation performance were observed. At low CO2 partial pressures, CO2 permeability roughly doubled with a nearly 50% increase in selectivity versus pure PVAc under the same conditions. For the high CO2 partial pressure feed, CO2 permeability remained effectively unchanged with a 63% increase in selectivity versus pure PVAc. Surprisingly, the performance of these PVAc based MMMs approached the properties of current " upper bound" polymers. Overall, this work shows that significantly improved performance MMMs can be made with traditional techniques from a low cost, low performance polymer without costly adhesion promoters. © 2010.

  12. Evolution of the fracture process zone in high-strength concrete under different loading rates

    Directory of Open Access Journals (Sweden)

    Cámara M.

    2010-06-01

    Full Text Available For cementitious materials, the inelastic zone around a crack tip is termed as fracture process zone (FPZ and dominated by complicated mechanism, such as microcracking, crack deflection, bridging, crack face friction, crack tip blunting by voids, crack branching, and so on. Due to the length of the FPZ is related with the characteristic length of the cementitious materials, the size, extent and location of the FPZ has been the object of countless research efforts for several decades. For instance, Cedolin et al. [1] have used an optical method based on the moiré interferometry to determine FPZ in concrete. Castro-Montero et al. [2] have applied the method of holographic interferometry to mortar to study the extension of the FPZ. The advantage of the interferometry method is that the complete FPZ can be directly observed on the surface of the sample. Swartz et al. [3] has adopted the dye penetration technique to illustrate the changing patterns observed as the crack progress from the tensile side to the compression side of the beam. Moreover, acoustic emission (AE is also an experimental technique well suited for monitoring fracture process. Haidar et al. [4] and Maji et al. [5] have studied the relation between acoustic emission characteristics and the properties of the FPZ. Compared with the extensive research on properties of the FPZ under quasi-static loading conditions, much less information is available on its dynamic characterization, especially for high-strength concrete (HSC. This paper presents the very recent results of an experimental program aimed at disclosing the loading rate effect on the size and velocity of the (FPZ in HSC. Eighteen three-point bending specimens were conducted under a wide range of loading rates from from 10-4 mm/s to 103 mm/s using either a servo-hydraulic machine or a self-designed drop-weight impact device. The beam dimensions were 100 mm 100 mm in cross section, and 420 mm in length. The initial notch

  13. Microwave-assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell

    Indian Academy of Sciences (India)

    Zhijun Guo; Hong Zhu; Xinwei Zhang; Fanghui Wang; Yubao Guo; Yongsheng Wei

    2011-06-01

    A Pt supported on carbon aerogel catalyst has been synthesized by the microwave-assisted polyol process. The Pt supported on carbon aerogel catalyst was characterized by high resolution transmission electron microscopy and X-ray diffraction. The results show a uniform dispersion of spherical Pt nanoparticles 2.5–3.0 nm in diameter. Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the same Pt loading.

  14. The Effect of Predeparture Training Loads on Posttour Physical Capacities in High-Performance Junior Tennis Players.

    Science.gov (United States)

    Murphy, Alistair P; Duffield, Rob; Kellett, Aaron; Gescheit, Dani; Reid, Machar

    2015-11-01

    Difficulties in preserving physical capacities while on tennis tours necessitate targeted training prescription. This study analyzed training and match loads performed before and on tour for their relationship with posttour physical-capacity changes. A secondary aim was to determine whether the presence of a strength and conditioning (S&C) coach affected the type and volume of on-tour training load. The training and match loads of 30 high-performance junior tennis players were recorded over 8 wk: 4 wk before and 4 wk during an international tour. Fitness tests were conducted pretour and posttour, including double and single-leg (dominant and nondominant) countermovement jump, speed (5, 10, and 20 m), modified 5-0-5 agility, 10 × 20-m repeated-sprint ability, and multistage fitness tests. Tour training and match loads were categorized according to whether S&C support was present or absent. Total and tennis training loads were significantly greater on tour than pretour (P ≤ .05, d > 0.8). Increases in on-tour, on-court training loads were moderately correlated with decrements in speed and aerobic power (r = .31-.52). Finally, S&C presence on tour significantly increased total, on-court, and off-court training load completed (P ≤ .05, d > 0.8). Training loads should be carefully prescribed to ensure that sufficient total and tennis loads are completed pretour. Specifically, speed and aerobic capacities may regress with increased training on tour. Finally, a practical observation was that on-tour S&C support resulted in increased S&C training load (around match loads), potentially countering the observed regression of physical capacities. Such a finding has the capacity to alter current physical-preparation structures in high-performance tennis environments with finite resources.

  15. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    Directory of Open Access Journals (Sweden)

    Silvia ede Candia

    2015-07-01

    Full Text Available This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria spp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays.The addition of naturally microbiologically contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria spp. strains, led to its complete inactivation after four days of treatment.To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly-used material in food packaging. These results could be useful for reducing pathogen cross-contamination phenomena during cold food storage.

  16. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    Science.gov (United States)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  17. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development.

    Science.gov (United States)

    Kuroda, Kyohei; Chosei, Tomoaki; Nakahara, Nozomi; Hatamoto, Masashi; Wakabayashi, Takashi; Kawai, Toshikazu; Araki, Nobuo; Syutsubo, Kazuaki; Yamaguchi, Takashi

    2015-11-01

    Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. To establish a high organic loading treatment system for industrial molasses wastewater, this study designed a combined system comprising an acidification tank, a thermophilic multi-stage (MS)-upflow anaerobic sludge blanket (UASB) reactor, mesophilic UASB reactor, and down-flow hanging sponge reactor. The average total chemical oxygen demand (COD) and biochemical oxygen demand removal rates were 85%±3% and 95%±2%, respectively, at an organic loading rate of 42kgCODcrm(-3)d(-1) in the MS-UASB reactor. By installation of the acidification tank, the MS-UASB reactor achieved low H2-partial pressure. The abundance of syntrophs such as fatty acid-degrading bacteria increased in the MS-UASB and 2nd-UASB reactors. Thus, the acidification tank contributed to maintaining a favorable environment for syntrophic associations. This study provides new information regarding microbial community composition in a molasses wastewater treatment system. Copyright © 2015. Published by Elsevier Ltd.

  18. A high-power switch-mode dc power supply for dynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Shimer, D.W.; Lange, A.C. [Lawrence Livermore National Lab., CA (United States); Bombay, J.N. [Kaiser Engineers, Oakland, CA (United States)

    1994-06-23

    High-voltage dc power supplies are often required to operate with highly dynamic loads, such as arcs. A switch-mode dc power supply can offer significant advantages over conventional thyristor-based dc power supplies under such conditions. It can quickly turn off the supply to extinguish the arc, and it can quickly recover after the arc. It has a relatively small output filter capacitance, which results in small stored energy available to the arc. A 400-kW, 50-kV switch-mode dc power supply for an electron-beam gun that exploits these advantages was designed and tested. It uses four 100-kW, current-source-type dc-dc converters with inputs in parallel and outputs in series. The dc-dc converters operate at 20 kHz in the voltage regulator part and 10 kHz in the inverter, transformer, and output rectifier part of the circuit. Insulated gate bipolar transistors (IGBTs) are used as the power switches. Special techniques are used to protect the power supply and load against arcs and hard shorts. The power supply has an efficiency of 93%, an output voltage ripple of 1%, and fast dynamic response. In addition, it is nearly one-third the size of conventional power supplies.

  19. The role of superconductivity in magnetic bearings for high-load applications

    Science.gov (United States)

    Downer, James; Eisenhaure, David

    1993-01-01

    Slewing of large payloads will require control torque and angular momentum storage capacities that are large in comparison to the capabilities of available control moment gyros (CMG's). SatCon Technology Corporation is currently designing a CMG which may be employed as a slew actuator for large spacecraft or other payloads. The slew actuator employs a type of magnetic bearing which may be used in high load applications. The magnetic bearing is also used to fully gimbal the suspended rotor of the slew actuator. The use of magnetic bearings in angular momentum exchange actuators has the primary advantage that physical contact between the rotor and stator is eliminated. This leads to greatly extended life, increased reliability, and reduced vibrations. Several actuators operating on magnetic bearings have been demonstrated in previous research efforts. These were sized for use in small satellites. For conventional magnetic bearings, which employ magnetic cores, high torsional loading may require that the magnetic structure be excessively massive. An alternative magnetic bearing design which employs a superconducting coil and eliminates conventional magnetic structures is discussed. The baseline approach is to replace the field coil of a conventional magnetic bearing with the superconducting coil.

  20. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Zhiqing Sheng

    2016-04-01

    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  1. Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian; Dutta, Tanmoy; Parthasarathi, Ramakrishnan; Kim, Kwang Ho; Tolic, Nikola; Chu, Rosalie K.; Isern, Nancy G.; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2016-10-03

    The relatively poor solubility of lignin in most pretreatment solvents remains one of the biggest challegnes in lignin valorization to improve overall biorefinery economics. In this work, rapid room temperature solubilization of lignin at high solid loadings (>30 wt%) can be easily achieved in a single step using ethylene glycol (EG). The solubilized lignin can be rapidly and quantitively recovered with the addtion of ethanol. The computational and nuclear magnetic resonance (NMR) spectroscopic studies confirm that strong hydrogen bond interactions between EG and the free hydroxyl groups present in lignin contribute to the lignin dissolution. In addition, hydrogen peroxide mediated depolymerization of dissolved lignin at low temperature (80 oC) was tested and the effect of EG molecules on depolymerization of ligin was also theoritically studied. The findings of this work provide mechanistic insights of hydrogen bond interactions in high lignin solubilization and valorization.

  2. Application of high-resolution domestic electricity load profiles in network modelling

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Mendaza, Iker Diaz de Cerio; Heiselberg, Per Kvols

    2016-01-01

    % of buildings, the loading of the transformer and power lines is reduced in the summer time to 58% and 51%, respectively. However, the power lines are stress with bi-directional power flow. The results indicate that the business-as-usual approach to network modeling is not sufficient to capture......The ongoing development towards electrification of the energy consumption together with large deployment of renewable energy sources creates new challenges of variability and fluctuation of the electricity supply and increases complexity of the network operation. In order to capture all...... the particularities of electricity demand and on-site generation, e.g. the short-term spikes due use of high electricity consumption appliances such like electric kettle, and get a full picture of network performance, a high-resolution input data are needed. This paper compares the business-as-usual network modeling...

  3. Estimated environmental loads of alpha-amylase from transgenic high-amylase maize

    Energy Technology Data Exchange (ETDEWEB)

    Wolt, Jeffrey D. [Department of Agronomy, Iowa State University, Ames, IA 50011 (United States); Biosafety Institute for Genetically Modified Agricultural Products, 164 Seed Science, Iowa State University, Ames, IA 50011 (United States); Karaman, Sule [Biosafety Institute for Genetically Modified Agricultural Products, 164 Seed Science, Iowa State University, Ames, IA 50011 (United States)

    2007-11-15

    Environmental exposure of plants bioengineered to improve efficiencies of biofuel production is an important consideration for their adoption. High-amylase maize genetically engineered to produce thermostable alpha-amylase in seed endosperm is currently in development, and its successful adoption will entail >1000 km{sup 2} of annual production in the USA. Environmental exposure of thermostable amylase will occur in production fields from preharvest and harvest dropped grain, with minor additional contributions from stover and root biomass. Mass loadings of thermostable alpha-amylase are projected to be 16 kg km{sup -2} and represent a potential source of increased alpha-amylase activity in receiving soils. An understanding of the degradation, persistence, accumulation, and activity of thermostable alpha-amylase introduced from transgenic high-amylase maize will be necessary in order to effectively manage transgenic crop systems intended or biofeedstock production. (author)

  4. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  5. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  6. Load management strategy for Particle-In-Cell simulations in high energy physics

    CERN Document Server

    Beck, Arnaud; Derouillat, Julien

    2015-01-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. By comparing the results given by different codes, it is possible to point out algorithmic limitations both in terms of physical accuracy and computational performances. In this paper we illustrate some of these limitations in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy physics.

  7. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Science.gov (United States)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  8. Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load using Highly Parallel CFD Simulations

    Science.gov (United States)

    Krappel, Timo; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander; Flurl, Benedikt; Unger, Friedeman; Galpin, Paul

    2016-11-01

    The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and especially in the draft tube. At the hub of the runner outlet a rotating vortex rope within a low pressure zone arises and propagates into the draft tube cone. The investigated part load operating point is at about 72% discharge of best efficiency. To reduce the possible influence of boundary conditions on the solution, a flow simulation of a complete Francis turbine is conducted consisting of spiral case, stay and guide vanes, runner and draft tube. As the flow has a strong swirling component for the chosen operating point, it is very challenging to accurately predict the flow and in particular the flow losses in the diffusor. The goal of this study is to reach significantly better numerical prediction of this flow type. This is achieved by an improved resolution of small turbulent structures. Therefore, the Scale Adaptive Simulation SAS-SST turbulence model - a scale resolving turbulence model - is applied and compared to the widely used RANS-SST turbulence model. The largest mesh contains 300 million elements, which achieves LES-like resolution throughout much of the computational domain. The simulations are evaluated in terms of the hydraulic losses in the machine, evaluation of the velocity field, pressure oscillations in the draft tube and visual comparisons of turbulent flow structures. A pre-release version of ANSYS CFX 17.0 is used in this paper, as this CFD solver has a parallel performance up to several thousands of cores for this application which includes a transient rotor-stator interface to support the relative motion between the runner and the stationary portions of the water turbine.

  9. Influence of high glycemic index and glycemic load diets on blood pressure during adolescence.

    Science.gov (United States)

    Gopinath, Bamini; Flood, Victoria M; Rochtchina, Elena; Baur, Louise A; Smith, Wayne; Mitchell, Paul

    2012-06-01

    We aimed to prospectively examine the association between the glycemic index and glycemic load of foods consumed and the dietary intakes of carbohydrates, sugars, fiber, and principal carbohydrate-containing food groups (eg, breads, cereals, and sugary drinks) with changes in blood pressure during adolescence. A total of 858 students aged 12 years at baseline (422 girls and 436 boys) were examined from 2004-2005 to 2009-2011. Dietary data were assessed from validated semiquantitative food frequency questionnaires. Blood pressure was measured using a standard protocol. In girls, after adjusting for age, ethnicity, parental education, parental history of hypertension, baseline height, baseline blood pressure, change in body mass index, and time spent in physical and sedentary activities, each 1-SD (1-SD = 7.10 g/d) increase in baseline dietary intake of total fiber was associated with a 0.96-, 0.62-, and 0.75-mmHg decrease in mean systolic (P = 0.02), diastolic (P = 0.01), and arterial blood pressures (P = 0.002), respectively, 5 years later. In girls, each 1-SD increase in dietary glycemic index, glycemic load, carbohydrate, and fructose was concurrently related to increases of 1.81 (P = 0.001), 4.02 (P = 0.01), 4.74 (P = 0.01), and 1.80 mm Hg (P = 0.03) in systolic blood pressure, respectively, >5 years. Significant associations between carbohydrate nutrition variables and blood pressure were not observed among boys. Excessive dietary intake of carbohydrates, specifically from high glycemic index/glycemic load foods, could adversely influence blood pressure, particularly in girls, whereas fiber-rich diets may be protective against elevated blood pressure during adolescence.

  10. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  11. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  12. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  13. High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Monireh Faraji

    2016-04-01

    Full Text Available Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, stacking of Graphene can be effectively prevented, promoting diffusion of oxygen molecules through the Graphene sheets and enhancing the oxygen reduction reaction electrocatalytic activity. Compared to commercial catalysts (i.e., state-of-the-art Pt/C catalyst the as synthesized Pt supported polydopamine grafted reduced graphite oxide (Pt@PDA-rGO hybrid displays very high oxygen reduction reaction catalytic activities. We propose a unique 2D profile of the polydopamine-rGO role as a barrier preventing leaching of Pt into the electrolyte. The fabricated electrodes were evaluated with electrochemical techniques for oxygen reduction reaction and the obtained results were further verified by the transmission electron microscopy micrographs on the microstructure of the integrated pt@PDA-rGO structures. It has been revealed that the electrochemical impedance spectroscopy technique can provide more explicit information than polarization curves on the performance dependence on charge-transfer and mass transport processes at different overpotential regions.

  14. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy

    Science.gov (United States)

    Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang

    2016-06-01

    The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

  15. ITER-W monoblocks under high pulse number transient heat loads at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Loewenhoff, Th., E-mail: T.Loewenhoff@fz-juelich.de [Forschungszentrum Jülich, 52428 Jülich (Germany); Linke, J., E-mail: J.Linke@fz-juelich.de [Forschungszentrum Jülich, 52428 Jülich (Germany); Pintsuk, G., E-mail: G.Pintsuk@fz-juelich.de [Forschungszentrum Jülich, 52428 Jülich (Germany); Pitts, R.A., E-mail: Richard.Pitts@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-Lez-Durance (France); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion for Energy Joint Undertaking, Josep Pla No. 2 – T B3 7/01, Barcelona 08019 (Spain)

    2015-08-15

    In the context of using a full-tungsten (W) divertor for ITER, thermal shock resistance has become even more important as an issue that may potentially influence the long term performance. To address this issue a unique series of experiments has been performed on ITER-W monoblock mock ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). This paper discusses the JUDITH 2 experiments. Two different base temperatures, 1200 °C and 1500 °C, were chosen superimposed by ∼18,000/100,000 transient events (Δt = 0.48 ms) of 0.2 and 0.6 GW/m{sup 2}. Results showed a stronger surface deterioration at higher base temperature, quantified by an increase in roughening. This is intensified if the same test is done after preloading (exposure to high temperature without transients), especially at higher base temperature when the material recrystallizes.

  16. High-intensity tasks with external load in military applications: a review.

    Science.gov (United States)

    O'Neal, Eric K; Hornsby, Jared H; Kelleran, Kyle J

    2014-09-01

    This article provides a synopsis of the limited investigations examining the impact of external load (EL) on performance of high-intensity tasks under load (HITL), EL training intervention effects on HITL performance, and injuries from EL training. Repetitive lifting tasks and initiation of locomotion, such as rapidly moving from a prone position to sprinting appear to be more hindered by EL than maximal sprinting velocity and may explain why training with EL does not improve obstacle course or prolonged (200-300 yard shuttle) drills. EL training appears to offer very little if any benefit for HITL in lesser trained populations. This contrast results of multiple studies incorporating ≥ 3 weeks of prolonged hypergravity interventions (wearing EL during daily activities) in elite anaerobic athletes, indicating EL training stimulus is likely only beneficial to well-trained soldiers. Women and lesser trained individuals appear to be more susceptible to increased injury with EL training. A significant limitation concerning current HITL knowledge is the lack of studies incorporating trained soldiers. Future investigations concerning the effects of HITL on marksmanship, repetitive lifting biomechanics, efficacy of hypergravity training for military personnel, and kinematics of sprinting from tactical positions with various EL displacements and technique training are warranted.

  17. Detection of high biliary and fecal viral loads in patients with chronic hepatitis C virus infection.

    Science.gov (United States)

    Monrroy, Hugo; Angulo, Jenniffer; Pino, Karla; Labbé, Pilar; Miquel, Juan Francisco; López-Lastra, Marcelo; Soza, Alejandro

    2017-05-01

    The life cycle of the hepatitis C virus (HCV) is closely associated with lipid metabolism. Recently, NPC1L1 (a cholesterol transporter) has been reported to function as an HCV receptor. This receptor is expressed in the hepatocyte canalicular membrane and in the intestine; serving as a key transporter for the cholesterol enterohepatic cycle. We hypothesized that HCV might have a similar cycle, so we aimed to study the presence of HCV in bile and stools of infected patients. Blood, feces, and duodenal bile samples were collected from patients infected with HCV. The biliary viral load was normalized to the bile salt concentration of each sample and the presence of HCV core protein was also evaluated. A total of 12 patients were recruited. HCV RNA was detected in the bile from ten patients. The mean viral load was 2.5log10IU/60mg bile salt. In the stool samples, HCV RNA was detected in ten patients (mean concentration 2.7log10IU/g of feces). HCV RNA is readily detectable and is present at relatively high concentrations in the bile and stool samples of infected patients. This may be relevant as a source of infection in men who have sex with men. Biliary HCV secretion may perhaps play a role in the persistence of viral infection via an enterohepatic cycle of the virus or intrahepatic spread. Copyright © 2017 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.

  18. Simplified formulations with high drug loads for continuous twin-screw granulation.

    Science.gov (United States)

    Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P

    2015-12-30

    As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities.

  19. Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Yangwei Liu

    2014-11-01

    Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.

  20. A Developed Methodology in Design of Highly Loaded Tandem Axial Flow Compressor Stage

    Directory of Open Access Journals (Sweden)

    Masoud Boroomand

    2016-01-01

    Full Text Available This study, primarily reports the development of a 3D design procedure for axial flow tandem compressor stages and then the method is used to design a highly loaded tandem stage. In order to investigate the effects of such arrangement, another stage with conventional loading with single blade for both rotor and stator rows is designed with similar specification. In order to ease the comparison of results, chord lengths and hub/shroud geometries are selected with the same dimensions. At the next stage a three dimensional numerical model is developed to predict the characteristic performance of both tandem and conventional stages. The model is validated with the experimental results of NASA-67 stage and the level of the accuracy of the model is presented. Employing the model to simulate the performance of both stages at design and offdesign operating points show that, tandem stage can provide higher pressure ratio with acceptable efficiency. In another word, tandem stage is capable having the same pressure ratio at lower rotational speed. The safe operation domain and loss mechanism in tandem stage are also discussed in this report.

  1. Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads

    Science.gov (United States)

    Chen, Lei; Lian, Youyun; Liu, Xiang

    2014-03-01

    In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.

  2. EFFECTS OF SLOTTED BLADING ON SECONDARY FLOW IN HIGHLY LOADED COMPRESSOR CASCADE

    Directory of Open Access Journals (Sweden)

    RAMZI MDOUKI

    2013-10-01

    Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.

  3. FEATURES OF PERCEPTION OF LOADING ELEMENTS OF THE RAILWAY TRACK AT HIGH SPEEDS OF THE MOVEMENT

    Directory of Open Access Journals (Sweden)

    D. M. Kurhan

    2015-03-01

    Full Text Available Purpose. Increase the train speeds movements requires not only the appropriate technical solutions, but also methodological-calculated. Most of the models and methodologies used for solving problems of stress-strain state of the railroad tracks, are based on assumptions and hypotheses adequate only for certain speeds. In the framework of this work will be discussed theoretical background of the changing nature of perceptual load elements of the railway track at high speeds and investigated the numeric parameters of the processes by means of mathematical modeling. As a practical purposes is expected to provide the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Methodology. To achieve these objectives was used principal new model of railway track based on wave propagation theory stresses in the elastic system to study the impact of the movable load, take into account that the deflection in a particular section of the road starts even while the wheels at some distance, and moving the wheels farther from the selected section of the wave front elastic strain continues to spread. According to the results of simulations explores the changing shape of the wave front voltages in time for the foundation under the rail. If the train speeds substantially less than the velocity propagation of elastic waves, the wheel remains in the area implemented deformations. Findings. Alternative calculations for various parameters of the railway track (especially for different soil conditions determined the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Originality. The proposed theoretical study and implementation in the form of mathematical models for processes that occur in the perception of load elements of the railway track at high speeds. Practical value. According to simulation results obtained levels of

  4. Evaluation by respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge.

    Science.gov (United States)

    Clarke, William P; Taylor, Michael; Cossins, Rowan

    2007-09-01

    This study examines high rate vermicomposting of sewage sludge using high stocking densities of earthworms. To examine the loading capacity, two vermicompost beds were established in identical 0.84 m diameter reactors, one loaded at an average rate of 10 kg-wet-sludge-mixture m(-2) day(-1) (0.5 kg-carbon m(-2) day(-1)), the other loaded at 20 kg-wet-sludge-mixture m(-2) day(-1) (1 kg-carbon m(-2) day(-1)). The sludge mixture was from a commercial vermicomposting company (Vermitech) and contained 80-90% sludge and 10-20% green waste and clay. The beds were operated in fed-batch mode for 38 days, and then monitored for a further 12 days without any further sludge loading. Earthworms (Eisenia fetida) were added once or twice weekly over the 38 days loading period to gradually decrease the ratio of sludge loading rate to total earthworm biomass. By adding earthworm incrementally, the feeding rate ranged from 3.9 to 1.25 kg-wet-sludge kg-earthworm(-1) day(-1) for the full load experiment and 2-0.62 kg-wet-sludge kg-earthworm(-1) day(-1) for the half load experiment. The extent of degradation was estimated by fitting a 1st order model to the CO2 production rate from the beds. Based on the 1st order model, 53+/-20% (95% CI) and 68+/-4% of the organic carbon was converted to CO2 -C in the full load and half load experiments respectively. The CO2 production rate in the half load experiment became stable and repeatable when the total earthworm biomass reached 5.4 kg, corresponding to a feed rate of 1.04 kg-wet-sludge-mixture kg-earthworm(-1) day(-1). In contrast, the rate of CO2 production was still climbing and traces of methane were evident in the full load experiment at the end of the 38 day loading period. The experiments indicate that high rate vermicomposting beds are sustainable providing the feeding rate does not exceed approximately 1 kg-wet-sludge kg-earthworm(-1) day(-1).

  5. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery

    Science.gov (United States)

    Darwiche, Ali; Dugas, Romain; Fraisse, Bernard; Monconduit, Laure

    2016-02-01

    Due to its weight and toxicity, Pb is usually not considered as possible anode for Li- and Na-ion (NIBs) batteries. Nevertheless the toxicity is related to specific applications and its recycling is more than 99% which is one of the highest recycling rates on the planet where no other power source is utilized in more applications with such sustainability. For this reason, we have investigated micrometric lead particles as electrode for NIBs in an ether-based electrolyte (1 M NaPF6 in diglyme). The cyclability, coulombic efficiency and rate capability of lead were unexpected. A high loaded lead electrode with 98%wt of Pb and only 1% of carbon additive showed i) a capacity retention of 464 mA h/g after 50 cycles with only 1.5% of capacity loss, which represents a high volumetric capacity of 5289 mA h/cm3 due to the high density of Pb and ii) a very interesting capacity retention even at high current rate (1950 mA/g). In situ XRD study confirmed a sodiation-desodiation process in four steps. Preliminary tests in Pb//Na3V2(PO4)2F3 full cells showed promising results demonstrating that Pb could be a practical candidate for future high energy density Na-ion batteries with an efficient sodiated or non sodiated positive electrode.

  6. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-25

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.

  7. Multi-mode controller IC for soft-switched flyback converter with high efficiency over the entire load range

    Institute of Scientific and Technical Information of China (English)

    Hai CHEN; Meng-lian ZHAO; Xiao-bo WU; Xiao-lang YAN

    2008-01-01

    This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode,burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5um BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.

  8. Consolidated bioprocessing (CBP) of AFEX™-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading.

    Science.gov (United States)

    Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E

    2012-08-01

    Consolidated bioprocessing (CBP) using Clostridium phytofermentans (ATCC 700394) on ammonia fiber expansion (AFEX™)-treated corn stover (AFEX™-CS) at a low solids loading showed promising results [Jin et al. (2011) Biotechnol Bioeng 108(6): 1290-1297]. However, industrial relevant process requires high solids loading. Therefore, we studied high solids loading CBP performance on AFEX™-CS. The factors potentially affecting the performance including solids loading, CBP products acetate and ethanol, and degradation products resulting from pretreatment were investigated. At 4% (w/w) glucan loading, C. phytofermentans performed well on AFEX™-CS with no nutrients supplementation and reached similar sugar conversions as a fermentation with nutrients supplementation. A glucan conversion of 48.9% and a xylan conversion of 77.9% were achieved after 264 h with 7.0 g/L ethanol and 8.8 g/L acetate produced. Relatively high concentrations of acetate produced at high solids loading was found to be the major factor limiting the CBP performance. Degradation products in AFEX™-CS helped enhance ethanol production.

  9. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading

    Institute of Scientific and Technical Information of China (English)

    QI Mei-Lan; HE Hong-Liang; YAN Shi-Lin

    2007-01-01

    @@ With the environment temperature varying from 273K to 773K, the dynamic process of void growth in pure aluminium at high strain-rate loading is calculated based on the dynamic growth equation of a void with internal pressure. The result shows that the effect of temperature on the growth of void should be emphasized. Because the initial pressure of void with gas will increase and the viscosity of materials will decrease with the rising of temperature, the growth of void is accelerated. Furthermore, material inertia restrains the growth of void evidently when the diameter exceeds 10μm. The effect of surface tension is very weak in the whole process of void growth.

  10. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.

    Science.gov (United States)

    Castillo Diaz, Jean Manuel; Delgado-Moreno, Laura; Núñez, Rafael; Nogales, Rogelio; Romero, Esperanza

    2016-08-01

    In biobed bioremediation systems (BBSs) with vermicomposts exposed to a high load of pesticides, 6 bacteria and 4 fungus strains were isolated, identified, and investigated to enhance the removal of pesticides. Three different mixtures of BBSs composed of vermicomposts made from greenhouse (GM), olive-mill (OM) and winery (WM) wastes were contaminated, inoculated, and incubated for one month (GMI, OMI and WMI). The inoculums maintenance was evaluated by DGGE and Q-PCR. Pesticides were monitored by HPLC-DAD. The highest bacterial and fungal abundance was observed in WMI and OMI respectively. In WMI, the consortia improved the removal of tebuconazole, metalaxyl, and oxyfluorfen by 1.6-, 3.8-, and 7.7-fold, respectively. The dissipation of oxyfluorfen was also accelerated in OMI, with less than 30% remaining after 30d. One metabolite for metalaxyl and 4 for oxyfluorfen were identified by GC-MS. The isolates could be suitable to improve the efficiency of bioremediation systems.

  11. Highly sensitive optical biosensor based on silicon-microring-resonator-loaded Mach–Zehnder interferometer

    Science.gov (United States)

    Yoshida, Soichiro; Ishihara, Shintaro; Arakawa, Taro; Kokubun, Yasuo

    2017-04-01

    We propose and demonstrate a novel biosensor based on a silicon-single-microring-resonator-loaded Mach–Zehnder interferometer (MRR-MZI), and discuss the design of the sensor theoretically. Owing to the combination of an MZI and the enhanced phase change in a microring resonator (MRR), high sensitivity is expected to be realized. The designed MRR-MZI sensor is fabricated using a CMOS-compatible process, and its sensing characteristics are measured using ethanol solutions with a concentration of less than 3 wt % and avidin solutions. The sensitivity of the MRR-MZI to changes in the environmental refractive index is increased by approximately 50 times compared with that of a simple MRR. In addition, avidin solution with a concentration as low as 20 pM was successfully detected.

  12. Toroidal cell and battery. [storage battery for high amp-hour load applications

    Science.gov (United States)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  13. Vibration measurement through high speed vision system in a civil structure under impact loading

    Science.gov (United States)

    Ferrer, Belén; García, Juan I.; Roig, Ana B.; Mas, David

    2014-05-01

    The method presented in this work is a simple, cheap and non-contact method. It is based on image processing using a circular target. It has subpixel accuracy and it only needs a low cost high-speed camera and a tripod. In the work presented in this paper, a Casio Exilim camera was used to measure the vibration of a pedestrian bridge. An impact load was applied on the bridge through one person jumping in the middle of the bridge. Tracking of the circle border give the center trajectory and therefore the displacement and frequency of the movement. Some accelerometers were used as a contrast device for the frequency. The displacement obtained by our procedure was previously checked in laboratory using a micrometric bench. The results show that this method is suitable for measuring successfully the vibration of civil structures.

  14. Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2014-07-01

    Full Text Available This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material.

  15. High-Tip-Speed, Low-Loading Transonic Fan Stage. Part 1: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Wright, L. C.; Vitale, N. G.; Ware, T. C.; Erwin, J. R.

    1973-01-01

    A high-tip-speed, low-loading transonic fan stage was designed to deliver an overall pressure ratio of 1.5 with an adiabatic efficiency of 86 percent. The design flow per unit annulus area is 42.0 pounds per square foot. The fan features a hub/tip ratio of 0.46, a tip diameter of 28.74 in. and operates at a design tip speed of 1600 fps. For these design conditions, the rotor blade tip region operates with supersonic inlet and supersonic discharge relative velocities. A sophisticated quasi-three-dimensional characteristic section design procedure was used for the all-supersonic sections and the inlet of the midspan transonic sections. For regions where the relative outlet velocities are supersonic, the blade operates with weak oblique shocks only.

  16. Training Load Monitoring Algorithms on Highly Sub-Metered Home Electricity Consumption Data

    Institute of Scientific and Technical Information of China (English)

    Mario Berges; Ethan Goldman; H. Scott Matthews; Lucio Soibelman

    2008-01-01

    The growing interest in energy-efficient buildings is driving changes in investment, design, and occupant behavior. To better focus cost and resource conservation efforts, electricity consumption feedback can be used to provide motivation, guidance, and verification. Disaggregating by end-use helps both con-sumers and producers to identify targets for conservation. While hardware-based sub-metering is costly and labor-intensive, non-intrusive load monitoring (NILM) is capable of gathering detailed energy-use data with minimal equipment cost and installation time. However, variations in measurements between metering de-vices complicate the process of compiling the necessary appliance profiles. Future work involves the devel-opment of NILM algorithms using sensor fusion and detailed appliance-level data gathered from a highly-sensed house currently being constructed near Pittsburgh, Pennsylvania.

  17. Removal of high organic loads from winery wastewater by aquatic plants.

    Science.gov (United States)

    Zimmels, Y; Kirzhner, F; Schreiber, J

    2008-09-01

    Laboratory- and field-scale purification tests of raw and diluted winery wastewater (WWW) were carried out using aquatic plants at high organic loads. The laboratory tests were performed using artificial light at 1800 to 1900 lux. The objective of the current study was to define the potential of floating and emergent aquatic macrophytes and the microorganisms attached to their roots, to reduce high organic loads that characterize WWW, thereby providing, for these effluents, an effective treatment and management system. These microorganisms are believed to have a major role in the treatment process. In this context, the potential of floating and emergent macrophytes to improve the water quality of raw compared with diluted WWW was evaluated. In raw WWW (chemical oxygen demand [COD] 5.6 g/L),growth inhibition of both water hyacinth (Eichhornia crassipes) and water pennywort (Hydrocotyle umbellata) was observed. A 1:1 dilution of WWW with fresh (tap) water facilitated growth of these plants. At this dilution level, growth of pennywort was limited, while that of water hyacinth was robust. In terms of reductions in biochemical oxygen demand, COD, and total suspended solids, both water hyacinth and pennywort performed better in diluted compared with raw WWW. At 1:1 and 1:3 dilution, 95.9 to 97% of the COD was removed after 23 days, in the presence of Hydrocotyle and Eichhornia plants and aeration. The capacity of new emergent plants to remove high organic loads from WWW, at enhanced kinetics, was demonstrated. This unique property was tested and compared with the role of the gravel media that support growth of the high-capacity emergent plants. In the presence of reed and salt marsh plants, 83 to 99% of the COD was removed within a period of 24 to 29 days, at 1.5:1 dilution. The new emergent plants proved to be effective, even at record high levels of COD. At an initial level of 16,460 mg/L, the COD was brought down to 2870 mg/L after 24 days (82.6% removal), while 12

  18. Protein growth factors loaded highly porous chitosan scaffold: A comparison of bone healing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India); Basu, Debabrata [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India)

    2013-04-01

    Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85 ± 2%) with wide distribution of macroporous (70–900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87 ± 2 and 90 ± 2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples. - Highlights: ► Fabrication and characterization of porous chitosan with or without IGF-1 and BMP-2 ► Highly porous growth factor loaded chitosan studied in animal subjects for 3 months ► Parameters studied: histopathology, radiology and fluorochrome labeling ► IGF-1 loaded porous chitosan found to be very effective for bone defect healing.

  19. Multi-Mission Capable, High g Load mW RPS

    Energy Technology Data Exchange (ETDEWEB)

    John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

    2007-05-23

    Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

  20. Evaluation of Dynamic Load Factors for a High-Speed Railway Truss Arch Bridge

    Directory of Open Access Journals (Sweden)

    Ding Youliang

    2016-01-01

    Full Text Available Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.

  1. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  2. DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Energy Technology Data Exchange (ETDEWEB)

    Pi Changming; Yan Wei; Zhang Ke; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)

    2010-08-15

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 {mu}m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)

  3. Fermentative high-titer ethanol production from Douglas-fir forest residue without detoxification using SPORL: high SO2 loading at low temperature

    Science.gov (United States)

    Feng Gu; William Gilles; Roland Gleisner; J.Y. Zhu

    2016-01-01

    This study evaluated high sulfur dioxide (SO2) loading in applying Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) to Douglas-fir forest residue (FS-10) for ethanol production through yeast fermentation. Three pretreatments were conducted at 140

  4. SEMICONDUCTOR INTEGRATED CIRCUITS: DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Science.gov (United States)

    Changming, Pi; Wei, Yan; Ke, Zhang; Wenhong, Li

    2010-08-01

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 μm CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency.

  5. Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries

    Science.gov (United States)

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-12-01

    Lithium-sulfur (Li-S) batteries are considered as an attractive electrochemical energy storage system due to the high theoretical capacity of sulfur (1,675 mA h g-1). However, high-loading sulfur cathodes would need to be employed for the Li-S cells to be practical, but the resulting poor cell cyclability and severe electrode degradation hamper their development. Here, we present a hierarchical sulfur cathode as a testing platform for understanding the high-loading capability of Li-S batteries. The hierarchical cathode presents good electrochemical utilization of above 70%, stable cyclability for 500-1,000 cycles, and high sulfur loadings of 4.2-10.0 mg cm-2. The exploration of the activation and the polysulfide-retention processes of the high-loading cathodes illustrates that the electrochemical stability mainly results from the stabilization of dissolved polysulfides within the cathode region as the electrochemically active catholyte. Therefore, the utilization of stabilized polysulfide migration might be a meaningful opportunity for designing high-loading cathodes and further improving their electrochemical stability and long-term cyclability.

  6. Study on load forecasting to data centers of high power density based on power usage effectiveness

    Science.gov (United States)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  7. Effect of cyclic high loading rates on the fatigue strength of aluminum-based composites

    Science.gov (United States)

    Calderon Arteaga, Hermes Eskander

    The study of fatigue under high loading rates is of great interest in the complete characterization of a new series of composites with Al-Cu-Mg matrix reinforced with AlB2 dispersoids. Homogeneous and functionally graded composites were prepared via gravity and centrifugal casting, respectively. Through centrifugal casting a gradual variation of the volume fraction of reinforcing particles along the cross section was obtained. In specific fabrication conditions, even complete segregation of the reinforcement particles was achieved. Charpy impact tests as well as hardness tests were conducted to assess the composite strength as a function of the weight percent of boron. The tensile properties of gravity cast samples were obtained. Then for both casting conditions, simple edge-notched bend SE(B) specimens were tested under fatigue conditions (three-point bending). The results from impact and hardness tests allowed identifying an interaction between the Mg dissolved in the matrix and the diborides. This interaction, which has never been reported before, was responsible for the strength reduction observed. It was assumed that a substitutional diffusion of Al by Mg atoms in the hp3 structure of diboride was causing the strength reduction, and three approaches were developed to estimate the amount of Mg depleted from the matrix by the diborides during the composite processing. Gravity cast samples were more sensitive to monotonic damage due to fatigue loads where compared with functionally-graded composites. Contrary to the centrifugal cast samples, gravity samples were also affected by the loading rate. The Mg-AlB2 interaction was also responsible for the reduction in the fatigue resistance as the weight percent of boron increased in both types of composites; regression models were obtained to predict the crack growth curve slope change as function of the boron level. The particle distribution showed to affect the crack growth behavior of the FGMs, decreasing the

  8. Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea.

    Science.gov (United States)

    Chen, Xiu-Min; Hu, Chun; Raghubeer, Errol; Kitts, David D

    2010-09-01

    High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P purpurea methanol-derived extracts, evaluated in both chemical (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) [ABTS] and oxygen radical absorption capacity [ORAC] assay) and in cell culture models (RAW264, 7 macrophage, H(2)O(2)-induced intracellular oxidation, and lipopolysaccharide [LPS]-induced nitric oxide production), was not adversely affected by the application of HHP at both 2 and 5 min at 600 mPa. Furthermore, HHP did not affect the capacity of E. purpurea extracts to suppress nitric oxide production in LPS-activated macrophage cells. Therefore, our results show that HHP is an effective pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.

  9. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    Science.gov (United States)

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-01

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050

  10. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Chun-Chi Chen

    2016-01-01

    Full Text Available A simple chemical method was developed for preparing high valence silver (Ag-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA-SBA-15, which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS analysis, and transmission electron microscopy (TEM. Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II and Ag(III. However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15.

  11. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties.

    Science.gov (United States)

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-04

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15.

  12. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry.

  13. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  14. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  15. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  16. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    Science.gov (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  17. Difference in kinematics and kinetics between high- and low-velocity resistance loading equated by volume: implications for hypertrophy training.

    Science.gov (United States)

    Mohamad, Nur Ikhwan; Cronin, John B; Nosaka, Ken K

    2012-01-01

    Although it is generally accepted that a high load is necessary for muscle hypertrophy, it is possible that a low load with a high velocity results in greater kinematics and kinetics than does a high load with a slow velocity. The purpose of this study was to determine if 2 training loads (35 and 70% 1 repetition maximum [1RM]) equated by volume, differed in terms of their session kinematic and kinetic characteristics. Twelve subjects were recruited in this acute randomized within-subject crossover design study. Two bouts of a half-squat exercise were performed 1 week apart, one with high load-low velocity (HLLV = 3 sets of 12 reps at 70% 1RM) and the other with low-load high-velocity (LLHV = 6 sets of 12 reps at 35% 1RM). Time under tension (TUT), average force, peak force (PF), average power (AP), peak power (PP), work (TW), and total impulse (TI) were calculated and compared between loads for the eccentric and concentric phases. For average eccentric and concentric single repetition values, significantly (p eccentric and concentric TUT, PF, AP, PP, and TW. The only variable that was significantly greater for the HLLV protocol than for the LLHV protocol was TI (∼20-24%). From these results, it seems that the LLHV protocol may offer an equal if not better training stimulus for muscular adaptation than the HLLV protocol, because of the greater time under tension, power, force, and work output when the total volume of the exercise is equated.

  18. Viral DNA load of high-risk human papilloma virus is closely associated with the grade of cervical lesions

    OpenAIRE

    Shen, Guqun; Cheng, Jingxin; Wang, Yan; Zhou, Ping; Zhang, Guoqing

    2014-01-01

    This study is to explore the correlation between the viral load of high-risk human papilloma virus (HPV) and the degree of cervical lesions, as well as the follow-up monitoring role of high-risk HPV measurements in the treatment of patients with cervical lesions. Hybrid capture-2 method was used to measure the amount of high-risk HPV load of 361 patients who were enrolled from January 2009 to December 2010 at the Affiliated Tumor Hospital of Xinjiang Medical University, including 76 cases of ...

  19. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    Science.gov (United States)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  20. Effects of Radiation and a High Iron Load on Bone Mineral Density

    Science.gov (United States)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  1. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  2. Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers.

    Science.gov (United States)

    Theodorou, Apostolos S; Havenetidis, Konstantinos; Zanker, Cathy L; O'Hara, John P; King, Roderick F G J; Hood, Colin; Paradisis, Giorgios; Cooke, Carlton B

    2005-05-01

    The addition of carbohydrate (CHO) to an acute creatine (Cr) loading regimen has been shown to increase muscle total creatine content significantly beyond that achieved through creatine loading alone. However, the potential ergogenic effects of combined Cr and CHO loading have not been assessed. The purpose of this study was to compare swimming performance, assessed as mean swimming velocity over repeated maximal intervals, in high-performance swimmers before and after an acute loading regimen of either creatine alone (Cr) or combined creatine and carbohydrate (Cr + CHO). Ten swimmers (mean +/- SD of age and body mass: 17.8 +/- 1.8 years and 72.3 +/- 6.8 kg, respectively) of international caliber were recruited and were randomized to 1 of 2 groups. Each swimmer ingested five 5 g doses of creatine for 4 days, with the Cr + CHO group also ingesting approximately 100 g of simple CHO 30 minutes after each dose of creatine. Performance was measured on 5 separate occasions: twice at "baseline" (prior to intervention, to assess the repeatability of the performance test), within 48 hours after intervention, and then 2 and 4 weeks later. All subjects swam faster after either dietary loading regimen (p swimmers continued to produce faster swim times for up to 4 weeks after intervention. Our findings suggest that no performance advantage was gained from the addition of carbohydrate to a creatine-loading regimen in these high-caliber swimmers.

  3. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual Load displays: evidence from neglect/extinction

    Directory of Open Access Journals (Sweden)

    Carmel eMevorach

    2014-01-01

    Full Text Available According to perceptual load theory (Lavie, 2005 distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load distractor processing will take place resulting in interference with a primary task; however when target processing uses-up attentional capacity (with high perceptual load interference can be avoided. An alternative account (Tsal & Benoni, 2010 suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  4. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual load displays: evidence from neglect/extinction.

    Science.gov (United States)

    Mevorach, Carmel; Tsal, Yehoshua; Humphreys, Glyn W

    2014-01-10

    According to perceptual load theory (Lavie, 2005) distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load) distractor processing will take place resulting in interference with a primary task; however, when target processing uses-up attentional capacity (with high perceptual load) interference can be avoided. An alternative account (Tsal and Benoni, 2010a) suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high-load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished) field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  5. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  6. Absorbing coatings for high power millimeter-wave devices and matched loads

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Bruschi, A.; Cirant, S. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Muzzini, V. [Istituto di Biologia Agro-ambientale e Forestale, Consiglio Nazionale delle Ricerche, Area di Ricerca di Roma 1, Monterotondo, Rome (Italy); Simonetto, A.; Spinicchia, N. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Angella, G. [Istituto per l’Energetica e le Interfasi, Consiglio Nazionale delle Ricerche, Milano (Italy); Dell’Era, F. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Gantenbein, G.; Leonhardt, W. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Nardone, A. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Samartsev, A.; Schmid, M. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2013-10-15

    Highlights: ► An overview of the activity at IFP-CNR concerning the absorbing coatings is presented. ► The application of the absorbing ceramics to the IFP-CNR matched loads is described. ► B{sub 4}C is presented as a promising material for power absorption in the EC frequency range. ► The most important high power validation tests performed on coatings are described. ► Some results from simulations of the absorption capability of a double layer coating are shown. -- Abstract: In the electron cyclotron frequency range the handling of high power is critical. In some cases an unpredictable amount of stray radiation can reach some components or accumulate in localized regions, with risk of damages caused by thermal overloads, and any uncontrolled reflection represents a danger for the sources. A possibility to mitigate the problem consists in covering some regions exposed to radiation with absorbers. Enhanced absorption of stray radiation lowers requirements on active protection systems in microwave diagnostics. The released heat can be extracted by dedicated cooling systems. The chromium oxide (Cr{sub 2}O{sub 3}), largely tested at IFP-CNR, has been routinely used as internal coating for matched loads. The performances of a variable thickness coating has been tested at high power at Karlsruhe Institute of Technology (KIT), with a 140 GHz gyrotron of the W7-X ECRH system and an averaged power density absorbed at the coating surface higher than 1 MW/m{sup 2} for 3 min. Also boron carbide (B{sub 4}C) has been tested at low power and patented as a millimeter-wave absorber. In the paper, the results of some tests performed on these coatings are given, together with some simulations of the absorption capability based on low power measurements on samples. Finally, some calculations are presented for a coating obtained combining together Cr{sub 2}O{sub 3} and B{sub 4}C.

  7. Bed load size distribution and flow conditions in a high mountain catchment of Central Pyrenees

    Directory of Open Access Journals (Sweden)

    Martínez-Castroviejo, Ricardo

    1990-06-01

    Full Text Available The bed load size distribution caused by different types of flow are compared in a high mountain catchment located in the upper Gallego river basin (Central Spanish’ Pyrenees. Three kinds of hydrologic events could be defined: those triggered by heavy autumn rainfalls, those originated by isolated summer rainstorms and those promoted by snowmelting. Each one is characterized by a peculiar bed load size distribution. Thus, it could be demonstrated that the coarser fractions, above 30 mm in diameter, are up to six times more abundant, in percentage of total weight, in transports caused by heavy rainfalls than in the material collected after snowmelt flows. In its turn, bed load mobilized by snowmelt flows is mainly composed by medium and fine gravel, from 2 to 8 mm. These may amount up to 60 % of total weight of bed load. The reasons for these so different size distributions are discussed.

    [es] En una cuenca de alta montaña localizada en el alto valle del río Gallego (Pirineo central se comparan las distribuciones por tamaños de los acarreos movilizados por diferentes tipos de caudal. Tres tipos de eventos hidrológicos han podido ser caracterizados: los ocasionados por intensas lluvias de otoño, los originados por tormentas estivales aisladas y los producidos por la fusión de la nieve acumulada durante el invierno. Se concluye que cada uno de ellos lleva asociada una distribución por tamaños típica de la carga de fondo. Así, se ha comprobado que las fracciones más gruesas consideradas -superiores a los 30 mm de diámetro- son hasta seis veces más abundantes -en porcentaje sobre el peso total- en las exportaciones causadas por lluvias de gran intensidad que en las generadas por caudales de fusión. A su vez, las descargas ocasionadas por la fusión arrastran principalmente gravas de calibre medio y fino -entre 2y8 mm- que llegan a suponer el 60 % en peso del volumen movilizado. Este artículo discute las razones que provocan

  8. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine

    Science.gov (United States)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2017-01-01

    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  9. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  10. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Weihua Xie

    2016-10-01

    Full Text Available This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs, which are equipped with chemical composition gratings sensors (CCGs. The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  11. Microstructural and Chemical Characterization of the Tribolayer Formation in Highly Loaded Cylindrical Roller Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Carsten Gachot

    2016-06-01

    Full Text Available Zinc dithiophosphates (ZDDP have been widely applied in automobile industry for over 70 years as a lubricant additive for wear protection. Tribolayers have been described as blue- and brown-colored layers on surfaces observed by microscopical observation or even bare eye presumably as a consequence of layer thickness or chemical composition. However, the reaction pathways of ZDDP tribolayers are still not yet fully understood. In the present study, the difference between the blue- and brown-colored tribolayers has been revealed by high resolution methods in cylindrical roller thrust bearings at relatively high contact pressures of around 1.92 GPa. After running a FE8 standard bearing test with a normal load of 80 kN and a temperature of 60 °C, said tribolayers could be identified on the bearing surfaces. By using Raman spectroscopy, it could be shown that the blue-colored layers are enriched by FeS and ZnS whereas the brown-colored layers show a significant amount of Fe3O4. This is an interesting finding as it clearly shows a correlation between the color appearance of the films and the chemical composition besides potential film thickness variations. Finally, transmission electron microscopy verified the amorphous nature of the formed tribolayer which is in a good agreement with literature.

  12. Characterization of ITER tungsten qualification mock-ups exposed to high cyclic thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, Gerald, E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Bednarek, Maja; Gavila, Pierre [Fusion for Energy, E-08019 Barcelona (Spain); Gerzoskovitz, Stefan [Plansee SE, Innovation Services, 6600 Reutte (Austria); Linke, Jochen [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Lorenzetto, Patrick; Riccardi, Bruno [Fusion for Energy, E-08019 Barcelona (Spain); Escourbiac, Frederic [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul lez Durance (France)

    2015-10-15

    Highlights: • Mechanical deformation of CuCrZr in case a thermal barrier layer has been formed due to impurity content in the cooling water. • Crack formation at the W/Cu interface starting at the block edge. • Porosity formation in the pure Cu interlayer. • Microstructural changes in tungsten down to the W/Cu interface, which indicates also high temperatures for the pure Cu interlayer. • Macrocrack formation in tungsten which is assumed to be ductile at the initiation point and brittle when proceeding toward the cooling tube. - Abstract: High heat flux tested small-scale tungsten monoblock mock-ups (5000 cycles at 10 MW/m{sup 2} and up to 1000 cycles at 20 MW/m{sup 2}) manufactured by Plansee and Ansaldo were characterized by metallographic means. Therein, the macrocrack formation and propagation in tungsten, its recrystallization behavior and the surface response to different heat load facilities were investigated. Furthermore, debonding at the W/Cu interface, void formation in the soft copper interlayer and microcrack formation at the inner surface of the CuCrZr cooling tube were found.

  13. MORPHOLOGY AND PROPERTIES OF LINEAR LOW-DENSITY POLYETHYLENE HIGHLY LOADED WITH ALUMINUM HYDROXIDE

    Institute of Scientific and Technical Information of China (English)

    Gen-lin Wang; Ping-kai Jiang; Zi-kang Zhu; Jie Yin

    2002-01-01

    An experimental study was carried out to investigate the effects of isopropoxy tri(dioctyl pyrophosphoryl) titanate coupling agent on the mechanical performance, rheological property and microstructures of polyethylene highly loaded with aluminum hydroxide (Al(OH)a) composite. It was found that the addition of coupling agent results in reduced tensile strength and increased percentage elongation of the filled systems. Silane crosslinkable polyethylene substituting for polyethylene as matrix improves the tensile strength of the composite, while the percentage elongation of the composite still remains at a desired level. Melt viscosity of the composite will be improved by addition of titanate coupling agent. Microstructures of the composites were also studied by means of the scanning electron microscopy (SEM) technique. SEM micrographs reveal that finer dispersion of Al(OH)3 will be obtained upon treatment of titanate and a transition from brittle to tough fracture takes place before and after silane crosslinking structure is introduced into polyethylene highly filled with Al(OH)3 composite.

  14. The effect of high intensity ultrasound on the loading of Au nanoparticles into titanium dioxide.

    Science.gov (United States)

    Belova, Valentina; Borodina, Tatiana; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-01-01

    Novel metal/semiconductor nanocomposites have been synthesized from pre-formed components by applying high intensity ultrasound irradiation. Positively and negatively charged Au nanoparticles were intercalated into mesoporous TiO(2) by sonication. The synthesized nanocomposites with implanted gold nanoparticles possess a narrow pore-size distribution around 7 nm and a large surface area of about 210 m(2)/g. The intercalation of the Au nanoparticles into the TiO(2) framework depends on the charge of the Au nanoparticles, time and amplitude of ultrasonic treatment. The experiments show that at 20 min of ultrasonic irradiation the volume fraction of the negatively charged Au nanoparticles intercalated into TiO(2) is 15%. By contrast, at the same time, 8.1% of positively charged Au nanoparticles with a diameter of about 6-7 nm enters into the TiO(2) matrix. The characterization of the samples was carried out by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared measurements and BET analysis. The structure of TiO(2) was not considerably affected by the intercalation of the Au nanoparticles. TiO(2) doped with negatively charged Au nanoparticles presented a higher photocatalytic activity (75 wt.%) than TiO(2) loaded with positively charged Au nanoparticles (62 wt.%), because of an enlarged surface area and quantity of Au nanoparticles in titania. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings

    Science.gov (United States)

    Hamrock, B. J.; Jacobson, B. O.

    1983-01-01

    A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation. Previously announced in STAR as N82-20543

  16. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Science.gov (United States)

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  17. The Combined Effect of Electrical Stimulation and High-Load Isometric Contraction on Protein Degradation Pathways in Muscle Atrophy Induced by Hindlimb Unloading

    OpenAIRE

    Naoto Fujita; Shinichiro Murakami; Hidemi Fujino

    2011-01-01

    High-load isometric exercise is considered an effective countermeasure against muscle atrophy, but therapeutic electrical stimulation for muscle atrophy is often performed without loading. In the present study, we investigated the combined effectiveness of electrical stimulation and high-load isometric contraction in preventing muscle atrophy induced by hindlimb unloading. Electrical stimulation without loading resulted in slight attenuation of muscle atrophy. Moreover, combining electrical s...

  18. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  19. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    Science.gov (United States)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  20. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  1. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings.

  2. Ethanol Production from High Solids Loading of Alkali-Pretreated Sugarcane Bagasse with an SSF Process

    Directory of Open Access Journals (Sweden)

    Yueshu Gao

    2014-04-01

    Full Text Available A fed-batch process and high-temperature simultaneous saccharification and fermentation (SSF process were investigated to obtain high sugar yield and ethanol concentration. Different amounts of alkali-pretreated sugarcane bagasse were added during the first 24 h. For the highest final dry matter (DM content of 25% (w/v, a maximal glucose and total sugar concentration of 79.53 g/L and 135.39 g/L, respectively, were achieved with 8.3 FPU/g substrate after 120 h of hydrolysis. Based on the hydrolysis experiment, two processes for ethanol production from sugarcane bagasse, simultaneous saccharification and fermentation (SSF and separate hydrolysis and fermentation (SHF, were also compared using S. cerevisiae. The results indicated that ethanol concentration and yield in the SHF were higher, while ethanol productivity (gram per unit volume and over time was lower. For 25% substrate loading, the ethanol productivity and ethanol concentration could reach 0.38 g.L-1.h-1 and 36.25 g/L SSF in 96 h, respectively, while that of SHF could reach 0.32 g.L-1.h-1, with an ethanol concentration of 47.95 g/L in 152 h for SHF. When high-temperature simultaneous saccharification and fermentation (SSF process was performed by using Kluyveromyces marxianus NCYC 587 at 42 °C, 42.21 g/L ethanol (with an ethanol productivity of 0.44 g.L-1.h-1 was produced with 25% dry matter content and 8.3 FPU cellulase/g substrate, which meant 16.4% more ethanol when compared with SSF of S. cerevisiae.

  3. RELATIONSHIP BETWEEN BLOOD LACTATE AND HYPERVENTILATION DURING HIGH-INTENSITY CONSTANT-LOAD EXERCISE IN HEAT

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2011-09-01

    Full Text Available The purpose of this study was to examine the relationship between hyperventilation and increase in blood lactate during high-intensity constant-load exercise in heat and normal conditions. Seven male volunteers exercised for 10 min on a cycle ergometer at 80%·VO2max in heat (40ºC, 50%relative humidity: HT and normal conditions (20ºC, 50% relative humidity: CON. Oxygen uptake, carbon dioxide output, ventilation, blood lactate and blood electrolytes (K , Na , Cl− were measured in HT and CON. We found that ventilation was significantly higher during exercise in HT compared with CON (p<0.05 and RER tends to be higher in HT than in CON. Blood lactate was significantly higher at 3 min during exercise in HT compared with CON (5.96 ± 0.57 mEq·l-1 5.00 ± 0.28 mEq·l-1, p<0.05. Change in strong ion difference [∆SID = (∆K ∆Na − (∆Cl− ∆La−], which affects ∆HCO3− in blood significantly, was lower at 5 min during exercise in HT compared with in CON (p<0.05. These results suggest that hyperventilation during exercise in heat would induce lower HCO3− in blood and consequently would result in an increase in blood lactate at an earlier time during high-intensity exercise in heat. It was concluded that hyperventilation during short-term high-intensity exercise in heat is temporarily associated with an increase in blood lactate.

  4. Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Zhiyong Chen

    2017-07-01

    Full Text Available As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.

  5. Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography.

    Science.gov (United States)

    Xu, Xiaonan; Wang, Caifen; Li, Haiyan; Li, Xue; Liu, Botao; Singh, Vikramjeet; Wang, Shuxia; Sun, Lixin; Gref, Ruxandra; Zhang, Jiwen

    2017-03-10

    Drug loading into γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs) using the impregnation approach is a laborious process. In this study, a γ-CD-MOF construct (2-5μm particle diameter) was used as the stationary phase under HPLC conditions with the aim to correlate retention properties and drug loading capability of the CD-based structure. Ketoprofen, fenbufen and diazepam were chosen as model drugs with m-xylene as a control analyte to investigate the correlation of drug loading and their chromatographic behaviour in the γ-CD-MOF column. Furthermore, γ-CD itself was also prepared as the stationary phase by coupling with silica in the column to illustrate the enhanced interaction between drugs and γ-CD-MOF as a reference. The retention and loading efficiency of the drugs were determined with different ratios of hexane and ethanol (10:90, 20:80, 50:50, 80:20, 90:10, v/v) at temperatures of 20, 25, 30 and 37°C. With the increment in hexane content, the loading efficiency of ketoprofen and fenbufen increased from 2.39±0.06% to 4.38±0.04% and from 5.82±0.94% to 6.37±0.29%, respectively. The retention time and loading efficiency of ketoprofen and diazepam were the lowest at 30°C while those of fenbufen had the different tendency. The excellent relation between the retention and loading efficiency onto γ-CD-MOF could be clearly observed through mobile phase and temperature investigation. In conclusion, a highly efficient chromatographic method has been established to evaluate the drug loading capability of γ-CD-MOF.

  6. Scan-directed load balancing for highly-parallel mesh-connected computers. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, E.S.; Prins, J.F.

    1991-07-01

    Scan Directed Load Balancing is a new, locality-preserving, dynamic load balancing algorithm for grid based computations on mesh connected parallel computers. Scans are used to efficiently determine what areas of the machine are heavily loaded and what areas are lightly loaded, and to organize the movement of data. Data is shifted along the mesh in a regular fashion to balance the load. The Locality Property of the algorithm guarantees that all the neighbors of a data point on the grid are stored either on the same processor, or on a processor that is directly connected to it. Scan Directed Load Balancing is applicable to both SIMD and MIMD mesh-connected parallel computers, and has been implemented on the MasPar MP-1. The authors present some theoretical bounds achieved by the algorithm as well as the algorithm's performance on a particular image processing problem, edge-directed diffusion. Their experiments show that the algorithm is effective in improving the load distribution for real problems, while the efficiency of the original grid-based computation is preserved by the locality property.

  7. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R.A. (Nuclear Electric PLC, Berkeley (UK). Berkeley Nuclear Labs.); Ruggles, M.B. (Oak Ridge National Lab., TN (USA)); Takahashi, Y. (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig.

  8. Bearing Capacity of High Density Polyethylene (HDPE Reinforced Sand Using Plate Load Test

    Directory of Open Access Journals (Sweden)

    Er. Aly K

    2015-06-01

    Full Text Available The work presented here is a study to examine the improvement in bearing capacity of coastal sand of Trivandrum, Kerala, India using high density polyethylene (HDPE /woven fabric as reinforcement in discrete layers. The bearing capacity was evaluated using plate load test. The effect of reinforcement configurations like sheet reinforcement (sanded with adhesive, with adhesive and sheet alone and strip reinforcement (single and grid pattern are investigated. The test parameters chosen for the present study are, depth of topmost layer of reinforcement layer below footing, compacted density and number of layers of reinforcement etc. From the tests, it has been observed that sheet reinforcement is more effective than sheet sanded with adhesive and strip reinforcements. It is found that the synthetic adhesive gives no binding action at the interface of the reinforcement and soil. But it is to be noted that the sheet with adhesive dried has a marked influence on the bearing capacity especially at lower densities. The strip reinforcements in single pattern is considered to be a favorable choice for minimum reinforcement. The strip reinforcement in single or grid pattern gives sufficient improvement in strength.

  9. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    Science.gov (United States)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  10. Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal.

    Science.gov (United States)

    Mannucci, Alberto; Munz, Giulio; Mori, Gualtiero; Lubello, Claudio

    2012-07-01

    A pilot scale test on a biotrickling filter packed with polyurethane foam cubes was carried out for 110 d at high volumetric mass load (up to 280 g m(bed)(-3) h(-1)) with the aim of studying the accumulation of solids in the treatment of H(2)S. Removal rate up to 245 g m(bed)(-3) h(-1) was obtained; however, an accumulation of gypsum, elemental sulphur and, above all, inert biomass was identified as the cause of an increased pressure drop over the long term. A mathematical model was applied and calibrated with the experimental results to describe the accumulation of biomass. The model was capable of describing the accumulation of solids and, corresponding to a solids retention time of 50 d, the observed yield resulted in 0.07 g of solids produced g(-1) H(2)S removed. Respirometric tests showed that heterotrophic activity is inhibited at low pH (pH < 2.3), and the contribution to biomass removal through decay was negligible.

  11. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica

    2012-07-01

    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  12. Effect of blade tip winglet on the performance of a highly loaded transonic compressor rotor

    Institute of Scientific and Technical Information of China (English)

    Han Shaobing; Zhong Jingjun

    2016-01-01

    The tip leakage flow has an important influence on the performance of transonic com-pressor. Blade tip winglet has been proved to be an effective method to control the tip leakage flow in compressor, while the physical mechanisms of blade tip winglet have been poorly understood. A numerical study for a highly loaded transonic compressor rotor has been conducted to understand the effect of varying the location of blade tip winglet on the performance of the rotor. Two kinds of tip winglet were designed and investigated. The effects of blade tip winglet on the compressor over-all performance, stability and tip flow structure were presented and discussed. It is found that the interaction of the tip winglet with the flow in the tip region is different when the winglet is located at suction-side or pressure-side of the blade tip. Results indicate that the suction-side winglet (SW) is ineffective to improve the performance of compressor rotor. In addition, a significant stall range extension equivalent to 33.74% with a very small penalty in efficiency can be obtained by the pressure-side winglet (PW). An attempt has been made to explain the fundamental mechanisms of blade tip winglet in detail.

  13. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  14. Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hu Zhao; Yun Wu; Ying-Hong Li; Xue-De Wang; Qin Zhao

    2012-01-01

    In this paper,flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated.Streamline pattern,total pressure loss coefficient,outlet flow angle and topological analysis are considered to study the effect and mechanism of the plasma flow control on corner separation.Results presented include the boundary layer flow behavior,effects of three types of PAA on separated flows and performance parameters,topology structures and sequences of singular points with and without PAA.Two separation lines,reversed flow and backflow exist on the suction surface.The cross flow on the endwall is an important element for the corner separation.PAA can reduce the undertuming and overturning as well as the total pressure loss,leading to an overall increase of flow turning and enhancement of aerodynamic performance.PAA can change the topology structure,sequences of singular points and their corresponding separation lines.Types Ⅱ and Ⅲ PAA are much more efficient in controlling corner separation and enhancing aerodynamic performances than type Ⅰ.

  15. Study on docetaxel-loaded nanoparticles with high antitumor efficacy against malignant melanoma

    Institute of Scientific and Technical Information of China (English)

    Donghui Zheng; Xiaolin Li; Huae Xu; Xiaowei Lu; Yong Hu; Weixin Fan

    2009-01-01

    Docetaxel (Doc) has extraordinary activities against a variety of solid tumors.However,the clinical efficacy of Doc is limited due to its poor solubility,low selective dis-tribution,fast elimination in vivo,etc.In the present study,Doc was incorporated into the core-shell structure of nanoparticles prepared based on our previous work.The obtained docetaxel-loaded nanoparticles (DOCNP) were characterized with various biophysical method-ologies,and its antitumor efficacy against malignant mel-anoma was evaluated both in vitro and in vivo.Our results indicated that Doc could be incorporated into the nanoparticles with high encapsulation efficiency (>90%).The incorporated Doc can be released from DOCNP in a sustained manner.In vitro cytotoxicity studies indicated that DOCNP could effectively kill B16 cells and show a dose- and time-dependent efficacy.Furthermore,intratu-moral administration revealed that DOCNP has signifi-cantly higher antitumor effect and lower toxicity to normal cells and tissues than free Doc.These results suggest that DOCNP may be a promising drug delivery system in therapy for malignant melanoma.

  16. Removal and retention of phosphorus by periphyton from wastewater with high organic load.

    Science.gov (United States)

    Cao, Jinxiang; Hong, Xiaoxing; Pei, Guofeng

    2014-01-01

    The total phosphorus (TP) removal efficiency from organic wastewater (pig farm and distillery wastewater) were estimated by using filamentous green algae (FGA) and benthic algal mats (BAM) treatment systems under laboratory conditions, and the contents of periphyton phosphorus fractions were determined by using a sequential extraction. The removal rates of TP reached 59-78% within the first 8 days of all treatment systems and could achieve average 80% during 30 day period, and the phosphorus removal rates by using BAM was higher than that of FGA. The ability of retention TP of periphyton enhanced gradually, the BAM TP contents were higher than that of FGA, the highest TP concentrations of BAM and FGA were 26.24 and 10.52 mg P g(-1)·dry weight. Inorganic phosphorus (IP) always exceeded 67.5% of TP, but the organic phosphorus fraction only made up less than 20% of TP. The calcium-binding phosphorus (Ca-P) was the dominant fraction and its relative contribution to TP was more than 40%. The TP was also strongly and positively correlated with the IP and Ca-P (p wastewater with high load phosphorus.

  17. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs.

    Science.gov (United States)

    Faust, L; Temmink, H; Zwijnenburg, A; Kemperman, A J B; Rijnaarts, H H M

    2014-12-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable organic chemicals. Little is known about the effect of the dissolved oxygen concentration (DO) on this bioflocculation process. To examine this effect, two HL-MBRs were operated, respectively at a low (1 mg L(-1)) and a higher (4 mg L(-1)) DO. The higher DO resulted in a better flocculation efficiency, i.e. 92% of the colloidal COD in the sewage flocculated compared to 69% at the lower DO. The difference was attributed to a higher microbial production of extracellular polymeric substances at a DO of 4 mg L(-1) and to more multivalent cations (calcium, iron and aluminium) being distributed to the floc matrix. In addition, the HL-MBR that was operated at a DO of 4 mg L(-1) gave a bigger mean floc size, a lower supernatant turbidity, better settleability and better membrane filterability than the HL-MBR that was operated at a DO of 1 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Tungsten joining with copper alloy and its high heat load performance

    Science.gov (United States)

    Liu, Xiang; Lian, Youyun; Chen, Lei; Cheng, Zengkui; Chen, Jiming; Duan, Xuru; Song, Jioupeng; Yu, Yang

    2014-12-01

    W-CuCrZr joining technology by using low activation Cu-Mn filler metal was developed at Southwestern Institute of Physics (SWIP) for the manufacturing of divertor components of fusion experiment devices. In addition, a fast W coating technology by chemical vapor deposition (CVD) was also developed and CVD-W/CuCrZr and CVD-W/C mockups with a W coating thickness of 2 mm were prepared. In order to assess their high heat flux (HHF) performances, a 60 kW Electron-beam Material testing Scenario (EMS-60) equipped with a 150 keV electron beam welding gun was constructed at SWIP. Experimental results indicated that brazed W/CuCrZr mockups can withstand 8 MW/m2 heat flux for 1000 cycles without visible damages and CVD-W/CuCrZr mockups with W-Cu gradient interface can survive 1000 cycles under 11 MW/m2 heat flux. An ultrasonic inspection method for non-destructive tests (NDT) of brazed W/CuCrZr mockups was established and 2 mm defect can be detected. Infinite element analysis and heat load tests indicated that 5 mm defect had less noticeable influence on the heat transfer.

  19. [Glycemic, insulinemic index, glycemic load of soy beverage with low and high content of carbohydrates].

    Science.gov (United States)

    Torres y Torres, Nimbe; Palacios-González, Berenice; Noriega-López, Lilia; Tovar-Palacio, Armando R

    2006-01-01

    Consumption of soy has increased in Western countries due to the benefits on health and the attitude of the people to consume natural products as alternative to the use of pharmacological therapies. However, there is no evidence whether the consumption of 25 g of soy protein as recommended by the Food and Drug Administration has some effect on glucose absorption and consequently on insulin secretion. The aim of the present study was to determine glycemic index (GI), insulinemic index (InIn), and glycemic load (GL) of several soy beverages containing low or high concentration of carbohydrates, and compare them with other foods such as peanuts, whole milk, soluble fiber and a mixed meal on GI and InIn. The results showed that soy beverages had low or moderate GI, depending of the presence of other compounds like carbohydrates and fiber. Consumption of soy beverages with low concentration of carbohydrates produced the lowest insulin secretion. Therefore, these products can be recommended in obese and diabetic patients. Finally soy beverages should contain low maltodextrins concentration and be added of soluble fiber.

  20. Loading Analysis of Modular Multi-level Converter for Offshore High-voltage DC Application under Various Grid Faults

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang;

    2016-01-01

    The modular multi-level converter has become an interesting candidate in high-voltage DC systems due to its higher voltage levels and modular construction. Low-voltage ride-through is an important grid requirement for modular multi-level converter–high-voltage DC since not only causes control...... challenges but may also result in overstressed components for the modular multi-level converter. However, the thermal loading of the modular multi-level converter under various grid faults has not yet been clarified. In this article, the power loss and thermal performance of the modular multi-level converter...... during grid voltage dips are studied. The impacts of two typical grid faults to the modular multi-level converter in terms of operating and loading conditions are analytically researched and simulated. It has been found that the operating and loading conditions of the modular multi-level converter under...

  1. Significant progression of load on the musculoskeletal system with extremely high loads, with rapid weekly weight gains, using the Anatoly Gravitational System, in a 10-week training period

    Directory of Open Access Journals (Sweden)

    Burke DT

    2013-10-01

    Full Text Available David T Burke,1 David Tran,1 Di Cui,1 Daniel P Burke,2 Samir Al-Adawi,3 Atsu SS Dorvlo41Emory University Medical School, Atlanta, GA, USA; 2Georgia College and State University, GA, USA; 3Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman; 4Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat, OmanAbstract: In an age of increasing numbers of lifestyle diseases and plasticity of longevity, exercise and weight training have been increasingly recognized as both preventing and mitigating the severity of many illnesses. This study was designed to determine whether significant weight-lifting gains could be realized through the Anatoly Gravitational System. Specifically, this study sought to determine whether this once-weekly weight-training system could result in significant weekly strength gains during a 10-week training period. A total of 50 participants, ranging in age from 17 to 67 years, completed at least 10 weekly 30-minute training sessions. The results suggest participants could, on average, double their weight-lifting capacity within 10 sessions. This preliminary study, which would require further scrutiny, suggests the Anatoly Gravitational System provides a rather unique opportunity to load the musculoskeletal system with extremely high loads, with rapid weekly weight gains, using only short weekly training sessions. More studies are warranted to scrutinize these findings.Keywords: Anatoly Gravitational System, weight training, musculoskeletal system

  2. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    Science.gov (United States)

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  3. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2014-01-01

    Full Text Available A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  4. Material Parameter Determination of an L4-L5 Motion Segment Finite Element Model Under High Loading Rates.

    Science.gov (United States)

    Pyles, C O; Zhang, J; Demetropoulos, C K; Bradfield, C A; Ott, K A; Armiger, R S; Merkle, A C

    2015-01-01

    Underbody blast (UBB) events impart vertical loads through a victim’s lumbar spine, resulting in fracture, paralysis, and disc rupture. Validated biofidelic lumbar models allow characterization of injury mechanisms and development of personal protective equipment. Previous studies have focused on lumbar mechanics under quasi-static loading. However, it is unclear how the role and response of individual spinal components of the lumbar spine change under dynamic loading. The present study leverages high-rate impacts of progressively dissected two-vertebra lumbar motion segments and Split-Hopkinson pressure bar tissue characterization to identify and validate material properties of a high-fidelity lumbar spine finite element model for UBB. The annulus fibrosus was modeled as a fiber-reinforced Mooney-Rivlin material, while ligaments were represented by nonlinear spring elements. Optimization and evaluation of material parameters was achieved by minimizing the root-mean-square (RMS) of compressive displacement and sagittal rotation for selected experimental conditions. Applying dynamic based material models and parameters resulted in a 0.42% difference between predicted and experiment axial compression during impact loading. This dynamically optimized lumbar model is suited for cross validation against whole-lumbar loading scenarios, and prediction of injury during UBB and other dynamic events.

  5. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    Science.gov (United States)

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  6. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    behaviour. It compensates the load torque influence on the speed control setting a feed forward torque value, i.e. current reference value. The benefits are twice. The speed controller reaches immediately the speed reference value avoiding offsets which must be compensated by the weak integrator. Moreover......, a better response to load torque variations which are detected and compensated leading to small speed variations is obtained....

  7. Tensile fracture and shear localization under high loading rate in tungsten alloys

    OpenAIRE

    Couque, H.; Lankford, J.; Bose, A

    1992-01-01

    The influence of loading rate and microstructure on the tensile and compressive failure properties of three microstructurally dissimilar tungsten alloys has been investigated. Dynamic tensile fracture properties were characterized through fracture toughness tests performed at a stress intensity loading rate of 106 MPa $\\sqrt{{\\rm m}}$ s-1, and by tensile testing at a strain rate of 103 s-1. Shear banding phenomena were investigated by means of compression tests performed at strain rates of 5 ...

  8. Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na(+)-dependent taurocholate cotransporting polypeptide activity.

    Science.gov (United States)

    Wang, Xue-jun; Hu, Wei; Zhang, Ting-yu; Mao, Ying-ying; Liu, Nan-nan; Wang, Sheng-qi

    2015-08-01

    The liver-specific Na(+)-dependent taurocholate cotransporting polypeptide (NTCP) was recently identified as an entry receptor for hepatitis B virus (HBV) hepatotropic infection. In this study, an NTCP-overexpressing HepG2 cell line named HepG2.N9 susceptible to HBV infection was established using transcription activator-like effector nucleases (TALEN) technology. Using this cell line, irbesartan, the new NTCP-interfering molecule reported recently, was demonstrated here to effectively inhibit HBV infection with an IC50 of 3.3μM for hepatitis B e antigen (HBeAg) expression and exhibited no obvious cytotoxicity up to 1000μM. Irbesartan suppressed HBV uptake weakly but inhibited HBV covalently closed circular DNA (cccDNA) formation efficiently at physiological temperature. These results suggested that irbesartan targeted HBV infection at a post-uptake prior to cccDNA formation step such as the cell membrane fusion. Based on these findings, irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, could be a potential candidate for treatment of HBV infection although further in vivo experiments are required.

  9. Optimization & Design of High Rise Building with Different Structural Framing Systems Subjected To Seismic Loads

    Directory of Open Access Journals (Sweden)

    Mr. Anant A. Kapse ,

    2014-06-01

    Full Text Available Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System. In this study, 3D structural modelling base software STAAD-PRO was used to generate and analyze three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Five models were used, one for moment resisting frame & 04 models each for the lateral load resisting systems. Each model consisted of G +10 storey frame structure having total height of 33.0 m. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements at storey top and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.

  10. Synergistic effect of viral load and alcohol consumption on the risk of persistent high-risk human papillomavirus infection.

    Directory of Open Access Journals (Sweden)

    Hea Young Oh

    Full Text Available PURPOSE: This prospective study aimed to examine the combined effect of viral load and alcohol consumption on the risk of persistent high-risk (HR human papillomavirus (HPV infection. METHODS: Among women undergoing health screening between 2002 and 2011 at the National Cancer Center, 284 and 122 women with HR-HPV infection and cytological findings of low-grade squamous intraepithelial or lower-grade lesions were followed up for 1 and 2 years, respectively. Multivariate logistic regression analysis was performed, and the relative excess risk due to interaction (RERI and synergy index (S were calculated. RESULTS: Among drinkers, the risks of 1-year (odds ratio [OR] 4.09, 95% confidence interval [CI] 2.05-8.18 and 2-year persistence (OR 8.08, CI 2.36-27.6 were significantly higher for high HPV loads than for low HPV loads; this association was not seen for non-drinkers. The risks for 1-year (OR 4.14, CI 1.89-9.05 and 2-year persistence (OR 6.61, CI 2.09-20.9 were significantly higher in subjects with a high HPV load who were also drinkers than in those who were non-drinkers. A high HPV load together with a longer drinking duration or higher alcohol consumption was associated with increased risks of 1-year (OR 3.07, CI 1.40-6.75 or OR 2.05, CI 0.87-4.83 and 2-year persistence (OR 6.40, CI 1.72-23.8 or OR 4.14, CI 1.18-14.6. The synergistic effect of alcohol consumption and HR-HPV load was stronger on the risk of 2-year persistence (RERI = 3.26, S = 2.38 than on the risk of 1-year persistence (RERI = 1.21, S = 1.63. CONCLUSIONS: The synergistic effect of HR-HPV load and alcohol consumption was associated with the risk of HR-HPV persistence and was stronger for longer-term HR-HPV infection. Limiting alcohol consumption might be an important measure to prevent the development of cervical cancer in women with a high HR-HPV load.

  11. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls...

  12. Characterization of the bacterial community involved in the bioflocculation process of wastewater organic matter in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Szendy, M.; Plugge, C.M.; Brink, van den P.F.; Temmink, H.; Rijnaarts, H.H.M.

    2015-01-01

    High-loaded membrane bioreactors (HL-MBRs), i.e., bioreactors equipped with a membrane for biomass retention and operated at extremely short sludge and hydraulic retention times, can concentrate sewage organic matter to facilitate subsequent energy and chemical recovery from these organics. Bioflocc

  13. Relation between Breast Cancer and High Glycemic Index or Glycemic Load: A Meta-analysis of Prospective Cohort Studies.

    Science.gov (United States)

    Mullie, Patrick; Koechlin, Alice; Boniol, Mathieu; Autier, Philippe; Boyle, Peter

    2016-01-01

    Breast cancer is the commonest form of cancer in women worldwide. It has been suggested that chronic hyperinsulinemia associated with insulin resistance plays a role in breast cancer etiology. To test the hyperinsulinemia hypothesis, a dietary pattern associated with a high glycemic index and glycemic load, both proxies for chronic hyperinsulinemia, should be associated with an increased risk of breast cancer. A meta-analysis restricted to prospective cohort studies was undertaken using a random effects model with tests for statistical significance, publication bias and heterogeneity. The metric for analysis was the risk of breast cancer in the highest relative to the lowest glycemic index and glycemic load dietary pattern. A dietary pattern with a high glycemic index was associated with a summary relative risk (SRR) of 1.05 (95% CI: 1.00, 1.11), and a high glycemic load with a SRR of 1.06 (95% CI: 1.00, 1.13). Adjustments for body mass index [BMI], physical activity and other lifestyle factors did not influence the SRR, nor did menopausal status and estrogen receptor status of the tumor. In conclusion, the current evidence supports a modest association between a dietary pattern with high glycemic index or glycemic load and the risk of breast cancer.

  14. Consumption of a high glycemic load but not a high glycemic index diet is marginally associated with oxidative stress in young women.

    Science.gov (United States)

    Arikawa, Andrea Y; Jakits, Holly E; Flood, Andrew; Thomas, William; Gross, Myron; Schmitz, Kathryn H; Kurzer, Mindy S

    2015-01-01

    Research studies have suggested that chronic consumption of high glycemic index foods may lead to chronically high oxidative stress. This is important because oxidative stress is suspected to be an early event in the etiology of many disease processes. We hypothesized that dietary glycemic index and glycemic load were positively associated with oxidative stress assessed by plasma F2-isoprostanes in healthy, premenopausal women (body mass index [BMI] = 24.7 ± 4.8 kg/m(2) and age 25.3 ± 3.5 years, mean ± SD). We measured plasma F2-isoprostanes in 306 healthy premenopausal women at the baseline visit for the Women In Steady Exercise Research study, using gas chromatography-mass spectrometry. Dietary glycemic index and load were calculated from the National Cancer Institute Diet History Questionnaire, and participants were divided into quartiles of dietary glycemic index and of glycemic load. Plasma F2-isoprostanes were compared across quartile groups of dietary glycemic index and glycemic load using linear regression models. Plasma F2-isoprostanes (pg/mL) increased with quartile of glycemic load (test for linear trend, P = .033), and also increased with quartile of glycemic index in participants with BMI ≥ 25 (P = .035) but not in those with BMI glycemic index and P = .065 for quartiles of glycemic load).

  15. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H.; Böswirth, B.; Krieger, K. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, H.Y.; Fu, B.Q.; Li, M. [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-02-15

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T{sub max} was found. ► Activation energy for grain growth in T evolution up to T{sub max} in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m{sup 2} were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T{sub max}) was found and accordingly the activation energy for grain growth in temperature evolution up to T{sub max} in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  16. Anaplasma marginale infection with persistent high-load bacteremia induces a dysfunctional memory CD4+ T lymphocyte response but sustained high IgG titers

    Science.gov (United States)

    Control of blood-borne infections is dependent on antigen-specific effector and memory T cells and high-affinity IgG responses. In chronic infections characterized by a high antigen load, it has been shown that antigen-specific T and B cells are vulnerable to downregulation and apoptosis. Anaplasma ...

  17. High solids loading of aluminum nitride powder in epoxy resin: Dispersion and thermal conductivity

    Science.gov (United States)

    Lee, Eunsung

    Most semiconductor devices are now packaged in an epoxy polymer composite, which includes a silica powder filler for reducing the thermal expansion coefficient. However, increased heat output from near-future semiconductors will require higher thermal conductivity fillers such as aluminum nitride powder, instead of silica. This thesis research is intended to apply improved dispersant chemistry, in order to achieve a high volume percentage of AlN powder in epoxy, increasing the thermal conductivity of the composite without causing excessive viscosity before the epoxy monomer is crosslinked. In initial experiments, the dispersibility of aluminum oxide in epoxy monomer resin was better than that of AlN, because of the weaker basicity of oxide surfaces compared with nitride. To improve the dispersibility of AlN, its surface was modified by pretreatment with silane coupling agents. Silane molecules with different head groups were investigated. In those experiments, methylsilane gave lower viscosities than chloro- or methoxysilane, while pretreatments using organic acids increased the viscosity of the AlN dispersion. The viscosity changes and FTIR peak intensity trends suggested that the silane molecules could be adsorbed on AlN surfaces in the form of a monolayer during optimization experiments, and the best silane monolayer coverage on the AlN powder surfaces was achieved with 2 wt% amounts in a 3 hour treatment. A particular phosphate ester was a good second layer dispersant for the AlN-plus-epoxy system. When that dispersant was added onto the silane-treated filler surfaces, the degree of viscosity reduction was dependent on the types of silane coupling agent functional groups. In the optimized results, silane pretreatment followed by dispersant addition was better than either alone. High solids loading, up to 57 vol.%, was achieved with a wide particle size distribution of powder, and the viscosity of that dispersion was 60,000 to 90,000 cps, which easily flowed by

  18. Numerical Investigation of Flow Separation Control on a Highly Loaded Compressor Cascade by Plasma Aerodynamic Actuation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaohu; LI Yinghong; WU Yun; ZHU Tao; LI Yiwen

    2012-01-01

    To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade,numerical investigation is conducted.The simulation method is validated by oil flow visualization and pressure distribution.The loss coefficients,streamline patterns,and topology structure as well as vortex structure are analyzed.Results show thai the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack,and the total pressure loss increases greatly.There are several principal vortices inside the cascade passage.The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex,but finally merges into the latter.Comer vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex.One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface.Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex.The singular points and separation lines represent the basic separation feature of cascade passage.Plasma actuation has better effect at low freestream velocity,and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2°.Plasma actuation changes the local topology structure,but does not change the number relation of singular points.One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears,both of which break the separation line on the suction surface.

  19. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    Science.gov (United States)

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  20. Biofiltration of high formaldehyde loads with ozone additions in long-term operation.

    Science.gov (United States)

    Maldonado-Diaz, G; Arriaga, S

    2015-01-01

    Formaldehyde (FA) biofiltration was evaluated over 310 days with and without ozone addition. Without ozone, the biofilter was able to treat formaldehyde at inlet loads (ILs) lower than 40 g m(-3) h(-1), maintaining, under this condition, an average removal efficiency (RE) of 88 % for a few days before collapsing to zero. The continuous addition of ozone (90 ppbv) helped to recover the RE from zero to 98 ± 2 % and made it possible to operate at an IL of 40 g m(-3) h(-1) for long periods of operation (107 days). Furthermore, the ozone addition aided in operating the biofilter at a formaldehyde IL of up to 120 g m(-3) h(-1) values that have never before been reached. GC-mass spectrometry (MS) analysis showed that dimethoxymethane was the common compound in leachate during the performance decay. Also, the addition of ozone aided in maintaining an optimal pH in the biofilter with values between 7.5 and 8.2, due to the carbonate species formed during the ozone reactions with formaldehyde and its by-products. Thus, the pH control was confirmed and the alkalinity of the biofilter increased from 334.1 ± 100.3 to 1450 ± 127 mg CaCO3 L(-1) when ozone was added. Ozone addition diminished the exopolymeric substances (EPS) content of biofilm and biofilm thickness without affecting cell viability. Kinetic parameters suggested that the best conditions for carrying out FA biofiltration were reached under ozone addition. The addition of ozone during formaldehyde biofiltration could be a good strategy to maintain the pH and the steady state of the system under high ILs and for long periods of operation.

  1. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    Science.gov (United States)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  2. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  3. Observations on the effects of grooved surfaces on the interfacial torque in highly loaded rolling and sliding tests

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; Klit, Peder; Jensen, Niels Steenfeldt;

    2014-01-01

    Some efforts have been undertaken to study the effects of grooved surfaces on the interfacial film thickness and torque between two contacting non-conformal surfaces under heavy loads. Transverse grooves of micrometer scale depth were engraved on polished, flat ring surfaces using established...... industrial methods like laser engraving and wire cutting. The grooved surfaces were then run against a polished flat surface at loads corresponding to high normal Hertzian pressures. Experiments were conducted to study the effects of the following parameters on the interfacial torque-groove depth, groove...... wavelength, load, inlet speed and slide-roll ratio. Experimental results were then justified, in certain cases, based on a multigrid model predicting the interfacial pressure and film thickness....

  4. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method.

    Science.gov (United States)

    Shingange, K; Tshabalala, Z P; Ntwaeaborwa, O M; Motaung, D E; Mhlongo, G H

    2016-10-01

    ZnO nanorods synthesized using microwave-assisted approach were functionalized with gold (Au) nanoparticles. The Au coverage on the surface of the functionalized ZnO was controlled by adjusting the concentration of the Au precursor. According to X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results, it was confirmed that Au form nanoparticles loaded on the surface of ZnO. The small Au loading level of 0.5wt% showed the highest response of 1600-100ppm of NH3 gas at room temperature (RT) whereas further increase of Au loading level resulted in poor detection of NH3. All Au loaded ZnO (Au/ZnO) based sensors exhibited very short recovery and response times compared to unloaded ZnO sensing materials. The responses of ZnO and Au/ZnO based sensors (0.5-2.5wt%) to other flammable gases, including H2, CO and CH4, were considerably less, demonstrating that Au/ZnO based sensors were highly selective to NH3 gas at room temperature. Spill over mechanism which is the main reason for the observed enhanced NH3 response with 0.5 Au loading level is explained in detail.

  5. Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates.

    Science.gov (United States)

    Camargos, G V; Bhattacharya, P; van Lenthe, G H; Del Bel Cury, A A; Naert, I; Duyck, J; Vandamme, K

    2015-06-01

    Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness.

  6. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  7. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2014-03-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated.

  8. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.

    Science.gov (United States)

    Han, Jing; Michel, Andrew R; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W

    2015-12-07

    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX)-silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt % of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80-150 nm in size with a loading level of 47-74 wt % (wt %) of a PTX-silicate, which corresponds to 36-59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy.

  9. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew; Dykes, Katherine; Veers, Paul

    2016-05-01

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, which is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.

  10. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Hiroyuki, E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Katayama, Kazunari [Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga 8168580 (Japan); Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan)

    2015-10-15

    Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al{sub 2}O{sub 3} cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed.

  11. Implementation and Assessment of a Decentralized Load Frequency Control: Application to Power Systems with High Wind Energy Penetration

    Directory of Open Access Journals (Sweden)

    Irene Muñoz-Benavente

    2017-01-01

    Full Text Available This paper describes and assesses a decentralized solution based on a wireless sensor-actuator network to provide primary frequency control from demand response in power systems with high wind energy penetration and, subsequently, with relevant frequency excursions. The proposed system is able to modify the electrical power demand of a variety of thermostatically-controlled loads, maintaining minimum comfort levels and minimizing both infrastructure requirements and primary reserves from the supply side. This low-cost hardware solution avoids any additional wiring, extending the wireless sensor-actuator network technology towards small customers, which account for over a 30% share of the current power demand. Frequency excursions are collected by each individual load controller, considering not only the magnitude of the frequency deviation, but also their evolution over time. Based on these time-frequency excursion characteristics, controllers are capable of modifying the power consumption of thermostatically-controlled loads by switching them off and on, thus contributing to primary frequency control in power systems with higher generation unit oscillations as a consequence of relevant wind power integration. Field tests have been carried out in a laboratory environment to assess the load controller performance, as well as to evaluate the electrical and thermal response of individual loads under frequency deviations. These frequency deviations are estimated from power systems with a high penetration of wind energy, which are more sensitive to frequency oscillations and where demand response can significantly contribute to mitigate these frequency excursions. The results, also included in the paper, evaluate the suitability of the proposed load controllers and their suitability to decrease frequency excursions from the demand side in a decentralized manner.

  12. Fluctuation analysis of high frequency electric power load in the Czech Republic

    CERN Document Server

    Kracík, Jiří

    2016-01-01

    We analyze the electric power load in the Czech Republic (CR) which exhibits a seasonality as well as other oscillations typical for European countries. Moreover, we detect 1/f noise property of electrical power load with extra additional peaks that allows to separate it into a deterministic and stochastic part. We then focus on the analysis of the stochastic part using improved Multi-fractal Detrended Fluctuation Analysis method (MFDFA) to investigate power load datasets with a minute resolution. Extracting the noise part of the signal by using Fourier transform allows us to apply this method to obtain the fluctuation function and to estimate the generalized Hurst exponent together with the correlated Hurst exponent, its improvement for the non-Gaussian datasets. The results exhibit a strong presence of persistent behaviour and the dataset is characterized by a non-Gaussian skewed distribution. There are also indications for the presence of the probability distribution that has heavier tail than the Gaussian...

  13. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  14. Redesigned rotor for a highly loaded, 1800 ft/sec tip speed compressor fan stage 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Halle, J. E.; Ruschak, J. T.

    1975-01-01

    A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.

  15. Low-Friction, High-Stiffness Joint for Uniaxial Load Cell

    Science.gov (United States)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2007-01-01

    A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements. The improved universal-joint assembly contains two universal joints, each containing two adjustable pairs of angular-contact ball bearings. One might be tempted to ask why one could not use simple ball-and-socket joints rather than something as complex as universal joints containing adjustable pairs of angularcontact ball bearings. The answer is that ball-and-socket joints do not offer sufficient latitude to trade stiffness versus friction: the inevitable result of an attempt to make such a trade in a ball-and-socket joint is either too much backlash or too much friction. The universal joints are located at opposite ends of an axial subassembly that contains the load cell. The axial subassembly includes an axial shaft, an axial housing, and a fifth adjustable pair of angular-contact ball bearings that allows rotation of the axial housing relative to the shaft. The preload on each pair of angular-contact ball bearings can be adjusted to obtain the required stiffness with minimal friction, tailored for a specific application. The universal joint at each end affords two degrees of freedom, allowing only axial force to reach the load cell regardless of application of moments and non-axial forces. The rotational joint on the axial subassembly affords a fifth degree of freedom, preventing application of a torsion load to the load cell.

  16. Validation of high performance liquid chromatography method for determination of meloxicam loaded PEGylated nanocapsules

    Directory of Open Access Journals (Sweden)

    Francine Rodrigues Ianiski

    2015-12-01

    Full Text Available abstract A method to ensure that an analytical method will produce reliable and interpretable information about the sample must first be validated, making sure that the results can be trusted and traced. In this study, we propose to validate an analytical high performance liquid chromatography (HPLC method for the quantitation of meloxicam loaded PEGylated nanocapsules(M-PEGNC. We performed a validation study, evaluated parameters including specificity, linearity, quantification limit, detection limit, accuracy, precision and robustness. PEGylated nanocapsules were prepared by interfacial deposition of preformed polymer, and the particle size, polydispersity index, zeta potential, pH value and encapsulation efficiency were characterized. The proposed HPLC method provides selective, linear results in the range of 1.0-40.0 μg/mL; quantification and detection limits were 1.78 μg/mL and 0.59 μg/mL, respectively; relative standard deviation for repeatability was 1.35% and intermediate precision was 0.41% and 0.61% for analyst 1 and analyst 2, respectively; accuracy between 99.23 and 101.79%; robustness between 97.13 and 98.45% for the quantification of M-PEGNC. Mean particle diameters were 261 ± 13 nm and 249 ± 20 nm, polydispersity index was 0.15 ± 0.07 and 0.17 ± 0.06, pH values were 5.0 ± 0.2 and 5.2 ± 0.1, and zeta-potential values were -37.9 ± 3.2 mV e -31.8 ± 2.8 mV for M-PEGNC and placebo(B-PEGNC, respectively. In conclusion, the proposed analytical method is suitable for the quality control of M-PEGNC. Moreover, suspensions showed monomodal size distributions and low polydispersity index indicating high homogeneity of formulations with narrow size distributions, and appropriate pH and zeta potential. The extraction process was efficient for release of meloxicam from nanostructured systems.

  17. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better...... response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of parameter errors and disturbances has been analyzed and limited so that they play a minor role in operation....

  18. Maximising high solid loading enzymatic saccharification yield from acid-catalysed hydrothermally-pretreated brewers spent grain

    Directory of Open Access Journals (Sweden)

    Stuart Wilkinson

    2016-06-01

    Full Text Available Enzyme saccharification of pretreated brewers spent grains (BSG was investigated, aiming at maximising glucose production. Factors investigated were; variation of the solids loadings at different cellulolytic enzyme doses, reaction time, higher energy mixing methods, supplementation of the cellulolytic enzymes with additional enzymes (and cofactors and use of fed-batch methods. Improved slurry agitation through aerated high-torque mixing offered small but significant enhancements in glucose yields (to 53 ± 2.9 g/L and 45% of theoretical yield compared to only 41 ± 4.0 g/L and 39% of theoretical yield for standard shaking methods (at 15% w/v solids loading. Supplementation of the cellulolytic enzymes with additional enzymes (acetyl xylan esterases, ferulic acid esterases and α-L- arabinofuranosidases also boosted achieved glucose yields to 58 – 69 ± 0.8 - 6.2 g/L which equated to 52 - 58% of theoretical yield. Fed-batch methods also enhanced glucose yields (to 58 ± 2.2 g/L and 35% of theoretical yield at 25% w/v solids loading compared to non-fed-batch methods. From these investigations a novel enzymatic saccharification method was developed (using enhanced mixing, a fed-batch approach and additional carbohydrate degrading enzymes which further increased glucose yields to 78 ± 4.1 g/L and 43% of theoretical yield when operating at high solids loading (25% w/v.

  19. Highly loaded interactive mixtures for dry powder inhalers: prediction of the adhesion capacity using surface energy and solubility parameters.

    Science.gov (United States)

    Wagner, K G; Dowe, U; Zadnik, J

    2005-05-01

    In order to correlate drug adhesion properties of a highly loaded interactive mixture for the use in dry powder inhalers with the surface energy and to establish a link to the solubility parameter, surface free energy was detected for micronized substances (salbutamol sulfate, salbutamol base, theophylline and alpha-lactose monohydrate) using inverse gas chromatography (IGC). Interactive mixtures with coarse crystalline alpha-lactose monohydrate as a carrier were prepared at loading levels from 7.5 to 20% (w/w) and analyzed with respect to their adhesion capacity (CA) using the air jet sieving method. Solubility parameters were taken from literature or calculated. As a result the CA was independent of the drug load and correlated linearly with volume specific surface energy interaction (SEIv) values of the adherents (R2 = 0.98498). A link between SEIv and the size normalized solubility parameter (delta(tot)/d50) was found. Consequently, plotting delta(tot)/d50 versus CA resulted also in a strong linear relationship (R2 = 0.99140). Overall a powerful tool was established to judge and quantify adhesion properties of highly loaded interactive mixtures even for estimates in early preformulation at a time where just the molecular structure of the active ingredient is known.

  20. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    Science.gov (United States)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  1. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders.

    Science.gov (United States)

    Cimino, R; Baglin, V; Schäfers, F

    2015-12-31

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  2. Decentralized Coordination of Load Shedding and Plant Protection Considering High Share of RESs

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    variable using voltage drop data coordinated with plant protection scheme. A frequency anti stalling scheme is developed to interrupt more load feeders in case of frequency stall between consecutive set points. This time-based approach adjusts the time delay of the relay stages to disconnect the feeders...

  3. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.

    2012-01-01

    is capable of loading 90 of a magneto-optical trap (MOT) in less than 7 s while maintaining a low vacuum pressure of 10 -11 Torr. The transverse velocity components of the atomic beam are measured to be within typical capture velocities of a rubidium MOT. Finally, we show that the atomic beam can be turned...

  4. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Science.gov (United States)

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  5. High physical and psychological load at work and sickness absence due to neck pain

    NARCIS (Netherlands)

    Ariëns, G.A.M.; Bongers, P.M.; Hoogendoorn, W.E.; Wal, G. van der; Mechelen, W. van

    2002-01-01

    Objectives This study investigates the relationship between physical and psychosocial load at work and sickness absence due to neck pain. Methods A prospective cohort study with a follow-up period of 3 years (1994-1998) was performed among a working population. At the beginning of the study, physica

  6. Thermal shock behaviour of tungsten after high flux H-plasma loading

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-01-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices

  7. Association between high nasopharyngeal viral load and disease severity in children with human metapneumovirus infection

    NARCIS (Netherlands)

    Bosis, Samantha; Esposito, Susanna; Osterhaus, Albert D. M. E.; Tremolati, Elena; Begliatti, Enrica; Tagliabue, Claudia; Corti, Fabiola; Principi, Nicola; Niesters, Hubert G. M.

    Background: Previous studies have shown that viral genotype and viral load may play a significant role in the pathogenesis of viral infections. Objectives: The aim of this study was to evaluate these aspects of hMPV infections in children and their household contacts. Study design: Between I

  8. A High-Efficiency 4x45W Car Audio Power Amplifier using Load Current Sharing

    NARCIS (Netherlands)

    Mensink, C.H.J.; Mensink, C.; van Tuijl, Adrianus Johannes Maria; Gierkink, Sander L.J.; Mostert, F.; van der Zee, Ronan A.R.

    2010-01-01

    A 4x45W (EIAJ) monolithic car audio power amplifier is presented that achieves a power dissipation decrease of nearly 2x over standard class AB operation by sharing load currents between loudspeakers. Output signals are conditioned using a common-mode control loop to allow switch placement between l

  9. A High-Efficiency 4x45W Car Audio Power Amplifier using Load Current Sharing

    NARCIS (Netherlands)

    Mensink, C.H.J.; Mensink, C.; van Tuijl, Adrianus Johannes Maria; Gierkink, Sander L.J.; Mostert, F.; van der Zee, Ronan A.R.

    2010-01-01

    A 4x45W (EIAJ) monolithic car audio power amplifier is presented that achieves a power dissipation decrease of nearly 2x over standard class AB operation by sharing load currents between loudspeakers. Output signals are conditioned using a common-mode control loop to allow switch placement between

  10. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity.

    Science.gov (United States)

    Stebbins, Nicholas D; Yu, Weiling; Uhrich, Kathryn E

    2015-11-09

    Sugar alcohols, such as mannitol and xylitol, are biocompatible polyols that have been used to make highly cross-linked polyester elastomers and dendrimers for tissue engineering and drug delivery. However, research that utilizes the secondary hydroxyl groups as sites for pendant bioactive attachment and subsequent polymerization is limited. This work is the first report of a linear, completely biodegradable polymer with a sugar alcohol backbone and chemically incorporated pendant bioactives that exhibits sustained bioactive release and high bioactive loading (∼70%). With four pendant esters per repeat unit, this poly(anhydride-ester) has high loading and biodegrades into three biocompatible products: bioactive, sugar alcohol, and alkyl-based diacid. Ibuprofen serves as a representative bioactive, whereas mannitol is a representative polyol. Polymerization was achieved through reaction with (trimethylsilyl)ethoxyacetylene. Drug release via polymer degradation was quantified by high performance liquid chromatography. Additionally, a cytocompatibility study with fibroblast cells was performed to elucidate the polymer's suitability for in vivo use and a cyclooxygenase-2 (COX-2) assay was performed on the degradation media to ensure that released ibuprofen retained its anti-inflammatory activity. This work enables the future development of novel, biodegradable polymers exhibiting two key features: (i) polymer backbones with easily modified pendant groups, such as targeting moieties, and (ii) high drug loading using a multitude of bioactive classes.

  11. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  12. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  13. Acute Inflammatory Response to Low-, Moderate-, and High-Load Resistance Exercise in Women With Breast Cancer-Related Lymphedema.

    Science.gov (United States)

    Cormie, Prue; Singh, Benjamin; Hayes, Sandi; Peake, Jonathan M; Galvão, Daniel A; Taaffe, Dennis R; Spry, Nigel; Nosaka, Kazunori; Cornish, Bruce; Schmitz, Kathryn H; Newton, Robert U

    2016-09-01

    Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low, moderate, and high loads. The impact on lymphedema status and associated symptoms was also compared. Methods A total of 21 women, 62 ± 10 years old, with BCRL participated in the study. Participants completed low-load (15-20 repetition maximum [RM]), moderate-load (10-12 RM), and high-load (6-8 RM) exercise sessions consisting of 3 sets of 6 upper-body resistance exercises. Sessions were completed in a randomized order separated by a 7- to 10-day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation. Lymphedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using Visual Analogue Scales for pain, heaviness, and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in creatine kinase, C-reactive protein, interleukin-6, and tumor necrosis factor-α were observed following the 3 resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the 3 resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. © The Author(s) 2015.

  14. Improvement of the wear behaviour of highly-loaded components and tools by multi-combined surface treatment

    Directory of Open Access Journals (Sweden)

    Gundis Grumbt

    2014-01-01

    Full Text Available This paper introduces a novel multi-combined surface treatment consisting of the individual treatments of plasma nitriding (PN, physical vapour deposition (PVD and electron beam hardening (EBH. Using graded surface layers produced by such a combined surface treatment, it is possible to withstand the complex load conditions incurred by components and tools. It is shown, that the treatment sequences PN+EBH+PVD and EBH+PN+PVD are suitable for improving material properties. These multi-combined surface treatments lead to a significant improvement in load-supporting capacity. Critical load values of cohesive failure measured by scratch tests are tripled when compared to the individual treatment of PVD, and increased by at least 20% in comparison to the duplex treatments of EBH+PVD or PN+PVD. The metallurgical compatibility of the single treatments is essential for the success of combined treatments. Material-specific limitations are defined, which exclude failure due to crack initiation, the occurrence of retained austenite, and tempering effects. Based on the model wear-test assembly block-on-cylinder, it was proved, that the specific wear rate of multi-combined treated specimens is reduced about 20-50% while wear of counterpart components is decreased as well. The triplex surface heat treatment introduced opens up new prospects for highly-loaded components and tools.

  15. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  16. The research of high-directive anisotropic magnetic metamaterial antenna loaded with frequency-selective surface

    Institute of Scientific and Technical Information of China (English)

    Sun Yong-Zhi; Ran Li-Xin; Peng Liang; Wang Wei-Guang; Li Ting; Zhao Xu; Chen Qiu-Lin

    2009-01-01

    This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10GHz, achieving a 2.1 degree increment in half power beam width, and a 7.3dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.

  17. Poly(Ethylene Glycol-Based Backbones with High Peptide Loading Capacities

    Directory of Open Access Journals (Sweden)

    Aoife O'Connor

    2014-10-01

    Full Text Available Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycols are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.

  18. Performance Validation of Refrigeration Recovery for Experimental Hall High Target Loads

    Energy Technology Data Exchange (ETDEWEB)

    Errol Yuksek, Venkatarao, Ganni,Robert Norton, Peter Knudsen

    2012-07-01

    The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled to run until the planned shutdown in the spring of 2012 for the 12 GeV installation. As detailed in previous proceedings, support of this target's cryogenic load was made possible by incorporating modifications to the End Station Refrigerator (ESR) to recover the refrigeration supplied by the Central Helium Liquefier (CHL). Testing and commissioning for these modifications was performed in January and February 2010 demonstrating that the performance met or exceeded projected expectations. In this paper, we present the analysis of the test results in regards to the actual loads capable of being supported and the process boundaries encountered, as well as a discussion of the commissioning results for the cryogenic support of the Qweak target.

  19. Hydrodynamically induced loads on components submerged in high-level waste-storage tanks

    Science.gov (United States)

    Weiner, E. O.; Julyk, J. L.; Rezvani, M. A.

    1994-06-01

    This paper addresses the effects of added mass on components submerged in fluids. In particular, as new equipment is designed for installation in the double-shell waste-storage tanks at the Hanford Site near Richland, Washington, the equipment and the tank must be evaluated for the anticipated loads. Seismically induced loads combined with loadings from other sources must be considered during this evaluation. A literature review shows that, for components in fluids confined to a narrow annulus or without a free surface, drastic reductions in response to seismic excitation are predicted by two-dimensional analysis. This phenomenon has been supported by testing. The reductions are explained in terms of mass coupling and buoyancy effects. For equipment submerged in fluids having a free surface and large annulus, practice suggest that it is appropriate to lump the added-mass terms with the component to address the hydrodynamic effects adequately. As in the case of a narrow annulus, this practice will reduce the natural frequency of the submerged component, but generally will increase the loads. This paper presents the structural evaluations of submerged components using computer models that employ mock fluid elements that determine the appropriateness of considering fluid added-mass and buoyancy effects. The results indicate that if a free surface exists and the submerged component has a wide fluid annulus about it, then the added mass should be lumped with the model, and buoyancy effects are not significant. The component then may be considered to be in an air environment, and the stresses are calculated from the application of standard response spectrum procedures.

  20. An experimental analysis of bed load transport in gravel-bed braided rivers with high grain Reynolds numbers

    Science.gov (United States)

    De Vincenzo, Annamaria; Brancati, Francesco; Pannone, Marilena

    2016-08-01

    Laboratory experiments were performed with nearly uniform fluvial gravel (D50=9 mm, D10=5 mm and D90=13 mm) to analyse the relationship between stream power and bed load transport rate in gravel-bed braided rivers at high grain Reynolds numbers. The values of the unit-width dimensionless bed-load rate qb* and unit-width dimensionless stream power ω* were evaluated in equilibrium conditions based on ten different experimental runs. Then, they were plotted along with values obtained during particularly representative field studies documented in the literature, and a regression law was derived. For comparison, a regression analysis was performed using the data obtained from laboratory experiments characterized by smaller grain sizes and, therefore, referring to relatively low grain Reynolds numbers. A numerical integration of Exner's equation was performed to reconstruct the local and time-dependent functional dependence of qb* and ω*. The results led to the following conclusions: 1) At equilibrium, the reach-averaged bed load transport rate is related to the reach-averaged stream power by different regression laws at high and low grain Reynolds numbers. Additionally, the transition from bed to suspended load transport is accelerated by low Re*, with the corresponding bed load discharge increasing with stream power at a lower, linear rate. 2) When tested against the gravel laboratory measurements, the high Re* power law derived in the present study performs considerably better than do previous formulas. 3) The longitudinal variability of the section-averaged equilibrium stream power is much more pronounced than that characterizing the bed load rate, at least for high Re*. Thus, the stream power and its local-scale heterogeneity seem to be directly responsible for transverse sediment re-distribution and, ultimately, for the determination of the spatial and temporal scales that characterize the gravel bedforms. 4) Finally, the stochastic interpretation of the wetted

  1. Development of 100-W High-Efficiency MPPT Power Conditioner and Evaluation of TEG System with Battery Load

    Science.gov (United States)

    Nagayoshi, Hiroshi; Nakabayashi, Tatsuya; Maiwa, Hiroshi; Kajikawa, Takenobu

    2011-05-01

    This paper describes a practical high-efficiency thermoelectric (TE) power conditioner with maximum power point tracking (MPPT) control for thermoelectric generators and the operation results for a battery load system. This power conditioner comprises a high-frequency step-up/step-down switching converter and a microcontroller; a synchronized switching circuit is introduced to achieve high conversion efficiency. Furthermore, it is equipped with a battery charge control program and has a maximum conversion efficiency of 96.7%. An impedance matching method developed for MPPT control showed excellent response against a change in the TEG output, making it suitable for solar TEGs as well as general applications.

  2. Fluctuation analysis of high frequency electric power load in the Czech Republic

    Science.gov (United States)

    Kracík, Jiří; Lavička, Hynek

    2016-11-01

    We analyze the electric power load in the Czech Republic (CR) which exhibits a seasonality as well as other oscillations typical for European countries. Moreover, we detect the 1/f noise property of electrical power load with extra additional peaks that allows to separate it into a deterministic and stochastic part. We then focus on the analysis of the stochastic part using improved Multi-fractal Detrended Fluctuation Analysis method (MFDFA) to investigate power load datasets with a minute resolution. Extracting the noise part of the signal by using Fourier transform allows us to apply this method to obtain the fluctuation function and to estimate the generalized Hurst exponent together with the correlated Hurst exponent, its improvement for the non-Gaussian datasets. The results exhibit a strong presence of persistent behavior or strong anti-persistent behavior for the differences and the dataset is characterized by a non-Gaussian skewed distribution. There are also indications for the presence of the probability distribution that has heavier tail than the Gaussian distribution.

  3. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate.

    Science.gov (United States)

    Cheng, Dong-Bing; Li, You-Mei; Cheng, Yin-Jia; Wu, Yan; Chang, Xiu-Peng; He, Feng; Zhuo, Ren-Xi

    2015-12-01

    In this study, a novel thymine-functionalized six-membered cyclic carbonate monomer (TAC) was synthesized by the Michael-addition reaction between thymine and acryloyl carbonate (AC). The corresponding functional amphiphilic block copolymer mPEG-b-PTAC was further successfully synthesized by ring-opening polymerization using immobilized porcine pancreas lipase (IPPL) as the catalyst and mPEG as the macroinitiator. Meanwhile, mPEG-b-P(TAC-co-DTC) and mPEG-b-PDTC were also synthesized by the same enzymatic methods for comparison on different TAC contents. The structures of monomer and copolymers were characterized by (1)H-NMR, (13)C-NMR and FTIR. All the amphiphilic block copolymers could self-assemble to form nano-sized micelles in aqueous solution. Transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after MTX loading. (1)H-NMR and FTIR results confirmed the successful formation of multiple hydrogen-bonding interactions between exposed thymine groups of hydrophobic PTAC segments and 2,6-diaminopyridine (DAP) groups of MTX molecules, which resulting in the higher drug loading capacity and the pH-sensitive drug release behavior. MTT assays also indicated lower toxicity of copolymer but higher potent cytotoxic activity of MTX-loaded copolymer against HeLa cells.

  4. Critical Loads of Heavy Metals in a Highly Polluted Catchment Area in Egypt

    Institute of Scientific and Technical Information of China (English)

    Ahmed A. Melegy; T. Paces

    2004-01-01

    Heavy metals in different environmental compartments can be hazardous to ecosystems. Budgets of Cd, Pb and Zn in small ecosystems of the Shubra El-Kheima area in Egypt are presented. The budgets are not in steady state because they change with time. So the concentrations of the metals are a function of time. The critical loads of heavy metals to soils can be calculated from an inventory of inputs and outputs of the trace components in the catchment area. Critical time is an important parameter for critical load evaluation because it can indicate which of the heavy metals may be the most acute threat to the soils. Egyptian soil in the Shubra El-Kheima area seems to be in danger of heavy metal pollution by Zn, Cd and Pb. The calculated critical loads and their exceedances are approximate indicators of the hazards in the soil system. The critical time is a warning signal to initiate an environmental evaluation of possible pollution hazards.

  5. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST

    Science.gov (United States)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team

    2017-04-01

    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015–2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  6. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  7. The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial.

    Science.gov (United States)

    Smith, Robyn N; Mann, Neil J; Braue, Anna; Mäkeläinen, Henna; Varigos, George A

    2007-08-01

    No previous study has sought to examine the influence of dietary composition on acne vulgaris. We sought to compare the effect of an experimental low glycemic-load diet with a conventional high glycemic-load diet on clinical and endocrine aspects of acne vulgaris. A total of 43 male patients with acne completed a 12-week, parallel, dietary intervention study with investigator-masked dermatology assessments. Primary outcomes measures were changes in lesion counts, sex hormone binding globulin, free androgen index, insulin-like growth factor-I, and insulin-like growth factor binding proteins. At 12 weeks, total lesion counts had decreased more in the experimental group (-21.9 [95% confidence interval, -26.8 to -19.0]) compared with the control group (-13.8 [-19.1 to -8.5], P = .01). The experimental diet also reduced weight (P = .001), reduced the free androgen index (P = .04), and increased insulin-like growth factor binding protein-1 (P = .001) when compared with a high glycemic-load diet. We could not preclude the role of weight loss in the overall treatment effect. This suggests nutrition-related lifestyle factors play a role in acne pathogenesis. However, these preliminary findings should be confirmed by similar studies.

  8. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  9. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  10. Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine

    Directory of Open Access Journals (Sweden)

    Paolo Gaetani

    2017-03-01

    Full Text Available The need of a continuous improvement in gas turbine efficiency for propulsion and power generation, as well as the more demanding operating conditions and power control required to these machines, still ask for great efforts in the design and analysis of the high pressure section of the turbo-expander. To get detailed insights and improve the comprehension of the flow physics, a wide experimental campaign has been performed in the last ten years at Politecnico di Milano on the unsteady aerodynamics of a high-pressure turbine stage considering several operating conditions. This paper presents and discusses the experimental results obtained for the stage operating with different expansion ratios and rotor loading. The turbine stage under study is representative of a modern high-pressure turbine and can be operated in both subsonic and transonic conditions. The experimental tools applied for the current research represents the state of the art when unsteady investigations are foreseen. The detailed flow field, the blade–rows interaction and the overall performance are described and discussed; efforts have been devoted to the discussion of the various contribution to the overall stage efficiency. The direct effects of the expansion ratio, affecting the Reynolds and the Mach numbers, have been highlighted and quantified; similarly, the indirect effects, accounting for a change in the rotor loading, have been commented and quantified as well, thanks to a dedicated set of experiments where different rotor loadings at the same expansion ratio have been prescribed.

  11. Smoking and anal high-risk human papillomavirus DNA loads in HIV-positive men who have sex with men.

    Science.gov (United States)

    Wieland, Ulrike; Hellmich, Martin; Wetendorf, Janna; Potthoff, Anja; Höfler, Daniela; Swoboda, Jochen; Fuchs, Wolfgang; Brockmeyer, Norbert; Pfister, Herbert; Kreuter, Alexander

    2015-10-01

    HIV-positive men who have sex with men (MSM) have an increased risk for anal human papillomavirus (HPV) infection, anal high-grade intraepithelial lesions (HSIL), and anal cancer. Smoking is associated with abnormal anal cytology and with an increased risk for anal cancer. We collected 3736 intraanal swabs from 803 HIV-positive MSM who participated in an anal cancer screening program between October 2003 and August 2014. HPV prevalence, anal cytology and HPV DNA load of high-risk (HR) HPV-types 16, 18, 31 and 33 of non-smokers and smokers were compared. HPV-typing was performed by alpha-HPV genus-specific PCR and hybridization with 38 type-specific probes using a multiplex genotyping assay. In samples positive for HPV16, 18, 31, or 33, HPV DNA loads were determined by type-specific real-time PCRs and expressed as HPV DNA copies per betaglobin gene copy. At baseline, HR-HPV DNA (80.5 vs. 89.0%, p=0.001), HPV16 DNA (41.6 vs. 52.3%, p=0.003), HPV18 DNA (15.5 vs. 26.0%, panal dysplasia (LSIL+HSIL; 51.5 vs. 58.4%, p=0.045) and HSIL (17.2 vs. 22.7%, p=0.048) were detected more frequently in smokers compared to non-smokers. Throughout the study period 32.7% of non-smokers and 39.9% of smokers developed HSIL (p=0.011), and three smokers developed anal cancer. Considering swabs from the entire study period (median HPV load value per patient per cytology grade), smokers with normal anal cytology had significantly higher HPV16 loads (median 0.29 vs. 0.87, n=201, p=0.007) and cumulative high-risk-HPV loads (median 0.53 vs. 1.08, n=297, p=0.004) than non-smokers. Since elevated HR-HPV DNA loads are associated with an increased risk for HPV-induced anogenital cancers, HPV-infected HIV-positive MSM should be counseled to refrain from smoking. Additionally, for smokers, shorter anal cancer screening intervals than for non-smokers may be appropriate.

  12. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses

    Energy Technology Data Exchange (ETDEWEB)

    García-Pérez, Teresa [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Aizpuru, Aitor [Universidad del Mar, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México C.P. 70902 (Mexico); Arriaga, Sonia, E-mail: sonia@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-11-15

    Highlights: • Ozone addition permits to treat higher formaldehyde loads than ever reported. • Ozone addition acts as an indirect in situ pH regulator, minimizing the accumulation of acid byproducts. • Mineralization of formaldehyde occurs, which has never been reported. • Low ozone levels have no negative effects on biological degradation activity. • The use of hybrid processes allows overcoming biofiltration limitations. -- Abstract: A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m{sup −3} h{sup −1}. A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m{sup −3} h{sup −1}; the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH < 4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m{sup −3} h{sup −1}). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde.

  13. An Efficient Algorithm for Congestion Control in Highly Loaded DiffServ/MPLS Networks

    Directory of Open Access Journals (Sweden)

    Srecko Krile

    2009-06-01

    Full Text Available The optimal QoS path provisioning of coexisted and aggregated traffic in networks is still demanding problem. All traffic flows in a domain are distributed among LSPs (Label Switching Path related to N service classes, but the congestion problem of concurrent flows can appear. As we know the IGP (Interior Getaway Protocol uses simple on-line routing algorithms (e.g. OSPFS, IS-IS based on shortest path methodology. In QoS end-to-end provisioning where some links may be reserved for certain traffic classes (for particular set of users it becomes insufficient technique. On other hand, constraint based explicit routing (CR based on IGP metric ensures traffic engineering (TE capabilities. The algorithm proposed in this paper may find a longer but lightly loaded path, better than the heavily loaded shortest path. LSP can be pre-computed much earlier, possibly during SLA (Service Level Agreement negotiation process.  As we need firm correlation with bandwidth management and traffic engineering (TE the initial (pro-active routing can be pre-computed in the context of all priority traffic flows (former contracted SLAs traversing the network simultaneously. It could be a very good solution for congestion avoidance and for better load-balancing purpose where links are running close to capacity. Also, such technique could be useful in inter-domain end-to-end provisioning, where bandwidth reservation has to be negotiated with neighbor ASes (Autonomous System. To be acceptable for real applications such complicated routing algorithm can be significantly improved. Algorithm was tested on the network of M core routers on the path (between edge routers and results are given for N=3 service classes. Further improvements through heuristic approach are made and results are discussed.

  14. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Lihua Cheng

    Full Text Available BACKGROUND: Cisplatin is a potent anticancer drug, but its clinical application has been limited due to its undesirable physicochemical characteristics and severe side effects. Better drug formulations for cisplatin are highly desired. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we have developed a nanoparticle formulation for cisplatin with high encapsulation efficiency and reduced toxicity by using cisplatin-crosslinked carboxymethyl cellulose (CMC core nanoparticles made from poly(lactide-co-glycolide-monomethoxy-poly(polyethylene glycol copolymers (PLGA-mPEG. The nanoparticles have an average diameter of approximately 80 nm measured by transmission electron microscope (TEM. The encapsulation efficiency of cisplatin in the nanoparticles is up to 72%. Meanwhile, we have also observed a controlled release of cisplatin in a sustained manner and dose-dependent treatment efficacy of cisplatin-loaded nanoparticles against IGROV1-CP cells. Moreover, the median lethal dose (LD(50 of the cisplatin-loaded nanoparticles was more than 100 mg/kg by intravenous administration, which was much higher than that of free cisplatin. CONCLUSION: This developed cisplatin-loaded nanoparticle is a promising formulation for the delivery of cisplatin, which will be an effective therapeutic regimen of ovarian cancer without severe side effects and cumulative toxicity.

  15. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    Science.gov (United States)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  16. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Ling, Paul D.; Vilchez, Regis A.; Keitel, Wendy A.; Poston, David G.; Peng, Rong Sheng; White, Zoe S.; Visnegarwala, Fehmida; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection are at high risk of developing Epstein-Barr virus (EBV)-associated lymphoma. However, little is known of the EBV DNA loads in patients receiving highly active antiretroviral therapy (HAART). Using a real-time quantitative polymerase chain reaction assay, we demonstrated that significantly more HIV-1-infected patients receiving HAART than HIV-1-uninfected volunteers had detectable EBV DNA in blood (57 [81%] of 70 vs. 11 [16%] of 68 patients; P=.001) and saliva (55 [79%] of 68 vs. 37 [54%] of 68 patients; P=.002). The mean EBV loads in blood and saliva samples were also higher in HIV-1-infected patients than in HIV-1-uninfected volunteers (P=.001). The frequency of EBV detection in blood was associated with lower CD4+ cell counts (P=.03) among HIV-1-infected individuals, although no differences were observed in the EBV DNA loads in blood or saliva samples in the HIV-1-infected group. Additional studies are needed to determine whether EBV-specific CD4+ and CD8+ cells play a role in the pathogenesis of EBV in HIV-1-infected patients receiving HAART.

  17. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A study on the strength of an armour-grade aluminum under high strain-rate loading

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.

    2010-06-01

    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  19. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system

    Science.gov (United States)

    Buck, C.; Hartmann, F. X.; Motta, D.; Schoenert, S.

    2007-02-01

    We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.

  20. Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes

    Institute of Scientific and Technical Information of China (English)

    Fei; Cheng; Duo; Li; Anhui; Lu; Wencui; Li

    2013-01-01

    Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.

  1. Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kalaskar, Vickey B [ORNL; Szybist, James P [ORNL; Splitter, Derek A [ORNL

    2014-01-01

    In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

  2. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    Science.gov (United States)

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-11-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

  3. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  4. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions) to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.

  5. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high

    Science.gov (United States)

    Wilkins, Kayla; Aherne, Julian; Bleasdale, Andy

    2016-12-01

    It is widely accepted that elevated nitrogen deposition can have detrimental effects on semi-natural ecosystems, including changes to plant diversity. Empirical critical loads of nutrient nitrogen have been recommended to protect many sensitive European habitats from significant harmful effects. In this study, we used Threshold Indicator Taxa Analysis (TITAN) to investigate shifts in vegetation communities along an atmospheric nitrogen deposition gradient for twenty-two semi-natural habitat types (as described under Annex I of the European Union Habitats Directive) in Ireland. Significant changes in vegetation community, i.e., change points, were determined for twelve habitats, with seven habitats showing a decrease in the number of positive indicator species. Community-level change points indicated a decrease in species abundance along a nitrogen deposition gradient ranging from 3.9 to 15.3 kg N ha-1 yr-1, which were significantly lower than recommended critical loads (Wilcoxon signed-rank test; V = 6, p Changes to vegetation communities may mean a loss of sensitive indicator species and potentially rare species in these habitats, highlighting how emission reductions policies set under the National Emissions Ceilings Directive may be directly linked to meeting the goal set out under the European Union's Biodiversity Strategy of "halting the loss of biodiversity" across Europe by 2020.

  6. High Maternal HIV-1 Viral Load During Pregnancy Is Associated With Reduced Placental Transfer of Measles IgG Antibody

    Science.gov (United States)

    Farquhar, Carey; Nduati, Ruth; Haigwood, Nancy; Sutton, William; Mbori-Ngacha, Dorothy; Richardson, Barbra; John-Stewart, Grace

    2012-01-01

    Background Studies among HIV-1–infected women have demonstrated reduced placental transfer of IgG antibodies against measles and other pathogens. As a result, infants born to women with HIV-1 infection may not acquire adequate passive immunity in utero and this could contribute to high infant morbidity and mortality in this vulnerable population. Methods To determine factors associated with decreased placental transfer of measles IgG, 55 HIV-1–infected pregnant women who were enrolled in a Nairobi perinatal HIV-1 transmission study were followed. Maternal CD4 count, HIV-1 viral load, and HIV-1–specific gp41 antibody concentrations were measured antenatally and at delivery. Measles IgG concentrations were assayed in maternal blood and infant cord blood obtained during delivery to calculate placental antibody transfer. Results Among 40 women (73%) with positive measles titers, 30 (75%) were found to have abnormally low levels of maternofetal IgG transfer (<95%). High maternal HIV-1 viral load at 32 weeks’ gestation and at delivery was associated with reductions in placental transfer (P < 0.0001 and P = 0.0056, respectively) and infant measles IgG concentrations in cord blood (P < 0.0001 and P = 0.0073, respectively). High maternal HIV-1–specific gp41 antibody titer was also highly correlated with both decreased placental transfer (P = 0.0080) and decreased infant IgG (P < 0.0001). Conclusions This is the first study to evaluate the relationship between maternal HIV-1 viremia, maternal HIV-1 antibody concentrations, and passive immunity among HIV-1–exposed infants. These data support the hypothesis that high HIV-1 viral load during the last trimester may impair maternofetal transfer of IgG and increases risk of measles and other serious infections among HIV-1–exposed infants. PMID:16280707

  7. Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Maiko Nishibori

    2010-07-01

    Full Text Available This study is an investigation of high-humidity aging effects on the total volatile organic compound (T–VOC gas-sensing properties of platinum, palladium, and gold-loaded tin oxide (Pt,Pd,Au/SnO2 thick films. The sensor responses of the high-humidity aged Pt,Pd,Au/SnO2, a non-aged Pt,Pd,Au/SnO2, and a high-humidity aged Pt/SnO2 to T–VOC test gas have been measured. The high-humidity aging is an effective treatment for resistance to humidity change for the Pt,Pd,Au/SnO2 but not effective for the Pt/SnO2. The mechanism of the high-humidity aging effects is discussed based on the change of surface state of the SnO2 particles.

  8. Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate).

    Science.gov (United States)

    Alam, Farzana; Al-Hilal, Taslim A; Park, Jooho; Choi, Jeong Uk; Mahmud, Foyez; Jeong, Jee-Heon; Kim, In-San; Kim, Sang Yoon; Hwang, Seung Rim; Byun, Youngro

    2016-04-01

    Targeting multiple stages in metastatic breast cancer is one of the effective ways to inhibit metastatic progression. To target human metastatic breast cancer as well as improving patient compliance, we developed an orally active low molecular weight heparin (LMWH)-taurocholate conjugated with tetrameric deoxycholic acid, namely LHTD4, which followed by physical complexation with a synthetic bile acid enhancer, DCK. In breast cancer, both transforming growth factor-β1 (TGF-β1) and CXCL12 exhibit enhanced metastatic activity during the initiation and progression stages of breast cancer, thus we direct the focus on investigating the antimetastatic effect of LHTD4/DCK complex by targeting TGF-β1 and CXCL12. Computer simulation study and SPR analysis were performed for the binding confirmation of LHTD4 with TGF-β1 and CXCL12. We carried out in vitro phosphorylation assays of the consecutive receptors of TGF-β1 and CXCL12 (TGF-β1R1 and CXCR4, respectively). Effects of LHTD4 on in vitro cell migration (induced by TGF-β1) and chemotaxis (mediated by CXCL12) were investigated. The in vivo anti-metastatic effect of LHTD4 was evaluated in an accelerated metastasis model and an orthotopic MDA-MB-231 breast cancer model. The obtained KD values of TGF-β1 and CXCL12 with LHTD4 were 0.85 and 0.019 μM respectively. The simulation study showed that binding affinities of LHTD4 fragment with either TGF-β1 or CXCL12 through additional electrostatic interaction was more stable than that of LMWH fragment. In vitro phosphorylation assays of TGF-β1R1 and CXCR4 showed that the effective inhibition of receptor phosphorylation was observed with the treatment of LHTD4. The expressions of epithelial to mesenchymal transition (EMT) marker proteins such as vimentin and Snail were prevented by LTHD4 treatment in in vitro studies with TGF-β1 treated MDA-MB-231 cells. Moreover, we observed that LHTD4 negatively regulated the functions of TGF-β1 and CXCL12 on migration and

  9. Improving the wear resistance of titanium alloys under high contact loads

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovskii, P.E.; Mikulyak, O.V. [Inst. of Metal Physics, Kiev (Ukraine)] [and others

    1992-01-01

    One of the basic shortcomings of titanium alloys is their poor antifriction properties. The wear resistance of titanium alloys can be improved by applying special coatings to their surface by various methods. However, the formation of surface layers whose properties differ greatly from the properties of the metallic substrate is accompanied, as a rule, by considerable impairment of the ductile and fatigue characteristics of the alloy. Besides, the material of the coating or the technology of its application are not always able to ensure the required resistance under large contact loads, both of the coating itself and of the adjacent zones of the material of the substrate (which are often weakened by thermal or thermochemical effects). 8 refs., 1 fig.

  10. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers.

    Science.gov (United States)

    Yu, Deng-Guang; Yu, Jia-Hui; Chen, Lan; Williams, Gareth R; Wang, Xia

    2012-10-01

    This study investigates the use of a modified coaxial electrospinning process in the production of drug-loaded cellulose acetate (CA) nanofibers. With CA employed as a filament-forming matrix and ketoprofen (KET) as an active pharmaceutical ingredient, modified coaxial processes using sheath fluids comprising only mixed solvents were undertaken. With a sheath-to-core flow rate ratio of 0.2:1, the nanofibers prepared from the coaxial process had a smaller average diameter, narrower size distribution, more uniform structures, and smoother surface morphologies than those generated from single fluid electrospinning. In addition, the coaxial fibers provided a better zero-order drug release profile. The use of a sheath solvent means that the core jet is subjected to electrical drawing for a longer period, facilitating homogeneous core jet solidification and retarding the formation of wrinkles on the surface of the nanofibers. This modified coaxial electrospinning protocol allows the systematic fabrication of functional polymer nanofibers with improved quality.

  11. Prediction of Vertical-Plane Wave Loading and Ship Responses in High Seas

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Xia, Jinzhu; Jensen, Jørgen Juncher

    2000-01-01

    The non-linearities in wave- and slamming-induced rigid-body motions and structural responses of ships such as heave, pitch and vertical bending moments are consistently investigated based on a rational time-domain strip method. A hydrodynamic model for predicting sectional green water force.......From the rather extensive computations and comparisons, it is found that non-linear effects are significant in head and bow waes in the motion-wave resonant region for both heave and pitch motions, bow accelerations and vertical bending moments for two container ships considered, whereas not significant...... for a VLCC. The non-linearities in motions and structural loads of conventional monohull ships seem well predicted by the present non-linear strip theory....

  12. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    Science.gov (United States)

    Xie, Tian; Taylor, Lynne S

    2016-03-07

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition.

  13. Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    NARCIS (Netherlands)

    Giroud, C.; Maddison, G. P.; Jachmich, S.; Rimini, F.; Beurskens, M. N. A.; Balboa, I.; Brezinsek, S.; Coelho, R.; Coenen, J. W.; Frassinetti, L.; Joffrin, E.; Oberkofler, M.; Lehnen, M.; Liu, Y.; Marsen, S.; McCormick, K.; Meigs, A.; Neu, R.; Sieglin, B.; van Rooij, G. J.; Arnoux, G.; Belo, P.; Brix, M.; Clever, M.; Coffey, I.; Devaux, S.; Douai, D.; Eich, T.; Flanagan, J.; S. Grünhagen,; Huber, A.; Kempenaars, M.; Kruezi, U.; Lawson, K.; Lomas, P.; Lowry, C.; Nunes, I.; Sirinnelli, A.; Sips, A.C.C.; Stamp, M.; Wiesen, S.; JET-EFDA Contributors,

    2013-01-01

    This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result

  14. High dietary glycemic load and glycemic index increase risk of cardiovascular disease among middle-aged women : a population-based follow-up study

    NARCIS (Netherlands)

    Beulens, Joline W. J.; de Bruijne, Leonie M.; Stolk, Ronald P.; Peeters, Petra H. M.; Bots, Michiel L.; Grobbee, Diederick E.; van der Schouw, Yvonne T.

    2007-01-01

    Objectives The goal of this work was to assess whether high dietary glycemic load and glycemic index are associated with an increased risk of cardiovascular disease (CVD). Background The associations of dietary glycemic index and glycemic load with risk of CVD are not well established, particularly

  15. High dietary glycemic load and glycemic index increase risk of cardiovascular disease among middle-aged women - A population-based follow-up study

    NARCIS (Netherlands)

    Beulens, Joline W. J.; de Bruijne, Leonie M.; Stolk, Ronald P.; Peeters, Petra H. M.; Bots, Michiel L.; Grobbee, Diederick E.; van der Schouw, Yvonne T.

    2007-01-01

    Objectives The goal of this work was to assess whether high dietary glycemic load and glycemic index are associated with an increased risk of cardiovascular disease (CVD). Background The associations of dietary glycemic index and glycemic load with risk of CVD are not well established, particularly

  16. Study of Mechanical Properties of Bone by Measuring Load Transfer via High-energy X-ray Diffraction

    Science.gov (United States)

    Singhal, Anjali

    Synchrotron high-energy X-ray scattering is used to investigate the in situ strains in hydroxyapatite (HAP) platelets and mineralized collagen fibrils in bovine cortical bone. Compressive load-unload tests at room temperature (27°C) and body temperature (37°C) show that the load transfer to the stiff nano-sized platelets from the surrounding compliant protein matrix does not vary significantly with temperature. This emphasizes that the stiffness of bone is controlled by the stiffness of the HAP phase, which remains unaffected by this change in temperature. Monotonic loading tests in compression and tension, conducted at 37°C, illustrate the spatial variation of properties within a single femur, which is correlated to the mineral content, porosity and microstructure of the samples. The average apparent modulus of HAP and fibrils (EappHAP and Eappfib, respectively), defined as the ratio of applied stress and phase strain, is obtained as 27.5 ± 6.6 and 18.5 ± 8.9 GPa, respectively, in compression. These values are significantly higher than the values of 20.0 ± 5.4 and 4.1 ± 2.6 GPa obtained for HAP and fibrils, respectively, in tension. The difference between the two types of loading is attributed to greater plastic deformation of collagen in tension, which results in greater strains in the collagen fibril, and concomitant greater load transfer to the HAP. Increasing synchrotron X-ray doses (5-3880 kGy) affect neither apparent HAP nor fibrillar modulus, up to stresses of -60 MPa (measured during in situ loading and unloading). However, the residual elastic strains in the HAP phase decrease markedly with increased irradiation, indicating damage at the HAP-collagen interface. Analysis of the X-ray diffraction peak widths shows that unit cells of HAP which are under the highest initial residual strains are most able to relax due to irradiation, resulting in a net decrease in the strain distribution (RMS strain). The constancy of apparent moduli is explained by

  17. High mass-loading of sulfur-based cathode composites and polysulfides stabilization for rechargeable lithium/sulfur batteries.

    Directory of Open Access Journals (Sweden)

    Toru eHara

    2015-05-01

    Full Text Available Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur, and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm2 was achieved at a sulfur mass loading of 4.1 mg/cm2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nano-sized carbon materials such as carbon nanotubes, graphene, or graphene-derivatives, and competitive enough with the conventional LiCoO2-based cathodes (e.g., LiCoO2, <20 mg/cm2 corresponding to <2.8 mAh/cm2. Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface..

  18. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors.

    Science.gov (United States)

    Chen, Hongyuan; Zeng, Sha; Chen, Minghai; Zhang, Yongyi; Zheng, Lianxi; Li, Qingwen

    2016-04-01

    To date, it has been a great challenge to design high-performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well-maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel-like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high-performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well-maintained strength, flexibility, and conductivity. The as-formed hydrogel-like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2 ) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g(-1) (areal capacitance of 1.2 F cm(-2) ). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm(-2) , much superior to other reported MnO2 based flexible thin-film supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crack initiation at high loading rates applying the four-point bending split Hopkinson pressure bar technique

    Directory of Open Access Journals (Sweden)

    Henschel Sebastian

    2015-01-01

    Full Text Available Dynamic crack initiation with crack-tip loading rates of K̇ ≈ 2.106MPa√ms-1 in a high strength G42CrMoS4 steel was investigated. To this end, a previously developed split Hopkinson pressure bar with four-point bending was utilised. V-notched and pre-cracked Charpy specimens were tested. The detection of dynamic crack initiation was performed by analysing the dynamic force equilibrium between the incident and the transmission bar. Additionally, the signal of a near-field strain gauge and high-speed photography were used to determine the instant of crack initiation. To account for vibrations of the sample, a dynamic analysis of the stress intensity factor was performed. The dynamic and static analyses of the tests produced nearly the same results when a force equilibrium was achieved. Fracture-surface analysis revealed that elongated MnS inclusions strongly affected both the dynamic crack initiation and growth. Blunting of the precrack did not take place when a group of MnS inclusions was located directly at the precrack tip. Due to the direction of the elongated MnS inclusions perpendicular to the direction of crack growth, the crack could be deflected. The comparison with a 42CrMo4 steel without elongated MnS inclusions revealed the detrimental effect in terms of resistance to crack initiation. Taking the loading-rate dependency into consideration, it was shown that there was no pronounced embrittlement due to the high loading rates.

  20. Increased rate of force development and neuromuscular activity after high-load resistance training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper L.; Eidemak, Inge

    2013-01-01

    AimThe aim of this study was to investigate the effects of high-load resistance training on the rate of force development and neuromuscular function in patients undergoing dialysis. MethodsTwenty-nine patients were tested before and after 16 weeks of resistance training. The rate of force...... development was tested using the Good Strength dynamometer chair. Muscle strength and neuromuscular function in the m. Vastus lateralis was estimated using electromyography in a one repetition maximum test during dynamic knee extension and during a 20s isometric knee extension with 50% of the one repetition...

  1. Strength and stability analysis of load-bearing structures of a high-rise building with account for actual positions of reinforced concrete structural members

    Directory of Open Access Journals (Sweden)

    Belostotskiy Aleksandr Mikhaylovich

    2015-04-01

    Full Text Available The given paper is devoted to strength and stability analysis of load-bearing structures of a high-rise (54-storey building with allowance for actual positions of reinforced concrete structural members (columns and walls. Finite element method (FEM is used for structural analysis. The authors present formulations of problems, governing equations, information about basic three-dimensional finite element models (so-called “design” (ideal model, the first “actual” model (taking into account the deviations of positions of columns from the project and the second “actual” model (taking into account the deviations of positions of walls from the project of the coupled system “high-rise building - foundation” within ANSYS Mechanical software and their verification, numerical approach to structural analysis and corresponding solvers. Finite element models include mainly 4-node structural shell elements (suitable for analyzing foundation slabs, floor slabs and load-bearing walls and three-dimensional 2-node beam elements (suitable for analyzing beams and columns, special spring-damper elements and multipoint constraint elements. Detailed finite element mesh on the bottom foundation slab is agreed with the location of piles. The advanced model of Prof. Yu.K. Zaretsky is used for approximation of soil behavior. Construction sequence and various types of nonlinearities are taken into account. The results of modal analysis, static and dynamic analysis with various load combinations (gravity load, facade load, dead (constant loads, temporary loads, wind load, snow load, crown load etc. are considered, the results of the regulatory assessment of the strength of structures (obtained with the use of corresponding software in accordance with design codes of the Russian Federation are under consideration as well. The corresponding displacements, stresses, natural vibration frequencies can be used for research and development of the correct monitoring

  2. Bone mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading.

    Science.gov (United States)

    Nichols, Jeanne F; Rauh, Mitchell J; Barrack, Michelle T; Barkai, Hava-Shoshana

    2007-09-01

    During adolescence, skeletal integrity of girls is largely dependent on menstrual function and impact exercise, yet currently there is limited research regarding the interaction between menstrual status and type of mechanical loading associated with various high school sports. Our purpose was to examine associations of menstrual status, type of mechanical loading, and bone mineral density (BMD) in female high school athletes participating in high/odd impact or repetitive/non-impact sport. Participants were 161 female high school athletes (15.7+/-1.3 years; 165.3+/-6.9 cm; 59.4+/-8.7 kg) representing high/odd impact (n=93, including soccer, softball, volleyball, tennis, lacrosse, and track sprinters and jumpers), or repetitive/non-impact sports (n=68, including swimmers, cross-country and track distance runners who participated in events>or=800 m). Areal BMD was measured by DXA at the spine (L1-L4), proximal femur, and total body. Menstrual status was determined by self-report. Athletes with primary, secondary or oligomenorrhea were combined into a single group (oligo/amenorrheic) and compared to eumenorrheic athletes. Analysis of covariance (ANCOVA) with Bonferroni post hoc comparisons adjusted for age, BMI, and gynecological age were used to compare BMD of athletes in combined mechanical loading and menstrual status groups. We found significantly greater total hip (p=0.04) and trochanter (p=0.02) BMD (g cm(-2)) among eumenorrheic high/odd impact compared to eumenorrheic repetitive/non-impact athletes, and greater spine (p=0.01) and trochanter (p=0.04) BMD among high/odd impact eumenorrheic athletes compared to repetitive/non-impact oligo/amenorrheic athletes. Chi-squared analysis of BMD Z-scores adjusted for gynecological age showed a significantly greater percentage of repetitive/non-impact athletes (33.9%) compared to high/odd impact athletes (11.8%) with low spine BMD for their age (BMD Z-scoresports, and especially those with oligo/amenorrhea, may not be

  3. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    Science.gov (United States)

    Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.

    2015-12-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.

  4. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery.

    Science.gov (United States)

    Wu, Wenqi; Chen, Hui; Shan, Fengying; Zhou, Jing; Sun, Xun; Zhang, Ling; Gong, Tao

    2014-10-06

    The purpose of this study was to develop a safe and effective drug delivery system for local chemotherapy. A novel injectable in-situ-forming gel system was prepared using small molecule materials, including phospholipids, medium chain triglycerides (MCTs), and ethanol. Thus, this new sustained release system was named PME (first letter of phospholipids, MCT, and ethanol). PME has a well-defined molecule structure, a high degree of safety, and better biocompatible characteristics. It was in sol state with low viscosity in vitro and turned into a solid or semisolid gel in situ after injection. When loaded with doxorubicin (Dox), PME-D (doxorubicin-loaded PME) exhibited notably antitumor efficiency in S180 sarcoma tumors bearing mice after a single intratumoral injection. In vitro, PME-D had remarkable antiproliferative efficacies against MCF-7 breast cancer cells for over 5 days. Moreover, the initial burst effect can hardly be observed from PME system, which was different from many other in-situ-forming gels. The in vivo biodistribution study showed the high Dox concentration in tumors compared with other major organs after PME-D intratumoral administration. The strong signal in tumors was retained for more than 14 days after one single injection. The high concentration of Dox in tumor and long-term retention may explain the superior therapeutic efficacy and reduced side effects. The PME-D in-situ-forming gel system is a promising drug delivery system for local chemotherapy.

  5. Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns

    Institute of Scientific and Technical Information of China (English)

    卢亦焱; 李娜; 李杉; 梁鸿骏

    2015-01-01

    An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.

  6. Application of high-resolution domestic electricity load profiles in network modelling

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Mendaza, Iker Diaz de Cerio; Heiselberg, Per Kvols

    2016-01-01

    The ongoing development towards electrification of the energy consumption together with large deployment of renewable energy sources creates new challenges of variability and fluctuation of the electricity supply and increases complexity of the network operation. In order to capture all the parti......The ongoing development towards electrification of the energy consumption together with large deployment of renewable energy sources creates new challenges of variability and fluctuation of the electricity supply and increases complexity of the network operation. In order to capture all......-minute resolution. The load profiles of the household appliances are created using a bottom-up model, which uses the 1-minute cycle power use characteristics of a single appliance as the main building block. The profiles of heavy electric appliances, such as heat pump, are not included in the above......-mentioned model, as they are closely related to the thermal properties of a building. Therefore, two type of single family houses equipped with heat pump are simulated in EnergyPlus with 1-minute time step. The PV generation profile is obtained from a model developed in Matlab environment. In the second part...

  7. Dynamic analysis of high speed gears by using loaded static transmission error

    Science.gov (United States)

    Özgüven, H. Nevzat; Houser, D. R.

    1988-08-01

    A single degree of freedom non-linear model is used for the dynamic analysis of a gear pair. Two methods are suggested and a computer program is developed for calculating the dynamic mesh and tooth forces, dynamic factors based on stresses, and dynamic transmission error from measured or calculated loaded static transmission errors. The analysis includes the effects of variable mesh stiffness and mesh damping, gear errors (pitch, profile and runout errors), profile modifications and backlash. The accuracy of the method, which includes the time variation of both mesh stiffness and damping is demonstrated with numerical examples. In the second method, which is an approximate one, the time average of the mesh stiffness is used. However, the formulation used in the approximate analysis allows for the inclusion of the excitation effect of the variable mesh stiffness. It is concluded from the comparison of the results of the two methods that the displacement excitation resulting from a variable mesh stiffness is more important than the change in system natural frequency resulting from the mesh stiffness variation. Although the theory presented is general and applicable to spur, helical and spiral bevel gears, the computer program prepared is for only spur gears.

  8. Deterministic optimization methods for designing high-loaded turbo-engines; Einsatz deterministischer Optimierungsverfahren bei der Vorauslegung hochbelasteter Turbomaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.S.

    2000-07-01

    Deterministic optimisation methods are valuable tools for multiparameter design of high-loaded turbo-engines as they can identify potentials for improvement and new approaches for optimization of turbo-engine configurations, provided that the assessment functions and methods of design meet the requirements of the optimization processes. Two examples are presented, a high-deflection transsonic tandem guide grid and a strongly cooled high-performance turbine. [German] Mit dem Einsatz deterministischer Optimierungsverfahren als Hilfsmittel bei der vielparametrischen Vorauslegung hochbelasteter Turbomaschinen besteht die Moeglichkeit, mit hoeherer Effizienz Verbesserungspotentiale und neue Ansaetze fuer optimale Turbomaschinen-Konfigurationen aufzuzeigen. Voraussetzung ist, dass die angesetzten Bewertungsfunktionen und die verwendeten Auslegungsverfahren den Anforderungen der Optimierungsverfahren entsprechen. Anhand zweler Optimierungsbeispiele (hochumlenkendes transsonisches Tandemleitgitter und stark gekuehlte Hochleistungsturbine) werden fuer die Optimierung mit einem SQP-Verfahren in Verbindung mit einer uebergeordneten Intervallteilungsstrategie die Formulierung der Aufgabenstellung sowie die Vorgehensweisen bei der thermogasdynamischen Auslegungsberechnung erlaeutert und die Ergebnisse der Optimierungen praesentiert. (orig.)

  9. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  10. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    CERN Document Server

    Langeslag, S A E; Aviles Santillana, I; Sgobba, S; Foussat, A

    2015-01-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insul...

  11. Use of ultra-high spatial resolution aerial imagery in the estimation of chaparral wildfire fuel loads.

    Science.gov (United States)

    Schmidt, Ian T; O'Leary, John F; Stow, Douglas A; Uyeda, Kellie A; Riggan, Phillip J

    2016-12-01

    Development of methods that more accurately estimate spatial distributions of fuel loads in shrublands allows for improved understanding of ecological processes such as wildfire behavior and postburn recovery. The goal of this study is to develop and test remote sensing methods to upscale field estimates of shrubland fuel to broader-scale biomass estimates using ultra-high spatial resolution imagery captured by a light-sport aircraft. The study is conducted on chaparral shrublands located in eastern San Diego County, CA, USA. We measured the fuel load in the field using a regression relationship between basal area and aboveground biomass of shrubs and estimated ground areal coverage of individual shrub species by using ultra-high spatial resolution imagery and image processing routines. Study results show a strong relationship between image-derived shrub coverage and field-measured fuel loads in three even-age stands that have regrown approximately 7, 28, and 68 years since last wildfire. We conducted ordinary least square analysis using ground coverage as the independent variable regressed against biomass. The analysis yielded R (2) values ranging from 0.80 to 0.96 in the older stands for the live shrub species, while R (2) values for species in the younger stands ranged from 0.32 to 0.89. Pooling species-based data into larger sample sizes consisting of a functional group and all-shrub classes while obtaining suitable linear regression models supports the potential for these methods to be used for upscaling fuel estimates to broader areal extents, without having to classify and map shrubland vegetation at the species level.

  12. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.

    Science.gov (United States)

    Schoenfeld, Brad J; Peterson, Mark D; Ogborn, Dan; Contreras, Bret; Sonmez, Gul T

    2015-10-01

    The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25-35 repetitions were performed per set per exercise (n = 9) or a high-load RT routine (HL) where 8-12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was performed 3 times per week on nonconsecutive days, for a total of 8 weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared with LL (19.6 vs. 8.8%, respectively), and there was a trend for greater increases in 1 repetition maximum (1RM) bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared with HL (16.6 vs. -1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.

  13. Postexercise blood flow restriction does not enhance muscle hypertrophy induced by multiple-set high-load resistance exercise.

    Science.gov (United States)

    Madarame, Haruhiko; Nakada, Satoshi; Ohta, Takahisa; Ishii, Naokata

    2017-04-27

    To test the applicability of postexercise blood flow restriction (PEBFR) in practical training programmes, we investigated whether PEBFR enhances muscle hypertrophy induced by multiple-set high-load resistance exercise (RE). Seven men completed an eight-week RE programme for knee extensor muscles. Employing a within-subject design, one leg was subjected to RE + PEBFR, whereas contralateral leg to RE only. On each exercise session, participants performed three sets of unilateral knee extension exercise at approximately 70% of their one-repetition maximum for RE leg first, and then performed three sets for RE + PEBFR leg. Immediately after completion of the third set, the proximal portion of the RE + PEBFR leg was compressed with an air-pressure cuff for 5 min at a pressure ranging from 100 to 150 mmHg. If participants could perform 10 repetitions for three sets in two consecutive exercise sessions, the work load was increased by 5% at the next exercise session. Muscle thickness and strength of knee extensor muscles were measured before and after the eight-week training period and after the subsequent eight-week detraining period. There was a main effect of time but no condition × time interaction or main effect of condition for muscle thickness and strength. Both muscle thickness and strength increased after the training period independent of the condition. This result suggests that PEBFR would not be an effective training method at least in an early phase of adaptation to high-load resistance exercise. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  15. Frontal plane multi-segment foot kinematics in high- and low-arched females during dynamic loading tasks.

    Science.gov (United States)

    Powell, Douglas W; Long, Benjamin; Milner, Clare E; Zhang, Songning

    2011-02-01

    The functions of the medial longitudinal arch have been the focus of much research in recent years. Several studies have shown kinematic differences between high- and low-arched runners. No literature currently compares the inter-segmental foot motion of high- and low-arched recreational athletes. The purpose of this study was to examine inter-segmental foot motion in the frontal plane during dynamic loading activities in high- and low-arched female athletes. Inter-segmental foot motions were examined in 10 high- and 10 low-arched female recreational athletes. Subjects performed five barefooted trials in each of the following randomized movements: walking, running, downward stepping and landing. Three-dimensional kinematic data were recorded. High-arched athletes had smaller peak ankle eversion angles in walking, running and downward stepping than low-arched athletes. At the rear-midfoot joint high-arched athletes reached peak eversion later in walking and downward stepping than the low-arched athletes. The high-arched athletes had smaller peak mid-forefoot eversion angles in walking, running and downward stepping than the low-arched athletes. The current findings show that differences in foot kinematics between the high- and low-arched athletes were in position and not range of motion within the foot.

  16. Study of a scattering shield in a high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rong, E-mail: rh66@cornell.edu [IMCA-CAT, Hauptman-Woodward Institute (United States); Meron, Mati [CARS, The University of Chicago (United States)

    2013-07-11

    The techniques for the cooling of the first crystal of a monochromator are by now mature and are used routinely to deal with the heat loads resulting from the intense beams generated by third generation synchrotron insertion device sources. However, the thermal stability of said monochromators, which crucially depends on proper shielding of X-ray scattering off the first crystal, remains a serious consideration. This will become even more so in the near future, as many synchrotron facilities are upgrading to higher beam currents and energies. During a recent upgrade of the 17-ID beamline at the APS it was recognized that accurate simulation of the spatial distribution of the power scattered off the first crystal was essential for the understanding and remediation of the observed large temperature increase of the first crystal's scattering shield. The calculation is complex, due to the broad energy spectrum of the undulator and the prevalence of multiple X-ray scattering events within the bulk of the crystal, thus the Monte Carlo method is the natural tool for such a task. A successful simulation was developed, for the purpose of the 17-ID upgrade, and used to significantly improve the design of the first crystal's scattering shield. -- Highlights: • We use the Monte Carlo method to simulate X-ray scattering from monochromator crystals. • Scattered X-ray power on each surface of the scattering shield has been calculated. • Overheating on the original shield is well explained with simulated scattering power. • The thermal stability of the modified scattering shield is satisfactory.

  17. Preparation and evaluation of highly drug-loaded fine globular granules using a multi-functional rotor processor.

    Science.gov (United States)

    Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.

  18. Research on dual-stator winding multi-phase high-speed induction generator with rectifier load

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on analysis and calculation of the relation between current harmonics and MMF harmonics in the dual-stator winding multi-phase high-speed induction gen-erator with a rectifier load, a new idea, which divides the generator system into two sub-systems to be analyzed individually, is presented. For the sub-system of the 12-phase power winding with a rectifier load, the loop current method is used to establish network equation set in terms of the network graph theory. The numerical stability problem is solved by alternating use of fixed time-step and varied time-step, and the voltage and current with their fundamental components of the power winding are obtained. For the other sub-system of the induction generator with dual-stator winding and solid cage rotor, the electromagnetic field analysis method and the multi-variable optimization approach are combined to get the con-trol winding current and stator frequency. Calculated results well match experiment results, indicating that the new proposed method is of effectiveness and high ac-curacy.

  19. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading

    KAUST Repository

    Hu, Liangbing

    2011-11-22

    While MnO2 is a promising material for pseudocapacitor applications due to its high specific capacity and low cost, MnO2 electrodes suffer from their low electrical and ionic conductivities. In this article, we report a structure where MnO2 nanoflowers were conformally electrodeposited onto carbon nanotube (CNT)-enabled conductive textile fibers. Such nanostructures effectively decrease the ion diffusion and charge transport resistance in the electrode. For a given areal mass loading, the thickness of MnO2 on conductive textile fibers is much smaller than that on a flat metal substrate. Such a porous structure also allows a large mass loading, up to 8.3 mg/cm2, which leads to a high areal capacitance of 2.8 F/cm2 at a scan rate of 0.05 mV/s. Full cells were demonstrated, where the MnO2-CNT-textile was used as a positive electrode, reduced MnO2-CNT-textile as a negative electrode, and 0.5 M Na2SO4 in water as the electrolyte. The resulting pseudocapacitor shows promising results as a low-cost energy storage solution and an attractive wearable power. © 2011 American Chemical Society.

  20. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    Science.gov (United States)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  1. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    Science.gov (United States)

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.

  2. Very High Load Capacity Air Bearing Spindle for Large Diamond Turning Machines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Diamond turning is able to produce highly aspheric visible quality optics which can be easily aligned. Very large optical systems such as OWL and EUSO are impossible...

  3. Effects of low glycaemic index/low glycaemic load vs. high glycaemic index/ high glycaemic load diets on overweight/obesity and associated risk factors in children and adolescents: a systematic review and meta-analysis.

    Science.gov (United States)

    Schwingshackl, Lukas; Hobl, Lisa Patricia; Hoffmann, Georg

    2015-08-25

    The objective of the present systematic review and meta-analysis was to synthesize the available literature data investigating the effects of low glycaemic index/low glycamic load dietary regimens on anthropometric parameters, blood lipid profiles, and indicators of glucose metabolism in children and adolescents. Literature search was performed using the electronic databases MEDLINE, EMBASE, and the Cochrane Central Register of trials with restrictions to randomized controlled trials, but no limitations concerning language and publication date. Parameters taken into account were: body weight, body mass index, z-score of body mass index, fat mass, fat-free mass, height, waist cicrumference, hip circumference, waist-to-hip ratio, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, diastolic and systolic blood pressure, fasting serum glucose, fasting serum insulin, HOMA-index, glycosylated haemoglobin, and C-reactive protein. Meta-analyses were performed for each parameter to assess pooled effect in terms of weighted mean differences between the post-intervention (or differences in means) of the low glycaemic index diets and the respective high glycaemic index counterparts. Data analysis was performed using the Review Manager 5.3. software. Nine studies enrolling 1.065 children or adolescents met the inclusion criteria. Compared to diets providing a high gylcaemic index, low glycaemic index protocols resulted in significantly more pronounced decreases in serum triglycerides [mean differences -15.14 mg/dl, 95%-CI (-26.26, -4.00)] and HOMA-index [mean difference -0.70, 95%-CI (-1.37, -0.04), fixed-effects model only]. Other parameters under investigation were not affected by either low or high glycaemic indices. The present systematic review and meta-analysis provides evidence of a beneficial effect of a low glycaemic index/load diet in children and adolescents being either overweight or obese. Regarding the limitations of this analysis, further studies

  4. Evergreen shrub traits and peatland carbon cycling under high nutrient load

    Science.gov (United States)

    Larmola, Tuula; Bui, Vi; Bubier, Jill L.; Wang, Meng; Murphy, Meaghan; Moore, Tim R.

    2016-04-01

    The reactive nitrogen (N) assimilated by plants is usually invested in chlorophyll to improve light harvesting capacity and in soluble proteins such as Rubisco to enhance carbon (C) assimilation. We studied the effects of simulated atmospheric N deposition on different traits of two evergreen shrubs Chamaedaphne calyculata and Rhododendron groenlandicum in a nutrient-poor Mer Bleue Bog, Canada that has been fertilized with N as NO3 and NH4 (2-8 times ambient annual wet deposition) with or without phosphorus (P) and potassium (K) for 7-12 years. We examined how nutrient addition influences the plant performance at leaf and canopy level and linked the trait responses with ecosystem C cycling. At the leaf level, we measured physiological and biochemical traits: CO2 exchange and chlorophyll fluorescence, an indicator of plant stress in terms of light harvesting capacity; and to study changes in photosynthetic nutrient use efficiency, we also determined the foliar chlorophyll, N, and P contents. At the canopy level, we examined morphological and phenological traits: growth responses and leaf longevity during two growing seasons. Regardless of treatment, the majority of leaves showed no signs of stress in terms of light harvesting capacity. The plants were N saturated: with increasing foliar N content, the higher proportion of N was not used in photosynthesis. Foliar net CO2 assimilation rates did not differ significantly among treatments, but the additions of N, P, and K together resulted in higher respiration rates. The analysis of the leaf and canopy traits showed that the two shrubs had different strategies: C. calyculata was more responsive to nutrient additions, more deciduous-like, whereas R. groenlandicum maintained evergreen features under nutrient load, shedding its leaves even later in the season. In all, simulated atmospheric N deposition did not benefit the photosynthetic apparatus of the dominant shrubs, but resulted in higher foliar respiration

  5. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    Science.gov (United States)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  6. Cyclic-load crack growth in ASME SA-105 grade II steel in high-pressure hydrogen at ambient temperature

    Science.gov (United States)

    Walter, R. J.; Chandler, W. T.

    1976-01-01

    ASME SA-105 Grade II steel, which is used in high-pressure hydrogen compressor systems, is similar to steels used or considered for use in high-pressure hydrogen storage vessels and pipelines. This paper summarizes the results of a program conducted to provide cyclic-load crack growth rate (da/dN) data for a fracture mechanics analysis of a 15,000 psi hydrogen compressor facility which contains pulse quieter and after-cooler separator vessels constructed of the ASME SA-105 Grade II steel. Included in the program were tests performed to assist in establishing operating procedures that could minimize the effect of hydrogen on crack growth rates during operation.

  7. Development and evaluation of highly-loaded coal slurries. Phase I summary report, October 15, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.

    1979-05-01

    Slurry fuels comprised of either bituminous, subbituminous, or lignite coal, and either aqeuous media or emulsions of No. 6 oil in water as the carrier were developed and evaluated at solids loadings up to 70% by weight. Emphasis was placed on aqueous slurries of bituminous coal. These slurries were developed for use in place of No. 6 oil in oil-fired burners. High solids loadings were attained by use of bimodal particle size distributions, which are blends of coarse-grind coal (approx. 50 to 85% -50 mesh) and fine-grind coal (generally 90% -200 mesh). The effect of the blends on slurry viscosity was determined to find the blends that minimize viscosity. The effect of mill conditions on particle size distribution was determined for each coal, using a hammermill pulverizer. A large number of water-soluble resins were evaluated for effect on slurry stability and viscosity. The best of these was found to be hydroxypropylated corn starch. Slurries based on the use of 3% solutions of the starch in water were prepared with up to 70% by weight bituminous coal and up to 65% subbituminous coal. The slurries are pourable pseudo-plastic fluids having room-temperature viscosities in the range of 550 to 1100 cp at a shear rate of 3000 sec/sup -1/, depending on the type of coal, solids loading, and particle size distribution. None of the slurries exhibited hard pack settling, even after room-temperature storage up to 74 days. Oil-in-water emulsions made with polyethylene glycol (23) lauryl ether as an emulsifier were found to be stable with respect to phase separation when stored at 160/sup 0/F. Slurries made with these emulsions do not exhibit hard pack settling after one week storage at 160/sup 0/F.

  8. Prediction of ground vibration due to the collapse of a 235 m high cooling tower under accidental loads

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Li, Yi [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Gu, Xianglin, E-mail: gxl@tongji.edu.cn [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Zhao, Xinyuan [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Tang, Dongsheng [Guangdong Electric Power Design Institute, No. 1 Tianfeng Road, Guangzhou, Guangdong 510663 (China)

    2013-05-15

    Highlights: ► Ground vibration due to the collapse of a huge cooling tower was predicted. ► Accidental loads with different characteristics caused different collapse modes. ► Effect of ground vibration on the nuclear-related facilities cannot be ignored. -- Abstract: A comprehensive approach is presented in this study for the prediction of the ground vibration due to the collapse of a 235 m high cooling tower, which can be caused by various accidental loads, e.g., explosion or strong wind. The predicted ground motion is to be used in the safety evaluation of nuclear-related facilities adjacent to the cooling tower, as well as the plant planning of a nuclear power station to be constructed in China. Firstly, falling weight tests were conducted at a construction site using the dynamic compaction method. The ground vibrations were measured in the form of acceleration time history. A finite element method based “falling weight-soil” model was then developed and verified by field test results. Meanwhile, the simulated collapse processes of the cooling tower under two accidental loads were completed in a parallel study, the results of which are briefly introduced in this paper. Furthermore, based on the “falling weight-soil” model, “cooling tower-soil” models were developed for the prediction of the ground vibrations induced by two collapse modes of the cooling tower. Finally, for a deep understanding of the vibration characteristics, a parametric study was also conducted with consideration of different collapse profiles, soil geologies as well as the arrangements of an isolation trench. It was found that severe ground vibration occurred in the vicinity of the cooling tower when the collapse happened. However, the vibration attenuated rapidly with the increase in distance from the cooling tower. Moreover, the “collapse in integrity” mode and the rock foundation contributed to exciting intense ground vibration. By appropriately arranging an isolation

  9. Lightening the Load

    OpenAIRE

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enh...

  10. Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer

    Science.gov (United States)

    Lassaletta, L.; Romero, E.; Billen, G.; Garnier, J.; García-Gómez, H.; Rovira, J. V.

    2012-01-01

    Despite the particular management practices and climate characteristics of the Mediterranean regions, the literature dealing with N budgets in large catchments subjected to Mediterranean conditions is scarce. The present study aims to deepen our knowledge on the N cycle within the Ebro River Basin (NE Spain) by means of two different approaches: (1) calculating a global N budget in the Ebro River Basin and (2) calculating a series of detailed regional budgets at higher geographical resolution. N inputs and outputs were spatialized by creating a map based on the most detailed information available. Fluvial and atmospheric N export was estimated together with N retention. The Ebro River Basin annually receives a relatively high amount of new N (5118 kg N km-2 yr-1), mostly in the form of synthetic fertilizers (50%). Although it is a highly productive catchment, the net N input as food and feed import is also high (33%). Only 8% of this N is finally exported to the delta zone. Several territorial units characterized by different predominant uses (rainfed agriculture, irrigated agriculture and pastures) have differentiated N dynamics. However, due to the high density of irrigation channels and reservoirs that characterize Mediterranean catchments, N retention is very high in all of them (median value, 91%). These results indicate that problems of eutrophication due to N delivery in the coastal area may not be too severe but that high N retention values may instead lead to problems within the catchment, such as pollution of aquifers and rivers, as well as high atmospheric emissions. The most promising management measures are those devoted to reducing agricultural surpluses through a better balanced N fertilization.

  11. High-Bandwidth AFM-Based Rheology Reveals that Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairment

    Science.gov (United States)

    Nia, Hadi Tavakoli; Bozchalooi, Iman S.; Li, Yang; Han, Lin; Hung, Han-Hwa; Frank, Eliot; Youcef-Toumi, Kamal; Ortiz, Christine; Grodzinsky, Alan

    2013-01-01

    Utilizing a newly developed atomic-force-microscopy-based wide-frequency rheology system, we measured the dynamic nanomechanical behavior of normal and glycosaminoglycan (GAG)-depleted cartilage, the latter representing matrix degradation that occurs at the earliest stages of osteoarthritis. We observed unique variations in the frequency-dependent stiffness and hydraulic permeability of cartilage in the 1 Hz-to-10 kHz range, a frequency range that is relevant to joint motions from normal ambulation to high-frequency impact loading. Measurement in this frequency range is well beyond the capabilities of typical commercial atomic force microscopes. We showed that the dynamic modulus of cartilage undergoes a dramatic alteration after GAG loss, even with the collagen network still intact: whereas the magnitude of the dynamic modulus decreased two- to threefold at higher frequencies, the peak frequency of the phase angle of the modulus (representing fluid-solid frictional dissipation) increased 15-fold from 55 Hz in normal cartilage to 800 Hz after GAG depletion. These results, based on a fibril-reinforced poroelastic finite-element model, demonstrated that GAG loss caused a dramatic increase in cartilage hydraulic permeability (up to 25-fold), suggesting that early osteoarthritic cartilage is more vulnerable to higher loading rates than to the conventionally studied “loading magnitude”. Thus, over the wide frequency range of joint motion during daily activities, hydraulic permeability appears the most sensitive marker of early tissue degradation. PMID:23561529

  12. Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads

    Science.gov (United States)

    Wong, Derek N.; Wetz, David A.; Heinzel, John M.; Mansour, Azzam N.

    2016-10-01

    Three 26650 LiFePO4 (LFP) cells are cycled using a 40 A pulsed charge/discharge profile to study their performance in high rate pulsed applications. This profile is used to simulate naval pulsed power loads planned for deployment aboard future vessels. The LFP cells studied experienced an exponential drop in their usable high-rate recharge capacity within sixty cycles due to a rapid rise in their internal resistance. Differential capacitance shows that the voltage window for charge storage is pushed outside of the recommended voltage cutoff limits. Investigation into the state of health of the electrodes shows minimal loss of active material from the cathode to side reactions. Post-mortem examination of the anodic surface films reveals a large increase in the concentration of reduced salt compounds indicating that the pulsed profile creates highly favorable conditions for LiPF6 salt to break down into LiF. This film slows the ionic movement at the interface, affecting transfer kinetics, resulting in charge buildup in the bulk anode without successful energy storage. The results indicate that the use of these cells as a power supply for high pulsed power loads is hindered because of ionically resistant film development and not by an increasing rate of active material loss.

  13. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    Science.gov (United States)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  14. Load management strategy for Particle-In-Cell simulations in high energy physics

    DEFF Research Database (Denmark)

    Beck, Arnaud; Frederiksen, Jacob Trier; Derouillat, Julien

    2016-01-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the funda...... towards a modern, accurate high-performance PIC code for high energy physics....... into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. By comparing the results given by different codes, it is possible to point out algorithmic limitations both in terms of physical accuracy and computational performances. In this paper we...

  15. Seasonal changes of phytoplankton production in response to high nitrogen load in the Bay of Seine

    Science.gov (United States)

    L Helguen, S.; Maguer, J.-F.; Madec, C.

    2003-04-01

    Seasonal changes of uptake of nitrogenous nutrients and regeneration were investigated in nitrogen rich waters of the Bay of Seine. Uptake of nitrogen nutrients (NO_3-, NH_4^+ and urea), and NH_4^+ regeneration, were measured using the 15N isotope technique in three different water masses along a salinity gradient (salinity: 27-29, 31-32 and 34-35). The Seine river add very high quantities of inorganic nitrogen to the coastal waters mainly in the form of nitrate (up to 120 μmol l-1). In the plume, the nitrate concentration remained high (> 10 μmol l-1) during all the seasons. In these nitrate enrich waters, phytoplankton attained high biomass (20-25 μg chla l-1). Species succession was marked by blooms formation from the beginning of spring until the end of summer. The high biomass was represented by microplankton generally dominated by diatom species during all the seasons. However, nano- and picoplankton biomass increased significantly during the summer and represented up to 50% of the total biomass of phytoplankton. Nitrogen uptake rates were higher in the Seine Bay plume (0.5 μmol l-1 h-1) than the other coastal waters. Although, the N uptake was high, it was limited by light, which was due to the high turbidity and strong vertical mixing in these plume waters. The seasonal variations in nitrogen uptake demonstrated that during spring, up to 80% of nitrogen was utilized by microplancton whereas in summer, all the fractions utilized nitrogen significantly. In spring, nitrate was the major nitrogen nutrient taken up (˜ 80% of total nitrogen uptake). During other seasons, ammonium and urea were the highly utilized nitrogen compounds (up to 95% of total nitrogen uptake). Ammonium regeneration by microhétérotrophs increased significantly in the plume waters during the spring bloom and remained high (> 0.1 μmol l-1 h-1) until the end of summer. The high and prolonged use of NH_4^+ was due to high autochthonous production, fulfil 40 to 100% of NH_4^+ demand of

  16. Fault strength evolution during high velocity friction experiments with slip-pulse and constant-velocity loading

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2014-12-01

    Seismic analyses show that slip during large earthquakes evolves in a slip-pulse mode that is characterized by abrupt, intense acceleration followed by moderate deceleration. We experimentally analyze the friction evolution under slip-pulse proxy of a large earthquake, and compare it with the evolution at loading modes of constant-velocity and changing-velocity. We present a series of 42 experiments conducted on granite samples sheared in a high-velocity rotary apparatus. The experiments were conducted on room-dry, solid granite samples at slip-velocities of 0.0006-1 m/s, and normal stress of 1-11.5 MPa. The constitutive relations are presented with respect to mechanical power-density: PD= [shear stress * slip velocity], with units of power per area (MW/m^2). The experimental constitutive relations strongly depend on the loading mode. Constant velocity mode displays initial weakening with increasing PD that is followed by strengthening for PD = 0.02-0.5 MW/m^2, and abrupt weakening at PD > 0.5 MW/m^2. Changing-velocity modes display gentle strengthening for PD < 0.2 MW/m^2 that is followed by abrupt weakening as PD reaches 0.7-0.8 MW/m^2. Beyond this level of power-density, the two loading modes diverge: in changing-velocity of quake-mode the experimental fault continues to weaken with friction coefficient approaching 0.2, whereas in changing-velocity of ramp-mode the fault strengthens with friction coefficient approaching 1.0. The analysis demonstrates that (1) the strength evolution and constitutive parameters of the granite fault strongly depend on the loading mode, and (2) the slip-pulse mode is energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. The results suggest that the frictional strength determined in slip-pulse experiments, is more relevant to simulations of earthquake rupture than frictional strength determined in constant-velocity experiments.Figure 1. Friction

  17. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  18. Tungsten coatings under high thermal loads in JET and Magnum-PSI

    NARCIS (Netherlands)

    Ruset, C.; Maier, H.; Grigore, E.; Matthews, G.; De Temmerman, G.; Widdowson, A.; JET-EFDA Contributors,

    2014-01-01

    During the C28–C30 campaigns the ITER-like wall (ILW) was periodically inspected by an in vessel inspection system without breaking the vacuum. After these campaigns the JET chamber was opened and the wall was inspected with a high resolution camera. The marker tiles were removed from the chamber an

  19. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    Science.gov (United States)

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-01

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (-10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  20. Influence of high pressure hydrogen on cyclic load crack growth in metals

    Science.gov (United States)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.

    1978-01-01

    The effect of high pressure hydrogen on the crack growth rate of various nickel-base alloys was studied at ambient temperature. Considerable enhancement of the cyclic flaw growth rate was observed for Inconel 718, wrought and cast, and Waspaloy, a nickel-base alloy similar to Inconel 718. Only slight enhancement of the flaw growth rate for Alloy 903 was observed.

  1. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Directory of Open Access Journals (Sweden)

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  2. High loading of polygenic risk for ADHD in children with comorbid aggression

    DEFF Research Database (Denmark)

    Hamshere, Marian L; Langley, Kate; Martin, Joanna

    2013-01-01

    OBJECTIVE Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher ge...

  3. Tungsten coatings under high thermal loads in JET and Magnum-PSI

    NARCIS (Netherlands)

    Ruset, C.; Maier, H.; Grigore, E.; Matthews, G.; De Temmerman, G.; Widdowson, A.; JET-EFDA Contributors,

    2014-01-01

    During the C28–C30 campaigns the ITER-like wall (ILW) was periodically inspected by an in vessel inspection system without breaking the vacuum. After these campaigns the JET chamber was opened and the wall was inspected with a high resolution camera. The marker tiles were removed from the chamber

  4. Pt/Mesoporous Carbon Counter Electrode with a Low Pt Loading for High-Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiqiang Wang

    2010-01-01

    Full Text Available Pt/Mesoporous carbon counter electrodes with a low Pt loading for dye-sensitized solar cells were fabricated by coating Pt/mesoporous carbon on fluorine-doped tin oxide glass. Pt/mesoporous carbon samples were prepared by reducing H2PtCl6 with NaBH4 in mesoporous carbon and characterized by N2 adsorption analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Pt particles deposited on mesoporous carbon support were found to be in uniform shape and narrow range of particle size. Low-Pt-loading Pt/mesoporous carbon counter electrode showed a high electrocatalytic activity for triiodide reduction. Electrochemical impedance spectroscopy measurement displayed a low charge-transfer resistance of 1.2 Ωcm2 for 1-Pt/mesoporous carbon counter electrode. Dye-sensitized solar cells based on the 1-Pt/mesoporous carbon counter electrode achieved an overall conversion efficiency of 6.62% under one sun illumination, which is higher than that of the cell with the conventional Pt counter electrode.

  5. Low-cost removal of organic pollutants with nickel nanoparticle loaded ordered macroporous hydrogel as high performance catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: tmyi@tjcu.edu.cn [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Zhang, Sai [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Liu, Yue [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Wang, Xingrui [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia, E-mail: qhx@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2014-06-01

    A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni{sup 2+} ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH{sub 4} aqueous solution, the Ni{sup 2+} ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH{sub 4}. A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s{sup −1} g{sup −1}, which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity. - Highlights: • A new poly(acrylamide-co-acryl acid) hydrogel with ordered macropores. • A simple in situ fabrication of nickel nanoparticles under mild conditions. • High-performance heterogeneous catalyst for removal of nitrophenol from water. • Good recyclability of catalyst without any complicated regeneration process.

  6. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    Science.gov (United States)

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A high exercise load is linked to pathological weight control behavior and eating disorders in female fitness instructors.

    Science.gov (United States)

    Höglund, K; Normén, L

    2002-10-01

    Demographic data, exercise habits, weight control behavior, attitudes towards body shape, eating disorder (ED) experience, and menstrual regularity among female fitness instructors were descriptively assessed. A 60-item questionnaire was sent to 295 female fitness instructors at eight fitness centers. Responders (57%) reported a mean weekly exercise load of 5.5 h week(-1) (SD 2.6), which indicates frequent training, however, less than that of athletes. Overall, 35% reported ED experience (DSM-IV criteria), with an onset at 15-17 years of age. The problems had lasted 5-7 years, and 20% of the entire group reported recovery, however, 11% still had EDs. For the entire group, it was found that a high weekly exercise load was linked to a pathological weight control behavior. Fitness instructors with an active ED exercised more than instructors who never had an ED or who had a past ED. Menstrual irregularity was more common among instructors who did not use contraceptives (14%), compared to those who did (5%). As ED experience and pathological weight control behavior were common in the studied group, the importance of guidelines regarding communication from female fitness instructors about healthy training habits to regular exercisers is discussed in the article.

  8. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Directory of Open Access Journals (Sweden)

    Bratislav Lukic

    2015-01-01

    Full Text Available The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  9. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Science.gov (United States)

    Bratislav, Lukic; Pascal, Forquin

    2015-09-01

    The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS) test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  10. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  11. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  12. Tungsten coatings under high thermal loads in JET and Magnum-PSI

    Science.gov (United States)

    Ruset, C.; Maier, H.; Grigore, E.; Matthews, G. F.; De Temmerman, G.; Widdowson, A.; Contributors, JET-EFDA

    2014-04-01

    During the C28-C30 campaigns the ITER-like wall (ILW) was periodically inspected by an in vessel inspection system without breaking the vacuum. After these campaigns the JET chamber was opened and the wall was inspected with a high resolution camera. The marker tiles were removed from the chamber and were inspected in the beryllium handling facility. The overall picture of the ILW after more than 3000 pulses looks good. However there are a few modifications such as the deposition of Be on some W coated tiles, local destruction of the W coating by runaway electrons in an emergency shutdown, arcing on particular W coated tiles, and small delaminations on G6 and G8 divertor tiles. These aspects, together with the results of high heat flux tests carried out with W coated carbon fiber composite samples in Magnum-PSI, are discussed in the paper.

  13. Parameter Survey of Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    Peng Shan; Dieter Bohn; Jing Ren; N.Surken

    2007-01-01

    This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting out of a thin layer of the porous metal which is pasted on the structural high strength metal. The contents include the consideration on the computational model of heat transfer through a layer of porous material, the concrete modeling and the analysis of the model, the numerical survey of key parameters for both the two-layer porous materials and the heat transfer fluid flow passing through the model channels. The results revealed that the constructed system is reasonable. Proposed an evaluation formula for the porous material heat transfer efficiency.

  14. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so...... the shear capacity of wire loop connections. Tests have shown that the shear capacity of such joints – due to the relatively high tensile strength of the wire ropes - is more prone to be governed by fracture of the joint mortar in combination with yielding of the locking bar. To model this type of failure...

  15. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    explores the fused deposition modeling ( FDM ) and the printing orientation as a means to quantify the potential benefits. These benefits include more cost...effective, time-efficient, in-house fabrication of designs, while optimizing the mechanical and structural integrity. In FDM , CAD software is used to...relationship to the stress experienced in a material at high-strain-rate deformation. For polymers such as ABS, the mechanical properties vary

  16. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    OpenAIRE

    Jaqueline Albano de Morais; Renan Gadioli; Marco-Aurelio De Paoli

    2016-01-01

    Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate), EVA, to recover the impact resistance of high density polyethylene, ...

  17. High resolution simulations of energy absorption in dynamically loaded cellular structures

    Science.gov (United States)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  18. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    Science.gov (United States)

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  19. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    Science.gov (United States)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  20. High vs. Low Load Vocabulary Learning Tasks: A Case for Intentional Learning

    Directory of Open Access Journals (Sweden)

    Ali Jahangard

    2011-12-01

    " SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" /> The present study aimed at investigating whether the amount of task-induced involvement load has any effects on the immediate and delayed retentions of words in an intentional learning environment. To meet this end, two groups of college students were selected as the participants of the study. The immediate and delayed retentions of ten unknown words were measured in two learning tasks (reading comprehension vs. reading comprehension plus sentence production which induced different amounts of involvement loads. The time-on-task also differed in the two groups. No significant difference was found between the two groups on the

  1. A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load.

    Directory of Open Access Journals (Sweden)

    Chunyu Yang

    Full Text Available BACKGROUND: Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. FINDINGS: Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs using random amplified polymorphic DNA-PCR profiles (RAPD. Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l(-1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l(-1 (27.3% COD(cr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE and gas chromatography/mass spectrometry (GC/MS analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. CONCLUSIONS/SIGNIFICANCE: Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor

  2. The Effect of High- and Low-Damping Prosthetic Foot Structures on Knee Loading in the Uninvolved Limb Across Different Walking Speeds.

    Science.gov (United States)

    Jin, Li; Adamczyk, Peter G; Roland, Michelle; Hahn, Michael E

    2016-06-01

    Lower limb amputation has been associated with secondary impairments such as knee osteoarthritis in the uninvolved limb. Greater knee loading in the frontal plane has been related to severity and rate of progression in knee osteoarthritis. Reduced push-off work from the involved limb can increase uninvolved limb knee loading. However, little is known about specific effects that prosthetic foot damping may have on uninvolved limb loading. We hypothesized that uninvolved limb peak knee internal abduction moment (IAM) and loading rates would be greater when using a high-damping foot compared with a low-damping foot, across walking speeds. Eight healthy, young subjects walked in a prosthesis simulator boot using the experimental feet. Greater uninvolved limb first peak IAM (+16% in fast speed, P = .002; +11% in slow speed, P = .001) and loading rates (+11% in fast speed, P = .003) were observed when using the high-damping foot compared with low-damping foot. Within each foot, uninvolved limb first peak IAM and loading rates had a trend to increase with increased walking speed. These findings suggest that damping properties of prosthetic feet are related to uninvolved limb peak knee IAM and loading rates.

  3. EFFICIENCY OF LINEAR PULSE ELECTROMECHANICAL CONVERTERS DESIGNED TO CREATE IMPACT LOADS AND HIGH SPEEDS

    Directory of Open Access Journals (Sweden)

    V.F. Bolyukh

    2015-06-01

    Full Text Available Considered linear impulse electromechanical converters (LIEC are used to create a significant impact and high-acceleration actuators on a short active site. The most effective types of LIEC are induction-dynamic (IDC, electro-dynamic (EDC and electro-magnetic (EMC converters. In all these types of short-term excitement LIEC carried briefly of the inductor from a pulsed source. This occurs when the magnetic field of the inductor causes the electro-dynamic or electromagnetic forces, leading to a linear movement of the armature. However, the issue at evaluating the effects of IDC, EDC and EMC, for creating a shock simultaneously with high speed to the specified criteria in the presence of ferromagnetic core virtually unexplored. The paper presents the simulated computer-WIDE 2D model of LIEC of coaxial configuration with ferromagnetic core by using software package COMSOL Multiphysics 4.4, taking into account the related electro-magnetic, thermal, and magnetic fields. In addition a synthesis of high-performance IDC, EDC and EMC to ensure maximum impact and speed of the operating element, whereby the comparative analysis of the effectiveness of the IDC, EDC and EMC via an integral index, taking into account the maximum value and momentum of electro-dynamic or electromagnetic force acting on the armature, maximum and average speed armature, efficiency, mass and dimensions performance transducer stray field, the maximum current density in the inductor is carried out. On the basis of the eight selection policies set the most efficient types of power and speed LIEC. It is shown that any one of the strategies IDC selection is not the best. To ensure maximum impact force is the most effective EMC and to ensure the greatest speed – EDC.

  4. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  5. High-Performance Harmonic Isolation and Load Voltage Regulation of the Three-Phase Series Active Filter Utilizing the Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    . The SAF-compensated system utilizing WRM provides highperformance load harmonic voltage isolation and load voltage regulation at steady-state and during transients compared to the system utilizing the synchronous reference-frame-based signal decomposition. In addition, reducing the line current sampling......This paper develops a waveform reconstruction method (WRM) for high accuracy and bandwidth signal decomposition of voltage-harmonic-type three-phase diode rectifier load voltage into its harmonic and fundamental components, which are utilized in the series active filter (SAF) control algorithms...

  6. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    Science.gov (United States)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  7. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods.

    Science.gov (United States)

    Puglia, Carmelo; Offerta, Alessia; Rizza, Luisa; Zingale, Giuseppe; Bonina, Francesco; Ronsisvalle, Simone

    2013-10-01

    Lipid nanoparticles (LN) are drug carriers possessing advantages with respect to stability, drug release profile, and biocompatibility. There are several production methods for lipid nanoparticles. Recently high shear homogenization (HSH) and ultrasound (US) techniques have been used to produce these systems in a cheaper and easier way. The objective of the present study was to evaluate the effect of same important instrumental parameters, such as homogenization time (HT) and ultrasonication time (UT), on particle size (MD) and polydispersity index (PDI) of LNs obtained by HSH-US techniques. Curcumin was used as a model drug to be incapsulated in the LNs. LN were prepared by HSH-US technique using tripalmitin (Dynasan 116) and poloxamer 188 (Lutrol F68) as solid lipid and surfactant, respectively. The preparations were characterized and then evaluated using a factorial design study. From the results obtained, LNs produced by HSH-US method were characterized by nanodimension, high homogeneity and encapsulation efficiency. US technology plays an important role in controlling the final dimension of LN dispersion, while longer times of HSH seem mainly to exert a positive effect on the final homogeneity of particle dispersion. Additional studies are in progress to evaluate drug release profile from LNs, for further in vitro/in vivo correlation studies.

  8. Plasticity induced by pre-existing defects during high strain-rate loading

    Science.gov (United States)

    Bringa, Eduardo

    2014-03-01

    High strain-rate deformation of metals has been typically studied for perfect monocrystals. Computational advances now allow more realistic simulations of materials including defects, which lower the Hugoniot Elastic Limit, and lead to microstructures differing from the ones from perfect monocrystals. As pre-existing defects one can consider vacancy clusters, dislocation loops, grain boundaries, etc. New analysis tools allow analysis of dislocation densities and twin fractions, for both f.c.c. and b.c.c. metals. Recent results for defective single crystal Ta [Tramontina et al.., High Energy Den. Phys. 10, 9 (2014), and Ruestes et al., Scripta Mat. 68, 818 (2013)], and for polycrystalline b.c.c metals [Tang et al., Mat. Sci. Eng. A 580, 414 (2013), and Gunkelmann et al., Phys. Rev. B 86, 144111 (2012)] will be highlighted, alongside new results for nanocrystalline Cu, Ta, Fe, and Zr [Ruestes et al., Scripta Mat. 71, 9 (2014)]. This work has been carried out in collaboration with D. Tramontina, C. Ruestes, E. Millan, J. Rodriguez-Nieva, M.A. Meyers, Y. Tang, H. Urbassek, N. Gunkelmann, A. Stukowski, M. Ruda, G. Bertolino, D. Farkas, A. Caro, J. Hawreliak, B. Remington, R. Rudd, P. Erhart, R. Ravelo, T. Germann, N. Park, M. Suggit, S. Michalik, A. Higginbotham and J. Wark. Funding by PICT2008-1325 and SeCTyP U.N. Cuyo.

  9. Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column

    Energy Technology Data Exchange (ETDEWEB)

    Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory

    2015-08-01

    Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.

  10. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    Science.gov (United States)

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone.