WorldWideScience

Sample records for high sulphur coal

  1. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    Full Text Available The presence of sulphur in coal possesses important environmetal problems in its usage. The sulphur dioxide (S02 emissions produced during coal combustion account for a significant proportion of the total global output of anthropogenic SO2. The extent of sulphur separation depends on several variables such as the form of sulphur in coal, intimacy of contact between minerals and the products of devolatilization. The total sulphur in coal varies in the range of 0.2 - 11 wt %, although in most cases it is beetwen 1 and 3 wt %. Sulphur occurs in a variety of both inorganic and organic forms. Inorganic sulphur is found mainly as iron pyrite, marcasite, pyrrhotite, sphalerite, galena, chalcopirite and as sulphates (rarely exceeds w = 0,1 %. Organic sulphur is found in aromatic rings and aliphatic functionalities usually as mercaptans, aliphatic and aryl sulfides, disulfides and thiophenes. Organic and pyritic sulphur quantities depend on coal rank. Higher rank coals tend to have a high proportion of labile sulphur. All the organic sulphur is bivalent and it is spread throughout the organic coal matrix. Sulphur occurs in all the macerals and most minerals. Vitrinite contains the major part of organic sulphur and metals. Elemental sulphur is produced during coal weathering. The depolymerization methods as pyrolysis and hydrogenation are very drastic methods wich change the structure of the coal and the sulphur groups. In the case of pyrolysis, high levels of desulphurization, in chars and additional production of liquid hydrocarbon can be achieved. Thiophenes and sulphides were the major sulphur components of tars from coal pyrolysis. Hyrdogen sulphide and the lower mercaptans and sulphides were found in the volatile matters. Hydrogen sulphide and thiophenes are practically the only sulphur products of coal hydrogenation. H2S is produced in char hydrodesulphurization. A number of options are available for reducing sulphur emissions including the

  2. Investigations on desulphurisation of some high-sulphur indian coals by gamma-ray-induced chlorinolysis.

    Science.gov (United States)

    Tripathi, Prem S M; Mishra, Kamlesh K; Roy, Rajiv R P; Tewary, Dina N

    2002-06-01

    Results of investigations on desulphurisation of high-sulphur (2-8 wt%) coals of Meghalaya by radiation chlorinolysis, effected in different media of chlorination (CCl4, CCl4/H2O, and CCl4/CH3OH) via radiolysis of CCl4, for the removal of both the inorganic (pyritic and sulphate) and the organic forms of sulphur as well as mineral matter are reported. In general, maximum removal of total sulphur (up to 37%) and mineral matter (up to 10%) takes place in CCl4/CH3OH medium, which is attributed to the CH3OH acting as a better wetting agent for coal. It is found that while pyritic and sulphate sulphur are removed almost quantitatively, there is variation in the removal of organic sulphur from the coals. Furthermore, the coal matrix is not affected/degraded to any appreciable extent and the caking property of the coals is either improved or slightly degraded after desulphurisation. Mechanism of desulphurisation of coal via radiation chlorination is proposed.

  3. Organically bound sulphur in coal: A molecular approach

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de

    1992-01-01

    A critical review of literature concerning the molecular characterization of low and high molecular weight organosulphur constitutents present in coal as well as a detailed analysis of organic sulphur compounds present in flash evaporates and pyrolysates of a suite of coals ranging in sulphur

  4. The role of sulphur in coal hydroliquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, M.J.; Grint, A.

    1987-10-01

    The effects on coal hydroliquefaction of organic and pyritic sulphur, and of H/sub 2/S formed from the reductive decomposition of these compounds, are reviewed. Under suitable conditions, all are shown to exert beneficial effects on both product yields and quality. The reasons for the effectiveness of each of these sulphur compounds are discussed. 79 refs., 2 tabs.

  5. Evaluation of elemental sulphur in biodesulphurized low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    L. Gonsalvesh; S.P. Marinov; M. Stefanova; R. Carleer; J. Yperman [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Organic Chemistry

    2011-09-15

    A new procedure for elemental sulphur (S{sup el}) determination in coal and its fractions is offered. It includes exhaustive CHCl{sub 3} extraction and subsequent quantitative analysis of the extracts by HPLC using C{sub 18} reversed phase column. Its application gives ground to achieve better sulphur balance and to specify the changes in the organic and elemental sulphur as a result of biotreatments. Two Bulgarian high sulphur containing coal samples, i.e. subbituminious (Pirin) and lignite (Maritza East), and one Turkish lignite (Cayirhan-Beypazari) are used. Prior to biotreatments, the samples are demineralized and depyritized. In the biodesulphurization processes, the applied microorganisms are: the white rot fungi 'Phanerochaeta Chrysosporium' - ME446 and the thermophilic and acidophilic archae 'Sulfolobus Solfataricus' - ATCC 35091. In the preliminary demineralized and depyritized coals, the highest presence of S{sup el} is registered, which is explained by their natural weathering. As a result of the implemented biotreatments, the amount of S{sup el} could be reduced in the range of 16.1-53.8%. The content of S{sub el} is also assessed as part of the total sulphur and organic sulphur. The following range of S{sup el} content is measured: 0.01-0.16 wt.% or 0.3-4.6% of total sulphur and 0.3-5.1% of organic sulphur. In this way, more precise information is obtained concerning the content of organic sulphur presence. 31 refs., 4 figs., 6 tabs.

  6. Eco-restoration of a high-sulphur coal mine overburden dumping site in northeast India: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Dowarah, J.; Boruah, H.P.D.; Gogoi, J.; Pathak, N.; Saikia, N.; Handique, A.K. [CSIR, Jorhat (India). North East Institute of Science & Technology

    2009-10-15

    Eco-restoration of mine overburden (OB) or abandoned mine sites is a major environmental concern. In the present investigation, an integrated approach was used to rejuvenate a high-sulphur mine OB dumping site in the Tirap Collieries, Assam, India, which is situated in the Indo-Burma mega-biodiversity hotspot. A mine OB is devoid of true soil character with poor macro and micronutrient content and contains elevated concentrations of trace and heavy metals. Planting of herbs, shrubs, cover crops and tree species at close proximity leads to primary and secondary sere state succession within a period of 3 to 5 years. A variety of plant species were screened for potential use in restoration: herbs, including Sccharum spontaneum, Cymbopogon winterianus Jowitt (citronella), and Cymbopogon flexuosus (lemon grass) cover plants, including Mimosa strigillosa, M. striata, and M. pigra; shrubs, including Sesbania rostrata (dhaincha) and Cassia streata (cassia); and tree species, including Gmelina arborea (gomari) and Dalbergia sissoo (sissoo). Amendment with unmined soil and bio-organic matter was required for primary establishment of some plant species. Management of these plant species at the site will ensure long term sustainable eco-restoration of the coal mine-degraded land.

  7. Eco-restoration of a high-sulphur coal mine overburden dumping ...

    Indian Academy of Sciences (India)

    hpdekaboruah@yahoo.com. Eco-restoration of mine overburden (OB) or abandoned mine sites is a major environmental ... Management of these plant species at the site will ensure long term sustainable eco-restoration of the coal mine-degraded land ... of ecosystems; these changes ultimately influence water and nutrient ...

  8. Sulphur and carbon isotopic composition of power supply coals in the Pannonian Basin, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Hamor-Vido, Maria [Eoetvoes Lorand Geophysical Institute of Hungary, H-1145 Budapest, Kolumbusz st. 17-23 (Hungary); Hamor, Tamas [Hungarian Geological Survey, H-1143 Budapest, Stefania st. 14 (Hungary)

    2007-08-01

    The present work is an attempt to establish the stable isotope database for Mesozoic to Tertiary coals from the Pannonian Basin, Hungary. Maceral composition, proximate analysis, sulphur form, sulphur isotopes (organic and pyritic), and carbon isotopes were determined. This database supports the assessment of the environmental risks associated with energy generation, the characterization of the formation and the distribution of sulphur in the coals used. The maceral composition, the sulphur composition, the C, S isotopic signatures, and some of the geological evidences published earlier show that the majority of these coals were deposited in freshwater and brackish water environments, despite the relatively high average sulphur content. However, the Upper Cretaceous, Eocene, and Lower Miocene formations also contain coal seams of marine origin, as indicated by their maceral composition and sulphur and carbon chemistry. The majority of the sulphur in these coals occurs in the organic form. All studied sulphur phases are relatively rich in {sup 34}S isotopes ({delta}{sup 34}S{sub organic} = + 12.74 permille, {delta}{sup 34}S{sub pyrite} = + 10.06 permille, on average). This indicates that marine bacterial sulphate reduction played a minor role in their formation, in the sense that isotopic fractionation was limited. It seems that the interstitial spaces of the peat closed rapidly during early diagenesis due to a regime of high depositional rate, leading to a relative enrichment of the heavy sulphur isotopes. (author)

  9. Origin and distribution of biomarkers in the sulphur rich Utrillas coal basin - Teruel mining district - Spain

    Energy Technology Data Exchange (ETDEWEB)

    Olivella, M.A.; Gorchs, R.; de las Heras, F.X.C. [University Politecnica Catalunya, Manresa (Spain)

    2006-07-01

    The Utrillas coal facies are located in the Maestrazgo basin in NE Spain. This mining district of Teruel contains subbituminous deposits from the Middle Albian (Lower Cretaceous 105 Ma) in areas near a delta estuary with abundant sulphur. The high sulphur content is due to an influx of sulphate caused by the geological recycling of Triassic gypsum from the catchment area into the delta estuary. In some outcrops, the weathered coal reveals leonardite deposits. The depositional environment of the basin originated coals, some of which are currently mined. The organic matter of the coals has been the object of scattered reports. Studies have focused on bulk pyrolysis parameters and microscopic observation in Utrillas samples, as well as the inorganic and insoluble organic fraction. We analysed the organic soluble extract of the Utrillas coals using GC-MS in order to characterize their aliphatic, aromatic and organosulphur compounds. The biomarker distribution allowed us to recognize different inputs, assess their depositional palaeoenvironment and finally determine their degree of maturity. In particular, homologous series of hopanes related to eubacteria were present. Biomarkers characteristic of higher plant inputs were also widely distributed (e.g. phyllocladane or C-29 steranes). The presence of linear alkylbenzenes allowed us to recognize the palaeodepositional reducing environments where they were deposited. Specifically, thienylhopanes were associated with sulphur-reducing environments. Finally, the abundance of unsaturated biomarkers such as diacholestenes indicated low-maturity coals. Various aromatic ratios such as the methylphenanthrene index also suggested diagenesis in the initial stage.

  10. ONCE GRAND, NOW FORGOTTEN: WHAT DO WE KNOW ABOUT THE SUPERHIGH-ORGANIC-SULPHUR RAŠA COAL?

    Directory of Open Access Journals (Sweden)

    Gordana Medunić

    2016-10-01

    Full Text Available The Istrian coal mines, located in the eastern part of the Istrian Peninsula (Northern Adriatic Sea, Croatia had by far the most important and economically the most valuable deposits of the anthracite coal reserves in Croatia since the 18th century until the year 1999, when their excavation and use in the coal-fired power plant Plomin ceased. The coal is found within the Palaeocene Kozina limestone beds. Four coal basins, Karojba, Sveti Martin, Pićan, and the Labin basin, hosted seven coal mines, e.g. Tupljak, Potpićan, Kozljak, Štrmac, Raša, Ripenda, and Krapan. The coal has been generally known under the name of Raša coal. It is exceptional in world terms due to its high content of organic sulphur, which can be up to 14%. Herewithin, this paper reviews Croatian scientific publications devoted to various aspects of Raša coal, along with the most important publications on either similar coals or relevant subjects worldwide. A brief introduction deals with the role of coal in electricity production, and the history of coal mining in Istria. The following chapter summarises current knowledge of the coal sulphur geochemistry, with several examples of high-sulphur coals from India and China. It is followed by the geological, geochemical, and physical characterisation of Raša coal. Since perturbations to ecosystems caused by coal combustion have been documented in numerous papers from a number of countries, Croatian studies carried out to determine the impact of Raša coal combustion on the local environment are also presented.

  11. Selective adsorption of aqueous Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, As{sup 3+} and Au{sup +} onto activated carbon derived from high sulphur coal

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.; Liu, C.; Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering; Tong, S. [Wuhan Univ. of Science and Technology, Wuhan (China). Dept. of Chemical Engineering

    2008-07-01

    Heavy metals, such as mercury (Hg), cadmium (Cd), lead (Pb), arsenic (As), and gold (Au) are highly toxic because of their tendency to bioaccumulate. Accumulation of these metals over time in mammals can cause serious illnesses and their presence in the aquatic environment has raised environmental concerns. Heavy metals cannot be degraded chemically or biologically and can only be transformed into other forms with different oxidation states. Many methods have been developed to remove metals from aquatic environments. This paper presented an investigation into the adsorption of aqueous Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, As{sup 3+}, and Au{sup +} onto sulphur-impregnated activated carbon (SIAC). The purpose of the study was to determine the selective adsorption behaviour of SIACs derived from high sulphur coal. The species of interest included gold, mercury, lead, cadmium, and a metalloid, arsenic. The paper described the experiment including the preparation and characterization of SIACs and the adsorption experiments. Results that were presented for the adsorption from single ion solutions included Langmuir and Freundlich isotherms; temperature effect on adsorption; and effect of SIAC properties on adsorption. A comparison of ion uptake from single solutions and mixtures was also presented. It was concluded that with the same initial concentrations, gold was best adsorbed by SIAC from mixtures containing gold, mercury, lead, arsenic and cadmium cations. 14 refs., 4 tabs., 4 figs.

  12. Organic sulphur in macromolecular sedimentary organic matter : I. Structure and origin of sulphur-containing moieties in kerogen, asphaltene and coal as revealed by flash pyrolysis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Eglinton, T.I.; Leeuw, J.W. de; Schenk, P.A.

    1989-01-01

    The distributions of sulphur-containing compounds generated by flash pyrolysis of macromolecular sedimentary organic matter (kerogen, coal, asphaltenes) were studied by gas chromatography in combination with S-selective flame photometric detection or mass spectrometry. The abundance of

  13. Rapid total sulphur reduction in coal samples using various dilute alkaline leaching reagents under microwave heating: preventing sulphur emissions during coal processing.

    Science.gov (United States)

    Mketo, Nomvano; Nomngongo, Philiswa Nosizo; Ngila, Jane Catherine

    2017-08-01

    Currently in South Africa, online flue gas desulphurisation (FGD) is being utilized as one of the most effective methods for total sulphur reduction in coal samples during the combustion process. However, the main disadvantage associated with FGD is the formation of its by-products (FGD gypsum). The latter is mostly formed in low grade quality, thereby bringing secondary pollution problems and extra disposal costs. Therefore, the current study describes the development of total sulphur extraction in coal under microwave heating using different dilute alkaline solutions such as NaOH, NaOH-H2O2, NH4OH, and NH4OH-H2O2. The experimental conditions were as follows: 150 °C, 5 min and 10% (m/v or v/v) for temperature, extraction time and reagent concentration, respectively. The most effective alkaline reagent for coal desulphurisation was observed to be NaOH-H2O2 with total sulphur reduction of 55% (from the inductively coupled plasma-optical emission spectrometry (ICP-OES) results). The NaOH-H2O2 reagent also showed significant morphological changes in coal as observed from the SEM images and effective demineralisation as revealed by the powder X-ray diffractometer (P-XRD) results. Additionally, desulphurisation results obtained from the developed microwave-assisted dilute alkaline extraction (MW-ADAE) method were quite comparable with the published work. The proposed total sulphur reduction method is advantageous as compared to some of the literature reported coal desulphurisation methods as it requires a short period (5 min) of time to reach its completion. Additionally, the proposed method shows excellent reproducibility (% RSD from 0.5 to 1); therefore, it can be utilized for routine analysis. Graphical abstract ᅟ.

  14. the influence of molybdenum and sulphur on sheep receiving high ...

    African Journals Online (AJOL)

    THE INFLUENCE OF MOLYBDENUM AND SULPHUR ON SHEEP RECEIVING HIGH LEVELS. OF COPPER AND BROILER LITTER IN THEIR RATIONS. Receipr of MS 06-09-1978. J.B.J. van RYSSEN. Department of Animol Science, University of Natal, Pietermoritzburg, 3200. (Key words: Molybdenum, sulphur, copper ...

  15. Problems of hard coal desulphurisation in Poland in processes of coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W.; Gawlik, L. [Mineral and Energy Economy Research Centre, Krakow and State Agency for Restructuring of Harc Coal Industry, Katowice (Poland); Nycz, R.; Starzak, Z.; Tazbirek, L. [State Agency for Restructuring of Hard Coal Industry, Katowice (Poland)

    1998-07-01

    The paper gives details on production and use of hard coal in Poland. On this background the problem of high sulphur coal is shown. The structure of coal production according to sulphur content in coal and demands of users for coal of different quality is given. The programme of building new coal fines preparation and desulphurisation plants is shown and comparison the projected plants with the existing ones is done. The viability evaluation of processes of coal preparation and desulphurisation in Poland is Shown. In the context of the restructuring programme of hard coal mining industry in Poland the problem of high sulphur coal utilisation is described. 7 refs.

  16. The direct determination of the forms of sulphur in coal using microwave digestion and i.c.p.-a.e.s. analysis

    Energy Technology Data Exchange (ETDEWEB)

    Laban, K.L.; Atkin, B.P. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2000-01-01

    A sequential digestion method is reported for the direct determination of sulphate, pyrite and organic sulphur concentrations in coals of either bituminous or sub-bituminous rank. A three stage extraction was developed, using acid digestion in a microwave oven. In the first stage, 5 M HCl is used to dissolve sulphate phases in the coal. Pyrite is then extracted from the stage 1 residue using 2 M HNO{sub 3}. The final stage, for the determination of organic sulphur, involves the use of concentrated HNO{sub 3}, HCl, HF and boric acid for the complete decomposition of residue that remains following stage 2. The extract solutions from each stage are rapidly analysed for sulphur using i.c.p.-a.e.s. The sums of the three forms of sulphur have shown consistent agreement with certified total sulphur data for most of the coals studied. This correlation, in addition to the good precision achieved by this technique, suggests that the sequential digestion method is reliable. Furthermore, significant timesavings are achievable over some of the standard techniques demonstrating the suitability of the method for routine analyses. 12 refs., 1 fig., 8 tabs.

  17. Impact of Sulphur Content on Coal Quality at Delta Plain Depositional Environment: Case study in Geramat District, Lahat Regency, South Sumatra

    Directory of Open Access Journals (Sweden)

    Siska Linda Sari

    2017-09-01

    Full Text Available The research was conducted in Geramat District of Lahat Regency, South Sumatra. An evaluation of the geological condition of the research area shown that the coal deposits were found in Muara Enim Formation as a coal-bearing formation. The method used was literature study, field observation and the laboratory work includes proximate and petrography analysis. The aim of this research is to determine the environmental condition of coal based on the change of total sulphur content and to know the relation between ash content to calorific value.  As the result of proximate analysis conducted on five samples of coal, the research area obtained total sulphur (0,21-1,54% adb, ash content (3,16 - 71,11% adb and gross calorific value (953 - 5676 cal/g. adb. Based on the result of maceral analysis showed the maceral percentage of coal in research area composed by vitrinite (77,8-87,4 %, liptinite (0,6 %, inertinite (8,0 – 17,6 % and mineral matter concentration in the form of pyrite (1,6-4,6 %. The average reflectance value of vitrinite (Rv of coal in the research area (0.54%. the results analysis shows that the coal in Muara Enim Formation on the research area is in the transitional lower delta plain depositional environment phase. Any changes in the sedimentary environment affected by sea water will be followed by changes in total sulphur and the higher ash content, on the contrary, the lower calorific value of the coal.

  18. Effect of industrial emissions with high sulphur dioxide content on thiobacilli and oxidative activity of spruce forest soils towards inorganic sulphur compounds.

    Science.gov (United States)

    Lettl, A; Langkramer, O; Lochman, V; Jaks, M

    1981-01-01

    Effect of industrial emissions with high sulphur dioxide content on the upper horizons of spruce forest soils in NW Bohemia was investigated. The content of sulphates, oxidative activity towards sulphide, elemental sulphur, thiosulphate and sulphite, concentration and species representation of thiobacilli in horizons F, H and A in regions highly affected by emissions (two localities) and in regions relatively less influenced (three localities) were followed. In the affected areas the sulphur content in the soil was higher, the species representation of thiobacilli was similar and their concentration was higher, the ability of the soil to oxidize thiosulphate was inhibited and oxidation of elemental sulphur was stimulated. The oxidation of sulphide and sulphite was not significantly affected by the emissions. Changes caused by emissions could be observed only in horizons F and H and did not involve horizons A.

  19. High-sulfur coal research at the SIUC (Southern Illinois University at Carbondale) Coal Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-01-01

    Research on high-sulfur coal which is taking place at the Coal Technology Laboratory at Southern Illinois University at Carbondale is divided into four general categories: coal science, coal preparation, coal conversion, and coal utilization. The work in these four areas covers a broad spectrum of high-sulfur coal research from the very fundamental aspects of the coal, through its physical beneficiation and possible conversion, to its ultimate utilization and overall economic modeling. Individual projects are processed separately for the databases.

  20. Origin and diagenetic transformations of C25 and C30 highly branched isoprenoid sulphur compounds : further evidence for the formation of organic sulphur compounds during early diagenesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Rullkotter, J.; Haven, H.L. ten

    1990-01-01

    A number of C₂₅ and C₃₀ highly branched isoprenoid (HBI) sulphur compounds (e. g. , thiolanes, l-oxo-thiolanes, thiophenes, and benzo[b]thiophenes) with 2, 6, 10, 14-tetramethyl-7-(3-methylpentyl) pentadecane and 2, 6, 10, 14, 18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons

  1. Characterization of Some Nigerian Coals for Power Generation

    Directory of Open Access Journals (Sweden)

    M. Chukwu

    2016-01-01

    Full Text Available Five coal samples from Odagbo (Kogi State, Owukpa (Benue State, Ezimo (Enugu State, Amansiodo (Enugu State, and Inyi (Enugu State of Nigerian coal deposits were subjected to proximate analysis, ultimate analysis, calorific value determination, and petrographic and thermogravimetric analysis to determine their suitability for power generation. Based on results of tests carried out, Amansiodo coal is a bituminous, low sulphur, and medium ash coal, while Owukpa coal is a subbituminous A, low sulphur, low ash coal rich in huminites, Odagbo coal is a subbituminous B, medium sulphur, low ash coal rich in huminites, Ezimo coal is a subbituminous C, low sulphur, high ash coal, and Inyi coal is a subbituminous C, low sulphur, high ash coal. Between Odagbo and Owukpa subbituminous coals, Owukpa has a lower ignition temperature (283.63°C due to its higher volatile matter content (39.1%. However, Ezimo subbituminous coal, which has a lower volatile matter (31.1%, unexpectedly has the same ignition temperature as Owukpa (283.63°C due to its higher liptinite content (7.2% when compared with that of Owukpa (2.9%. The ease of combustion of the coal samples in decreasing order is Odagbo < Owukpa < Inyi < Ezimo < Amansiodo.

  2. Concentration of volatile sulphur-containing compounds along the gastrointestinal tract of pigs fed a high-sulphur or a low-sulphur diet

    DEFF Research Database (Denmark)

    Poulsen, Henrik Vestergaard; Canibe, Nuria; Finster, Kai

    2010-01-01

    Volatile sulphur-containing compounds (VSC) are formed in large quantities in the gastrointestinal tract (GI-tract) of pigs and upon excretion from the animal; these compounds are released from the faeces causing emission of foul odour. However, very little is known about the rate and extent...... weeks after which they were killed and gas samples were removed from eight segments of the intact GI-tract and analysed for VSC, hydrogen, carbon dioxide and methane. The concentration of individual VSC in gas samples from the intact GI-tract varied between segments. The total concentration of VSC...

  3. Origin and diagenetic transformations of C 25 and C 30 highly branched isoprenoid sulphur compounds: Further evidence for the formation of organically bound sulphur during early diagenesis

    Science.gov (United States)

    Kohnen, M. E. L.; Damsté, J. S. Slnninghe; Kock-van Dalen, A. C.; Haven, H. L. Ten; Rullkötter, J.; De Leeuw, J. W.

    1990-11-01

    A number of C 25 and C 30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[ b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C 25 and C 30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 × 10 3 a) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C 25 and C 30) and unsaturated HBI thiolanes (C 25 and C 30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.

  4. Composite pellets of coal - Binders and high temperature testing

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, V.

    1985-01-01

    The present paper is a report on Phase III of Project B1-315, 'Technics for production and combustion of composite pellets', including environmental aspects on the method of application. Recipes were developed and tested for the following four binders: CMC, Slaggcement, water glass, and bentonite. Determinations of softening temperatures shows that all four pellet types are stable in nitrogen-atmosphere up to 1500/sup 0/C. When simulating combustion in air, softening starts at 1050 - 1200/sup 0/C, the best results being achieved with bentonite. Combusiton tests were first performed on separate pellets in order to keep conditions well within control. Very soon it showed that unsufficiently small retention of sulphur was achieved, in spite of low combustion temperature and high Ca/S-relation. As an explanation to this it was suggested that no reaction between SO/sub 2/ and CaO can be expected within pellets which still contain coal. The sulphur is presumable excaping as COS, H/sub 2/ S or elementary sulphur. These compounds do not react with CaO, but they are oxidized outside the pellets forming SO/sub 2/ which later is absorbed by CaO - containing ash. This pattern makes it less interesting to study the combustion of single pellets. So, the test programme was changed and combustion tests with bedded pellets were introduced which gave a better result. At 1050/sup 0/C lower retention was attained, possibly because the combustion was carried out too far. The burning time was long because of the low temperature.

  5. Impact of long-term application fertilizer on soil total sulphur and valid sulphur

    Science.gov (United States)

    Gao, Mengyu; Lu, Xiaoling; Huang, Yuqian; Liu, Ning; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of the long-term application fertilizer on soil total sulphur and valid sulphur. The results showed that applying fertilizer can improve total sulphur and valid sulphur. In comparison with the low level of nitrogen fertilization treatment, the high one total sulphur and valid sulphur were obviously increased by 29.41% and 19.0%, respectively. Compared with in application of different levels nitrogen and the low level of organic fertilizer, the high level treatment total sulphur and valid sulphur contents were significantly increased by 10.73% and 23.47% than the low one. In application of organic fertilization can also improve total sulphur and valid sulphur The total sulphur and valid sulphur content were higher than organic fertilization only treatment 34.14% and 455.89% in comparison with high levels of organic fertilization mix with nitrogen, phosphorous and potassium fertilization treatment.

  6. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  7. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  8. Coal swelling and thermoplasticity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. (Newcastle upon Tyne University, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry)

    1992-01-01

    The literature on the following topics is reviewed: swelling and agglomeration of coal; measurements of swelling index and dilatometric and plastometric properties at high pressures; and the effects of oxidation, tar addition and minerals on high-pressure thermoplastic properties. 34 refs., 6 figs.

  9. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  10. Distribution of sulphur in the Albian coals of the Maestrazgo basin. Distribution del azufre en los carbones albienses de la cuenca del Maestrazgo

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Chinchon, J.S.; Lopez, A. (Inst. Geol. Jaume Almera, Barcelona (Spain))

    1989-01-01

    Important accumulations of coal took place in the proximal areas of a delta-estuary in the Maestrazgo Basin in Spain during the Middle Albian (Late Lower Cretaceous). Tectosedimentary control of this depositional system was carried out by distensive faults, creating a sedimentary space divided into four principal subbasins. Only two sub-basins (Calanda and Castellote), located in the northern sector of Maestrazgo Basin, contain workable coal deposits. These are dominantly subbituminous coals with high sulfur contents. In the present study inorganic sulfur bearing phases: (a) calcium, iron and magnesium sulfates; (b) iron sulfides (framboidal, euhedral fibrous and massive pyrite, and radial, anhedral and fibrous marcasite) and vertical distribution of sulfur in coal seams from Maestrazgo Basin coal are characterized. Some relations between the iron sulfide contents and the sedimentological features of interlayered sediments are shown; there is a clear tendency to increase iron sulfide content in the roofs of coal seams which are covered by marine influenced sediments. 22 refs., 2 figs., 7 plts., 2 tabs.

  11. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  12. Clinical, High Resolution Computed Tomography and Pulmonary Function in Sulphur Mustard Victims

    Directory of Open Access Journals (Sweden)

    Javad Moghimi

    2012-09-01

    Full Text Available We aimed to evaluate clinical, high resolution computed tomography (HRCT and pulmonary function test (PFT findings after 18-23 years of exposure in veterans of sulphur mustard (SM exposure. We performed a cross-sectional study of 106 patients. Inclusion criteria were 1: documented exposure to SM as confirmed by toxicological analysis of their urine and vesicular fluid after exposure 2: single exposure to SM that cause skin blisters and subsequent transient or permanent sequel. Cigarette smoking and pre-exposure lung diseases were of exclusion criteria. After taking history and thorough respiratory examination, patients underwent high resolution computed tomography and spirometry. Clinical diagnoses were made considering the findings. More than 85% of the patients were complaining of dyspnea and cough. Obstructive pattern (56.6% was main finding in spirometry followed by restrictive and normal patterns. HRCT revealed air trapping (65.09% and mosaic parenchymal attenuation patterns (58.49% as most common results. Established diagnoses mainly were chronic obstructive pulmonary disease (COPD (54.71%, bronchiolitis obliterans (27.35% and asthmatic bronchitis (8.49%. There were not any significant association between the clinical findings and results of PFT and HRCT imaging and also between PFT and HRCT findings (P-values were more than 0.05. Considering debilitating and progressive nature of the respiratory complications of SM exposure, attempts are needed for appropriate diagnosis and treatment.

  13. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This is the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II, while Volume III (this volume) describes the high sulfur coal plant. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in this volume. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas-desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  14. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  15. Studies on estrification and sulphonation of riboflavin in the environment of highly concentrated sulphuric acid.

    Science.gov (United States)

    Pajak, Wojciech; Brzezińska, Elzbieta

    2003-01-01

    The article presents investigations of riboflavin reactions in aqueous solutions of sulphuric acid. Analysis of UV/VIS, 1H NMR spectra and TLC indicates that at the beginning of the reaction ester of riboflavin were obtained and then sulphonation reaction took place. From the analysis of UV/VIS spectra the kinetics of the reaction was calculated, using own computer program.

  16. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating"

    Science.gov (United States)

    Stoeck, Ulrich; Balach, Juan; Klose, Markus; Wadewitz, Daniel; Ahrens, Eike; Eckert, Jürgen; Giebeler, Lars

    2016-03-01

    Li-S batteries are an emerging technology and the most promising successor of current lithium ion technology. While there is great perspective in terms of superior theoretical specific capacity and energy density great challenges have to be addressed. One major challenge, severely limiting cycle performance and capacity retention, is the shuttling of polysulphide species. In this contribution we show a reconfiguration of the usual Li-S cell. Instead of generating a carbon/sulphur composite by melt infiltration a highly porous, conductive nitrogen-rich carbon material (TNC) is coated onto a commercial polypropylene separator foil. The thin conductive coating of TNC on the separator enables the application of very simple sulphur/carbon black cathodes. Because the melt infiltration of sulphur in a porous host material becomes unnecessary the electrode processing is significantly simplified. The specific capacity and cycling stability of reconfigurated cells are both improved significantly compared to the performance of a standard cell setup using a pristine separator. At a constant charging rate of C/5 cells with modified separator showed 2.5 times higher residual capacity (1016 mAh g-1) than cells with pristine separator (405 mAh g-1).

  18. Capital cost: high and low sulfur coal plants-1200 MWe. [For low sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 V olume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  19. Biodesulphurisation of coal

    OpenAIRE

    Prayuenyong, P.

    2001-01-01

    The emission of sulphur oxides during the combustion of coal is one of the causes of an environmental problem known as acid rain. Biodesulphurisation technology applied as a method to remove sulphur before coal combustion was investigated in this work. The desulphurisation abilities of three specific bacterial strains including Rhodococcus erythropolis IGTS8, R. erythropolis X309 and Shewanella putrefaciens strain NCIMB 8...

  20. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method.

    Science.gov (United States)

    Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong

    2015-05-07

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (∼70% capacity retention after 250 cycles), good coulombic efficiency (∼98%) and high capacity (∼1500 mA h g(-1)) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.

  1. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method

    KAUST Repository

    Kumar, Pushpendra

    2015-01-01

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (∼70% capacity retention after 250 cycles), good coulombic efficiency (∼98%) and high capacity (∼1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes. © The Royal Society of Chemistry 2015.

  2. Eco-restoration of a high-sulphur coal mine overburden dumping ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5 ... Keywords. Mine overburden; environment degradation; ecology; eco-restoration; primary, secondary ecological succession. Abstract. Eco-restoration of mine overburden (OB)or abandoned mine sites is a major environmental concern.In the present ...

  3. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  4. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II (this volume), while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low-sulfur coal plant is presented in Volume I and the drawings, equipment list, and site description are contained in this document. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  5. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  6. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Vinayak N. Kabadi

    1998-11-12

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  7. Bird species richness and densities in relation to sulphur dioxide ...

    African Journals Online (AJOL)

    The expansion of coal-fired power stations in South Africa has resulted in growing environmental concerns as they are the largest emitters of sulphur dioxide (SO2). Sulphur dioxide emissions from power plants pose a potential threat to avian populations. However, the effect of SO2 pollution on bird communities is poorly ...

  8. Organically-bound sulphur in the geosphere : a molecular approach

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.

    1988-01-01

    In this thesis the results of molecular organic geochemical investigations into the structure and origin of organic sulphur compounds (OSC) and sulphur-containing moieties in macromolecular organic matter (i.e. kerogen, coal and asphaltenes) occurring in the geosphere are described. In the

  9. Sulphur Abatement Globally in Maritime Shipping

    OpenAIRE

    Lindstad, Elizabeth; Rehn, Carl Fredrik; Gunnar S. Eskeland

    2017-01-01

    In 2016, the International Maritime Organization (IMO) decided on global regulations to reduce sulphur emissions to air from maritime shipping starting 2020. The regulation implies that ships can continue to use residual fuels with a high sulphur content, such as heavy fuel oil (HFO), if they employ scrubbers to desulphurise the exhaust gases. Alternatively, they can use fuels with less than 0.5% sulphur, such as desulphurised HFO, distillates (diesel) or liquefied natural gas (LNG). The opti...

  10. Prospects for coal and clean coal technologies in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    John Kessels [IEA Clean Coal Centre, London (United Kingdom)

    2010-03-15

    This report examines the prospects for coal and clean coal technologies in Thailand. The country's existing coal reserves are examined and the probable need to import coal to meet the future coal is explained. A discussion on the generation capacity in Thailand examines the current and future prospects for coal-fired power generation. The role of the government in the coal sector is discussed along with the power development plan being implemented to meet increasing energy demand. Environmental issues related to coal are a major issue in Thailand particularly because of problems with SO{sub 2} emissions at the Mae Moh power station which have been solved by the use of flue gas desulphurisation. The report examines the role of international organisations such as the ADB, APEC, WB, ASEAN, IEA and USAID in clean coal technologies and how this could be improved. 70% of Thailand's power is generated from natural gas. The government recognises the need to diversify its energy sources since only 12 years of proven domestic gas reserves remain. Northern Thailand has around 2 Gt of coal reserves, mostly lignite of high sulphur content. It is estimated that 1 Gt of these could be used economically. Coal production in 2008 was between 18-19 Mt which was supplemented with 17-18 Mt of imports. In the future it is likely that all new coal-fired power stations will burn imported low sulphur coal with imports projected to rise to 48 Mt by 2021. Thailand is facing up to a challenge to develop and deploy clean coal technologies. This has begun with the first supercritical coal-fired power station being built, due to be operational by 2011. A key conclusion of this report is that a central organisation should be established in the public or private sector to undertake and promote clean coal technology research, education and deployment with domestic and international organisations as well as strengthen the sustainable use of coal in Thailand. 186 refs., 12 figs., 12 tabs.

  11. The disposal of flue gas desulphurisation waste: sulphur gas emissions and their control.

    Science.gov (United States)

    Raiswell, R; Bottrell, S H

    1991-06-01

    Flue gas desulphurisation (FGD) equipment to be fitted to UK coal-fired power stations will produce more than 0.8 Mtonnes of calcium sulphate, as gypsum. Most gypsum should be of commercial quality, but any low grade material disposed as waste has the potential to generate a range of sulphur gases, including H2S, COS, CS2, DMS and DMDS. Literature data from the USA indicates that well-oxidised waste with a high proportion of calcium sulphate (the main UK product of FGD) has relatively low emissions of sulphur gases, which are comparable to background levels from inland soils. However, sulphur gas fluxes are greatly enhanced where reducing conditions become established within the waste, hence disposal strategies should be formulated to prevent the sub-surface consumption of oxygen.

  12. Anatomic composition of plant tissues of highly metamorphosed coals

    Energy Technology Data Exchange (ETDEWEB)

    Kizil' shtein, L.Ya.; Shpitsgluz, A.L.

    1985-09-01

    Method is described to improve microscopic study of highly metamorphosed coals (anthracite). Study of such coals with aid of reflected polarized light is enhanced by means of ionic etching of surface of slides that enables observation not only of structures of basic microcomponents but also of finest structural details of individual cells by reflected non-polarized light. Figures illustrate results of studying many samples by ionic etching (bombing a polished surface in a vacuum with ions and pulverizing material of microcomponents to reveal heterogeneity of crystal chemistry of surface) which reveals great variety of structures of plant tissues and their component cells. Pictures of 35 slides depict gelified coal-forming plants of Donbass and central Ural coal fields; fusainized coal-forming plants of Donetsk, Gorlovsk and Tungus basins; organs of Donbass plants; structure of cells and organs of plants of Donbass. Method of ionic etching opens new perspectives for studying anatomy and histology in area of classical paleobotany by making available a large number of samples of plant material and components of highly metamorphosed coals compared with the rare samples obtained by using the polarized light method. 14 references.

  13. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  14. Molecular analysis of sulphur-rich brown coals by flash pyrolysis-gas chromatography-mass spectrometry: The type III-S kerogen

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Leeuw, J.W. de

    1992-01-01

    The molecular composition of five brown coals from three different basins (Maestrazgo, Mequinenza and Rubielos) in Spain was investigated by flash pyrolysis-gas chromatography and flash pyrolysis-gas chromatography-mass spectrometry. In these techniques, the macromolecular material is thermally

  15. The main natural lows of high-rate coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Chemyavsky Nikola V.

    2003-01-01

    Full Text Available The importance of coal pyrolysis studies for the development of energy technologies is evident, since pvrolysis is the first stage of any process of coal thermal conversion. In combustion, pyrolysis determines conditions of coal ignition and the rate of char after-burning, in gasification, pyrolysis determines total yield of gasification products. It must be noted that in modern energy technologies pyrolysis occurs at high late of coal particle heating (=10 K/s for different fluidized bed, or FB-technologies or super-high-rate (>10**5 K/s for entrained-flow gasification, and in some of them at high pressure. In CETI during last 12 years the detailed study of pyrolysis in FB laboratory-scale PYROLYSIS-D plant and entramed-flow pilot-scale GSP-01 plant, was carried out. In this paper main results of mentioned investigations are given. Kinetic constants for bituminous coals and anthracite high heating rates in entrained flow for high temperatures (>1500 °C and >1900 °C, and in fluidized bed conditions in temperature range 972-1273 K. In order to describe data obtained in fluidized bed conditions, G--model based method of calculation of devolatization dynamics was suited to FB heating conditions. Calculated and experimental kinetic data are in good agreement. The result proves that at FB-pvrolysis conditions intrinsic mass-transfer limitations are negligible and devolatilization is really kinetic-controlled.

  16. Preventing performance drops of coal mills due to high moisture content

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    Coal mills pulverize and dry the coal dust before it is blown into the furnace in coal-fired power plants. The coal mills can only deliver the requested coal flow if certain conditions are fulfilled. These are normally considered as constraints on individual variables. However, combinations of more...... than one variable might cause problems even though these individually variables are in an acceptable region. This paper deals with such a problem. The combination of a high load of the power plant, a large load change and high moisture content in the coal, can force the coal mill into a state where...... coal is accumulated instead of being blown into the furnace. This paper suggests a simple method for preventing the accumulation of the coal in the mill, by limiting the requested coal flow considering the coal moisture content and the temperature outside the mill.  ...

  17. Sulphur is your business

    Energy Technology Data Exchange (ETDEWEB)

    Hyne, J.B. [Hyjay RandD Ltd (Canada)

    2011-07-01

    J.B. Hyne describes the evolution of the sulphur industry, and the hidden potential companies have yet to tap into. Sulphur was at first expelled as a pollutant (SO2) but now it is mined and extracted. Much research has been completed on the uses of sulphur, including its use in the enhancement of the material properties of asphalts and concretes. The full potential of sulphur is not always realized and there is a lack of investment interest, financial motivation, and market diversification. There are many creative ideas for the use of sulphur, including its use as a component in N,P,K fertilizers, and as a component in solar energy collectors. The latter use of sulphur derives from thiophenic sulphur extracted from oil sand bitumen (5-7% sulphur), and which is semi-conducting. Untapped opportunities for sulphur include brake fluids, sulphur concrete, elevated temperature fluids, photovoltaics and carbon and sulphur, among others. At present the missing link is for market opportunities to be opened up and explored.

  18. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    Science.gov (United States)

    de Beer, M; Doucet, F J; Maree, J P; Liebenberg, L

    2015-12-01

    We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products (i.e. carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained; no vaterite or aragonite was detected. The product was made up of micron-size particles, which were further characterised by XRD, TGA, SEM, BET and true density. Results showed that about 0.37 ton of high-grade PCC can be produced from 1.0 ton of gypsum waste, and generates about 0.19 ton of residue, a reduction of 80% from original waste gypsum mass to mass of residue that needs to be discarded off. The use of gypsum waste as primary material in replacement of mined limestone for the production of PPC could alleviate waste disposal problems, along with converting significant volumes of waste materials into marketable commodities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available Subsidence and collapse of unmapped shallow coal mine workings poses a risk to the public and hampers the development of valuable property. A high-resolution reflection seismic survey was conducted to determine whether it is possible to map...

  20. Genesis of some tertiary Indian coals from the chemical composition ...

    Indian Academy of Sciences (India)

    In the present investigation, 37 numbers of high sulphur tertiary coal samples from Meghalaya, India have been studied on the basis of proximate and ash analysis. Various statistical tools like Bivariant Analysis, Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), and also the geochemical ...

  1. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  2. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  3. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste

    CSIR Research Space (South Africa)

    De Beer, Morris

    2015-08-01

    Full Text Available We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products...

  4. Expression and Characterisation of Recombinant Rhodocyclus tenuis High Potential Iron-Sulphur Protein

    DEFF Research Database (Denmark)

    Caspersen, Michael Bjerg; Bennet, K.; Christensen, Hans Erik Mølager

    2000-01-01

    The high potential iron-sulfur protein (HiPIP) from Rhodocyclus tenuis strain 2761 has been overproduced in Escherichia coli from its structural gene, purified to apparent homogeneity, and then characterized by an array of methods. UV-visible spectra of the reduced and oxidized recombinant protein...... of the apoprotein was 6296.6 Da compared to the expected average molecular mass of 6297.2 Da of the apoprotein, The reduction potential was determined using cyclic and square-wave voltammetry to be 321 and 314 mV versus NHE, respectively. All the observed properties of the recombinant protein parallel those...

  5. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  6. Capital cost: low- and high-sulfur coal plants, 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) high- and low-sulfur coal plants consists of three volumes. The low-sulfur coal plant is described in Volumes I and II, while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low sulfur coal plant is presented in Volume I, and the drawings, equimpment list, and site description are contained in Volume II. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal.

  7. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  8. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.

    Science.gov (United States)

    Oliveira, Marcos L S; Ward, Colin R; Izquierdo, Maria; Sampaio, Carlos H; de Brum, Irineu A S; Kautzmann, Rubens M; Sabedot, Sydney; Querol, Xavier; Silva, Luis F O

    2012-07-15

    The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  10. Processing of bituminous coal tar at high temperature with bituminous coal additive

    Energy Technology Data Exchange (ETDEWEB)

    von Hartmann, G.B.; Hupfer, H.; Leonhardt, P.

    1943-05-10

    In short tests, results of the effects of a bituminous coal addition to the processing of tar and pitch were obtainable. Coal used was that from the Heinitz Mines (Upper Silesian), saturated with 1--1.2% iron sulphate. On a mixture of bituminous coal tar residue and tar oil, with a relatively low level of solids and asphalt, a substitution was made for the addition of 2% alkalized iron-grude-catalyst with 20% coal. The same yield was reached using a straight-run procedure. The coal gave somewhat more gasification and additional asphalt in the sludge without increasing the solids content correspondingly. In spite of this, the carbonization results were somewhat improved, which led one to conclude that the coal addition fostered the decomposition of the tar asphalt, and, that the asphalt from the coal could be better carbonized than that out of the tar. One found, also, that the tar mixture with coal additive permitted trouble-free hydrogenation to gasoline and middle oil. Still another short test met with success. A bituminous coal tar pitch containing 24% benzene solids and 36% asphalt, which could not be processed with iron catalyst or even molybdenum-grude, was hydrogenated to gasoline and middle oil with a usable yield of .25 by a 20--25% addition of coal. Here too, the carbonization results were good. The addition of coal had no notable influence on the properties of the resulting oils. The document included test procedures. 11 tables.

  11. High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project

    Directory of Open Access Journals (Sweden)

    Aldo MARCHETTO

    2000-09-01

    Full Text Available A palaeoenvironmental reconstruction for the past 2-3 centuries of eight remote sites from northern to southern Europe was based on a number of palaeolimnological proxies, especially fossil pigments. Most of the lakes studied are located above the timberline and a great effort centred on the creation and analysis of a data-sets of sedimentary records. A chronology for the last century was based on radiometric techniques (210Pb, 241Am 137Cs. The accumulation rate of recent sediment was found to vary from 0.041 cm y-1 (Lake Saanajärvi, Finland to 0.14 cm y-1 (Jezero v Ledvici, Slovenia. During the time-span represented by the cores were the major changes in organic carbon and nitrogen in Nižné Terianske Pleso (Slovakia, Redó (Spain and Gossenköllesee (Austria. Constant increase of these nutrients from AD 1900 onwards was shown in lakes Saanajärvi, Nižné Terianske Pleso and Hagelseewli (Switzerland. No common trends in sulphur concentrations was evident. There is evidence of an atmospheric input of sulphur in Hagelseewli. This lake shows the highest concentrations, 10 fold higher at surface than the other lakes (ca 6% d.m.. A decrease of S during very recent times is clearly shown by the cores from Redò and Hagelseewli: this might be related to the reduction in the atmospheric loading (the matching of the atmospheric and sedimentary sulphur trends favours this hypothesis. Concentrations of total pigments and HPLC single carotenoids and chlorophylls showed marked fluctuations throughout the cores of all lakes. High pre-AD 1800 pigment concentrations were detected in Nižné Terianske Pleso, Redó, Hagelseewli and Gossenköllesee. During the last ca 50 years an increase in productivity inferred from fossil pigments is shown by Øvre Neådalsvatn (Norway, Nižné Terianske Pleso, Saanajärvi and Jezero v Ledvici. Except Gossenköllesee (Kamenik et al. 2000, this issue. Significant catchment disturbances are absent in these remote environments

  12. Trace elements in high-S subbituminous coals from the Teruel mining district, northeast Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Turiel, J.L.F.; Soler, A.L.; Duran, M.E. (Institute of Earth Sciences, Barcelona (Spain))

    1992-11-01

    The elemental composition of high temperature ash (750[degree]C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element contents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes. When a comparison was made between the average trace element contentsof the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Ze. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2)trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zr. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb, and Zn) may vary from one coal seam to another in the Teruel Mining District.

  13. Coal/Biomass cogasification and high temperature gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A.; Bos, A.; Den Uil, H.; Plaum, J.M.

    1995-08-01

    This paper reports on the cogasification of coal and biomass in a downdraught fixed-bed gasifier and on the high temperature removal of halides from the fuel gas produced. Air-blown downdraught gasifiers are considered as an interesting option especially for small and intermediate scale on-site fuel gas generation using high volatile feedstocks. The current test programme conducted with a 300 kW{sub th} downdraught gasifier at the Netherlands Energy Research Foundation (ECN) was focused on the effect of the partial replacement of the coal feedstock by two different biomass feedstocks, viz. Meranti wood waste and straw pellets (Danish winter wheat), on gasifier operability and fuel gas composition. For dry halide removal, several sorbents were evaluated based on literature data, thermodynamic calculations, and on laboratory and bench-scale experiments at atmospheric pressure. The evaluation was mainly focused on dry halide removal at a temperature level of 350-400C in a separate process located upstream of the desulphurisation process in an integrated system for high temperature gas cleaning. 8 figs., 11 tabs., 11 refs.

  14. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage

    Directory of Open Access Journals (Sweden)

    Madhulika Dutta

    2017-11-01

    Full Text Available The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region. Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment. The chemical parameters of the coal, overburden, soil and sediments along with the coal mine drainage (CMD were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield (India. It was found that the total sulphur content of the coal is noticeably high compared to the overburden (OB and soil. The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden. The water samples have a High Electrical Conductivity (EC and high Total Dissolve Solid (TDS. Lower values of pH, indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden. The chemical and nano-mineralogical composition of coal, soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy (HR-TEM, Energy Dispersive Spectroscopy (EDS, Selected-Area Diffraction (SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS, X-ray diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR, Raman and Ion-Chromatographic analysis, and Mössbauer spectroscopy. From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30, Tirap colliery samples have the highest electrical conductivity value of 5.40 ms cm−1. Both Ledo and Tirap coals have total sulphur contents within the range 3–3.50%. The coal mine water from Tirap colliery (TW-15B has high values of Mg2+ (450 ppm, and Br− (227.17 ppm. XRD analysis revealed the presence of minerals including quartz and hematite in the coals. Mineral analysis of coal mine overburden (OB indicates

  15. Rapid pyrolysis of Serbian soft brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Goran G. Jankes; Olga Cvetkovic; Nebojsa M. Milovanovic; Marko Ercegovaci Ercegovac; Miroljub Adzic; Mirjana Stamenic [University of Belgrade, Belgrade (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield), forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N{sub 2}) at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900{sup o}C) and retention times (3-28 s) were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900{sup o}C). The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300{sup o}C). Devolatilization of all types of sulphur has started over 600 and at 900{sup o}C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenospheres, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed. 20 refs., 10 figs., 6 tabs.

  16. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  17. Gondwana coals of Bhutan Himalaya - occurrence, properties and petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.K.; Alam, M.M.; Ghose, S.

    1988-03-01

    A narrow belt of highly inclined coal-bearing Gondwana strata occurs in the extreme southeastern part of Bhutan Himalaya. Recently, a systematic survey was undertaken along this coal belt and coals of three areas were analyzed in detail for the evaluation of their physico-chemical properties and petrographic characteristics. The entire region is in the midst of the Great Himalayan orogenic belt, and the whole stratigraphic sequence underwent several diastrophic movements in the geological past. The massive effects of these orogenies is more pronounced in the coal beds, of Gondwana sequence, and due to severe crushing and tectonic shearing these coals became powdery and flaky in nature. Significantly, the coals retained their pre-deformational rank exhibiting typical high-volatile, low-rank, bituminous characters, with mild caking propensities. Also these coals are markedly low in sulphur, phosphorus, chlorine and carbonate content like that of Peninsular Gondwana coals. Petrographic studies of these Bhutan coals revealed a close similarity with the eastern Raniganj coals (Upper Permian) of Peninsular India. The tectonic shearing and crushing of the coals are exhibited by the frequent presence of microfolding, microfaulting, and other compressional structures. However, the coals of all the three areas have shown a consistently low order of reflectance values. This typical retention of pre-deformational low-rank bituminous character is a significant feature of Bhutan coals. It shows that massive orogenic movements were only able to physically crush these coals but could not generate the requisite thermal regime to raise the rank of these coals. 35 refs., 4 figs., 5 tabs.

  18. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J.E.; Simms, N.J. [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A.B. [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  19. Extraction, separation, and analysis of high sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  20. Extraction, separation, and analysis of high sulfur coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  1. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  2. Stratigraphic and geophysical integrated methodologies for the interpretation of sulphur water formational environment in Salento (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, S.; Negri, S. [Dipartimento di Scienze dei Materiali-Osservatorio di Fisica, Chimica, Geologia Ambientali-Universita del Salento (Italy)

    2008-06-13

    The Salento coal deposits (south-eastern Italy) are unutilized because these deposits are thin and nearly uneconomic but they have a high scientific and economic value due to their high organic sulphur content. The studied area is located in the western Salento peninsula where wells used by a fish-farm (''Ittica Ugento'') have shown high concentrations of hydrogen sulphide. Data from surface and boreholes stratigraphic surveys integrated with electrical resistivity tomography (ERT) allow us to define the structure, depths and geometry of the aquifer and its relationship with saltwater intrusion. Induced polarization (IP) with pole-dipole array survey has been carried out near the coastline. The value measured was over 50 msec. A direct relationship is shown to exist between IP values and the aquifer containing sulphur water. The high resolution of the data obtained with the applied methods not only shows the validity of the methodology but is the key to evaluating the groundwater resources of the area. The proposed mechanism is that of entrapment of sulphur water in a graben structure: when sulphate-enriched waters of marine origin come into contact with organic substances and lignite deposits (Galatone Formation, Oligocene), they are deprived not only of free oxygen, but also generate hydrogen sulphide as a result of the reduction of sulphates. (author)

  3. Pressurised fluidised bed combustion: an alternative clean coal technology. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarollo

    Energy Technology Data Exchange (ETDEWEB)

    Bencomo Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    The primary aim of thistechnology is to reduce emissions of sulphur and nitrous oxides. Pilot plant tests have achieved a sulphur fixing rate of over 95%. Pressurised fluidised bed combustion also has advantages with regard to the emission of contaminants. Halogens, fluorine and chlorine, which in conventional combustion methods are released in the gases, to a large degree remain in the ash as do trace elements, such as arsenic, which usually vapourise at high temperatures in pulverised coal combustors. This technology also has a high output of between 38 and 40% net according to the type of coal used. 10 figs., 10 tabs.

  4. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  5. The effects of early diagenetic bacterial sulphate reduction upon the petrology and chemistry of coal

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Veld, H.; Fermont, W.J.J.; Leeuw, J.W. de

    1991-01-01

    In the present study the correlation of the occurrence of sulphur with physical (optical) and chemical characteristics of coal will be discussed to test possible relationships between sulphur and %Rm.

  6. Preliminary results of hydrogenation using elemental sulphur with different products. (Experiments in rotating autoclave)

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, G.; Schiffmann, F.

    1943-08-12

    Test results were given for various products hydrogenated with elemental sulphur, which was completely dissolved in the respective oils at 100/sup 0/C: (1) for Romanian raw oil, containing approximately 0.5% asphalt, the addition of 5% elemental sulphur, in comparison to 1.5% grude-iron catalyst, had only slightly improved cracking, especially for gasoline. The yield produced had a better (lighter) appearance when grude was used. (2) Wormser raw oil was used when similar Albanian oil--rich in asphalt and sulphur--was not available. Using 2 to 5% elemental sulphur, more unfavorable data in cracking and asphalt reduction were obtained than with grude catalyst. A slight cracking increase and somewhat less asphalt resulted using 5% vs. 2% sulphur, but there was a higher specific gravity in the residue of the yield product over 350/sup 0/C, which it was concluded, was due to the polymerizing effect of the sulphur. (3) Bruex tar, likewise asphalt- and sulphur-rich, cracked better with 5% sulphur, but no more favorable asphalt decomposition was obtained. The color of yielded products with grude-iron catalyst was better. (4) Topped low-temperature carbonization tar from bituminous coal could, up until then, be judged only by appearance. Thus, with 2 and 5% sulphur, the products were somewhat like those with grude-iron catalyst. (5) Bituminous coal tar pitch used with 5% sulphur resulted in less cracking, but somewhat better asphalt decomposition than grude catalyst. Residue over 325/sup 0/C had significantly higher specific gravity than with grude catalyst. (6) For Upper-Silesian coal with a 4.9% ash content, results at least equal to the regularly used iron catalyst could be expected, according to appearances using 2 to 5% sulphur.

  7. Fuel Characterization of Newly Discovered Nigerian Coals

    Science.gov (United States)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study seeks to characterize and highlight the fuel properties, rank, and classification of coals from Ihioma (IHM) and Ogboligbo (OGB) in Imo and Kogi states of Nigeria, respectively. The fuel properties were examined based on ultimate, proximate, and bomb calorific analyses. The results indicated that IHM coal contains comparatively higher C and H but lower O, N, and S content than OGB. In addition, the nitrogen (N) and sulphur (S) content for both coal samples were above 0.7 wt.% and 1.5 wt.%, respectively, which indicates high potential for pollutant emissions. Furthermore, the coal proximate properties were below 5 wt.% for Moisture; Volatiles (70 wt.%); Fixed Carbon (45 wt.%) and Ash (2.5 wt.%) on average. IHM coal has an HHV of 19.40 MJ/kg whereas OGB is 15.55 MJ/kg. This is due to the low carbon (C), hydrogen (H) and high oxygen (O) content in OGB whereas IHM contains higher VM and HHV. Furthermore, OGB presents better handling, storage, and transport potential. Furthermore, OGB has a higher fuel ratio and value index due to lower moisture, ash content, and volatiles. Based on the ASTM D388 standard, the coals were classified as Lignite (Brown) Low-Rank Coals (LRCs) with potential for energy recovery.

  8. Prospects for co-firing of clean coal and creosote-treated waste wood at small-scale power stations

    Directory of Open Access Journals (Sweden)

    Zandersons Janis

    2006-01-01

    Full Text Available If a small-scale clean coal fueled power plant is co-fueled with 5% of creosote-treated used-up sleeper wood, the decontamination by carbonisation at 500 °C in an indirectly heated rotary kiln with the diameter 1.7 m and effective length 10 m can be realized. It should be included in the "3R Clean Coal Carbonisation Plant" system, which processes coal. It will improve the heat balance of the system, since the carbonisation of wood will deliver a lot of high caloricity pyroligneous vapour to the joint furnace of the "3R Clean Coal Carbonisation Plant". Pine wood sleeper sapwood contains 0.25% of sulphur, but the average pine sleeper wood (sapwood and heartwood 0.05% of sulphur. Most of the sulphur is lost with the pyroligneous vapour and burned in the furnace. Since the "3R Clean Coal Carbonisation Plant" is equipped with a flue gases cleaning system, the SO2 emission level will not exceed 5 mg/m3. The charcoal of the sapwood portion of sleepers and that of the average sleeper wood will contain 0.22% and 0.035% of sulphur, respectively. The increase of the carbonisation temperature does not substantially decrease the sulphur content in charcoal, although it is sufficiently low, and the charcoal can be co-fired with clean coal. The considered process is suitable for small power plants, if the biomass input in the common energy balance is 5 to 10%. If the mean distance of sleepers transportation for Central and Eastern Europe is estimated not to exceed 200 km, the co-combustion of clean coal and carbonized sleepers would be an acceptable option from the environmental and economic points of view.

  9. Coal deposition in carbonate-rich shallow lacustrine systems: the Calaf and Mequinenza sequences (Oligocene, eastern Ebro Basin, NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, L.; Saez, A.

    1987-05-01

    Two main coal-bearing sequences developed during the Oligocene in the Tertiary Ebro Basin, the Calaf (early Oligocene) and Mequinenza (late Oligocene) coal basins. Coal deposition took place in shallow marsh-swamp-lake complexes which sometimes became closed and evolved under warm climatic conditions with fluctuating humidity. These shallow lacustrine systems are closely interrelated with the terminal parts of the distributive fluvial systems which spread from the tectonically active Ebro basin margins. Laterally extensive lignite-bearing sequences, including rather thin, lenticular autochthonous and/or hypautochthonous coal seam with high ash and sulphur contents, characterized coal deposition in the shallow lacustrine systems. Coal seam geometry, which makes them nearly subeconomic, resulted from the tectonic instability during basin margin evolution and the sometimes closed, arid conditions under which the lacustrine systems evolved. High ash and sulphur contents resulted from the inadequate isolation of peat forming environments from clastic influx and from the very low acidity and sometimes high sulphate contents of the lacustrine waters. Coal exploration in shallow lacustrine sequences similar to those described here must take into account that the spread of coal-forming environments and maxima of coal deposition are usually coincident with lake expansions and retraction or shifting of the terminal fluvial zones interrelated with the lacustrine areas. 44 refs., 8 figs.

  10. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China

    Science.gov (United States)

    Ding, Z.; Zheng, B.; Long, J.; Belkin, H.E.; Finkelman, R.B.; Chen, C.; Zhou, D.; Zhou, Y.

    2001-01-01

    Southwest Guizhou Province is one of the most important areas of disseminated, sediment-hosted-type Au deposits in China and is an important area of coal production. The chemistry of most of the coals in SW Guizhou is similar to those in other parts of China. Their As content is near the Chinese coal average, but some local, small coal mines contain high As coals. The highest As content is up to 3.5 wt.% in the coal. The use of high As coals has caused in excess of 3000 cases of As poisoning in several villages. The high As coals are in the Longtan formation, which is an alternating marine facies and terrestrial facies. The coals are distributed on both sides of faults that parallel the regional anticlinal axis. The As content of coal is higher closer to the fault plane. The As content of coal changes greatly in different coal beds and different locations of the same bed. Geological structures such as anticlines, faults and sedimentary strata control the distribution of high As coals. Small Au deposits as well as Sb, Hg, and Th mineralization, are found near the high As coals. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, As-bearing clays, and phosphate are found in the high As coals, their contents cannot account for the abundance of As in some coals. Analysis of the coal indicates that As mainly exists in the form of As5+ and As3+, perhaps, combined with organic compounds. The occurrence of such exceptionally high As contents in coal and the fact that the As is dominantly organically associated are unique observations. ?? 201 Elsevier Science Ltd.

  11. Daytime atmospheric sulphur dioxide concentrations in Ibadan city ...

    African Journals Online (AJOL)

    Atmospheric sulphur dioxide concentrations were determined at 27 locations in the city of Ibadan, Nigeria, during May-June 1997. The locations were chosen from zones of high and low traffic densities, residential areas, industrial areas, and remote (control) areas. Sulphur dioxide levels did not significantly vary with the ...

  12. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  13. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    decreased by one third and the particle concentrations was decreased by half. In the sulphur recirculation exposure, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) compared to the reference exposure. For the low-alloyed 16Mo3, the corrosion rate was reduced by more than 60%. The corrosion rate was rather low for the high-alloyed steels, even in the reference exposure. The corrosion morphology of the samples exposed in the sulphur recirculation exposure was different compared to the samples exposed in the reference exposure. Sulphur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. When sulfur recirculation was applied to the process, the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately a quarter (PCDFs were reduced by a factor of two but PCDD levels did not change significantly). Meanwhile the chlorobenzenes (PCBz) were reduced by half. A slight reduction of the dioxin levels (PCDD and PCDF) in the fly ash was found, which together with the reduced amounts of fly ash leads to less dioxins being landfilled

  14. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  15. Trace element affinities in two high-Ge coals from China

    Energy Technology Data Exchange (ETDEWEB)

    Jing Li; Xinguo Zhuang; Xavier Querol [China University of Geosciences, Wuhan (China). Faculty of Earth Resources

    2011-01-15

    The Lincang (Yunnan Province, Southwest China) and Wulantuga (Inner Mongolia, Northeast China) coal deposits are known because of the high-Ge content. These coals have also a high concentration of a number of other elements. To determine the mode of occurrence of the enriched elements in both coals, six density fractions from {lt} 1.43 to {gt} 2.8 g/cm{sup 3} were obtained from two representative samples using heavy-liquids. A number of peculiar geochemical patterns characterize these high-Ge coals. Thus, the results of the chemical analysis of these density fractions showed that both coals (very distant and of a different geological age) are highly enriched (compared with the usual worldwide coal concentration ranges) in Ge, As, Sb, W, Be, and Tl. This may be due to similar geochemistry of hydrothermal fluids influencing the Earth Crust in these regions of China. Moreover, Wulantuga coal (Early Cretaceous subbituminous coal) is also enriched in Ca, Mg, and Na, and Lincang coal (Neogene subbituminous coal) in K, Rb, Nb, Mo, Sn, Cs, and U. A group of elements consisting of Ge, W, B, Nb, and Sb mostly occur with an organic affinity in both coals. Additionally, Be, U, and Mo (and partially Mn and Zn) in Lincang, and Na and Mg in Wulantuga occur also with a major organic affinity. Both coals have sulfide-arsenide mineral assemblages (Fe, S, As, Sn, and Pb, and in addition to Tl, Ta, and Cs in the Lincang coal). The occurrence of Al, P, Li, Sc, Ti, V, Cr, and Zr in both coals, and Ba in Lincang, are associated with the mineral assemblage of silico-aluminates and minor heavy minerals. Furthermore, P, Na, Li, Sc, Ti, Ga, Rb, Zr, Cr, Ba, Th, and LREE (La, Ce, Pr, Nd, and Gd) in Lincang are associated with mineral assemblages of phosphates and minor heavy minerals. The two later mineral assemblages are derived from the occurrence of detrital minerals. 34 refs., 7 figs., 3 tabs.

  16. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  17. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    Science.gov (United States)

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  18. Impact of sulphur fumigation on the chemistry of ginger.

    Science.gov (United States)

    Wu, Cheng-Ying; Kong, Ming; Zhang, Wei; Long, Fang; Zhou, Jing; Zhou, Shan-Shan; Xu, Jin-Di; Xu, Jun; Li, Song-Lin

    2018-01-15

    Ginger (Zingiberis Rhizoma), a commonly-consumed food supplement, is often sulphur-fumigated during post-harvest handling, but it remains unknown if sulphur fumigation induces chemical transformations in ginger. In this study, the effects of sulphur fumigation on ginger chemicals were investigated by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS)-based metabolomics. The results showed that sulphur fumigation significantly altered the holistic chemical profile of ginger by triggering chemical transformations of certain original components. 6-Gingesulphonic acid, previously reported as a naturally-occurring component in ginger, was revealed to be a sulphur fumigation-induced artificial derivative, which was deduced to be generated by electrophilic addition of 6-shogaol to sulphurous acid. Using UHPLC-QTOF-MS/MS extracting ion analysis with 6-gingesulphonic acid as a characteristic chemical marker, all the commercial ginger samples inspected were determined to be sulphur-fumigated. The research outcomes provide a chemical basis for further comprehensive safety and efficacy evaluations of sulphur-fumigated ginger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  20. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    Science.gov (United States)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  1. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available South Africa has abundant resources of high-ash and other low-quality coals. The aim of this work is to investigate the possibility of using fluidised bed gasification technology to convert these coals into clean fuel gas. The fuel gas can be used...

  2. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.

    Science.gov (United States)

    Lee, Taekhee; Lee, Eun Gyung; Kim, Seung Won; Chisholm, William P; Kashon, Michael; Harper, Martin

    2012-05-01

    A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins-Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ∼9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2-8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to

  3. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    Stricter legislation on sulphur oxide emissions from ships will apply as of 2015 in emission control areas. Consequently, prices on low sulphur fuels are expected to increase drastically, providing a strong incentive to find alternative ways of complying with the legislation and improving...... the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...

  4. Vapor mercury uptake with sulphur impregnated active carbons derived using sulphur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tong, S.; Methta, H.; Ahmed, I.; Morris, E.; Fuentes de Maria, L. [Wuhan Univ. of Science and Technology, Wuhan, Hubei (China). Dept. of Chemical Engineering; Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    2008-07-01

    Active carbon adsorption is the primary technology used for removal of vapour mercury from flue gases in coal-fired power plants, municipal solid waste combustors, and other sources. It can be carried out using two different processes, notably injection of powder active carbon into flue gas streams upstream of the particulate collection devices, and filtration with a granular active carbon fixed bed downstream of the flue gas desulphurization units and/or particulate collectors. This paper presented an investigation of vapour mercury uptake performance of laboratory-made sulphur impregnated active carbons (SIACs) using a fixed bed reactor in a temperature range of 25 to 200 degrees Celsius. The materials and methods as well as the properties of activated carbons studied were presented. The experimental set-up was also described. The paper discussed the effects of initial concentration, the flow rate, the loading amount of SIACs, temperature, and the sulphur impregnation on the mercury uptake performance. The study showed that SIACs produced with sulphur dioxide exhibited a more complicated behaviour when temperature was varied, implying a mixed adsorption mechanism. 10 refs., 3 tabs., 8 figs.

  5. Coal resource estimation in the Bayir field, Yatagan-Mugla, SW Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Inaner, H.; Nakoman, E.; Karayigit, A.I. [Dokuz Eylul University, Buca Izmir (Turkey). Dept. of Geological Engineering

    2008-07-01

    This study focuses on some coal properties and calculation of coal resources with two classical (isopach and polygon) methods in the Bayir field, Yatagan-Mugla, which is located in southwestern Anatolia. This field has not been mined because it is still in the exploration stage. A productive coal seam of Early (?)-Middle Miocene age has a mineable coal thickness of 1.25 m to 18.01 m. Proximate analysis results indicated that this coal seam contains high moisture, ash, volatile matter, total sulphur content, and net calorific values. The weighted average mineable coal thickness calculated from the isopachs is 7.52 m and 7.82 m from polygonal methods. The in situ tonnages with isopach and polygonal methods were calculated to be 122.8 Mt and 130 Mt, respectively. The average value of the two methods shows 126.4 Mt in situ coal tonnages. Total amount of the in situ mineable coal resources is 77.7 Mt, which indicates an important coal potential in the Bayir field. The overburden thickness ranges from 72 m to 493 m in the Bayir field, averaging 257 m, indicating a deep coal mine. The overburden ratio averages 37 m{sup 3}/ton, indicating an underground coal mine to feed a power plant in near future.

  6. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  7. Mercury and sulphur among the High Medieval alchemists: from Rāzī and Avicenna to Albertus Magnus and pseudo-Roger Bacon.

    Science.gov (United States)

    Newman, William R

    2014-11-01

    This essay challenges the often expressed view that the principles of metals, namely mercury and sulphur, were generally viewed by alchemists as being of a 'metaphysical' character that made them inaccessible to the tools and operations of the laboratory. By examining a number of Arabo-Latin and Latin alchemical texts in circulation before the end of the thirteenth century, the author presents evidence that most alchemists of the period considered mercury and sulphur to be materials subject to techniques of purification in the same way that naturally occurring salts and minerals could be freed of their impurities or dross. The article also points to the immense influence of Avicenna and Albertus Magnus in formulating the theory that mercury and sulphur were compounds of different materials, containing both fixed and unfixed components. Finally, the author briefly examines the relationship between this materialist approach to the principles and the chymical atomism of early modern authors who were deeply aware of medieval alchemical literature.

  8. Shape-selective catalysis for synthesis of high-value chemicals from aromatics in coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1996-12-31

    Liquids derived from coals contain numerous aromatic compounds. Many of the one- to four-ring aromatic and polar compounds can be converted into valuable chemicals. Economic analysis of the viability of liquefaction (and related conversion processes) may well produce a different result if some of the aromatics and phenolics are used for making high-value chemicals and some of the liquids for making high-quality fuels such as thermally stable aviation fuels. To make effective use of aromatics in coal liquids, we are studying shape-selective catalytic conversion of multi-ring compounds. The products of such reactions are intermediates for making value-added chemicals, monomers of advanced polymer materials, or components of advanced jet fuels. Two broad strategic approaches can be used for making chemicals and materials from coals. The first is the indirect approach: conversion of coals to liquids, followed by transformation of compounds in the liquids into value-added products. The second is direct conversion of coals to materials and chemicals. Both approaches are being explored in this laboratory. In this paper, we will give an account of our recent work on (1) shape-selective catalysis which demonstrates that high-value chemicals can be obtained from aromatic compounds by catalytic conversion over certain zeolites; and (2) catalytic graphitization of anthracites, which reveals that using some metal compounds promotes graphitization at lower temperatures and may lead to a more efficient process for making graphites from coals.

  9. Highly dispersed catalysts for coal liquefaction. Phase 1 final report, August 23--November 22, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Wilson, R.B. [SRI International, Menlo Park, CA (United States); Ghaly, O. [Bechtel Corp., San Francisco, CA (United States)

    1995-03-22

    The ultimate goal of this project is to develop novel processes for making the conversion of coal into distillable liquids competitive to that of petroleum products in the range of $25/bbl. The objectives of Phase 1 were to determine the utility of new precursors to highly dispersed catalysts for use of syngas atmospheres in coal liquefaction, and to estimate the effect of such implementation on the cost of the final product. The project is divided into three technical tasks. Tasks 1 and 2 are the analyses and liquefaction experiments, respectively, and Task 3 deals with the economic effects of using these methods during coal liquefaction. Results are presented on the following: Analytical Support--screening tests and second-stage conversions; Laboratory-Scale Operations--catalysts, coal conversion in synthetic solvents, Black Thunder screening studies, and two-stage liquefaction experiments; and Technical and economic Assessment--commercial liquefaction plant description, liquefaction plant cost; and economic analysis.

  10. Release of inorganic trace elements from high-temperature gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Blaesing, Marc

    2012-05-30

    The development of cleaner, more efficient techniques in next-generation coal power plants is becoming increasingly important, especially regarding to the discussion of the influence of CO{sub 2} emissions on global warming. A promising coal utilisation process is the integrated gasification combined cycle process. The direct use of the raw gas requires gas clean-up to prevent downstream parts of the gasifier from several problems. An increased efficiency and a decreased amount of harmful species can be achieved through hot fuel gas cleaning. This clean-up technique requires a comprehensive knowledge of the release characteristics of inorganic coal constituents. The aim of this thesis was to provide enhanced knowledge of the effect of key process parameters and of the chemical constitution of coal on the release of Na, K, S, and Cl species from high-temperature coal gasification. The experimental setup consisted of atmospheric flow tube furnaces and a pressurised furnace. In-situ analysis of the product gas was carried out using molecular beam mass spectrometry. A broad spectrum of different coals with assumed qualitative and quantitative differences in the release characteristics was investigated. Additionally, experiments with model substances were performed. The results of the experimental investigation were compared with thermodynamic calculations. Finally, recommendations, for the operation of a high-temperature gasifier are formulated. (orig.)

  11. Proximate and The Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application

    Science.gov (United States)

    Sahaluddin Hasan, Erzam; Jahiding, Muhammad; Mashuni; Ilmawati, WOS; Wati, Wa; Nyoman Sudiana, I.

    2017-05-01

    A study has been conducted about the quality of young coal (brown coal ) briquettes from North Kolaka to determine the effect of varied adhesive on the proximate characteristics and calorific value. The young coal briquettes were made by using adhesives of starch, cassava starch and Castor oil plant starch at a concentration of 5 to 15% of the total mass. The grain size of young coal and the adhesive used were 60 mesh and 100 mesh, respectively. The samples were molded in a cylindrical mold with a diameter of 2.5 cm and a high of 6 cm, and with a pressure of 100 kg/cm2. After having been compacted, the young coal samples were then analyzed proximately i.e. moisture content, volatile matter, ash content and fixed carbon, as well as their calorific values calculation. The results showed that the increase of the adhesive could tend to increased the water content and volatile matter, but reduced the ash content, and the fixed carbon tend to constant except coal briquettes using starch adhesive it were increased. The calorific value of the young coal briquettes increased for all kinds of adhesives when the adhesive increased. The calorific value per one gram ranged from 3162.7 cal/g to 4678.7 cal/g. The highest calorific value, 4678.7 cal/g, was observed at the adhesive of 15 % of starch. The characteristics of young coal can be used as a raw material for making high-calorie hybrid briquettes.

  12. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  13. Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal

    Energy Technology Data Exchange (ETDEWEB)

    L. Gonsalvesh; S.P. Marinov; M. Stefanova; Y. Yurum; A.G. Dumanli; G. Dinler-Doganay; N. Kolankaya; M. Sam; R. Carleer; G. Reggers; E. Thijssen; J. Yperman [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Organic Chemistry

    2008-09-15

    One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of biodesulphurization on the treated solid products. Subbituminous high sulphur coal from 'Pirin' basin (Bulgaria) was selected as a high sulphur containing sample. Different types of microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with three types of fungi: 'Trametes Versicolor' - ATCC No. 200801, 'Phanerochaeta Chrysosporium' - ME446, Pleurotus Sajor-Caju and one Mixed Culture of bacteria - ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria and consecutive reduction by 13% for organic sulphur (Sorg) decrease with 'Phanerochaeta Chrysosporium' and 'Trametes Versicolor' were achieved. To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled 'on-line' with mass spectrometry (AP-TPR/MS), on-line with potentiometry (AP-TPR/pot) and by the 'off-line' AP-TPR/GC/MS analysis was used. The need of applying different atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance, oxygen bomb combustion followed by ion chromatography was used. 28 refs., 9 figs., 4 tabs.

  14. High arsenic (As content in coals from Neogene deposits of the Pannonian Basin in Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Markič

    2017-12-01

    Full Text Available High contents of arsenic (As in coal samples from four localities within Neogene deposits of the Pannonian Basin in Slovenia are presented and discussed in this paper. Data from three localities represent interval samples of coal cuttings from wells TER-1 (Terbegovci, Sob-3g (Murska Sobota, and MD-1 (Mislinjska Dobrava. The fourth locality is Globoko, where the main lignite seam was analysed already in 1989. The oldest are coal samples from the MD-1 well which are supposed to be of the Lower Miocene age (except for the shallowest one, which is of the Plio-Quaternary age. Coal samples from the TER-1 and Sob-3g wells are of the Upper Miocene age (Mura Formation. The lignite sample from Globoko is of the Upper Miocene age too (Pontian; Globoko Formation. Most samples were prepared for the ICP-MS method analysis as “whole coal”, dry, pulverized lab-samples, weighting ca. 10 g. The results show for all “whole coals” samples considerably increased contents of As: 22.7, 111.4, 222.1, and 131.4 µg/g for the Lower Miocene (?, and 84.5 µg/g for the Plio-Quaternary coals from MD-1 well, 392 µg/g for coals from the Sob-3g well, and 116 µg/g for a coal from the TER-1 well (both Upper Miocene – Mura Formation. In the case of Globoko, not “whole coal” but its high temperature ash was analysed and showed As content as high as 170 µg/g applying AAS method of analysis, and even 260 µg/g applying the ICP-MS. Origin of As could be pre-Neogene rocks of the hinterland and/or Neogene calc-alkaline volcanites. Mineral-gas exhalations from the under-continental upper mantle, containing As, could also be a source of this highly volatile element.

  15. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Ismail B. [West Virginia University, Morgantown, WV (United States)

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  16. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  17. High temperature alkali corrosion of ceramics in coal gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  18. Removal of pollutants from poor quality coals by pyrolysis

    Directory of Open Access Journals (Sweden)

    Natas Panagiotis

    2006-01-01

    Full Text Available Combustion of poor quality coals and wastes is used today worldwide for energy production. However, this entails significant environmental risks due to the presence of polluting compounds in them, i. e. S, N, Hg, and Cl. In the complex environment of combustion these substances are forming conventional (i. e. SOx, NOx and toxic (PCDD/Fs pollutants, while, the highly toxic Hg is volatilized in the gas phase mainly as elemental mercury. Aiming to meet the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique, based on low temperature carbonization, has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900 °C and residence time (5-120 minutes on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg, and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermo gravimetric analyzer. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury, and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600 °C. More-over, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600 °C for ~20 minutes may be considered sufficient for clean

  19. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... condition occurs. Ungrounded circuits include high-voltage transformers that power low- and medium-voltage... transformers in the power center. This will provide a safe means of de-energizing high-voltage circuits in the... machines in underground coal mines. It also revises MSHA's design requirements for approval of these mining...

  20. Petrographical and mineralogical analysis of coal after biological leaching

    Directory of Open Access Journals (Sweden)

    Kupka Daniel

    2000-09-01

    Full Text Available For coal utilization the sulphur content is a decisive parameter for the quality of the coal. In many countries clean coal technologies have to be applied on the basis of regulations concerning fuel quality and emission standards for dust, CO, SO2 and NOx in the flue gas. It becomes quite obvious that it is always preferable to keep the sulphur levels in coal at a minimum. Bacterial oxidation of the sulphur present in coal could well be thought of as an effective alternative.Desulphurization by bacteria Thiobacillus ferrooxidans was applied to coal sample from Sokolov mine. Bacteria growing in batch culture on ferrous iron at initial pH 1.6 were harvested at the later growth phase. The ferric iron precipitates were separated from the cells by centrifugation and the rest medium by membrane filtration. Cell pellet captured on the filter was washed by hydrochloric acid and distilled water and finally suspended in fresh Waksmann & Joffe medium. The medium was previously acidified by 5M H2SO4 to pH 2. Initial concentration of sulphates in medium was 1.8 g L-1. Desulphurization of coal was studied in a stirred batch reactor at 10% w/v pulp density in diluted H2SO4 at pH = 2.The effect of bacterial leaching on mineral and organic matter of coal was followed by optical microscopy. Petrographic evaluation of the coal matter samples consisted of the determination of reflectance of gelified huminite macerals (R0, determination of maceral group contents of huminite, liptinite, inertinite and determination of the mineral content with emphasis on the various forms of iron sulphides. The sample examined were brown coal with higher liptinite and pyrite contents. The huminite reflectance of 0,33 % is corresponding to the lignitic metatype. Huminite concentration is 65,7 % and is the most abundant maceral group. The maceral ulminite and densinite contributes to the high huminite content. The concentration of attrinite, who be pass to liptodetrinite, textinite

  1. Coal and Climate Change. Will Coal Depart or Dominate Global Power Production During the 21st Century?

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B. [Harvard University, John F. Kennedy School of Government, Cambridge, MA (United States)

    2004-11-11

    At present, coal power production is the most polluting energy resource in terms of sulphur dioxide, nitrous oxide and particulate matter emissions, and, as a result, involves the largest external environmental costs among the currently available electricity generation alternatives. Coal is also the most carbon-intensive fossil fuel and its present large-scale combustion practices constitute among the prime impediments to implementing effective climate change control regimes. This article analyses the question whether coal must depart or may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are described why, paradoxically, coal is likely to continue to have a high and perhaps even increasing share in global electricity generation this century: (I) its large resource base; (II) the improving efficiency and competitiveness of conventional and innovative coal technologies; (III) the employability of new coal technologies in conjunction with carbon capture and storage systems; (IV) the improving economics of these advanced clean coal technologies.

  2. High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2016-06-01

    Full Text Available The ambient temperature high pressure oxydesulphurisation technique was investigated to reduce the sulphur content. Prince of Wales coal was chosen for this study. The focus of the study was to investigate the reduction of both pyritic and organic sulphur while changing the KMnO4/Coal ratio, agitation speed, agitator configuration, and shear. The effect of different concentrations of acetone as a solvent and effect of particle size on the sulphur removal was also studied by a series of experimental runs at ambient temperature. Heating value recovery was found to be increased with the decreased KMnO4/Coal ratio and with decreased acetone concentration. It was found that sulphur removal was enhanced with the increase in shear using a turbine impeller. The effect of particle size was more significant on the pyritic sulphur removal as compared to the organic sulphur removal while heating value recovery was found to increase with decreased desulphurization tome for both, under atmospheric and high pressure.

  3. Volatile sulphur compounds in UHT milk.

    Science.gov (United States)

    Al-Attabi, Z; D'Arcy, B R; Deeth, H C

    2009-01-01

    Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.

  4. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm3 and 500 mg/Nm3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investigation of the possibility of binding fly ash particles by elemental sulphur

    Directory of Open Access Journals (Sweden)

    Vidojković V.

    2006-01-01

    Full Text Available Thermal power plants in Serbia use lignite for electrical power production The secondary product of coal combustion is fly ash in the amount of 17%. Fly ash causes the pollution of air, water and soil, and also cause many human, especially lung diseases. Secondary sulphur is a product of crude oil refining. The aim of this study was to investigate the use of sulphur as a bonding material in ultra fine particle agglomeration (smaller than 63 μm in fly ash. The agglomeration should make the ash particles larger and heavy enough to fall without flying fractions. The experiments showed that during the homogenization of the ashes and sulphur from 150 to 170 °C in a reactor with intensive mixing, an amount of 15% sulphur was sufficient to bond particles and cause agglomeration without visible flying fractions.

  6. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  7. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  8. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  9. Radiating heat transfer in the power boiler downtake gas duct when firing high-ash coal

    Energy Technology Data Exchange (ETDEWEB)

    Sudarev, A.V.; Antonovsky, V.I.; Kiselev, O.V.; Sivchikov, S.B. (VTUS-Leningrad Metal Plant-LMZ, Leningrad (USSR))

    1990-01-01

    The experimental study of radiation heat transfer in the downtake gas duct of the pulverized-coal fired steam boiler for 500 MW power unit when firing high-ash (40% ash content) coal from Ekibastuz coal field was carried out by means of the radiometer probe with rotary optical axis. The local values of the combustion product temperature were measured simultaneously in the down-take and the operation parameters for boiler gas and steam ducts were registered. The dependence of the extinction coefficient of combustion products on the radiating layer thickness was obtained. The radiating power, generated in the gas space, remote from the steam superheater and reaching the super heater boundaries, was measured. The heat release coefficients from radiation and heat transfer coefficients, were determined for definite operation conditions of the superheater working. The contribution of the gas space outside the steam superheater into the radiating heat transfer negligible.

  10. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    Science.gov (United States)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  11. Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS.

    Science.gov (United States)

    Raab, Andrea; Ronzan, Marilena; Feldmann, Joerg

    2017-10-18

    Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds, high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80% of the total sulphur present in A. sativum. The roots and bulbs of A. sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitively to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (e.g. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as a sulphur-specific detector and ESI-MS as a molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of the so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S

  12. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  13. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... when heated at temperatures above 450°C. The amounts of potassium captured by metakaolin pellet decreases with increasing reaction temperature in the range of 900-1300°C and increases again with further increasing the temperature up to 1500°C. There is no reaction of pre-made mullite with KCl...

  14. Sulphur depletion altered somatic embryogenesis in Theobroma ...

    African Journals Online (AJOL)

    Sulphur depletion altered somatic embryogenesis in Theobroma cacao L. Biochemical difference related to sulphur metabolism between embryogenic and non embryogenic calli. Minyaka Emile, Niemenak Nicolas, Issali Emmanuel Auguste, Sangare Abdourahamane, Denis Ndoumou Omokolo ...

  15. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y.; Kato, K.; Kuroda, M.; Nakagawa, N. [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  16. Sulphur depletion altered somatic embryogenesis in Theobroma ...

    African Journals Online (AJOL)

    USER

    2010-08-30

    Aug 30, 2010 ... chemical or characteristic functions of these biomolecules in cells (Saito, 2004). In growing conditions, sulphur defi- ciency challenges plants (explants) to alter the metabolism necessary for growth. Restriction in sulphur not only limits the synthesis of sulphurous amino acids, but will also limit the proteins ...

  17. Optimal sulphuric acid production using Acidithiobacillus caldus ...

    African Journals Online (AJOL)

    An optimised bioprocess was designed for the optimal production of sulphuric acid for application in an isotope recovery ion-exchange process. Firstly, the production of sulphuric acid (H2SO4) was optimised in aerated batch bioreactors using Acidithiobacillus caldus (DSM 8584) using elemental sulphur, achieving H2SO4 ...

  18. Sulphur removal in ironmaking and oxygen steelmaking

    NARCIS (Netherlands)

    Schrama, F.N.H.; Beunder, E.M.; van den Berg, B; Yang, Y.; Boom, R.

    2017-01-01

    Sulphur removal in the ironmaking and oxygen steelmaking process is reviewed. A sulphur balance is made for the steelmaking process of Tata Steel IJmuiden, the Netherlands. There are four stages where sulphur can be removed: in the blast furnace (BF), during hot metal (HM) pretreatment, in the

  19. A method for the assessment of the mineral/organic matter association of trace elements in coal

    Energy Technology Data Exchange (ETDEWEB)

    Atkin, B.P.; Somerfield, C,; Laban, K.L. [University of Nottingham, Nottingham (United Kingdom). Department of Mineral Resources Engineering

    1995-12-31

    Describes a method for the sequential dissolution of coal samples enabling the location and mineral association of the trace elements to be determined. The technique is based on the sequential attack of a coal sample by acids using a sealed microwave digestion system. An advantage of the trace element technique is that the forms of sulphur in the coal can be determined simultaneously with the trace elements with sulphate sulphur, pyritic sulphur and organic sulphur being extracted in the three fractions. Selective dissolution was verified by X-ray diffraction, following low temperature ashing, and the petrographic analysis of the residues. 10 refs., 1 tab.

  20. Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

    1996-12-27

    Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

  1. Development and Application of High Strength TMCP Plate for Coal Mining Machinery

    Science.gov (United States)

    Yongqing, Zhang; Aimin, Guo; Liandeng, Yao

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  2. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  3. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    Science.gov (United States)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  4. SOME CHARACTERISTICS OF THE "KONGORA" - TOMISLAVGRAD COAL FIELD (WEST HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Stanislav Živković

    1997-12-01

    Full Text Available According to it's energy potential »Kongora« coal field is very important source of energy. Coal strech, spreading and laying and proportion between coal and barren give good presumption for a rentabile surface exploitation. The coal analyses, specially analysis of sulphur content showed, that content of harm component on the update technology level is in permissible limits, and exploitation in thermal power plants will not destroy environment (the paper is published in Croatian.

  5. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2009-06-01

    Full Text Available A metamorphic limestone and a dolomite were employed as SO2 sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O2 level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (~60% for Ca/S = 2 was obtained.

  6. Removing sulphur oxides from a fluid stream

    Science.gov (United States)

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  7. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  8. Sulphur cycling in a Neoarchaean microbial mat.

    Science.gov (United States)

    Meyer, N R; Zerkle, A L; Fike, D A

    2017-05-01

    Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ 34 S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ 34 S and Δ 33 S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ 34 S = 8.36 ± 1.16‰ and Δ 33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record. © 2017

  9. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000/sup 0/F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500/sup 0/F could be developed with a high degree of assurance. Process heat at 1600/sup 0/F would require considerably more materials development. While temperatures up to 2000/sup 0/F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR.

  10. Gasification of high ash content coals with steam in a semibatch fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M.; Monterio, J.L.F.; Toscani, M.

    1983-10-01

    This work reports a study on gasification of Brazilian mineral subbituminous coal with steam in a semibatch fluidized bed reactor. Several tests for the fluidization characteristics of mixtures of coal and ash were performed. Fluidization velocity was determined from the data of the minimum velocity, calculated at high temperatures and later tested. Experimental results show that flow conditions must be determined experimentally for high temperatures and pressures. The influence of temperature and pressure on product gases during the reaction and on the ratio CO/CO/sub 2/ were determined. The reaction rate is very sensitive to temperature variations between 850 and 1000 /sup 0/C. For pressures higher than 10 atm the effect of the pressure on reaction rate is negligible. The experimental results are well described by the unreacted core model above 850 /sup 0/C where the chemical reaction is the rate controlling step. The activation energy was found to be 39 kcal/mol.

  11. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China

    Directory of Open Access Journals (Sweden)

    Piaopiao Duan

    2018-02-01

    Full Text Available High-uranium (U coal is the dominant form of coal in Southwestern China. However, directly utilizing this resource can also harm the environment because this element is radioactive; it is, therefore, necessary to clean this kind of coal before burning. This research studied the geochemistry of toxic elements and their partitioning during the preparation of high-U coal in China. The results show that high-U coals are mainly distributed in Southwestern China and are characterized by a high organic sulfur (S content and vanadium (V-chromium (Cr-molybdenum (Mo-U element assemblage. These elements are well-correlated with one another, but are all negatively related to ash yield, indicating that all four are syngenetic in origin and associated with organic materials. A mineralogical analysis shows that U in Ganhe and Rongyang coal occurs within fine-grained anatase, clay minerals, guadarramite, and pyrite, while V occurs in clay minerals, pyrite, and dolomite, and Cr occurs in dolomite. Other elements, such as fluorine (F, lead (Pb, selenium (Se, and mercury (Hg, mainly occur in pyrite. By applying a gravity separation method to separate minerals from coal, the content of the enrichment element assemblage of V-Cr-Mo-U in Rongyang coal is still shown to be higher than, or close to, that of the original feed because this element assemblage is derived from hydrothermal fluids during syngenetic or early diagenetic phases, but other elements (beryllium [Be], F, manganese [Mn], zinc [Zn], Pb, arsenic [As], Se, Hg can be efficiently removed. Once cleaned, the coal obtained by gravity separation was subject to a flotation test to separate minerals; these results indicate that while a portion of V and Cr can be removed, Mo and U remain difficult to extract. It is evident that the two most commonly utilized industrialized coal preparation methods, gravity separation and flotation, cannot effectively remove U from coal where this element occurs in large

  12. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z.H.; Zheng, B.S.; Zhang, J.; Belkin, H.E.; Finkelman, R.B.; Zhao, F.H.; Zhao, D.X.; Zhou, Y.S.; Chen, C.G. [Chinese Academy of Sciences, Guiyang (China). Inst. of Geochemistry

    1999-12-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray difffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (ZAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar(?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the same coals. Analysis of the coal indicates that arsenic exists mainly in the form of As{sup 5+} and As{sup 3+}, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  13. Surto de polioencefalomalacia por ingestão excessiva de enxofre na dieta em bezerros no Rio Grande do Sul Outbreak of polioencephalomalacia in cattle consuming high sulphur diet in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo H.J. da Cunha

    2010-08-01

    Full Text Available Neste trabalho descreve-se surto de polioencefalomalacia em bovinos decorrente da ingestão de dieta com excessiva concentração de enxofre em uma propriedade no Rio Grande do Sul. O lote era composto por 30 bezerros, mantidos em um piquete com azevém (Lolium multiflorum e suplementados com ração e sal mineral. Seis bezerros morreram e dois deles foram necropsiados; amostras de tecido hepático para dosagem de chumbo e fragmentos do sistema nervoso central para histopatológico foram colhidos. Um dos bezerros foi examinado antes da morte e sinais neurológicos encefálicos foram constatados. Foi estabelecido o teor de enxofre nos componentes da dieta e água, a produção de sulfeto de hidrogênio ruminal em cinco bovinos do mesmo lote e realizada PCR de um bloco de parafina para detecção de DNA do herpevirus bovino tipo 5. O consumo total de enxofre foi de 0,38% da matéria seca fornecida aos animais e as dosagens de sulfeto de hidrogênio ruminal em animais do mesmo lote variaram de 1.000 a 2.500ppm. Os achados histopatológicos indicaram necrose laminar do córtex cerebral. Não foi detectado chumbo na amostra de tecido hepático e não foi identificado DNA do herpesvirus bovino tipo 5 no encéfalo. O quadro clínico de síndrome cerebrocortical associado aos elevados valores do sulfeto de hidrogênio ruminal, alta ingestão de enxofre na dieta e os achados histopatológicos permitem estabelecer o excesso de enxofre como causador da polioencefalomalacia.An outbreak of polioencephalomalacia in cattle caused by ingestion of high sulphur diet, in Rio Grande do Sul, Brazil is described. One group of 30 calves was kept in Italian ryegrass (Lolium multiflorum pasture and supplemented with concentrate and minerals. Six calves died, necropsy was performed in two of them and liver samples (for lead determination and fragments of central nervous system were collected. Clinical and neurological examination was performed in one calf and confirmed

  14. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  15. Sulphur Extraction at Bryan Mound

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Carolyn L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

  16. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    Energy Technology Data Exchange (ETDEWEB)

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  17. Experimental Study on Capture of PM10 Emitted from Coal Combustion with High Gradient Magnetic Field

    Science.gov (United States)

    Lu, Duanfeng; Zhao, Changsui; Wu, Xin; Li, Yongwang; Han, Song

    2007-06-01

    Experiments on capturing PM10 emitted from coal combustion with high gradient magnetic field were carried out for the first time. A new fluidized bed aerosol generator was developed for generating fly ash aerosol with diameter less than 10μm constantly. The variation in the particle number concentration caused by high gradient magnetic field was measured with the Electrical Low Pressure Impactor (ELPI). Fly ash particles from combustion of three kinds of coal were sampled. Particle saturation magnetic moment is 0.37emu/g, 1.25emu/g, 2.00emu/g respectively. The results show that for the particles in the size range of 0.1μm˜10μm particle capture efficiency varies from 25% to 40%. The particle with either larger or smaller size has higher capture efficiency, and the particle with medium size (1μm˜3μm) has lower capture efficiency. The particle capture efficiency rises with increase in the particle magnetization, the magnetic field gradient and the filling ratio of ferromagnetic medium, and it reduces with increase in aerosol velocity. The present study indicates that high gradient magnetic separation is an effective way to control fine particle emission from coal combustion.

  18. Coal-fired high performance power generating system. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  19. Effect of the synthetic zeolite modification on its physicochemical and catalytic properties in the preparation of the catalysts effectively removing sulphur dioxide from exhaust gases

    Directory of Open Access Journals (Sweden)

    Marcewicz-Kuba Agnieszka

    2016-06-01

    Full Text Available This work presents the research results of the influence of modification deSONOx type catalyst of the sulfur dioxide emissions in the process of the hard coal combustion. The addition of zeolite catalysts modified by transition metal ions: V, Mg, activated by zinc sorbent with or without graphite addition caused the deeper burning of coal grains. The addition of the deSOx catalysts to the coal resulted in lowered sulphur dioxide emission. The addition of unmodified zeolite to coal during combustion reduced sulphur dioxide emission at about 5%. The modification of the support by both V and Mg reduced the amount of sulphur dioxide significantly. The obtained results of SO2 removal from exhaust gases were from 34.5% for Sip/Mg to 68.3% for Sip/V.

  20. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW Turkey

    Science.gov (United States)

    Büçkün, Zeynep; İnaner, Hülya; Oskay, Riza Görkem; Christanis, Kimon

    2015-06-01

    The Ören and Yatağan Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays many sharp alternations of matrix lignite beds and inorganic, lacustrine sediment layers. The coal is a medium-to-high ash lignite (10.47-31.16 wt%, on dry basis) with high total sulphur content (up to 10 wt%, on dry, ash-free basis), which makes it prone to self-combustion. The maceral composition indicates that the peat-forming vegetation consisted of both arboreal and herbaceous plants, with the latter being predominant in the upper part of the seam. Mica and feldspars contribute to the low part of the seam; carbonates are dominant in the upper part, whereas quartz and pyrite are present along the entire coal profile. The sudden transitions of the telmatic to the lacustrine regime and reverse is attributed to tectonic movements that controlled water table levels in the palaeomire, which affected surface runoff and hence, clastic deposition.

  1. Purification of highly polluted tip seepage water using brown coal coke. Reinigung hochbelasteter Deponiesickerwaesser mit Braunkohlenkoks

    Energy Technology Data Exchange (ETDEWEB)

    Felgener, G. (Rheinbraun AG, Koeln (Germany)); Janitza, J.; Koscielski, S. (Inst. fuer Textil- und Verfahrenstechnik, Denkendorf (Germany))

    1993-03-01

    The purpose of tests conducted over a long period of time on actual seepage water from five different household refuse tips was to ascertain whether brown coal coke, which is available as a mass product and therefore cheap, is suitable for use as an adsorptive purification agent on highly polluted tip seepage water. The present paper discusses the concept, treatment costs and the findings obtained from the tests. On the strength of the purification results it is shown that the treatment of tip seepage water can be effected successfully with brown coal coke and that the values obtained are even much lower than those stipulated in Appendix 31 of the general administrative regulations. (orig.).

  2. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, M.; Jullaphan, O.; Tang, C. [Kasetsart University, Bangkok (Thailand). Dept. of Chemical Engineering

    2011-01-15

    In this present work, fly ash and bottom ash with high crystalline silica content were obtained from the coal-fired boilers within the paper industries in Thailand. These coal ashes were used as the basic raw materials for synthetic zeolite production. The crystal type and crystallinity, specific surface area and pore size, and textural properties of zeolite products were characterized by using X-ray diffraction spectroscopy (XRD), N{sub 2} sorption analysis, and Scanning Electron Microscopy (SEM), respectively. It was found that sodalite octahydrate was selectively formed via the direct conventional (one-step) synthesis, whereas through a two-step, sodium silicate preparation and consecutive zeolite A synthesis process, 94 and 72 wt.% zeolite A products could be produced from the fly ash and bottom ash, respectively. The cation-exchange capacity (CEC) of fly ash and bottom ash-derived zeolite A products were closely similar to that of the commercial grade zeolite A.

  3. Gasification of high ash content coals with steam in a semibatch fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M.

    1983-10-01

    The work reports a study of gasification of a Brazilian subbituminous coal with steam in a semi-batch fluidized bed reactor. Several tests of the fluidization characteristics of mixtures of coal and ash were carried out. Experimental results show that flow conditions must be determined experimentally for high temperatures and pressures. The influences of temperature and pressure on product gases and on the CO/CO/sub 2/ ratio were determined. The reaction is very sensitive to temperature variations between 850 and 1000 C. For pressures above 10 atm, the effect of pressure on the reaction rate is negligible. The experimental results are well described by the uncreacted core model above 850 C where the chemical reaction is the rate-controlling step.

  4. Mill power for high-pressure grinding rolls in coal grinding

    Energy Technology Data Exchange (ETDEWEB)

    Austin, L.G. [Pennsylvania State University, University Park, PA (United States). Mineral Processing Section

    1997-08-01

    Using an instrumented laboratory high-pressure grinding rolls mill, the grinding force, gap dimension, mass flow rate and net mill power were measured for size coals and a crystalline quartz. A technique was developed to estimate the compressive stress-strain curves for compression of the materials in the mill plus the effects of elastic decompression. To reconcile the mill power and grinding pressure results, it was necessary to allow for the energy recovery on decompression. No clear correlation was obtained between the form of the stress-strain curves or the variation of specific mill power factor with the Hardgrove grindability index (HGI), although coals with the lowest and highest HGIs (i.e., 44 and 106) gave results significantly different from the other coals. Feeds below 140 mesh (105 {mu}m) flowed more rapidly than coarser feeds and would not build up high grinding pressures. This indicated shearing and fluid-like properties rather than compression as a locked bed. 6 refs., 9 figs., 1 app.

  5. Aluminum recovery from coal fly ash by high temperature chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Wijatno, Hendra [Iowa State Univ., Ames, IA (United States)

    1977-10-01

    A study of aluminum recovery from power plant fly ash by high temperature chlorination was undertaken to demonstrate that fly ash could be a potential source of aluminum, iron and possibly silicon. Magnetic separation of the iron oxide served as a first step to alleviate the iron contamination problem. However, the agglomeration of some iron oxide with alumina and silica made it difficult to completely separate the iron from the fly ash. Further iron separation was achieved by chlorinating the nonmagnetic ash fraction at 550°C for 30 minutes. This reduced the iron oxide content to less than 4 percent by weight. Chlorine flow rates affected the reaction rate much more drastically than temperatures. This suggested that diffusion was the major rate-controlling step. Besides Fe2O3, Al2O3 and SiO2, other oxides such as CaO, K2O, Na2O and MgO might have complicated the alumina recovery by forming individual chlorides or complexes. Investigating methods for separating more Fe2O3, and possibly CaO, K2O, Na2O and MgO from the nonmagnetic ash fraction before chlorinating it is highly recommended.

  6. Assessment of Mortar Corrosion by Sulphuric Acid

    OpenAIRE

    Kawahigashi, Tatsuo

    2008-01-01

    In order to study the corrosion mechanisms of water-cement system, cement mortar specimens were immersed in the sulphuric acid solution. Over the periods, changes to the roughened surfaces, mass change and neutralization depth were observed. Corrosion of cement mortar progressed through chemical reaction of sulphuric acid and ion transport in mortar. Relations between the environment operation of sulphuric acid and the corrosion (summation of chemical erosion and neutralization depth) of test...

  7. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  8. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  9. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  10. Boiler startup under conditions of convective heating of the highly reactive coal dust

    Science.gov (United States)

    Zhuikov, A. V.; Kulagin, V. A.; Baranova, M. P.; Glushkov, D. O.

    2016-12-01

    Experimental research of conditions and characteristics of ignition of the pulverized coal (with a particle size of approximately 80 μm) of different-type brown coals (1B, 2B, and 3B) during convective heating by a heated airflow (at a temperature of 425-600°C and velocity of 1-5 m/s) is carried out. The use of low-inertia thermocouples, a high-speed video camera, and dedicated software has made it possible to determine the minimum oxidizer parameters needed for coal dust ignition, and the approximation dependences of a main characteristic of the process under study―ignition delay time―on the air temperature. Results of experimental studies provide a basis for developing an optimal scheme of the boiler startup without heavy oil, which differs from the known schemes by the relatively low energy consumption for fuel-burning initiation. By example of the BKZ 75-39FB boiler, the economic usefulness of applying the boiler startup without heavy oil is shown. This scheme can be implemented using the proposed ignition burner that functions as a part of the direct system of pulverized-fuel preparation.

  11. Integrated High Temperature Coal-to-Hydrogen System with CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    James A. Ruud; Anthony Ku; Vidya Ramaswamy; Wei Wei; Patrick Willson

    2007-05-31

    A significant barrier to the commercialization of coal-to-hydrogen technologies is high capital cost. The purity requirements for H{sub 2} fuels are generally met by using a series of unit clean-up operations for residual CO removal, sulfur removal, CO{sub 2} removal and final gas polishing to achieve pure H{sub 2}. A substantial reduction in cost can be attained by reducing the number of process operations for H{sub 2} cleanup, and process efficiency can be increased by conducting syngas cleanup at higher temperatures. The objective of this program was to develop the scientific basis for a single high-temperature syngas-cleanup module to produce a pure stream of H{sub 2} from a coal-based system. The approach was to evaluate the feasibility of a 'one box' process that combines a shift reactor with a high-temperature CO{sub 2}-selective membrane to convert CO to CO{sub 2}, remove sulfur compounds, and remove CO{sub 2} in a simple, compact, fully integrated system. A system-level design was produced for a shift reactor that incorporates a high-temperature membrane. The membrane performance targets were determined. System level benefits were evaluated for a coal-to-hydrogen system that would incorporate membranes with properties that would meet the performance targets. The scientific basis for high temperature CO{sub 2}-selective membranes was evaluated by developing and validating a model for high temperature surface flow membranes. Synthesis approaches were pursued for producing membranes that integrated control of pore size with materials adsorption properties. Room temperature reverse-selectivity for CO{sub 2} was observed and performance at higher temperatures was evaluated. Implications for future membrane development are discussed.

  12. Cellulose sulphuric acid as a biodegradable catalyst for conversion ...

    Indian Academy of Sciences (India)

    ... reaction times are advantages of this methodology. The selected catalyst is found to be highly efficient and recyclable. Keywords. Cellulose sulphuric acid; aryl azides; diazotization; biodegradable. 1. Introduction. Aromatic azides are useful intermediates with various applications in organic and bioorganic chemistry.1 Two.

  13. ions on sulphur-hydryl infused cellulose surface

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Transfer zone behaviour of As(III), Co(II) and Mn(II) ions on sulphur-hydryl ... Key words: Adsorption, heavy metals, cassava fiber, penetrant transport, strive. INTRODUCTION .... charge on the complex, and x the co-ordination number. .... As3+ compared to those of Co2+ and Mn2+. The high strive shown by ...

  14. Low level of stratospheric ozone near the Jharia coal field in India

    Indian Academy of Sciences (India)

    Although air pollution due to oxides and dioxides of carbon, nitrogen and sulphur is reported to have increased in this area due to large-scale opencast mining and coal fires, no significant study on the possible impact of coal fires on the stratospheric ozone concentration has been reported so far. The possible impact of coal ...

  15. Volatile displacement of Meghalaya coals – A pointer to explore low ...

    Indian Academy of Sciences (India)

    chart indicate the coals as perhydrous to orthohydrous. The linear relationship with total sulphur indicates that the coals may have become abnormal mainly due to the marine environment of deposition and weathering. 1. Introduction. Meghalaya in NE India (figure 1), has limited reserves of about 640 million tonnes of coal, ...

  16. Amenability of Muzret bituminous coal to oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Sahinoglu, E.; Uslu, T. [Karadeniz Technical University, Department of Mining Engineering, 61080 Trabzon (Turkey)

    2008-12-15

    Laboratory scale agglomeration tests were undertaken to investigate the amenability of Muzret (Yusufeli-Artvin) bituminous coal to oil agglomeration. Kerosene was extensively used as oil in the tests. In addition, fuel oil, diesel oil, and hazelnut oil were also used in order to determine the effect of oil type. The effects of the parameters including coal content, kerosene content, agglomeration time, coal particle size, pH, oil type, and agitation rate, on the combustible matter recovery, ash reduction and pyritic sulphur reduction, were investigated. It was found that Muzret bituminous coal could be readily cleaned by oil agglomeration with substantial reductions in ash and pyritic sulphur content. Maximum combustible matter recovery, ash reduction and pyritic sulphur reduction were achieved to be 85.54%, 59.98%, and 85.17%, respectively. (author)

  17. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  18. Summary of workshop on materials issues in low emission boilers and high efficiency coal-fired cycles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The purpose of the workshop was to review with experts in the field the materials issues associated with two of the primary coal power systems being developed by the DOE Office of Fossil Energy. The DOE-FE Advanced Power Systems Program includes natural gas-based and coal-based power systems. Major activities in the natural gas-based power systems area include the Advanced Turbine Systems (ATS) Program, the Fuel Cells Program, and Hybrid Cycles. The coal-based power systems projects include the Low Emissions Boiler Systems (LEBS) Program, the High-Performance Power Systems Program (HIPPS), the Integrated (Coal) Gasification Combined-Cycle Program, and the Fluidized-Bed Combustion Program. This workshop focused on the materials issues associated with the LEBS and HIPPS technologies.

  19. Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status.

    Science.gov (United States)

    Ostaszewska, Monika; Juszczuk, Izabela M; Kołodziejek, Izabella; Rychter, Anna M

    2014-04-15

    Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by

  20. Processing low-grade coal to produce high-grade products

    CSIR Research Space (South Africa)

    de Korte, GJ

    2015-07-01

    Full Text Available to produce good quality products and at the same time ensure that coal mining remains economically viable. This requires that more cost-effective coal processing technologies be investigated and implemented....

  1. A Prediction Model for the High-Temperature Performance of Limp Coal Used in Corex

    Science.gov (United States)

    She, Yuan; Liu, Qihang; Wu, Keng; Ren, Hailiang

    By observing different coal char's microstructures and microscopic morphologies during the coking process, the characteristics of COREX coal char's microstructure and properties were analyzed. MCRI and MCSR were used to respectively describe the reactivity and the strength after reaction of coal char, with those of BF's coke for reference, and then the physical meaning of MCRI and MCSR were given. MCRI and MCSR were determined by the composition of coal char. For the two kinds of COREX coal, the formula to forecast the hot performance of coal char was set up by making a multiple linear regression between the hot performance and microstructure of the coal char at 1100°C, and the predictive values of coal char's hot performance at 600°C, 800°C and 1000°C coincided well with the measured values.

  2. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  3. Industrial applications of new sulphur biotechnology

    NARCIS (Netherlands)

    Janssen, A.J.H.; Ruitenberg, R.; Buisman, C.J.N.

    2001-01-01

    The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide

  4. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.

    1982-01-01

    In November 1980 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to determine the feasibility of utilizing high resolution seismic technology to locate and characterize underground coal burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 foot) depths of interest. A three-dimensional grid of data was obtained over the Hanna II, Phases 2 and 3 burn zone. Processing included time varying filters, deconvolution, trace composition, and two-dimensional, areal stacking of the data in order to identify burn zone anomalies. An anomaly was clearly discernable resulting from the rubble-collapse void above the burn zone which was studied in detail and compared to synthetic models. It is felt, based on these results, that the seismic method can be used to define similar burns if great care is taken in both acquisition and processing phases of an investigation. The fault studies disclosed faults at the test site of hitherto unsuspected complexity. The fault system was found to be a graben complex with numerous antithetic faults. The antithetic faults also contain folded beds. One of the faults discovered may be responsible for the unexpected problems experienced in some of the early in-situ gasification tests at the site. A series of anomalies were discovered on the northeast end of one of the seismic lines, and these reflections have been identified as adits from the old Hanna No. 1 Coal Mine.

  5. Monitoring airborne dust in a high density coal-fired power station region in North Yorkshire.

    Science.gov (United States)

    Vallack, H W; Chadwick, M J

    1993-01-01

    Concerns about the levels of dust deposition in the vicinity of coal-fired power stations in North Yorkshire, in particular Drax Power Station, prompted the commissioning of a detailed monitoring study in the area. This paper describes the first two years' work. The first 12-month study concentrated on the village of Barlow close to Drax Power Station, whilst in the second 12-month study, monitoring sites were spread along a transect passing through the power station belt formed by Ferrybridge, Eggborough and Drax Power Stations. Two monitoring sites were common to both 12-month studies, thus giving two years of continuous monitoring. Pairs of wet Frisbee dust deposit gauges (based on inverted Frisbees) were located at each site. Undissolved particulate matter from each gauge was weighed and characterized by microscopic examination of individual particles. The first 12-month study revealed a downward gradient in dust deposition rate and cenosphere content with distance from Drax Power Station. The high cenosphere content at Barlow, especially at the eastern end, suggested that there was a significant contribution from coal-fired power stations. In the second year, the overall pattern of dust deposition rate and cenosphere content across the power station belt suggested that power stations were contributing to higher levels. In particular, relatively high levels were again found at Barlow. Wind direction correlations point to the fly-ash tip next to Drax Power Station as being the source of cenospheres arriving at Barlow. It is concluded that in both years the fly-ash tip Drax Power Station was making a significant contribution to higher than expected dust deposition rates at Barlow, particularly its eastern end. Other villages in the area may also have been affected by dust originating from coal-fired power stations.

  6. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  7. Development and evaluation of highly-loaded coal slurries. Phase I summary report, October 15, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.

    1979-05-01

    Slurry fuels comprised of either bituminous, subbituminous, or lignite coal, and either aqeuous media or emulsions of No. 6 oil in water as the carrier were developed and evaluated at solids loadings up to 70% by weight. Emphasis was placed on aqueous slurries of bituminous coal. These slurries were developed for use in place of No. 6 oil in oil-fired burners. High solids loadings were attained by use of bimodal particle size distributions, which are blends of coarse-grind coal (approx. 50 to 85% -50 mesh) and fine-grind coal (generally 90% -200 mesh). The effect of the blends on slurry viscosity was determined to find the blends that minimize viscosity. The effect of mill conditions on particle size distribution was determined for each coal, using a hammermill pulverizer. A large number of water-soluble resins were evaluated for effect on slurry stability and viscosity. The best of these was found to be hydroxypropylated corn starch. Slurries based on the use of 3% solutions of the starch in water were prepared with up to 70% by weight bituminous coal and up to 65% subbituminous coal. The slurries are pourable pseudo-plastic fluids having room-temperature viscosities in the range of 550 to 1100 cp at a shear rate of 3000 sec/sup -1/, depending on the type of coal, solids loading, and particle size distribution. None of the slurries exhibited hard pack settling, even after room-temperature storage up to 74 days. Oil-in-water emulsions made with polyethylene glycol (23) lauryl ether as an emulsifier were found to be stable with respect to phase separation when stored at 160/sup 0/F. Slurries made with these emulsions do not exhibit hard pack settling after one week storage at 160/sup 0/F.

  8. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  9. Generating cleaner, cheaper coal power

    Energy Technology Data Exchange (ETDEWEB)

    Hanft, S. [Waste Treatment Technology News (USA)

    2002-05-01

    This paper reports on the development of bio-based and waste materials designed for the removal of flue gas pollutants from coal-fired power plants. Under the US DoE's Biomass Co-Firing Program, the University of North Dakota's Energy and Environmental Research Center has completed a pair of feasibility studies involving biomass (such ash turkey manure, sawdust and wood and finally sunflower hulls) cofiring with lower rank coals. Another project involves cocombusting municipal wood waste and lignite. At Brookhaven National Laboratory's Energy Sciences and Technology Dept., strains of bacteria have been developed to digest sulphur and heavy metals in coal to make it a cleaner burning fuel. A corn-derived activated carbon has been fully tested at a 30 MW co-generation plant in Urbana-Champaign for removing mercury and mercuric chloride from coal combustion flue gases. 6 refs., 3 figs., 1 tab.

  10. Atributos químicos relacionados ao processo de sulfurização em solos construídos após mineração de carvão Chemical attributes of constructed soils after surface coal mining related to sulphurization process

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda

    2010-05-01

    process changes soil and landscape characteristics, pirite may oxide and change soil chemical and mineralogical characteristics. In this context, the study aimed to evaluate the temporal evolution of soils reconstructed 2 (SA-2 and 24 (SA-24 year ago, in Boa Vista Coal Mining, in Minas do Leão, Rio Grande do Sul, Brazil. Soil characteristics measured were pH, electrical conductivity (EC, bases and aluminium content, potential acidity (H+Al, and contents of Al, Fe, Si, and soluble sulphate. Calculations accounted for cation exchange capacity, base saturation and aluminum saturation. Results indicated occurrence of oxidation processes in both reconstructed areas. Electrical condutivity and soluble phosphate contents were higher in SA-2, indicating a more active sulphurization stage in these soils. In soils of area SA-24, lower EC and smaller contents of soluble sulphate, lower base saturation, as well as higher aluminum saturation and H+Al suggest a more advanced sulphurization process compared to SA-2. Aluminum and P concentrated in older soil profiles. Soils in both areas have chemical limitations for plant growth with adversely affects to recuperation of the area.

  11. Evaluation of the Battelle Agglomerating Ash Burner High Btu Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Malow, M.; West, A.S.

    1978-06-01

    The economics of the Battelle Agglomerating Ash Burner Process for the production of high Btu gas (SNG) from coal has been evaluated. A conceptual process design including process flowsheets, heat and material balances and equipment specifications has been prepared. Capital costs, operating costs and gas costs have been developed using the CFBraun ''Gas Cost Guidelines''. The estimated capital and gas costs for the Battelle process have been compared to the alternative high Btu processes described in CFBraun's ''Factored Estimates for Western Coal Commercial Concepts'' and were found to be economically unattractive. Some of the reasons for the higher capital cost and gas costs for the Battelle process are: Low Gasifier and Combustor Operating Pressure, Low Methane Make and Concentration in the Gasifier Effluent, Large Volume of Combustion Gases Produced and SO/sub 2/ Content, Use of Dual CO/sub 2/ Removal Units, and the Methanation Scheme. The Battelle process shows thermal efficiencies significantly lower than the most efficient processes, i.e., HYGAS, CO/sub 2/ Acceptor and BI-GAS.

  12. Quenching of labile functionalised lipids by inorganic sulphur species: Evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis

    Science.gov (United States)

    Sinninghe Damst'e, Jaap S.; Rijpstra, W. Irene C.; Kock-van Dalen, A. C.; De Leeuw, Jan W.; Schenck, P. A.

    1989-06-01

    The bitumen of the Jurf ed Darawish Oil Shale has been analysed for organic sulphur compounds (OSC). A number of OSC are reported for the first time: several C 288, C 37 and C 38 2,5-dialkylthiolanes and -thiophenes and 2,6-di- n-alkylthianes, and C 19 branched thiophenes possessing the 9-methyloctadecane carbon skeleton. A number of these compounds were identified by synthesis of authentic standards. All the OSC compound classes mentioned exhibit structural isomer distributions dominated by a limited number of all theoretically possible isomers. This provides direct evidence for the formation of these OSC by abiogenic sulphur incorporation into functionalised lipids at the early stages of diagenesis. Precursors for the OSC identified are suggested. From these observations and from data on the occurrence of other OSC and of sulphur in high molecular weight substances a general model for the incorporation of sulphur into organic matter is proposed. Sulphur incorporation into precursors with double bonds (or other reactive functionalities) will lead to formation of OSC and sulphur-rich high molecular weight substances. Only precursors with two double bonds in favourable position for intramolecular addition of intermediate thiols can yield low molecular weight OSC. Double bond isomerisations by a sequence of H 2S addition and elimination reactions may play a role in this respect.

  13. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Kock-van Dalen, A.C.; Leeuw, J.W. de

    1991-01-01

    Three types of sulphur-rich, high-molecular-weight material in the alkylsulphide, the polar and the asphaltene fracions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised.

  14. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  15. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent.

    Science.gov (United States)

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas

    2011-05-15

    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  17. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  18. Temperature induced development of porous structure of bituminous coal chars at high pressure

    Directory of Open Access Journals (Sweden)

    Natalia Howaniec

    2016-01-01

    Full Text Available The porous structure of chars affects their reactivity in gasification, having an impact on the course and product distribution of the process. The shape, size and connections between pores determine the mechanical properties of chars, as well as heat and mass transport in thermochemical processing. In the study the combined effects of temperature in the range of 973–1273 °K and elevated pressure of 3 MPa on the development of porous structure of bituminous coal chars were investigated. Relatively low heating rate and long residence time characteristic for the in-situ coal conversion were applied. The increase in the temperature to 1173 °K under pressurized conditions resulted in the enhancement of porous structure development reflected in the values of the specific surface area, total pore volume, micropore area and volume, as well as ratio of the micropore volume to the total pore volume. These effects were attributed to the enhanced vaporization and devolatilization, as well as swelling behavior along the increase of temperature and under high pressure, followed by a collapse of pores over certain temperature value. This proves the strong dependence of the porous structure of chars not only on the pyrolysis process conditions but also on the physical and chemical properties of the parent fuel.

  19. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  20. Carbonization and liquid-crystal (mesophase) development. 20. Co-carbonization of a high-volatile caking coal with several petroleum pitches

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Marsh, H.

    1981-06-01

    A high-volatile caking coal and five petroleum pitches were carbonized singly and coal/pitch systems were co-carbonized to 1273 K in the ratio of 75 wt% coal and 25 wt% pitch. Optical textures of cokes from the single carbonizations and co-carbonizations are assessed in terms of modification to the coal-coke by the pitch and unmodified pitch-coke using a point-counting technique. The pitches differ considerably in their carbonization behaviour. Each pitch can be placed into one of three groups defined in terms of their interaction with the high-volatile caking coal. A passive pitch does not modify the coal-coke but apparently carbonizes independently of the coal. An active pitch modified some of the coal-coke. No pitch-coke can be detected. A super-active pitch modifies the coal-coke extensively beyond the extent expected from a 25% addition. No pitch-coke can be detected. The effects are related to the ability of the pitch to cause depolymerization of the coal. Quinoline-insoluble material in pitch may inhibit modification. (8 refs.)

  1. Distinctive features of high-ash bituminuos coals combution with low milling fineness in furnace chambers with bottom blowing

    Science.gov (United States)

    Zroychikov, N. A.; Kaverin, A. A.; Biryukov, Ya A.

    2017-11-01

    Nowadays the problem of improvement of pulverized coal combustion schemes is an actual one for national power engineering, especially for combustion of coals with low milling fineness with significant portion of moisture or mineral impurities. In this case a big portion of inert material in the fuel may cause impairment of its ignition and combustion. In addition there are a lot of boiler installations on which nitrogen oxides emission exceeds standard values significantly. Decreasing of milling fineness is not without interest as a way of lowering an electric energy consumption for pulverization, which can reach 30% of power plant’s auxiliary consumption of electricity. Development of a combustion scheme meeting the requirements both for effective coal burning and environmental measures (related to NOx emission) is a complex task and demands compromising between these two factors, because implementation of NOx control by combustion very often leads to rising of carbon-in-ash loss. However widespread occurrence of such modern research technique as computer modeling allows to conduct big amount of variants calculations of combustion schemes with low cost and find an optimum. This paper presents results of numerical research of combined schemes of coal combustion with high portion of inert material based on straight-flow burners and nozzles. Several distinctive features of furnace aerodynamics, heat transfer and combustion has been found. The combined scheme of high-ash bituminouos coals combustion with low milling fineness, which allows effective combustion of pointed type of fuels with nitrogen oxides emission reduction has been proposed.

  2. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  3. Trading sulphur emissions under the Second Sulphur Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Foersund, Finn R.; Naevdal, Eric

    1997-07-01

    Emission trading is a potent policy instrument in theoretical analyses of environmental policy. However, trading in emission quotas of non-uniformly dispersed pollutants requires that the offsetting quantities vary with location of sources. Such a system is not yet in use. The Second Sulphur Protocol for Europe makes it possible to try out a system of ``exchange rates`` through a clause allowing ``joint implementation`` of emission reductions. In this report, the authors investigate some properties of a system with exogenous exchange rates within a simultaneous trade model based on cost efficiency. Incorporation of constraints on depositions in third party countries may be necessary in order to get third party country cooperation. It is demonstrated that imposition of constraints is feasible, but it is also revealed what demands such incorporation places on the design of the institutional setting. Constraints on trade should only be introduced when the concern for the environment of the various receptors fail to be captured adequately by the calibration of the exchange rates. 16 refs., 2 figs., 3 tabs.

  4. Characterization of the intermediate product of coal solubilization by Penicillin simplicissimum

    Energy Technology Data Exchange (ETDEWEB)

    Achi, O.K. [Federal Polytechnic, Idah (Nigeria). Dept. of Science and Technology

    1994-12-01

    Penicillium simplicissimum has previously been shown to solubilize pre-oxidized alkali-extracted sub-bituminous coal. The product of solubilization, a soluble acid-precipitable coal polymer, was isolated and characterized. The effects of oxidation pretreatments on the ability to solubilize coal were also examined. The intermediate product, which comprised 30% of the original coal, was readily recovered from the growth medium by acid precipitation and possibly consisted of a heterogeneous mixture of high molecular weight compounds of approximately 2.7 x 10{sup 4} molecular weight. Further characterization by elemental analyses revealed that the bioproduct was enriched in inorganic materials, oxygen, nitrogen but lower in carbon, hydrogen and sulphur when compared with the original coal. A 14% loss of carbon atoms occurred during the biodegradation. The product had a featureless visible light spectrum and a shoulder in the ultraviolet range at 290 nm. Infrared analyses showed a decrease in aromatic carbons, methylenic bonds and etheric oxygen. Experimental results suggested that solubilization changes appear to be largely oxidative and may involve cleavage of intermonomeric linkages in coal.

  5. High-resolution X-ray computed tomography observations of the thermal drying of lump-sized subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Jonathan P. [Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA (United States); EMS Energy Institute, University Park, PA (United States); Pone, J. Denis N. [ConocoPhilips Technology Center, Bartlesville, Oklahoma (United States); Mitchell, Gareth D.; Halleck, Phillip [EMS Energy Institute, University Park, PA (United States)

    2011-01-15

    Drying of low-rank coals affects: coal cleaning, combustion, comminution, gasification, liquefaction, and in-seam fluid-flow (water, coalbed methane, and carbon dioxide for sequestration/enhanced coalbed methane). To evaluate the extent of drying-induced transitions, 3 lump-sized (approximately 6 x 2 x 2 cm) Powder River Basin subbituminous coal samples were thermally dried in an air-drying coal oven at 50 C over two weeks. A high-resolution industrial X-ray computed tomography scanner was utilized to generate (non-destructively) three-dimensional regional volumetric renderings, as-received and over 3-stages of drying. The lumps had cleats, both open and mineral filled, with a degree of fracture diversity along the longitudinal plane. Comparison of the virtual slice surfaces, at identifiable locations, allowed the induced cracking and shrinkage accompanying the transitions during 19% moisture loss to almost dry to be observed. Under these drying conditions, the heat transfer, and thus extent of drying, proceeded radially inward. With increased drying time the fractures extend and become larger in aperture as the coal shrinks. The major fractures mostly followed the existing cleat system. With additional drying, these cleats widened and the aperture increase propagated deeper into the coal extended into the butt cleats. New fractures were located mostly perpendicular to the cleat fracture surface. The external volume of the coal lumps had limited shrinkage. The axial extent of the shrinkage length (lump edge to lump edge) was on the order of 4-6%, the bulk of the shrinkage being accommodated by the internal shrinkage between cleats. (author)

  6. 30 CFR 250.1603 - Determination of sulphur deposit.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Determination of sulphur deposit. 250.1603... Determination of sulphur deposit. (a) Upon receipt of a written request from the lessee, the District Manager will determine whether a sulphur deposit has been defined that contains sulphur in paying quantities (i...

  7. Geochemistry and mineralization of Novaky coal seam

    Directory of Open Access Journals (Sweden)

    Verbich František

    1998-09-01

    Full Text Available The mineralization and geochemistry of the most important Slovak coal deposit in Novaky was intensively studied in the past. The favourable geological conditions create rich mineral association. There are different minerals in the deposit and they are responsible for the enhanced content of some elements in the coal. The summary of notions about geochemistry and mineralization of the coal seam with the emphasis on the main harmful elements – sulphur and arsenic – and their spacial distribution are studied in this paper.

  8. The possibilites of coal seam underground excavation in Republic of Macedonia with high productive excavation methods

    OpenAIRE

    Despodov, Zoran; Doneva, Nikolinka; Mijalkovski, Stojance

    2008-01-01

    The paper presents mining and geology properties of coal deposits in R.Macedonia predetermined for underground exploitation. Also it will be shown the way of coal seams preparation and development for underground excavation with longwall mining methods. Based on mining and geology properties of coal and it’s caloric value it will be observed the possibilities for application on the longwall mining which is among excavation methods with highest production and capacity applied in the contemp...

  9. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  10. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  11. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  12. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  13. Proposal of a new rheological model of a highly loaded coal-water mixture (CWM)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, S. [University of Tokyo, Tokyo (Japan). School for Engineering

    2003-07-01

    Effective use of coal has been increasingly highlighted by the growing needs for energy sources. Among them low-rank coal including sub-bituminous coal and brown coal is an abundant resource, but it has not been competitive in thermal coal markets due to its low heating value and a tendency for spontaneous combustion. One solution to this problem is the Coal-Water Mixture (CWM) technique. This paper proposes a new rheological model of CWM. Several reports that have described the importance of a particle size distribution minimizes the void fraction among the coal particles in a low viscosity CWM. This model was semi-empirically derived from the concept of the average thickness of liquid layer among coal particles, and the relative viscosity of the slurry was described as a function of the void fraction and specific surface area of particles. The extension of the model to non-Newtonian fluids based on coagulation process was also discussed. The relative viscosity of CWM estimated by this model was compared with experimental data. The results were in good agreement with the experimental data when the void fraction of sample could be accurately calculated from the particle size distribution. In particular, a sample in which the void fraction of coal particles is minimal does not always show the lowest viscosity. It became clear that in theory, the relative viscosity of CWM is influenced not only by the void fraction but also by the specific surface area of particles.

  14. Coal Matrix Deformation and Pore Structure Change in High-Pressure Nitrogen Replacement of Methane

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ji

    2018-01-01

    Full Text Available Coal matrix deformation is one of the main controlling factors for coal reservoir permeability changes in nitrogen foam fracturing. The characteristics and mechanism of coal matrix deformation during the process of adsorption/desorption were studied by isothermal adsorption/desorption experiments with methane and nitrogen. Based on the free-energy theories, the Langmuir equation, and elastic mechanics, mathematical models of coal matrix deformation were developed and the deformation characteristics in adsorption/desorption processes were examined. From the study, we deduced that the coal matrix swelling, caused by methane adsorption, was a Langmuir-type relationship with the gas pressure, and exponentially increased as the adsorption quantity increased. Then, the deformation rate and amplitude of the coal matrix decreased gradually with the increase of the pressure. At the following stage, where nitrogen replaces methane, the coal matrix swelling continued but the deformation amplitude decreased, which was only 19.60% of the methane adsorption stage. At the mixed gas desorption stage, the coal matrix shrank with the reduction of pressure and the shrinkage amount changed logarithmically with the pressure, which had the hysteresis effect when compared with the swelling in adsorption. The mechanism of coal matrix deformation was discussed through a comparison of the change of micropores, mesopores, and also part macropores in the adsorption process.

  15. Combination of metamorphism and deformation affect the nano-scale pore structures and macromolecule characteristics of high-rank deformed coals

    Science.gov (United States)

    Zhang, W.; Li, H.; Ju, Y.

    2013-12-01

    Coal constitutes a large proportion of total energy supply in the world. Coalbed Methane (CBM) composes the greenhouse gases, which has attracted more and more scientists' concern and attention. The adsorption/desorption characteristics and mechanism of CBM on high-rank deformed coals are in favor of enhancing gas recovery, reducing coal mining accidents and carbon emission. Although the influence factors of CBM adsorption/desorption on different coals have been intensively studied, the combined action of metamorphism and deformation on high-rank coals have been rarely researched. Nevertheless. Metamorphism and deformation are the most fundamental driving forces that cause the changes of inner structures and compositions in coal strata, and then alter the adsorption/desorption capacities of CBM on different coalbeds. South of Qinshui Basin in Shanxi province developed with abundant high-rank coals is the first demonstrate area of CBM development in China. Meanwhile Southwest of Fujian province represents high metamorphic-deformed coals region due to the intense volcanic activities. Therefore samples were taken in both areas to elaborate the adsorption/desorption characteristics and mechanism of CBM. Based on hand specimens description, coal macerals testing, proximate analysis, ultimate analysis and vitrinite reflectance testing, the physical properties and composition characteristics of high-rank deformed coals have been studied. Combined with liquid nitrogen adsorption experiments, Transmission Electron Microscopy (TEM) observation, Fourier Transform Infrared Spectrometry (FTIR) and Nuclear Magnetic Resonance (NMR) experiments, the results show that nano-pores increase and become homogenization with metamorphic-deformation enhancement, stacking of the macromolecular basic structural units (BSU) enhances, aromatic compound increases while aliphatic chain compound and oxygen-containing function groups decrease. Comparing to coal adsorption/desorption isotherm

  16. Determination of polycyclic aromatic hydrocarbons in coal combustion gas using high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, N. [Ishikawajima Harima Heavy Industry Co Ltd, Tokyo (Japan). Research Institution

    2002-11-01

    The study describes a sampling and analysis procedure for polycyclic aromatic hydrocarbons (PAH) at high temperatures in flue gas. Particulate matter sampling was used in conjunction with gas phase sampling. Particulates were collected on quartz fiber filter heated at the same temperature as flue gas. Vaporous PAHs not retained by the filter were cooled at 55{sup o}C and trapped from the gas phase on Tenax-GC polymer beads of 10 g. The sample volume was about 1 m{sup 3}. Tenax-GC has demonstrated high collection efficiency for benzo(a)pyrene (B(a)P) generated at 375{sup o}C under a stream of nitrogen. PAH were extracted with n-pentane for 4 h by a continuous PAH extractor. It demonstrated 99% extraction efficiency for B(a)P spiked on the adsorbent and it was more effective than Soxhlet extraction. The extracts were concentrated to 1 ml of n-pentane in a Kuderna Danish evaporator. Qualitative and quantitative analysis of the extracts were performed by high performance liquid chromatograph (HPLC) with ultraviolet/fluorescence detection. Eight PAH (3,4,5,6-dibenzocarbazole, phenanthrene, anthracene, fluoranthene, pyrene, 2-methylanthracene, benz(a)anthracene, benzo(a)pyrene) were determined in coal combustion gas on reducing NOx procedures. It was demonstrated that the tendency to reduce NOx levels leads to an increase in the PAH present. Moreover total concentration of four PAH (phenanthrene, fluoranthene, pyrene, benzo(a)pyrene) in this study is satisfactory agreement with those measured in the emissions of coal-fired power stations in the literature.

  17. The Chemical Percolation Devolatilization Model Applied to the Devolatilization of Coal in High Intensity Acoustic Fields

    Directory of Open Access Journals (Sweden)

    Veras Carlos A. G.

    2002-01-01

    Full Text Available The chemical percolation devolatilization model (CPD was extended for the prediction of drying and devolatilization of coal particles in high intensity acoustic fields found in Rijke tube reactors. The acoustic oscillations enhance the heat and mass transfer processes in the fuel bed as well as in the freeboard, above the grate. The results from simulations in a Rijke tube combustor have shown an increase in the rate of water evaporation and thermal degradation of the particles. The devolatilization model, based on chemical percolation, applied in pulsating regime allowed the dynamic prediction on the yields of CO, CO2, CH4, H2O, other light gases as well as tar which are important on ignition and stabilization of flames. The model predicted the quantity and form of nitrogen containing species generated during devolatilization, for which knowledge is strategically indispensable for reducing pollutant emissions (NOx in flames under acoustic excitation .

  18. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    chloride from the deposit thus chlorination is not a corrosion form that is seen. An increase in straw share from 10 % to 20 % (% energy basis) gave a higher amount of potassium sulphate in the ash and consequently greater amount of sulphidation. At high metal and flue gas temperatures, low temperature hot...... chloride deposited onto superheater sections which causes accelerated corrosion by chlorination. A field investigation at Midtkraft Studstrupværket in Denmark has been undertaken where coal with 10% straw and 20% straw (% energy basis) has been used as fuel for up to 3000 hours. The study was undertaken by......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C...

  19. Engineering Development of Coal-Fired High-Performance Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    York Tsuo

    2000-12-31

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately. This report addresses the areas of technical progress for this quarter. The detail of syngas cooler design is given in this report. The final construction work of the CFB pyrolyzer pilot plant has started during this quarter. No experimental testing was performed during this quarter. The proposed test matrix for the future CFB pyrolyzer tests is given in this report. Besides testing various fuels, bed temperature will be the primary test parameter.

  20. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.

    Science.gov (United States)

    Fermoso, J; Arias, B; Gil, M V; Plaza, M G; Pevida, C; Pis, J J; Rubiera, F

    2010-05-01

    Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Method for analysis of heavy sulphur compounds using gas chromatography with flame photometric detection

    OpenAIRE

    Moreira, N.; Pinho, P. Guedes de; Vasconcelos, I

    2004-01-01

    A method for analysis of heavy sulphur compounds in wines, based on gas chromatography (GC) with flame photometric detection, is reported. Wine samples preparation includes a dichloromethane liquid–liquid extraction followed by concentration under a nitrogen atmosphere. The extracted fraction was also analysed by GC–mass spectrometry. The method enables high recovery of sulphur compounds in wine and satisfies the requirements of repeatability and sensitivity. Applications of the meth...

  2. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  3. 30 CFR 870.19 - How to calculate excess moisture in HIGH-rank coals.

    Science.gov (United States)

    2010-07-01

    ... coals. 870.19 Section 870.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION ABANDONED MINE RECLAMATION FUND-FEE COLLECTION AND... and 30 °C; and, D4596-93, Standard Practice for Collection of Channel Samples of Coal in a Mine are...

  4. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

    Science.gov (United States)

    Roslin, A.; Esterle, J. S.

    2016-06-01

    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  5. Polycyclic aromatic hydrocarbons (PAHs) around tea processing industries using high-sulfur coals.

    Science.gov (United States)

    Saikia, Jyotilima; Khare, Puja; Saikia, Prasenjit; Saikia, Binoy K

    2017-10-01

    In the present investigation, the concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5, PM10 and dust particles emitted from two tea processing industrial units were studied that uses high-sulfur coal as their energy source. A total of 16 PAHs (viz. naphthalene (Nap), acenaphthene (Ace), acenaphthylene (Acen), phenanthrene (Phe), fluorene (Flu), anthracene (Ant), fluoranthene (Fluo), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBahA), indeno[1,2,3-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were measured. The total PAH concentration was found to be 94.7 ng/m3 (∑4 PAHs) in the PM10 particle, 32.5 (∑12 PAHs) in PM2.5 and 1.08 ng/m3 (∑6 PAHs) in the dust sample from site A. In site B, the sum of the PAHs in the PM2.5, PM10 and dust samples are found to be 154.4 ng/m3 (∑7 PAHs), 165 ng/m3 (∑3 PAHs) and 1.27 ng/m3 (∑6 PAHs), respectively. Hybrid Single Particle Lagrangian Integrated Trajectory model study revealed the contribution of local or long-range transport of aerosol sources. Along with the coal combustion activities in the study sites, other sources such as biomass burning and vehicular emission may contribute to the PAHs in the aerosol samples.

  6. Coal geology

    National Research Council Canada - National Science Library

    Thomas, Larry

    2013-01-01

    This book provides a comprehensive overview of the field of coal geology. All aspects of coal geology are covered in one volume, bridgint the gap between the academic aspects and the practical role of geology in the coal industry...

  7. Microbial desulfurization of coal

    Science.gov (United States)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  8. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  9. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    Science.gov (United States)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  10. Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.C.; Duffy, J.J.; Snape, C.E.; Steel, K.M. [University of Nottingham, Nottingham (United Kingdom)

    2007-09-15

    When coal is heated in the absence of oxygen it softens at approximately 400 degrees C, becomes viscoelastic, and volatiles are driven off. With further heating, the viscous mass reaches a minimum viscosity in the range of 10{sup 3}-10{sup 5} Pa s and then begins to resolidify. A high-torque, high-temperature, controlled-strain rheometer with parallel plates has been used to study the theology during this process. Under shear, the viscosity of the softening mass decreases with increasing shear rate. During resolidification, the viscosity increases as C-C bond formation and physical interactions gives rise to an aromatic network, but, under shear, the network breaks apart and flows. This is viewed as a yielding of the structure. The higher the shear rate, the earlier the yielding occurs, such that if the shear rate is low enough, the structure is able to build. Also, further into resolidification lower shear rates are able to break the structure. It is proposed that resolidification occurs through the formation of aromatic clusters that grow and become crosslinked by non-covalent interactions. As the clusters grow, the amount of liquid surrounding them decreases and it is thought that the non-covalent interactions between clusters and liquid could decrease and the ability of growing clusters to move past each other increases, which would explain the weakening of the structure under shear. This work is part of a program of work aimed at attaining a greater understanding of microstructural changes taking place during carbonization for different coals, in order to understand the mechanisms that give rise to good quality cokes and coke oven problems such as excessive wall pressure.

  11. Study on similar model of high pressure water jet impacting coal rock

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    Based on the similarity theory and dimensional analysis, the similarity criterion of the coal rock mechanical parameters were deduced. The similar materials were mainly built by the cement, sand, nitrile rubber powder and polystyrene, by controlling the water-cement ratio, cement-sand ratio, curing time and additives volume ratio. The intervals of the factors were obtained by carrying out series of material compression tests. By comparing the basic mechanical parameters such as the bulk density, compressive strength, Poisson ratio and elastic modulus between the coal rock prototype and similar materials, the optimal producing proposal of the coal rock similar materials was generated based on the orthogonal design tests finally.

  12. Comparison of chest radiography and high-resolution computed tomography findings in early and low-grade coal worker's pneumoconiosis.

    Science.gov (United States)

    Savranlar, Ahmet; Altin, Remzi; Mahmutyazicioğlu, Kamran; Ozdemir, Hüseyin; Kart, Levent; Ozer, Tülay; Gündoğdu, Sadi

    2004-08-01

    High-resolution computed tomography (HRCT) is more sensitive than chest X-ray (CXR) in the depiction of parenchymal abnormalities. We aimed to present and compare CXR and HRCT findings in coal workers with and without early and low-grade coal worker's pneumoconiosis (CWP). 71 coal workers were enrolled in this study. All workers were male. The CXR and HRCT of those workers were obtained and graded by two trained readers. HRCT's were graded according to Hosoda and Shida's Japanese classification. After grading, 67 workers with CXR profusion 0/0-2/2 were included in the study. Four patients with major opacity were excluded. Profusion 0/1 to 1/1 cases were accepted as early and profusion 1/2 and 2/2 cases as low-grade pneumoconiosis. Discordance between CXR and HRCT was high. Discordance rate was found higher in the early pneumoconiosis cases with negative CXR than low-grade pneumoconiosis (60, 36 and 8%, respectively). When coal miners with normal CXR were evaluated by HRCT, six out of 10 cases were diagnosed as positive. In low-grade pneumoconiosis group, the number of patients with positive CXR but negative HRCT were low in comparison to patients with CXR negative and early pneumoconiosis findings. Most of the CXR category 0 patients (10/16) were diagnosed as category 1 by HRCT. Eleven cases diagnosed as CXR category 1 were diagnosed as category 0 (7/11) and category 2 (4/11) by HRCT. In CXR category 2 (eight cases), there were four cases diagnosed as category 1 by HRCT. Discordance between CXR and HRCT was high, especially for CXR negative and early pneumoconiosis cases. The role of CXR in screening coal workers to detect early pneumoconiosis findings should be questioned. We suggest using HRCT as a standard screening method instead of CXR to distinguish between normal and early pneumoconiosis.

  13. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China.

    Science.gov (United States)

    Qi, Liqiang; Yuan, Yongtao

    2011-08-15

    In China, flue gases emitted by coal-fired power plants are mainly cleaned using electrostatic precipitators (ESPs). However, based on observations, there is a decrease in the collection efficiency of ESPs in some power plants after burning Jungar coal in Inner Mongolia. In order to find the mechanism of coal fly ash escaping from ESPs, the size distribution, resistivity, and cohesive force of particulate matter samples from Jungar coal-fired power plants in China were measured using a Bahco centrifuge, a dust electrical resistivity test instrument, and a cohesive force test apparatus invented by the authors. Experiments were carried out to determine the chemical composition and current-voltage curve of fly ash under operating ESPs. The Al(2)O(3) content in fly ash was found to reach more than 50%, with the size distribution showing a higher content of PM2.5 and PM10 in high-alumina coal fly ash than in other coal fly ashes. The resistivity of high-alumina coal fly ash was recorded at over 10(12)Ω cm, but this did not result in a clear back corona. The cohesive force of high-alumina coal fly ash was very little. It was sensitive to smoke speed in the electric field, facilitating dust re-entrainment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Simulating the Sulphur Lamp with PLASIMO, a plasma simulation model.

    Science.gov (United States)

    Johnston, C. W.; van der Heijden, H.; van Dijk, Jan; van der Mullen Joost

    1999-10-01

    Several electrodeless lamps are currently available on the market. Examples of these are the Philips QL, Osrams Endura and GE's Genura. While these lamps make use of induction as a means of power coupling, the source of their light, namely mercury, remains the same as in older lamps. Another electrodeless configuration is the microwave powered Sulphur Lamp. Sulphur lighting has several advantages over other lamp systems. Firstly, large fluxes (≈100,000 lm) of high quality light are obtained with circuit efficacies of up to 60 percent. Secondly, unlike fluorescent and HID lamps there is no decrease in brightness with time since phospors and electrodes are not needed. Another significant aspect of the sulphur lamp is that it contains no mercury, lessening environmental hazards associated with disposal. In order to simulate the operation of this light source, PLASIMO, a plasma modeling tool which was developed at the Eindhoven University of Technology, was used. Modules were included to describe the transport properties and power in- coupling. Results of the simulations will be shown and compared with experiment.

  15. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  16. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid.

    Science.gov (United States)

    Sandström, Magnus; Jalilehvand, Farideh; Persson, Ingmar; Gelius, Ulrik; Frank, Patrick; Hall-Roth, Ingrid

    2002-02-21

    The seventeenth-century Swedish warship, Vasa, was recovered in good condition after 333 years in the cold brackish water of Stockholm harbour. After extensive treatment to stabilize and dry the ship's timbers, the ship has been on display in the Vasa Museum since 1990. However, high acidity and a rapid spread of sulphate salts were recently observed on many wooden surfaces, which threaten the continued preservation of the Vasa. Here we show that, in addition to concentrations of sulphate mostly on the surface of oak beams, elemental sulphur has accumulated within the beams (0.2-4 per cent by mass), and also sulphur compounds of intermediate oxidation states exist. The overall quantity of elemental sulphur could produce up to 5,000 kg of sulphuric acid when fully oxidized. We suggest that the oxidation of the reduced sulphur--which probably originated from the penetration of hydrogen sulphide into the timbers as they were exposed to the anoxic water--is being catalysed by iron species released from the completely corroded original iron bolts, as well as from those inserted after salvage. Treatments to arrest acid wood hydrolysis of the Vasa and other wooden marine-archaeological artefacts should therefore focus on the removal of sulphur and iron compounds.

  17. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lurka, A. [Central Mining Institute, Katowice (Poland)

    2008-06-15

    Results of passive tomography calculations are presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in the X direction by 900 m in the Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors. 8 refs., 7 figs.

  18. Caving mining in coal seams lying beneath housing estates (high rise buildings)

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A.; Gren, K.; Kowalski, A. (Kopalnia Murcki (Poland))

    1991-01-01

    Presents experience gained in extracting a coal seam by caving mining in the Murcki mine under a housing estate in a suburb of Katowice. Geological and mining conditions are described. Three 2.2 m high and 160 m long longwalls with a reach of 630-1,030 m were mined at a mean depth of 330 m in 1989 with a 40 m advance. Results of ground subsidence measurements at the mine surface are presented. The highest values measured were: subsidence 1.72 m, inclination 0.9%, extension 0.62% and compression 0.056. Discrepancy between calculated and measured values of deformations is discussed. Dependence of ground subsidence rate on longwall advance rate is considered. Final deflection of up to 12 storey high buildings out of plumb was 0.15% at the bottom part of the subsidence trough and 0.5-0.7% at the outskirts of the mining area. The measured ground deformation did not exceed the values for which the buildings were secured. 6 refs.

  19. Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.

  20. A statistical proxy for sulphuric acid concentration

    Directory of Open Access Journals (Sweden)

    S. Mikkonen

    2011-11-01

    Full Text Available Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies" for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.

  1. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  2. Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.L.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-11-18

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

  3. Measurement of sulphur gases in ambient air.

    Science.gov (United States)

    Lau, Y K

    1989-08-01

    A gas chromatograph with a flame photometric detector is set up for the direct analysis of COS, H2S, CS2, SO2, CH3SH, C2H5SH in ambient air.Logarithmic transformation is used to counterbalance the non-linear nature of the detector response for the individual sulphur gases. A quality assurance procedure is described to compensate any variation of response during field measurement. The use of Tedlar bags for sampling COS, CS2, CH3SH, C2H5SH is acceptable despite the general conception that sulphur gases are unstable in Tedlar bags.

  4. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments.

    Science.gov (United States)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun

    2008-05-01

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.

  5. Beef and coal are key drivers of Australia’s high nitrogen footprint

    Science.gov (United States)

    Liang, Xia; Leach, Allison M.; Galloway, James N.; Gu, Baojing; Lam, Shu Kee; Chen, Deli

    2016-12-01

    Anthropogenic release of reactive nitrogen (Nr; all species of N except N2) to the global nitrogen (N) cycle is substantial and it negatively affects human and ecosystem health. A novel metric, the N footprint, provides a consumer-based perspective for Nr use efficiency and connects lifestyle choices with Nr losses. Here we report the first full-scale assessment of the anthropogenic Nr loss by Australians. Despite its ‘clean and green’ image, Australia has the largest N footprint (47 kg N cap-1 yr-1) both in food and energy sectors among all countries that have used the N-Calculator model. About 69% of the Australia’s N footprint is attributed to food consumption and the associated food production, with the rest from energy consumption. Beef consumption and production is the major contributor of the high food N footprint, while the heavy dependence on coal for electricity explains the large energy N footprint. Our study demonstrates opportunities for managing Nr loss and lifestyle choices to reduce the N footprint.

  6. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    Science.gov (United States)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  7. Total sulphate vs. sulphuric acid monomer in nucleation studies

    OpenAIRE

    Neitola, K.; Brus, D.; Makkonen, U.; Sipilä, M; R. L. Mauldin III; N. Sarnela; Jokinen, T; H. Lihavainen; M. Kulmala

    2014-01-01

    Sulphuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulphuric acid concentration is crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulphuric acid monomer and total sulphate concentrations measured from the same source of sulphuric acid vapour. The discrepancy of about one to two orders of magnitude was found with similar formation rates. To...

  8. Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Walther, Jens Honore

    2017-01-01

    In this work, three-dimensional computational fluid dynamics (CFD) studies of sulphur oxides (SOx) andsulphuric acid (H2SO4) formation processes in a large, low speed two-stroke marine diesel engine are carriedout. The current numerical study aims to investigate the conversion of sulphuric dioxide...... by thebase mechanism. Predictions of the variations of SOx and the associated SO2 to SO3 conversion inresponse to the change of fuel sulphur content, swirl velocity, start of injection, scavenge pressure andhumidity qualitatively agree with numerical and experimental results from the literature. The model...... isfurther evaluated using the measured SO2 to SO3 conversion levels in a low load, low scavenge pressurecase and a low load, high scavenge pressure case. The absolute values of simulated and measured conversionlevels are close, although the former appear to be higher. The current results show...

  9. Fluidized bed coal desulfurization

    Science.gov (United States)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  10. Coals of Greece: distribution, quality and reserves

    Energy Technology Data Exchange (ETDEWEB)

    Koukouzas, C.; Koukouzas, N. [Institute of Geological and Mineral Exploration, Athens (Greece). Dept. of Energy Resources

    1995-08-01

    Greek coals occur in a number of sedimentary basins and range in age from Eocene to Quaternary. The petrographic data indicate a wide variation in petrographic and chemical composition. The rank ranges from the transition zone peat-lignite to subbituminous. Lignite constitutes the most abundant type of coal in Greece and the most important of the Greek lignite deposits formed during the Pliocene and Pleistocene in shallow lakes and marshes of closed intramontaine basins. The proved lignite reserves are currently estimated at 6750 MT, excluding the 4300 Mm{sup 3} of Philipi peat in Macedonia. There, 58% (about 3900 Mt) is considered to be economically recoverable. The probable and possible reserves are estimated to be of the order of 4000 Mt. The Kozane-Ptolemais-Amynteo-Florian basins in Macedonia contain most (about 64%) of the nation`s coal resources. These lignites, which are all already being exploited, have a very low calorific value (at Ptolemais-Amynteo, 1400 kcal/kg; at Megalopolis, 900 kcal/kg) and high ash and low sulphur contents. The lignite production for 1992 was over 54 Mt. The greatest centres of lignite production are in Macedonia, at the opencast mines of Ptolemais and Amynteo, and in Peloponnesus, at the opencast mine of Negalopolis. The vast majority (98%) of the extracted lignite is used for electricity generation and feeds power plants which have a total capacity of 4533 MW. The lignite-based power plants accounts for more than 72% of the total electricity generation of the country. 19 refs., 6 figs., 2 tabs.

  11. Characterization of some coals and coal intercalations by high-resolution /sup 1/H (BR-24/MAS at 270 MHz) and /sup 13/ (CP/MAS) n. m. r. in solids

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, H.; Scheler, G.; Kuenstner, E.

    1988-04-01

    High resolution /sup 1/H n.m.r. studies combining the BR-24 multiple-pulse method after BURUM and RHIM with fast magic-angle sample spinning (MAS), and high resolution solid-state /sup 13/C n.m.r. measurements with cross polarization (CP) and MAS have been used for investigating: a number of coals of different ranks; GDR soft brown coals characterized by textural differences; and typical intercalations to be found in such soft brown coals. The resolution level of /sup 1/H n.m.r. spectra achieved so far at a resonance frequency of 270 MHz permits determination of essential functional groups. The coalification series ranging from soft brown coal to anthracite shows an increase of the aromaticity values f/sub a//sup C/ and also an increase of the f..cap alpha../sup H/ values, which is analogous to the increases in reflectance and carbon content. There are marked differences between the functional groups to be found in detrital and xylite-containing soft brown coals. Tertiary (Miocene) brown coals from the 2nd Lower Lusatian seam (GDR) (i.e. unbedded, poorly bedded, bedded, xylite-containing unbedded, and gelified bedded coals) differ significantly due to variations in micropetrographical composition. Varying amounts of cellulose and lignin are contained in the xylites of the 2nd Lower Lusatian seam. /sup 13/C and /sup 1/H n.m.r. measurements are employed to determine the main constituents of substances such as pyropissite, retinite, fusite and 'monkey hairs' (fossilized rubber). 48 refs., 5 figs., 3 tabs

  12. Intensification of zinc dissolution process in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Stanojević D.

    2005-01-01

    Full Text Available Many high purity salts are produced by dissolving pure metal in non-oxidizing mineral acids. If hydrogen overpotential on the given metal is high, then the rate of overall process is defined by reaction of hydrogen ion reduction. This study investigated the possibility of accelerated dissolving of metal zinc in sulphuric acid by introducing copper cathode on which evolving hydrogen is much easier than on zinc. It was found out that the acceleration of zinc dissolving is possible and, at constant surface of copper cathode depends on the quality of electrical contact between copper electrode and zinc.

  13. Strange particle production in sulphur-sulphur interactions at 200 GeV/c per nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bayes, A.C. [Birmingham Univ. (United Kingdom); Abatzis, S.; Andrighetto, A.; Antinori, F.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Blaes, R.; Bloodworth, I.J.; Bohm, J.; Bravar, A.; Carney, J.N.; Cruz, B. de la; Clewer, S.; Davies, J.P.; Di Bari, D.; Dodenhoff, C.J.; Dufey, J.P.; Elia, D.; Engelfried, J.; Evans, D.; Fini, R.; French, B.R.; Ghidini, B.; Helstrup, H.; Holme, A.K.; Jacholkowski, A.; Kachelhoffer, T.; Kahane, J.; Katchanov, V.A.; Kinson, J.B.; Kirk, A.; Knudson, K.; Ladron de Guevara, P.; Lassalle, J.C.; Lenti, V.; Leruste, P.; Loconsole, R.A.; Loevhoeiden, G.; Manzari, V.; Martens, K.; Michalon, A.; Morando, M.; Mueller, U.; Navach, F.; Narjoux, J.L.; Passaseo, M.; Pellegrini, F.; Penzo, A.; Quercigh, E.; Ricci, R.; Sandor, L.; Safarik, K.; Segato, G.; Siebert, H.W.; Singovsky, A.V.; Sene, M.; Sene, R.; Thorsteinsen, T.F.; Undheim, G.; Urban, J.; Vassiliadis, G.; Villalobos Baillie, O.; Volte, A.; Voltolini, C.; Votruba, M.F.; Waelder, G.; Zavada, P.; WA94 Collaboration

    1994-01-03

    The WA94 experiment is designed to study the production of strange and multistrange baryons and antibaryons in sulphur-sulphur interactions at 200 GeV/c per nucleon. The Omega spectrometer, equipped with MWPCs operated in the butterfly mode, is used to measure particles in the central rapidity window with p{sub T}>1.0 GeV/c. Preliminary results are presented on the production of {Lambda}, anti {Lambda}, {Xi}{sup -} and anti {Xi}{sup -}. (orig.)

  14. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...

  15. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...

  16. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, Andrew [Southern Research Institute, Durham, NC (United States); Goyal, Amit [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States); Gangwal, Santosh [Southern Research Institute, Durham, NC (United States)

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  17. Effect of pyrolysis conditions on reactivity of clean coals produced from poor quality coals

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Natas, P.; Basinas, P.; Sakellaropoulos, G.P. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece)

    2005-07-01

    A preventive fuels pre-treatment technique, based on low temperature carbonization has been tested. Clean coals were produced from two Greek poor quality coals (Ptolemais and Megalopolis) and an Australian coal sample, in a lab-scale fixed bed reactor, under helium atmosphere and ambient pressure. The effects of carbonisation temperature (200-900{sup o}C) and residence time (5-120 min) on the properties of the obtained chars were investigated. Special attention was paid to the polluting compounds (S,N,Hg and Cl) removal. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralised coal. The reactivity under combustion conditions of the chars produced was also investigated. It was observed that low temperature carbonisation could contribute to clean coal production by effectively removing the major part of the existing polluting compounds in the coals. Thus, depending on coal type, nitrogen, mercury and chlorine conversion continuously increase with temperature, while sulphur removal seems to reach a plateau above 500-600{sup o}C. Furthermore, the prolongation of carbonisation time above 20 min does not affect the elements conversion of the pollutants. Therefore carbonization at 500-600{sup o}C for about 20 min could be considered sufficient for clean coal production for poor quality coals. The reactivity of the prepared clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermobalance at ambient pressure and 20{sup o}C/min heating rate. At increased pyrolysis temperatures higher initial combustion temperatures were observed, due to the volatile reduction in char production stage. Mineral matter removal leads to increased char reactivity by increasing both the initial combustion temperature and the combustion rate. 13 refs., 18 figs., 1 tab.

  18. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    Science.gov (United States)

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  19. Utilization of ferrofluids in coal preparation

    Directory of Open Access Journals (Sweden)

    Turèániová ¼udmila

    1998-09-01

    Full Text Available The contribution deals with the possibilities of ferrofluid application as a separation medium and a selective wetting agent with the aim of desulphurization and ash content decreasing of brown coal from Slovak deposits. The influence of magnetic field induction on sulphur and ash content in the products of magneto-hydrostatic separation was observed. The adsorption of ferrofluids on the surface of coal was observed. The ferrofluids cause above all the change of magnetic properties and they increase the separability of materials under magnetic field.

  20. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  1. A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Shabtai, J.

    1994-04-01

    A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

  2. Colombian coal production and export ports

    Energy Technology Data Exchange (ETDEWEB)

    Ruiseco, M.C. [Carbones del Caribe SA (Colombia)

    1996-12-31

    The present situation in Colombia regarding producing and shipping coal is summarised. Coal mined in North Cerrejon is shipped form the port of Puerto Bolivar. This port and its infrastructure could be expanded to cope with increased production from North Cerrejon and may be also from Central Cerrejon. Alternatively, a port could be built at Rio Canas in La Guajira. In the Cienaga-Santa Marta area, Drummond`s port, the port of Santa Marta operated by Carboandes, and Prodeco`s port between Santa Marta and Cienaga export coal from the Cesarregion Propuerto. Consultants are assessing the building of another port in an area called Mallorquin at the mouth of the Magdalena River. By the dawn of the 21st century, Colombia should be able to produce over 50 million tons of coal annually, with low ash and sulphur contents suitable to satisfy the world`s environmental regulations.

  3. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  4. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  5. Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries

    Science.gov (United States)

    Konarov, Aishuak; Bakenov, Zhumabay; Yashiro, Hitoshi; Sun, Yang-Kook; Myung, Seung-Taek

    2017-07-01

    A S/DPAN (dehydrogenated polyacrylonitrile) composite shows promising electrode performances as a cathode material for Li-S batteries though its electric conductivity is insufficient for high rate tests. In an attempt to enhance the electric conductivity, the S/DPAN composite is attached on reduced graphene oxide (rGO) sheets via self-assembling modification. As a result, the conductivity improves to ∼10-4 S cm-1, and the S/DPAN/rGO composite thereby delivers approximately 90% of the theoretical capacity of sulphur at a rate of 0.2C (0.34 A g-1) over 700 mAh (g-S)-1 even at 2C (3.4 A g-1). We first report on the Csbnd S bond between sulphur and DPAN in a composite that maintains the bond even after an extensive cycling test, as confirmed by time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). These synergistic effects enable facile electron transport such that the S/DPAN/rGO composite electrode is able to maintain superior electrode performances.

  6. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available ). Chapter 1. In: Kinetics of Coal Gasification, New York: Wiley. 17 VILIENSKI, T. AND HEZMALIAN, D.M., (1978). Dynamics of the Combustion of Pulverized Fuel. Energia, Moscow, 246p 18 FRANKS, R.G.E., (1967). Mathematical Modelling in Chemical Engineering...

  7. DOLOMITE DESULFURIZATION BEHAVIOR IN A BUBBLING FLUIDIZED BED PILOT PLANT FOR HIGH ASH COAL

    Directory of Open Access Journals (Sweden)

    G. M. F. Gomes

    Full Text Available Abstract Although fluidized bed in situ desulphurization from coal combustion has been widely studied, there are aspects that remain under investigation. Additionally, few publications address Brazilian coal desulphurization via fluidized beds. This study used a 250 kWth bubbling fluidized bed pilot plant to analyze different aspects of the dolomite desulphurization of two Brazilian coals. Superficial velocities of 0.38 and 0.46 m/s, flue gas recycling, Ca/S molar ratios and elutriation were assessed. Results confirmed the influence of the Ca/S molar ratio and superficial velocity - SO2 conversion up to 60.5% was achieved for one coal type, and 70.9% was achieved for the other type. A recycling ratio of 54.6% could increase SO2 conversion up to 86.1%. Elutriation and collection of ashes and Ca-containing products did not present the same behavior because a lower wt. % of CaO was collected by the gas controlled mechanism compared to the ash.

  8. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Strange and non-strange baryon and antibaryon production in sulphur-tungsten and sulphur-sulphur interactions at 200 A Gev/c

    Energy Technology Data Exchange (ETDEWEB)

    Holme, A.K.

    1995-11-01

    The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs.

  10. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  11. High temperature millimeter wave radiometric and interferometric measurements of slag-refractory interaction for application to coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Slaugh, Ryan W.; Woskov, Paul P.

    2011-09-17

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments) such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a state-of-the-art dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous radiometric measurements of sample temperature, emissivity, and flow dynamics to over 1873 K. Interferometric capability is supplied via a probe signal originating from the 137 GHz radiometer local oscillator (LO). The interferometric 'video' channels allow measurement of additional parameters simultaneously, such as volume expansion, thickness change, and slag viscosity along with temperature or emissivity. This capability has been used to demonstrate measurement of temperature and simulated coal slag infiltration into a chromia refractory brick sample as well as slag flow down a vertically placed refractory brick. Observed phenomena include slag melting and slumping, slag reboil and foam with oxygen evolution, and eventual failure of the alumina crucible through corrosion by the molten slag. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.

  12. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  13. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  14. Evaluation of Various Pulse-Decay Laboratory Permeability Measurement Techniques for Highly Stressed Coals

    Science.gov (United States)

    Feng, Ruimin; Harpalani, Satya; Pandey, Rohit

    2017-02-01

    The transient technique for laboratory permeability measurement, proposed by Brace et al. (J Geophys Res 73:2225-2236, 1968) and widely used for conventional gas reservoir rocks, is the preferred method when testing low-permeability rocks in the laboratory. However, Brace et al.'s solution leads to considerable errors since it does not take into account compressive storage and sorption effect when applied to sorptive rocks, such as, coals and shales. To verify the applicability of this solution when used to characterize fluid flow behavior of coal, an in-depth investigation of permeability evolution for flow of helium and methane depletion was conducted for San Juan coals using the pressure pulse-decay method under best replicated in situ conditions. Three permeability solutions, Brace et al.'s (1968), Dicker and Smits's (International meeting on petroleum engineering, Society of Petroleum Engineers, 1988) and Cui et al.'s (Geofluids 9:208-223, 2009), were utilized to establish the permeability trends. Both helium and methane permeability results exhibited very small difference between the Brace et al.'s solution and Dicker and Smits's solution, indicating that the effect of compressive storage is negligible. However, methane permeability enhancement at low pressures due to coal matrix shrinkage resulting from gas desorption can be significant and this was observed in pressure response plots and the estimated permeability values using Cui et al.'s solution only. Therefore, it is recommended that Cui et al.'s solution be employed to correctly include the sorption effect when testing coal permeability using the transient technique. A series of experiments were also carried out to establish the stress-dependent permeability trend under constant effective stress condition, and then quantify the sole contribution of the sorption effect on permeability variation. By comparison with the laboratory data obtained under in situ stress/strain condition, it was verified that

  15. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  16. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  17. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  18. HIGH-QUALITY SELF-COMPACTING CONCRETE WITH COAL BURNING WASTE

    Directory of Open Access Journals (Sweden)

    Voronin Viktor Valerianovich

    2018-01-01

    Full Text Available Subject: nowadays self-compacting concretes (SCC, the use of which requires no additional compaction, have become widespread for use in densely-reinforced structures and hard-to-reach places. In self-compacting concretes, finely-ground admixtures-microfillers are widely used for controlling technological properties. Their introduction into the concrete mix allows us to obtain more dense structure of concrete. The influence of micro-fillers on water consumption and plasticity of concrete mix, on kinetics of strength gain rate, heat release and corrosion resistance is also noticeable. Research objectives: the work focuses on the development of composition of self-compacting concrete with assigned properties with the use of fly ash based on coal burning waste, optimized with the help of experimental design method in order to clarify the influence of ash and cement quantity, sand size on strength properties. Materials and methods: pure Portland cement CEM I 42.5 N was used as a binder. Crushed granite of fraction 5…20 mm was used as coarse aggregate, coarse quartz sand with the fineness modulus of 2.6 and fine sand with the fineness modulus of 1.4 were used as fillers. A superplasticizer BASF-Master Glenium 115 was used as a plasticizing admixture. The fly ash from Cherepetskaya thermal power plant was used as a filler. The study of strength and technological properties of self-compacting concrete was performed by using standard methods. Results: we obtained three-factor quadratic dependence of strength properties on the content of ash, cement and fraction of fine filler in the mix of fine fillers. Conclusions: introduction of micro-filler admixture based on the fly ash allowed us to obtain a concrete mix with high mobility, fluidity and self-compaction property. The obtained concrete has high strength characteristics, delayed strength gain rate due to replacement of part of the binder with ash. Introduction of the fly ash increases degree of

  19. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  20. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  1. Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide.

    Science.gov (United States)

    Barata, A; Caldeira, J; Botelheiro, R; Pagliara, D; Malfeito-Ferreira, M; Loureiro, V

    2008-01-31

    The wine spoilage yeast species Dekkera bruxellensis, after inoculation in red wines, displayed three survival patterns characterized by: i) initial lag phase followed by growth and sequential death; ii) initial death phase leading to reduced viable counts followed by growth and sequential death; and iii) death phase leading to complete loss of viability. These survival patterns were observed for the same strain in different dry red wine blends with 12% (v/v) ethanol and pH 3.50, in the absence of free sulphur dioxide. For the same wine blend, these patterns also varied with the tested strain. Under laboratory conditions the addition of 150 mg/l of potassium metabisulphite (PMB) to dry red wine with 12% (v/v) ethanol and pH 3.50 reduced initial cell counts by more than 6 logarithmic cycles, inducing full death within less than 24 h. Winery trials showed that D. bruxellensis blooms were only prevented in the presence of about 40 mg/l of free sulphur dioxide in dry red wine, with 13.8% (v/v) ethanol and pH 3.42, matured in oak barrels. These different amounts of PMB and sulphur dioxide corresponded to about 1 mg/l of molecular sulphur dioxide. Our results therefore demonstrate that the control of populations of D. bruxellensis growing in red wine can only be achieved under the presence of relatively high doses of molecular sulphur dioxide.

  2. Coal desulfurization

    Science.gov (United States)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  3. NA35: sulphur-gold collision

    CERN Multimedia

    1991-01-01

    In this image the real particles produced by the collision of a 6400 GeV sulphur ion with a gold target can be seen as they pass through a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. The NA35 experiment, which was in operation in the 1980s, was part of CERN's ongoing heavy ion project.

  4. Efficient use of coal water fuels

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley; Doug Palfreyman; Peter Scaife [CSIRO Energy Technology (Australia)

    2008-04-15

    This report assesses the use of coal water fuels for high efficiency power generation, and focuses on internal combustion engines. The coal water fuels are based on UCC's ultra clean coal, and the study considered the entire fuel cycle - from coal in the ground, through to delivered electricity. 67 refs., 39 figs., 79 tabs.

  5. {open_quotes}Experimental investigation of brown coal combustion with siumlated gas Turbine Exhaust Gas in a combined cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Kakaras, E.; Vourliotis, P.

    1995-12-31

    The main objective of this study is the experimental investigation of the brown coal combustion (brown coal with high sulphur content, e.g. {open_quotes}Megalopolis{close_quotes} lignite) in a lab-scale Atmospheric Fluidized Bed (AFB). The fluidizing gas and the oxidant medium is the Simulated gas Turbine Exhaust flue Gas - {open_quotes}Vitiated Air{close_quotes} (STEG - V.A.). The STEG simulates the exhaust flue gas from the turbine MS 9/1 (FA) produced by EGT - GEC Alsthom (/1/). According to the IFRF experiments, the lowest O{sub 2} level allowed for stable combustion is 10%, concentration which corresponds to 88.4 % burnout in the IFRF experimental furnace. For the improvement of the coal burnout the presence of an oxidation catalyst is considered necessary in order, first, to avoid the incomplete combustion of the coal and second, to decrease the CO and C{sub x}H{sub y} emissions. The catalysts, supplied by KAT-TEC (/4/), are perovskit-type with TiO{sub 2} and Pt as stabilisers. The purposes of the trials are: (1) To examine the possibility to achieve the combustion of low grade brown coal under these conditions. (2) The investigation of the burnout behaviour as well as the resulting O{sub 2} CO{sub 2}, CO, SO{sub 2}, N{sub 2}O, C{sub x}H{sub y} and NO{sub x} emissions.

  6. Petrography and rank of the Bhangtar coals, southeastern Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Pareek, H.S. (BH23, Meerut (India))

    1990-07-01

    In Bhutan, a potential coal deposit is exposed at Bhangtar in the 'landslide zone'. Nineteen coal seams are encountered in this area, and occur in the Lower Gondwana Supergroup preserved in between the Main Boundary Fault and the Thrust. The coal is low in moisture, {lt}1.76%, but the coal cores show moisture values of 3.16%. The ash content is up to 48.87% and increases substantially in the younger seams. The volatile content (on a pure coal basis) ranges from 23.38% to 41.02%. The sulphur content is less than 0.61%. The coals are non-coking. The amount of trace elements in the coal is quite low. The average petrographic composition of the Bhangtar coal is vitrinite - 31%, exinite - 2%, inertinite - 31%, and mineral and shaly matter - 36%, the vitrinite proportion decreases from the older to the younger seams, which are shaly. an age can be assigned to the Bhangtar coal. Based on oil reflectance, the rank of the coal is metalignitous to hypobituminous. The average microlithotype composition of the coal is vitrite - 30%, clarite - 1%, vitrinertite V - 14%, vitrinertite I - 11%, durite - 3%, fusite - 14%, and carbominerite - 27%. Vitrite decreases in proportion towards the younger seams, 'intermediates' show a concomitant increase, while durite and fusite remain constant. Carbonaceous shale contains fragmentary inertinite and vitrinite macerals and is interlayered with micro-bands of shaly coal which is characterised by abundant fragments of fusinite and vitrinite. The coal is very fragile and thus amenable to economic beneficiation. The coal is used as fuel in electric power plants. The Bhangtar coal is characteristically distinct from the Gondwana coals of India in petrography and rank, but correlates petrographically with the Kameng coals of Arunachal Pradesh, India. 18 refs., 4 figs., 8 tabs., 3 plates.

  7. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  8. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  9. Biostimulators from coal

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1984-04-01

    A report is presented on a meeting of the Bureau of the Scientific Council of the Ministry of Coal Industry of the USSR on chemistry of fossil fuels held on 21-22 November 1983 in Moscow. Papers delivered during the meeting are evaluated. Chemistry of black and brown coal from the USSR was analyzed. Chemical coal properties which are of particular significance for coal use as an agricultural fertilizer (biostimulator of plant growth) were investigated. Brown and black coal with the highest oxidation level used as a fuel by power plants could be used for production of fertilizers with a high content of humic acids. Tests carried out in the USSR in various climatic zones (in the North and in Central Asia) showed that biostimulators from coal improved plant growth, reduced ripening period, increased crops, improved physical properties of soils (prevented moisture losses). Utilizing selected wastes from coal processing for production of biostimulators was also discussed. Methods for coal preparation for biostimulant production (crushing, screening, chemical processing) were evaluated. Prospects of biostimulator use in land reclamation were discussed.

  10. Fault Detection in Coal Mills used in Power Plants

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    In order to achieve high performance and efficiency of coal-fired power plants, it is highly important to control the coal flow into the furnace in the power plant. This means suppression of disturbances and force the coal mill to deliver the required coal flow, as well as monitor the coal mill...

  11. Undesirable sulphur and carbonyl flavor compounds in UHT milk: a review.

    Science.gov (United States)

    Zabbia, Alex; Buys, Elna M; De Kock, Henriette L

    2012-01-01

    Ultra High Temperature (UHT) processing leads to the formation of "cooked" and "flat" flavors in milk. These undesirable notes occur due to the volatile formation of a variety of sulphur containing compounds, methyl ketones and aliphatic aldehydes, derived from the constituents of the milk's matrix during thermal processing and storage. The "cooked" flavor of UHT milk is associated with the presence of a variety of sulphur containing compounds while the "stale" flavor is characterized by the dissipation of these sulphur volatiles and an increase of the formation and presence of both methyl ketones and aliphatic aldehydes over time. The extent to which the individual volatiles contribute to the overall flavor of UHT milk is not clear. The proposed formation of these volatiles, that is, the methods to control the intensity of "cooked" and "stale" flavors associated with UHT milk and extraction techniques for the isolation of these volatiles from milk, have been reviewed.

  12. Estimation of glycated hemoglobin by 2,6-dimethylphenol: Sulphuric acid conventional method.

    Science.gov (United States)

    Mallya, H M; Pattabiraman, T N

    2001-01-01

    Glycated hemoglobin levels in hemolysate of normal and diabetic patients were determined by the 2,6-dimethylphenol:57.5% sulphuric acid conventional method and the values were 0.39±025 and 0.69±0.21 moles of hydroxymethylfurfural(HMF)/mole of globin, respectively. The mean increase in glycated hemoglobin values in diabetics (1.8fold) was highly significant (psulphuric acid method. The values obtained by former method were about 1.2-1.4 times the values by the phenol:sulphuric acid method. This study indicates that conventional 2,6-dimethylphenol: 57.5% sulphuric acid method is more sensitive for the estimation of glycated hemoglobin than any other method based on the same principle. It is less time consuming, reliable and hence can be employed for the routine laboratory estimation of glycated hemoglobin for the assessment of glycemic control.

  13. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

  14. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  15. Differentiation of impregnation by non-impregnation of high volatile coal seams; Differenzierung der Anwendung der Traenkarbeit durch Traenkverzicht in fuer die Traenkung ungeeigneten Floezpartien

    Energy Technology Data Exchange (ETDEWEB)

    Henke, B. [Deutsche Montan Technologie GmbH, Essen (Germany). Gas and Fire Div.

    2004-07-01

    Water infusion into coal seams before winning is a measure as well for dust control as for fire and explosion prevention. The efficiency of water infusion in low volatile coal is much better as in high volatile coal. Highly efficient follow up dust control technologies in plough and shearer faces meanwhile let vanish the effect of water infusion in high volatile coal. So far water infusion no more is necessary in such seams. Underground trials have shown, that the effect of water infusion cannot be recognized any more, if highly efficient follow up dust control techniques are used. In present time water infusion in high volatile coal seams can be dropped, so far the limitations concerning low dust levels, set up by the mining authority, will be matched. By using further developed lab trials for testing coal samples on their behaviour concerning water infusion individual seams or even coal faces can be assessed concerning dropping water infusion. (orig.) [German] Das Traenken der Kohle vor der Gewinnung ist eine Massnahme zur Staubreduzierung sowohl aus der Sicht des Gesundheitsschutzes als auch des Brand- und Explosionsschutzes. Die Effektivitaet des Traenkens ist in hoch inkohlten Floezpartien jedoch hoeher als in niedrig inkohlten Floezpartien. Die hochwirksamen Staubbekaempfungsmassnahmen im Bereich der schneidenden und schaelenden Gewinnung lassen inzwischen den Traenkeffekt in den Hintergrund treten, so dass die Moeglichkeit gegeben ist, auf diese Massnahme in niedrig inkohlten Floezpartien zu verzichten. In Betriebsversuchen konnte nachgewiesen werden, dass die Wirksamkeit der Traenkung nicht mehr nachweisbar ist, wenn optimierte sekundaere Staubbekaempfungstechniken eingesetzt werden. Heute kann in stratigraphisch jungen Floezen bei der Gewinnung auf Traenkbarkeit verzichtet werden, wenn die Einhaltung bergbehoerdlicher Auflagen zur Sicherstellung der niedrigeren Staubbelastung gewaehrleistet ist. Die Weiterentwicklung der vorgeschalteten Laborversuche zur

  16. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  18. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple of sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  19. Application of XPS to coal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Grint, A.

    1983-09-01

    The use of X-ray photoelectron spectroscopy to probe the chemistry of coal surfaces is reviewed and its application to the functional group composition of bulk coals discussed. The surface composition of a range of 19 coals (anthracite to brown coal), ground under heptane, was measured and compared with the results of bulk analysis. A good correlation was obtained for oxygen, with the bituminous and higher-rank coals showing surface enrichment in oxygen. The surface bulk correlation was less good for sulphur, nitrogen and chlorine and was poor for silicon, aluminium and iron. Silicon and aluminium are enriched at the surface while iron is surface depleted. These effects are either due to different particle-size distributions of mineral and organic phases or to the mechanism of fracture in heptane preferentially exposing specific components of the coal. Oxidation and carbonization of a bituminous coal were also investigated. Oxidation was seen to occur initially via the exterior surface, producing a distribution of carbon-oxygen groups. Singly-bonded species predominate at all temperatures, stable carboxyl groups forming in significant proportion only at temperatures > 250/sup 0/C. Carbonization was seen to result in the formation of ether linkages by condensation of hydroxyl groups. (18 refs.)

  20. Biofertilzers with natural phosphate, sulphur and Acidithiobacillus in a siol with low available-P

    Directory of Open Access Journals (Sweden)

    Stamford Newton Pereira

    2003-01-01

    Full Text Available The production of mineral fertilizers is a expensive process, since it requires high energy consumption, and cannot be produced by small farmers. Laboratory assays were conducted to produce P-biofertilizers from natural phosphate (B5, B10, B15, B20, applying sulphur at different rates (5; 10; 15 and 20% inoculated with Acidithiobacillus (S* and testing increasing periods of incubation. A greenhouse experiment was carried out to evaluate the effect of the biofertilizers in a soil with low available P (Typic Fragiudult from the "Zona da Mata" of Pernambuco State, grown with yam bean (Pachyrhizus erosus in two consecutive harvests. The treatments were: Natural Phosphate (NP; biofertilizers produced in laboratory (B5, B10, B15, B20 with sulphur and Acidithiobacillus (NP+S*; natural phosphate with sulphur (20% without Acidithiobacillus (NP+S; triple super phosphate (TSP and a control without phosphorus. Plants were inoculated with a mixture of rhizobia strains (NFB 747 and NFB 748 or did not receive rhizobia inoculation. In bioassays pH and available P in the biofertilizers were analyzed. In the greenhouse experiment shoot dry matter, total N and total P in shoots, soil pH and available P were determined. Higher rates of available P were obtained in biofertilizers with sulphur and Acidithiobacillus (NP+S* and in triple super phosphate (TSP, and biofertilizers with sulphur and Acidithiobacillus (FN+S* and triple super phosphate (TSP increased plant parameters. Native rhizobia were as effective as the strains applied in inoculation. After the two harvests soil presented lower pH values and higher rates of available P when the biofertilizers B15 and B20 with sulphur and Acidithiobacillus were applied.

  1. Residues of copper and sulphur on fruits from organic orchards

    OpenAIRE

    Kelderer, Markus; Matteazzi, Aldo; Casera, Claudio

    2004-01-01

    Copper und sulphur compounds are listed in annex 2b of the EC regulation 2091/92 and are used in organic orchards to control scab, mildew and sooty blotch also during summer time. In Italy, copper compounds have a waiting period from 20 days between last treatment and harvest, for sulphur compounds it differs and can reach until 30 days for lime sulphur. The trials carried out showed that using the recommended low dosages for copper and lime sulphur it should not be a problem t...

  2. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  3. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  4. Current and predicted supply of coking coal in Poland; Aktualna i prognozowana podaz wegla koksowego w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    Mokrzycki, E.; Gawlik, L.; Blaschke, S.; Kapinos, J.; Ozga, U. [Centrum Podstawowych Problemow Gospodarki Surowcami Mineralnymi i Energia PAN, Krakow (Poland)

    1996-01-01

    Presented here is the magnitude of coking coal production in Poland in the years 1992-1994 and also predicted values for supply of this raw material for 1995 and 2000.Detailed data is given the production figures for various types of coking coal and also its quality. With the aim of determining trends in quality variations, each type of coking coal produced is divided into grades with differing intervals or sulphur, ash and moisture content. (author). 5 figs., 7 tabs.

  5. Sulphur levels in saliva as an estimation of sulphur status in cattle: a validation study

    NARCIS (Netherlands)

    Dermauw, V.; Froidmont, E.; Dijkstra, J.; Boever, de J.L.; Vyverman, W.; Debeer, A.E.; Janssens, G.P.J.

    2012-01-01

    Effective assessment of sulphur (S) status in cattle is important for optimal health, yet remains difficult. Rumen fluid S concentrations are preferred, but difficult to sample under practical conditions. This study aimed to evaluate salivary S concentration as estimator of S status in cattle.

  6. Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G.

    1984-03-01

    This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

  7. Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Juan; Susana Hernandez; Jose Manuel Andres; Carmen Ruiz [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2007-08-15

    Fly ash from coal combustion is a potential source of pollution and there is continuous interest in its recycling by converting it into products such as zeolitic materials for use in retaining pollutants. In this paper, production of granular zeolitic material from a commercially-unusable fine-fraction of a lightweight aggregate (LA) building material made from coal fly ash agglomerated with lime, by conventional alkaline activation is described. NaP1 zeolite, K-F zeolite, K-Phillipsite and K-Chabazite were synthesised. The process was optimised by combining four reaction parameters (temperature, alkali concentration, solution/fly ash ratio and reaction time). Zeolitic materials with the highest zeolite yields and cation exchange capacities were selected for future application in environmental processes. End-product zeolitic materials maintain its granular form and this could favour their use in some particular applications for environmental waste treatment (e.g. ionic exchange in column) without any further transformation stages. 21 refs., 6 figs., 6 tabs.

  8. Coal-fired plants worst point sources

    Energy Technology Data Exchange (ETDEWEB)

    Elvingson, P.

    2007-03-15

    Coal-fired power plants dominate the twenty worst emitters, not only of carbon dioxide but also of sulphur dioxide and nitrogen oxides, in the 25 'old' EU member countries. Seven plants are among the 25 worst on all three lists. They are Belchatow, Rybnik and Kozience in Poland, Cottam and Longannet in the UK, Puentes in Spain and Taranto in Italy. All data refer to 2004. German plants are among the worst in respect of carbon dioxide - nine of the 25 biggest point sources are in Germany. Topping the list for sulphur dioxide is the coal-fired Puentes power plant in the northwest of Spain. Second highest as regards sulphur dioxide is the Megalopolis A (I, II, III) complex on the Peloponnesian peninsula in Greece. Close by is Megalopolis B (IV), also on the worst 25 list. All are fired with lignite from local deposits. British plants account for nine of the 25 worst emitters of nitrogen oxides. Figures from tables reproduced in the article are from the European Pollutant Emission Register, EPER which covers 11,500 industrial facilities in the EU25 and Norway and has recently been updated with 2004 figures. 3 tabs., 1 photo.

  9. Effect of nitrogen-sulphur nutrition and inhibitors of nitrification on the yield and quality of maize grain

    Directory of Open Access Journals (Sweden)

    Otto Ložek

    2016-05-01

    Full Text Available Effect of split application of nitrogen and nitrogen+sulphur nutrition in comparison with one shot application of nitrogen + sulphur + inhibitors of nitrification (dikyandiamid, DCD and 1, 2, 4 triazol,TZ on the yield and quality of maize grain was examined in three-year small-plot experiment with maize (hybrid ,Chapalu FAO 350 on medium heavy degraded brownsoil. On the average of three experimental years one-shot application of nitrogen-sulphur nutrition in the form of ENSIN fertilizer containing nitrification inhibitors applied before maize seeding at the rate of 160 kg/ha N and 80 kg/ha1 S showed the most considerable effect on all investigated parameters. Yield of grain was increased highly significantly by 1.56 t/ha (+21.8 % against control treatment. Both parameters TKW (thousand kernel weight and content of crude protein were elevated by 7.9 % and 8.3 %, respectively. Production of protein per hectare was increased by 253 kg, that is by 31.9 % and natural effectiveness of fertilization achieved the highest value, namely 9.8 kg of grain per 1 kg of applied nitrogen. When fertilizer ENSIN (contains inhibitors of nitrification was applied in maize nutrition the achieved results were insignificantly better in all examined parameters in comparison with the split application of DASA 26/13 fertilizer under the same rate of both nitrogen and sulphur. There was found out positive tendency of favourable effect on yield and quality of grain of maize and decrease of application costs as a consequence of one shot application in this treatment. Addition of sulphur to nitrogen as well as an addition of inhibitors + sulphur to nitrogen significantly increased only grain yield of maize. Content of crude protein and TKW were increased insignificantly. Natural effectiveness of nitrogen fertilization was increasing in accordance with raising yields of maize grain as follows: nitrogen < nitrogen + sulphur < nitrogen + sulphur + inhibitors.

  10. Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst.

    Science.gov (United States)

    Luna, Pilar; Juárez, Manuela; de la Fuente, Miguel Angel

    2008-09-12

    This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.

  11. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  12. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  13. Pressurised fluidised bed combustion: an alternative for the clean use of coal. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Beucom O Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    Atmospheric fluidised bed combustion is an alternative worthy of consideration. It is a solution which maintains or even increases output slightly and, in the circulating fluidised bed variety, has the advantage of being able to burn an inconsistent quality of coal with a high sulphur content. The most important question is to what output this method can be developed whilst remaining competitive with other systems. There is a tendency to assume that atmospheric fluidised bed combustors can be developed up to 250 MW and that more powerful installations for electricity generation use systems with a higher output. In any case, this is no more than a general and preliminary observation. Its validity will be proved by the technical and economic results achieved with high output systems and by the availability of coal of the required mix of quality and price. 10 tabs., 10 figs.

  14. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite

    Science.gov (United States)

    Dai, S.; Tian, L.; Chou, C.-L.; Zhou, Y.; Zhang, M.; Zhao, L.; Wang, Jingyuan; Yang, Z.; Cao, H.; Ren, D.

    2008-01-01

    Some townships in Xuan Wei County, Yunnan Province, have one of the highest lung cancer mortality rates in China and the epidemic disease in the area has generally been attributed to the polycyclic aromatic hydrocarbons (PAHs) released from domestic coal burning. However, the cancer-causing culprit is not settled as Tian [Tian, L., 2005. Coal Combustion Emissions and Lung Cancer in Xuan Wei, China. Ph.D. thesis, University of California, Berkeley.] found nanometer quartz in these coals, soot emissions, and lung cancer tissues. We have conducted mineralogical and geochemical studies of the coals from Xuan Wei for the purpose of shedding light on the minerals which may be related to the epidemic lung cancer. In this paper, abundances, modes of occurrence, and origins of minerals and elements in the coals from two mines in Xuan Wei have been studied using optical microscope, low-temperature ashing, X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, and inductively-coupled plasma mass spectrometry. The minerals in the coals are mainly composed of quartz, chamosite, kaolinite, and calcite. The particle size of quartz is rather small, mostly less than 20????m and it is of authigenic origin. Chamosite occurs mainly as cell-fillings. The occurrence of quartz and chamosite indicates that they were derived from the hydrothermal fluids. Epigenetic calcite is derived from calcic fluids. Kaolinite is derived mainly from sediment source region of Kangdian Oldland to the west of coal basin. The composition of Xuan Wei coal is high in SiO2, Fe2O3, TiO2, CaO, MnO, V, Co, Ni, Cu, and Zn. The high SiO2 content is attributed to quartz, and the Fe2O3 content to chamosite. The high Mn and low Mg contents in the coal indicate the inputs of hydrothermal fluids. CaO occurs mainly in epigenetic calcite. Elements Ti, Co, Ni, Cu, Zn, and rare earth elements were derived from the basaltic rocks at sediment source region. ?? 2008

  15. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  16. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  17. Removal of pollutants from poor quality coals by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Panagiotis Natas; Panagiotis P. Basinas; George P. Sakellaropoulos [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece)

    2006-07-01

    With the aim of meeting the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique based on low temperature carbonization has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis) and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900{sup o}C) and residence time (5-120 minutes) on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermogravimetric analyser. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600{sup o}C. Moreover, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600{sup o}C for about 20 minutes may be considered sufficient for clean coal production from poor quality coals. 12 refs., 17 figs., 1 tab.

  18. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 3 ... Pyrite; minor element; sulphur isotope; evolution; Jaduguda; Singhbhum; India. ... By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced ...

  19. Effects of sulphur addition on modification and mechanical ...

    African Journals Online (AJOL)

    The effects of sulphur addition on the microstructure and mechanical properties of sand cast Al-12wt%Si alloy have been investigated in this study. For this purpose, different amounts of sulphur were added to Al-12wt%Si alloy in an induction furnace to produce sand castings for micro-structural and mechanical properties ...

  20. Being green on sulphur: Targets, measures and side-effects

    DEFF Research Database (Denmark)

    Kontovas, Christos A.; Panagakos, George; Psaraftis, Harilaos N.

    2016-01-01

    Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated...

  1. EFFECTS OF PHOSPHORUS AND SULPHUR ON DRY MATTER ...

    African Journals Online (AJOL)

    ABSTRACT. Phosphorus and Sulphur fertilizers are important for increasing the productivity of maize in most parts of. Nigeria. A screen-house experiment was conducted to investigate the effects of phosphorus (P) and sulphur (S) on maize dry-matter yield (MDY) in soils of five locations (Obantoko I, II, Alabata I, II, and III) in ...

  2. Hydrothermal-mechanical dewatering of brown coal

    OpenAIRE

    Guo, Jian

    2017-01-01

    There are enormous reserves of brown coal in the world. In Australia, brown coal is used to generate most of electricity in the states of Victoria and South Australia. Brown coal is characterised by very high moisture content (around 60 wt% on a wet basis). Therefore, boilers used in the power station are very large and have low thermal efficiency, leading to high cost and large emissions of green house gas. High moisture content also makes brown coal uneconomical for transport...

  3. Gas chromatographic determination of sulphur compounds in town gas.

    Science.gov (United States)

    Hoshika, Y; Iida, Y

    1977-04-11

    The gas chromatographic (GC) determination of the sulphur compounds in town gas (in the Nagoya area) was studied by using a flame-photometric detector (FPD) and the cold-trap method with liquid oxygen. The column packings used were 25% TCEP on Shimalite (AW, DMCS), 25% TCP on Shimalite (AW, DMCS), 10% PPE on Shimalite TPA, Porapak Q and silica gel. The major components identified were carbonyl sulphide, hydrogen sulphide, carbon disulphide, thiophene and tetrahydrothiophene (THT). The identities of thiophene and THT were also confirmed by GC combined with the use of a quadrupole mass spectrometer. The average concentrations and standard deviations of thiophene and THT were 8.8 +/- 1.8and 124 +/- 35 ng per 0.051, respectively. The latter value corresponds to 0.7 ppm, which is relatively high for the concentration of an odorant.

  4. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    Science.gov (United States)

    Kohnen, Math E. l.; Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. c.; Jan, W. De Leeuw

    1991-05-01

    Three types of sulphur-rich high-molecular-weight material in the alkylsulphide, the polar, and the asphaltene fractions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised using Raney Ni and were treated with MeLi/MeI, a chemical degradation method which cleaves selectively and quantitatively di- or polysulphide linkages. The products formed were characterised by gas chromatography-mass spectrometry. Raney Ni desulphurisation revealed that these S-rich macromolecules are in substantial part composed of sulphur-linked biomarkers with linear, branched, isoprenoid, steroid, hopanoid, and carotenoid carbon skeletons. MeLi/Mel treatment provided evidence that a major part of the total amount of macromolecularly bound biomarkers are linked via di- or polysulphide moieties to the macromolecular network. Since the di- or polysulphide linkages are attached at specific positions of the bound biomarkers it is proposed that they are formed by intermolecular incorporation reactions of HS x- into low-molecular-weight functionalised biological lipids during early diagenesis. The different properties (solubility and molecular weight) of the sulphur-rich macromolecules in the alkylsulphide, the resin, and the asphaltene fractions can be explained simply by differences in degree of sulphur cross-linking.

  5. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  6. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  7. Resistance properties of a bend in dense-phase pneumatic conveying of pulverized coal under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Chen, X.P.; Liang, C.; Xu, P. [Southeast University, School of Energy and Environment, Nanjing (China)

    2011-01-15

    Experiments of high-pressure dense-phase pneumatic conveying of pulverized coal with different mean particle sizes using nitrogen were carried out in an experimental test facility with a conveying pressure of up to 4 MPa. The effects of three representative operating parameters (solids-to-gas mass flow ratio, conveying pressure, mean particle size) on the total pressure drop were examined. The pressure drops across the horizontal and vertical bends were analyzed by experimental and analytical calculation. The results show that the pressure drop due to gas friction is of much less significance, while the pressure drop due to the solids friction component of the total pressure drop dominates. There exists a relationship between the pressure drop due to solids kinetic energy loss and mass flux of solids. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. 3D Hierarchical Co-Al Layered Double Hydroxides with Long-Term Stabilities and High Rate Performances in Supercapacitors

    Science.gov (United States)

    Zai, Jiantao; Liu, Yuanyuan; Li, Xiaomin; Ma, Zi-feng; Qi, Rongrong; Qian, Xuefeng

    2017-04-01

    Three-dimensional (3D) flower-like Co-Al layered double hydroxide (Co-Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co-Al-LDHs was improved. When used in supercapacitors, the obtained Co-Al-LDHs deliver a high specific capacitance of 838 F g-1 at a current density of 1 A g-1 and excellent rate performance (753 F g-1 at 30 A g-1 and 677 F g-1 at 100 A g-1), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 A g-1. This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.

  9. High conversion of coal to transportation fuels for the future with low HC gas production. Progress report No. 2, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Oblad, A.G.

    1993-04-01

    Experimental coal liquefaction studies conducted in a batch microreactor in my laboratory have demonstrated potential for high conversions Of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82 t of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous-flow reactor system (1/2 inch inside diameter) is to be designed, constructed and operated. The system is to be computer-operated for process control and data logging, and is to be fully instrumented. The primary liquid products will be characterized by GC, FTIR, and GC/MS, to determine the types and quantities of the principal components produced under conditions of high liquids production with high ratios of liquids/HC gases. From these analyses, together with GC analyses of the HC gases, hydrogen consumption for the conversion to primary liquids will be calculated.

  10. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    In Denmark, straw is utilised for the generation of energy and district heating in power plants. Combustion of straw gives rise to high contents of potassium chloride and some sulphur dioxide in the flue gas. These compounds can lead to deposits with high content of potassium chloride and potassium......, the corrosion during these experiments was monitored. Various ferritic and austenitic materials were investigated at steam temperatures ranging from 520 to 580 degrees C and flue gas temperatures ranging from 925 to 1100 degrees C. The results obtained in the demonstration program led to the rebuilding...... of the 350 MW pulverized coal fired boiler, Studstrup unit 4, into a co-firing boiler with straw in 2002. During the rebuilding, test tube sections of X20CrMoV12 1 and TP347H FG were built into the superheater and the reheater loops. The temperature ranges during these exposures was for the steam from 470...

  11. CAPTO method application to the quality assessment of Slovak brown coal

    Directory of Open Access Journals (Sweden)

    Turèániová ¼udmila

    1998-09-01

    Full Text Available This paper describes the principle and application of CAPTO (Controlled - atmosphere programmed - temperature oxidation method for the sulphur content valuation in coal. The principle of CAPTO consists in mixing the coal with an inert material (WO3 and oxidation of the sample by a linear increase of temperature to 1000oC. The evolved gases (CO2, H2O, SO2 and NO2 are analyzed by infrared sensors. The method enables the determination of different sulphur forms (sulphidic, elemental, sulphate, organic aromatic and organic non-aromatic, hydrogen, carbon and humidity. The results on Americal coal Illionois No. 6 and Slovakian brown coal Nováky serve as an illustration of the CAPTO method possibility.

  12. [Mortality study in a cohort of workers employed in a plant producing sulphuric acid ].

    Science.gov (United States)

    Pesatori, Angela Cecilia; Consonni, D; Rubagotti, Maurizia; Bonzini, M; Catalano, P; Bertazzi, P A

    2006-01-01

    In 1992, the International Agency for Research on Cancer (IARC) classified sulphuric acid mists as human carcinogen, based primarily on human data showing increased risk for larynx cancer. Uncertainties still exist about other respiratory cancers. We carried out a historical mortality study among workers ofa plant producing sulphuric acid in Tuscany, Italy. We reconstructed a cohort of 1372 male and 37female workers with at least one year of employment at the plant in the period 1962-97; 46% ofthe workers had previously been working in pyrite mines in the area where rocks have a high silica content. Environmental measurements of sulphuric acid and sulphur dioxide from the 1970's were generally below the TLVs. Mortality was investigated as of August 2000; Standardized Mortality Ratios (SMR) were calculated using Tuscany reference rates. Overall mortality was below expectation (SMR 77). In labourers, larynx cancer deaths were 4 vs 3.1 expected (SMR 130, 95% CI 35-333), while mortality from lung cancer was below expectation (27/32.8, SMR 82, 95% CI 54-120). An excess of myeloid leukaemia was observed mainly in workers without previous experience in mines (3/0.6, SMR 523, 95% CI 108-1527). Mortality from silicosis, but not from lung cancer, was remarkably high among workers with previous employment in mines. Among workers employed in sulphuric acid production, with or without previous experience in mines, we did not observe increased mortality from larynx or lung cancer. The increased mortality from myeloid leukaemia cannot be attributed to any of the exposures documented in the study plant and requires further investigation.

  13. Low-rank coal oil agglomeration

    Science.gov (United States)

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  14. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  15. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  16. Reaction between coal and ferric chloride (III)

    Energy Technology Data Exchange (ETDEWEB)

    Kochkanyan, R.O.; Khripunov, S.V.; Baranov, S.N.

    1988-05-01

    Investigates absorption of ferric chloride (III) with free and filled (hexahydrate) coordination spheres, and antimony chloride (V) by various rank coal (brown coal to anthracite). Determines magnitude of specific absorption due to dynamic pore formation. Confirms polyassociative structure of coal with donor-acceptor characteristics and its similarity with polyassociative frame matrix in clathrate forming compounds. Gives specifications of coal used and provides data on specific absorption, diffractograms and paramagnetic characteristics of coal and adduct, and others. States that coal exhibits properties of intermolecular donor-acceptor complex with charge transfer and with comparatively unstable bonds which determine their paramagnetism and high specific absorption. 9 refs.

  17. Comparison of high-pressure CO2 sorption isotherms on Eastern and Western US coals

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Hur, T -B; Fazio, J; Howard, B

    2013-10-01

    Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.

  18. Investigation on the Activity Activation and Cementitious Property of Coal Gangue with High Iron and Silica Contents

    Science.gov (United States)

    Wu, Hong; Li, Yu; Teng, Min; Yang, Yu

    2017-11-01

    The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.

  19. Clinical and histopathological changes of the nasal mucosa induced by occupational exposure to sulphuric acid mists.

    Science.gov (United States)

    Grasel, S S; Alves, V A F; da Silva, C S; Cruz, O L M; Almeida, E R; de Oliveira, E

    2003-06-01

    To assess potential alterations of the nasal mucosa by clinical and histopathological evaluation of workers exposed to sulphuric acid mists at anodising plants, correlating the findings with duration of exposure and sulphuric acid concentrations in the air, and comparing them with a control group. Fifty two workers from five plants underwent a clinical evaluation (standard questionnaire, clinical, and ear, nose, and throat examination including nasal endoscopy). For the histopathological study, 20 of the 52 subjects (study group) were randomly selected, as well as 11 unexposed subjects (control group), matched by sex, age, and smoking habits. Nasal biopsy specimens were obtained from the anterior septum mucosa and the anterior curvature of the middle turbinate in each individual. A total of 56 nasal mucosa specimens (37 in the study group and 19 in the control group) were evaluated with regard to normal respiratory epithelium or metaplastic epithelium, atypia or dysplasia, and alterations of the lamina propria. The histopathological study revealed squamous metaplasia in 29 (79%) and atypia in 13 (35%) of the 37 study group samples. No association was found between exposure duration and the clinical and histopathological variables, but a significant association was found between sulphuric acid concentrations higher than 200 micro g/m(3) and pale mucosal patches and ulcerations in the exposed subjects. Logistic regression analysis showed that the exposed subjects had a fivefold risk of developing atypia compared with the unexposed subjects. Workers exposed to sulphuric acid mists presented with a high incidence of nasal symptoms, and macroscopic and microscopic changes of the nasal mucosa, including squamous atypia and dysplasia. The risk for these histopthological lesions increased with higher sulphuric acid concentrations in the air, revealing an exposure-response relation.

  20. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study.

    Science.gov (United States)

    Tian, Linwei; Dai, Shifeng; Wang, Jianfang; Huang, Yunchao; Ho, Suzanne C; Zhou, Yiping; Lucas, Donald; Koshland, Catherine P

    2008-12-02

    The Pearl River Origin area, Qujing District of Yunnan Province, has one of the highest female lung cancer mortality rates in China. Smoking was excluded as a cause of the lung cancer excess because almost all women were non-smokers. Crystalline silica embedded in the soot emissions from coal combustion was found to be associated with the lung cancer risk in a geographical correlation study. Lung cancer rates tend to be higher in places where the Late Permian C1 coal is produced. Therefore, we have hypothesized the two processes: C1 coal combustion --> nanoquartz in ambient air --> lung cancer excess in non-smoking women. We propose to conduct a retrospective cohort study to test the hypothesis above. We will search historical records and compile an inventory of the coal mines in operation during 1930-2009. To estimate the study subjects' retrospective exposure, we will reconstruct the historical exposure scenario by burning the coal samples, collected from operating or deserted coal mines by coal geologists, in a traditional firepit of an old house. Indoor air particulate samples will be collected for nanoquartz and polycyclic aromatic hydrocarbons (PAHs) analyses. Bulk quartz content will be quantified by X-ray diffraction analysis. Size distribution of quartz will be examined by electron microscopes and by centrifugation techniques. Lifetime cumulative exposure to nanoquartz will be estimated for each subject. Using the epidemiology data, we will examine whether the use of C1 coal and the cumulative exposure to nanoquartz are associated with an elevated risk of lung cancer. The high incidence rate of lung cancer in Xuan Wei, one of the counties in the current study area, was once attributed to high indoor air concentrations of PAHs. The research results have been cited for qualitative and quantitative cancer risk assessment of PAHs by the World Health Organization and other agencies. If nanoquartz is found to be the main underlying cause of the lung cancer

  1. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Zhou Yiping

    2008-12-01

    Full Text Available Abstract Background The Pearl River Origin area, Qujing District of Yunnan Province, has one of the highest female lung cancer mortality rates in China. Smoking was excluded as a cause of the lung cancer excess because almost all women were non-smokers. Crystalline silica embedded in the soot emissions from coal combustion was found to be associated with the lung cancer risk in a geographical correlation study. Lung cancer rates tend to be higher in places where the Late Permian C1 coal is produced. Therefore, we have hypothesized the two processes: C1 coal combustion --> nanoquartz in ambient air --> lung cancer excess in non-smoking women. Methods/Design We propose to conduct a retrospective cohort study to test the hypothesis above. We will search historical records and compile an inventory of the coal mines in operation during 1930–2009. To estimate the study subjects' retrospective exposure, we will reconstruct the historical exposure scenario by burning the coal samples, collected from operating or deserted coal mines by coal geologists, in a traditional firepit of an old house. Indoor air particulate samples will be collected for nanoquartz and polycyclic aromatic hydrocarbons (PAHs analyses. Bulk quartz content will be quantified by X-ray diffraction analysis. Size distribution of quartz will be examined by electron microscopes and by centrifugation techniques. Lifetime cumulative exposure to nanoquartz will be estimated for each subject. Using the epidemiology data, we will examine whether the use of C1 coal and the cumulative exposure to nanoquartz are associated with an elevated risk of lung cancer. Discussion The high incidence rate of lung cancer in Xuan Wei, one of the counties in the current study area, was once attributed to high indoor air concentrations of PAHs. The research results have been cited for qualitative and quantitative cancer risk assessment of PAHs by the World Health Organization and other agencies. If

  2. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.

    Science.gov (United States)

    Xia, F F; Su, Y; Wei, X M; He, Y H; Wu, Z C; Ghulam, A; He, R

    2014-07-01

    Sulphur bioconversion in landfill cover soils, including the metabolism of sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB), is one of the important processes affecting H2 S emission from landfills. In this study, two landfills with or without landfill gas collection and utilization system were investigated to characterize the role of biotic and abiotic factors affecting diversity and activity of SOB and SRB in the landfill cover soils. The results revealed that the potential sulphur oxidation rates (SORs) and sulphate reduction rates (SRRs) varied with landfill sites and depths. SOR was significantly correlated with pH and SO4 (2-) , while SRR was significantly related with pH. The populations of both SOB and SRB were low in the acidic landfill cover soils (pH = 4.7-5.37). Cloning and terminal restriction fragment length polymorphism profiles of soxB and dsrB showed that SOB including Halothiobacillus, Thiobacillus, Thiovirga and Bradyrhizobium, and SRB including Desulfobacca, Desulforhabdus and Syntrophobacter dominated in the landfill cover soils, and their distributions were affected mainly by pH value and organic matter contents of soils. High diversity of sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB) presented in the landfill cover soils. Among the physicochemical properties of soils (moisture content, pH, organic materials, SO4 (2-) , acid volatile sulphide and total sulphur), pH was the most important factor affecting the diversity and activity of SOB and SRB in the landfill cover soils. Higher pH of landfill cover soils (i.e. neutral or slight alkaline) was favourable for the growth of SOB and SRB, leading to a rapid bioconversion of sulphur. These findings are helpful to optimize sulphur biotransformation in landfill cover soils and to control odour pollution at landfills. © 2014 The Society for Applied Microbiology.

  3. Scale-up of Advanced Low NO{sub x} and High Turndown Pulverized Coal Burner; Teifuka taioyo tei NO{sub x} bana no sukeruappu kento

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Masayoshi.; Tsuji, Hirofumi.; Makino, Hisao. [Central research institute of electric power industry, Tokyo (Japan). Chemical energy engineering department; Kiga, Takashi. [Ishikawajima-Harima Heavy Industries Crop., Tokyo (Japan). Combustion engineering department, Power plant division

    1999-06-20

    The specific low NOx burner, which is enabled to reduce both NOx and unburned carbon extremely and to perform the stable combustion at 20% load as like an oil burner, has been developed with a small size burner whose coal feed rate is 0.12 t/h in the previous study. To apply this burner to utility boilers, the influence of burner capacity on the combustion characteristics was investigated by comparison between the small burner (0.12 t/h) and a large burner (1.5 t/h) in this paper. The concept of this burner is follows. Coal particle is concentrated at outside of primary air nozzle by centrifugal force, and the coal concentration is controlled by a ring. At the exit of nozzle, the swirl of primary air is inhibited by straightener to reduce NOx efficiently. The swirl at the burner exit decreased with the increase of the straightener coefficient, which is a ratio of the gross area of the straightener to the cross section area of the primary pipe. When the straightener coefficient became greater than 1.2, the swirl was inhibited completely as sane as 0.12 t/h burner. When the pulverized coal concentration control ring was placed close to the exit of nozzle, the local concentration of pulverized coal rose 1.7 times as high as the mean concentration in primary air. With this arrangement, the comproved to 20% as like an oil burner. The unburned carbon in the fly ash was reduced very efficiently with a little increase of the NOx emission at lower load by controlling the coal concentration higher. (author)

  4. Scale-up of Advanced Low NO[sub x] and High Turndown Pulverized Coal Burner. Teifuka taioyo tei NO[sub x] bana no sukeruappu kento

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Masayoshi.; Tsuji, Hirofumi.; Makino, Hisao. (Central research institute of electric power industry, Tokyo (Japan). Chemical energy engineering department); Kiga, Takashi. (Ishikawajima-Harima Heavy Industries Crop., Tokyo (Japan). Combustion engineering department, Power plant division)

    1999-06-20

    The specific low NOx burner, which is enabled to reduce both NOx and unburned carbon extremely and to perform the stable combustion at 20% load as like an oil burner, has been developed with a small size burner whose coal feed rate is 0.12 t/h in the previous study. To apply this burner to utility boilers, the influence of burner capacity on the combustion characteristics was investigated by comparison between the small burner (0.12 t/h) and a large burner (1.5 t/h) in this paper. The concept of this burner is follows. Coal particle is concentrated at outside of primary air nozzle by centrifugal force, and the coal concentration is controlled by a ring. At the exit of nozzle, the swirl of primary air is inhibited by straightener to reduce NOx efficiently. The swirl at the burner exit decreased with the increase of the straightener coefficient, which is a ratio of the gross area of the straightener to the cross section area of the primary pipe. When the straightener coefficient became greater than 1.2, the swirl was inhibited completely as sane as 0.12 t/h burner. When the pulverized coal concentration control ring was placed close to the exit of nozzle, the local concentration of pulverized coal rose 1.7 times as high as the mean concentration in primary air. With this arrangement, the comproved to 20% as like an oil burner. The unburned carbon in the fly ash was reduced very efficiently with a little increase of the NOx emission at lower load by controlling the coal concentration higher. (author)

  5. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  6. Microbial release of sulphur ions from atmospheric pollution deposits

    Energy Technology Data Exchange (ETDEWEB)

    Killhan, K.; Wainwright, M.

    1981-12-01

    The surfaces of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electron microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for the in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sup 2 -//sub 3/; S/sub 4/O/sup 2 -//sub 6/ and SO/sup 2 -//sub 4/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred in fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We concluded that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  7. Microbial release of sulphur ions from atmospheric pollution deposits

    Energy Technology Data Exchange (ETDEWEB)

    Killham, K.; Wainwright, M.

    1981-12-01

    The surface of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electric microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sub 3//sup 2/ btw/sup -/ and; S/sub 4/O/sub 6//sup 2 -/ and SO/sub 4//sup 2 -/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred is fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We conclude that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  8. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  9. Influence of top land deposits, fuel sulphur and lubricating oil viscosity on oil consumption and bore polishing in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, J.; McGeehan, J.A.

    1984-06-01

    The subject of this paper is the description of factors which cause high oil consumption and cylinder bore polishing. The investigation focused on top land deposits, the influence of fuel sulphur and the oil viscosity in a series of direct injection diesel engines of U.S. and European origin. In these diesel engine tests it was demonstrated that particularly excessive top land deposits cause high oil consumption and cylinder bore polishing. But cylinder bore polishing can also be caused by chemical corrosion when high sulphur fuels and oils of low alcalinity are used at the same time. In addition to the top land deposits and fuel sulphur factors, multigrade oils showed significant oil control advantages. The correlation between deposits and oil sulfated ash as well as between oil dispersant type and bore polishing is demonstrated and analyses of polished cylinder liners and piston deposits are presented.

  10. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  11. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of vario...

  12. Maceral Characteristics and Vitrinite Reflectance Variation of The High Rank Coals, South Walker Creek, Bowen Basin, Australia

    Directory of Open Access Journals (Sweden)

    Asep K. Permana

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.156The Permian coals of the South Walker Creek area, with a vitrinite reflectance (Rvmax of 1.7 to 1.95% (low-volatile bituminous to semi-anthracite, are one of the highest rank coals currently mined in the Bowen Basin for the pulverized coal injection (PCI market. Studies of petrology of this coal seam have identified that the maceral composition of the coals are dominated by inertinite with lesser vitrinite, and only minor amounts of liptinite. Clay minerals, quartz, and carbonates can be seen under the optical microscope. The mineral matter occurs in association with vitrinite and inertinite macerals as syngenetic and epigenetic mineral phases. The irregular pattern of the vitrinite reflectance profile from the top to the bottom of the seam may represent a response in the organic matter to an uneven heat distribution from such hydrothermal influence. Examination of the maceral and vitrinite reflectance characteristics suggest that the mineralogical variation within the coal seam at South Walker Creek may have been controlled by various geological processes, including sediment input into the peat swamp during deposition, mineralogical changes associated with the rank advance process or metamorphism, and/or hydrothermal effects due to post depositional fluid migration through the coal seam.

  13. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  14. Combustion Aerosols from Pulverised Coal Combustion and Biomass Grate Combustion. Filtration aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lillieblad, Lena [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology

    2005-06-01

    Combustion processes generate particles, which are formed both from the inorganic content in the fuel and from organic compounds as a result of incomplete combustion. The particles are removed from the flue gas by cyclones, electrostatic precipitators (ESPs) or fabric filters (FFs). The particle removal capacity is strongly depending on the particle properties, operating conditions and selected particle removal technology. The particle properties are depending on fuel type, combustion technique and combustion conditions. In this study the particle properties for two different types of solid fuel combustion were investigated and compared. The two processes were pulverised coal combustion and grate boilers operating on woody biomass. Characterisation of fuels was made both with standard analyses and more sophisticated methods like computer controlled scanning electron microscopy (CCSEM) and subsequent leaching procedures. A major difference between coal and woody biomass is the occurrence of potassium. In woody biofuel potassium is a reactive components, mainly water-soluble or organically associated, whereas it in coal it is associated to minerals like illite. The particle number size and particle mass size distributions were measured with low-pressure impactors (LPI), electrical mobility analysers and electrical low-pressure impactors (ELPI). The submicrometer particle mass concentration was similar for the two combustion processes. There is a difference between different coals and also between different woody biofuels. The coarse particle fraction is considerably larger for coal combustion, due to the high content of minerals in the coal. Potassium, sulphur and chlorine dominate the submicrometer particle chemical composition from wood fired grate boilers. Coarser particles have a high content of calcium. Silicon and aluminium are the major elements in particles from pulverised coal combustion. An enrichment of calcium, sulphur and phosphorous in the submicrometer

  15. Combined coal gasification and Fe{sub 3}O{sub 4}-reduction using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Tamaura, Y. [Tokyo Inst. of Technology, Tokyo (Japan); Ehrensberger, K.; Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The coal/Fe{sub 3}O{sub 4} system was experimentally studied at PSI solar furnace. The reactants were directly exposed to a solar flux irradiation of 3,000 suns (1 sun = 1 kW/m{sup 2}). The combined gasification of coal and reduction of Fe{sub 2}O{sub 3} proceeded rapidly after only one second exposure, suggesting an efficient heat transfer and chemical conversion by direct solar energy absorption at the reaction site. The proposed solar thermochemical process offers the possibility of converting coal to a cleaner fluid fuel with a solar-upgraded calorific value. (author) 2 figs., 8 refs.

  16. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  17. Review of the origin of sulphur in DN-1 discharge and its implication for future development, Dauin prospect, central Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Bayrante, L.F.; Hermoso, D.Z.; Candelaria, M.R. [PNOC-Energy Development Corp., Fort Bonifacio Makati City (Philippines)] [and others

    1997-12-31

    Well DN-1, the first exploratory well of the Dauin geothermal prospect discharged in 1983 substantial quantities of sulphur with a near-neutral pH fluid (pH 6.4 to 7.2) containing maximum chloride levels of 3,300 mg/kg, SO{sub 4} of 300 mg/kg; and high CO{sub 2} and H{sub 2}S relative to the production wells in Palinpinon Field to the north. The chemistry of DN-1 discharge-fluid and the origin of sulphur have been the cause of apprehension for any future development due to concerns on the presence of a possible acid resource southeast of Cuernos de Negros. A reinterpretation of the previous and new surface data was undertaken in 1992 and 1996, including the origin of sulphur, to evaluate the potential of Dauin for development. The results indicate that the sulphur in DN-1 is formed from partial oxidation of hydrogen sulphide derived from the neutralised-acid fluids formed by sulphur hydrolysis at shallow levels but distant from DN-1. The study argues for the presence of near neutral exploitable resource in the prospect area.

  18. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  19. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  20. Analytical protocols for characterisation of sulphur-free lignin

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Abächerli, A.; Semke, H.; Malherbe, R.; Käuper, P.; Nadif, A.; Dam, van J.E.G.

    2004-01-01

    Interlaboratory tests for chemical characterisation of sulphur-free lignins were performed by five laboratories to develop useful analytical protocols, which are lacking, and identify quality-related properties. Protocols have been established for reproducible determination of the chemical

  1. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    234-8034714355. 8034714355. 1. EFFECTS OF SULPHUR ADDITION ON. ADDITION ON. 2. AND MECHANICAL PROPERTIES O. 3. 4. C. W. Onyia. 5. 1DEPT. OF METALLURGICAL AND MATERIALS. 6. 2, 4DEPT. OF METALLURGICAL ...

  2. THE SOLUBILITY OF MILAS BAUXITE ORE IN SULPHURIC ACI

    Directory of Open Access Journals (Sweden)

    Mustafa GULFEN

    2001-06-01

    Full Text Available The effects of calcination conditions,sulphuric acid concentrations and dissolvingtemperature and period as parameters to thesolubility of the bauxite ore from Gobekdagı reservesin Mugla-Milas region were investigated. The bauxitesamples were calcined in different periods at differenttemperatures. Then the solubility of the calcinedbauxite samples in sulphuric acid solution wasexamined. Dissolving activation energy (Ea wascalculated using the optimum kinetics equation andthe results obtained from the solubility studiesexamined dissolving temperatures and periods

  3. Leaching of basic oxygen furnace sludge with sulphuric acid

    Directory of Open Access Journals (Sweden)

    Andrea Miškufová

    2010-03-01

    Full Text Available In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressureand temperatures up to 100 °C is investigated on a laboratory scale. The influence of sulphuric acid concentration, temperature, timeand liquid to solid ratio (L:S on the leaching process was studied. The main aim of this study was to determine optimal conditions whenthe maximum amount of zinc passes into the solution.

  4. Three new sulphur glycosides from the seeds of Descurainia sophia.

    Science.gov (United States)

    Feng, Wei-Sheng; Li, Chun-Ge; Zheng, Xiao-Ke; Li, Ling-Ling; Chen, Wen-Jing; Zhang, Yan-Li; Cao, Yan-Gang; Gong, Jian-Hong; Kuang, Hai-Xue

    2016-08-01

    Three new sulphur glycosides, raphanuside B-D (1-3), together with a known sulphur glycoside, raphanuside (4) were isolated from the decoction of the seeds of Descurainia sophia (L.) Webb ex Prantl, and the compound 4 was reported for the first time from this plant. Their structures were identified by means of UV, IR, 1D, 2D NMR (HSQC, HMBC and NOESY) and HR-ESI-MS spectroscopic data.

  5. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2006-09-01

    Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed.

  6. Morphological, mechanical and thermo-kinetic characterization of coal ash incorporated high performance PEO/PMMA thin film electrolyte composites

    Science.gov (United States)

    Sultana, Sabiha; Saleem Khan, Mohammad; Rehan, Imran; Rehan, Kamran; Amin, Noor-ul-; Humayun, Muhammad; Tabassum, Safia; Minhaz, Aaliya

    2017-11-01

    In the present work indigenous coal ash of Pakistan was used to prepare polymeric nanocomposites with Poly (ethylene oxide) (PEO)/Poly (methyl methacrylate) (PMMA)/lithium perchlorate (LiClO4). The coal ash was first characterized by various advanced spectroscopic techniques. The coal ash loading into the polymeric blend composites was considered by Thermo gravimetric/differential thermal analysis (TG/DTA), universal testing machine (UTM) and scanning electron microscopy (SEM)/energy dispersive x-rays (EDX) analysis. From TG/DTA data detailed kinetic analysis was performed. By applying various kinetic models, a range of kinetic parameters like ▵E, ▵G, ▵H, ▵S and A were successfully calculated for the first time for the studied system. Based upon aforementioned characterization it was established that coal ash incorporation into the polymeric blend composites improves its thermal and mechanical performance.

  7. Properly synchronized measurements of droplet sizes for high-pressure intermittent coal-water slurry fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States)

    1993-12-31

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation with a laser diffraction particle analyzing (LDPA) technique. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. A correlation of the SMD with the injection conditions was determined which should show a satisfactory agreement with the measured SMD data. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure.

  8. High-latitude regions of Siberia and Northeast Russia in the Paleogene: Stratigraphy, flora, climate, coal accumulation

    Science.gov (United States)

    Akhmetiev, M. A.

    2015-07-01

    The geological structure and development history of superposed depressions on the Arctic coast of East Siberia and Bering Sea region (Chukotka, Koryakiya, northern Kamchatka) in the Early Paleogene are considered with the analysis of their flora and climatic parameters. The paleofloral analysis revealed thermophilic assemblages that reflect phases of maximum warming at the Paleocene-Eocene transition and in the Early Eocene. The appearance of thermophilic plants (Magnoliaceae, Myrtaceae, Lauraceae, Araliaceae, Loranthaceae, and others) in the Siberian segment of the Arctic region is explained by the stable atmospheric heat transfer from the Tethys to higher latitudes and absence of the latitudinal orographic barrier (Alpine-Himalayan belt). The plants migrated to high latitudes also along the meridional seaway that connected the Tethys with the Arctic Ocean via marine basins of the Eastern Paratethys, Turgai Strait, and West Siberia. The migration from the American continent was realized along the southern coast of Beringia under influence of a warm current flowing from low latitudes along the western coast of North America. The palm genus Sabal migrated to northern Kamchatka and Koryakiya precisely in this way via southern Alaska. In the Oligocene, shallow-water marine sediments in high-latitude regions were replaced by terrestrial facies. The Late Oligocene was marked by maximum cooling. Coal accumulation in Northeast Russia through the Paleogene is reviewed.

  9. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  10. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  11. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  12. Evaluation of a catalytic fixed bed reactor for sulphur trioxide decomposition / Barend Frederik Stander

    OpenAIRE

    Stander, Barend Frederik

    2014-01-01

    The world energy supply and demand, together with limited available resources have resulted in the need to develop alternative energy sources to ensure sustainable and expanding economies. Hydrogen is being considered a viable option with particular application to fuel cells. The Hybrid Sulphur cycle has been identified as a process to produce clean hydrogen (carbon free process) and can have economic benefits when coupled to nuclear reactors (High Temperature Gas Reactor) or solar heaters fo...

  13. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  14. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, P.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States); Scaroni, A.W.; Miller, B.G. [Penn State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  15. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Science.gov (United States)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  16. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  17. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Quarterly technical progress report No. 11, April 1, 1994--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R. [ABB Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., (United States); McGowan, J.G. [Univ. of Massachusetts (United States)

    1994-09-23

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the tenth quarter of the program. The four hundred hours ``Proof-of-Concept System Test`` under Task 3 was completed during this quarter. The primary objectives were to obtain steady state operation consistently on coal only and increase carbon conversion efficiency from {approximately}95% to the project goal of 98%. This was to be obtained without increasing NO{sub x} emission above the project goal level of 0.6 lbs/MBtu ({approximately}425 ppM). The testing was also designed to show that consistent, reliable operation could be achieved as another prerequisite to the demonstration. The data were gathered and analyzed for both economic and technical analysis prior to committing to the long term demonstration. The Economic Evaluation was completed and work started on commercialization plan. During this reporting period, activities included sample analysis, data reduction and interpretation from all the testing during March and April. Following preliminary conclusions are drawn based on results evaluated: coal handling/preparation system can be designed to meet technical requirements for retrofitting microfine coal combustion; boiler thermal performance met requirement; NO{sub x} Emission can meet target of 0.6 lb/MBtu; combustion efficiencies of 95% could be met on a daily average basis, somewhat below target of 98%; economic playback very sensitive to fuel differential cost, unit size, and annual operating hours; and continuous long term demonstration needed to quantify ash effect and how to best handle.

  18. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  19. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  20. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  1. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  2. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  3. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining... the table titled Table 10--HIGH VOLTAGE TRAILING CABLE AMPACITIES AND OUTSIDE DIAMETERS, the first...

  4. The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres

    Directory of Open Access Journals (Sweden)

    Matthias Gerstl

    2016-08-01

    Full Text Available An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur.

  5. The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres

    Science.gov (United States)

    Gerstl, Matthias; Nenning, Andreas; Iskandar, Riza; Rojek-Wöckner, Veronika; Bram, Martin; Hutter, Herbert; Opitz, Alexander Karl

    2016-01-01

    An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur. PMID:28773771

  6. Mercury emissions from South Africa’s coal-fired power stations

    OpenAIRE

    Belinda L. Garnham; Kristy E. Langerman

    2016-01-01

    Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016). Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the hig...

  7. Production of High Energy Aviation Fuels from Advanced Coal Liquids. Phase 1.

    Science.gov (United States)

    1987-04-01

    processes of this type are sulfolane extractors used to remove benzene, toluene, and xylene from high-octane reformate, NMP (n-methyl pyrrolidine) used to...are generated in refinery cracking and rot~rming processes . Olefins are almost exclusively a result of the cracking and coking process . Aromatic...crudes in high enough concentrations to significantly affect the energy density of conventional aviation fuels. The most likely processes for making

  8. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Rini, M.J.; LaFlesh, R.C. (Combustion Engineering, Inc., Windsor, CT (United States)); Beer, J.M.; Togan, M.A.; Yu, T.U. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); McGowan, J.G. (Univ. of Massachusetts, MA (United States))

    1987-05-06

    During the quarter from October 1986 to January 1987 the following technical progress was made: (1) Initiated a literature study focusing on optimized burner aerodynamics and design methodologies for high efficiency swirl generation devices, (2) Completed design of Swirler Test Facility (STF) to be used for comparative swirler evaluations, and (3) Initiated facility preparation at MIT for thermal atomization studies and high shear viscosity measurements.

  9. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  10. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  11. [The establishment of the arsenic poisoning rats model caused by corn flour baked by high-arsenic coal].

    Science.gov (United States)

    Yao, Mao-lin; Zhang, Ai-hua; Yu, Chun; Xu, Yu-yan; Hu, Yong; Xiao, Ting-ting; Wang, Lei

    2013-09-01

    To establish coal arsenic poisoning rat model by feeding the rats with the corn powder baked by high arsenic coal as the main raw material. Fifty Wistar rats, healthy, were randomly divided into 5 groups according to the figures of their weights, including control group, drinking arsenic poisoning water group, low, medium and high arsenic contaminated grain group, 10 rats for each.Rats in control group and drinking arsenic poisoning water group were fed with standard feed without any arsenic containing. Rats in water group would drink 100 mg/L As2O3 solution and the rats in arsenic grain groups would be fed with the arsenic contaminated grain at the dose of 25, 50 and 100 mg/kg, respectively. The duration would last for 3 months.General situation and weight were observed. At the same time, the arsenic contents of urine, hair, liver and kidney of the rats in each group were detected, as well as the histopathology changes of liver and kidney, and the ultra structure of liver was observed. The arsenic contents of urine (median(min-max)) of the rats in the arsenic water group, low, medium and high arsenic grain groups were separately 3055.59 (722.43-6389.05), 635.96(367.85-1551.31), 1453.84 (593.27-5302.94) and 3101.11 (666.64-6858.61) µg/g Cr; while the arsenic contents of hair of the rats in the above groups were separately (23.07 ± 10.38), (8.87 ± 3.31), (12.43 ± 6.65) and (25.68 ± 7.16) µg/g; the arsenic contents of liver of the rats in the above groups were separately (5.68 ± 3.13), (2.64 ± 1.52), (3.89 ± 1.76) and (5.34 ± 2.78) µg/g; and the arsenic contents of kidney were separately (6.90 ± 1.94), (3.48 ± 1.96), (5.03 ± 2.08) and (7.02 ± 1.62) µg/g; which were all significantly higher than those in the control group (86.70 (49.71-106.104) µg/g Cr,(1.28 ± 0.37) µg/g, (1.01 ± 0.34) µg/g and (1.82 ± 1.09) µg/g, respectively). The difference showed significance (P arsenic contaminated grain group. The contents of aspartate transaminase (AST

  12. Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Biswas, Ashis; Hendry, M Jim; Essilfie-Dughan, Joseph

    2017-02-01

    This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO42- in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    and modelling a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. Numerical simulations are carried out using an open source software developed at Technical University of Denmark called Dynamic Network Analysis (DNA). The machinery system suggested in this paper...

  14. Irradiation pretreatment for coal desulfurization

    Science.gov (United States)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  15. Health impacts of domestic coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B.

    1999-07-01

    The US Environmental Protection Agency (EPA) has concluded that, with the possible exception of mercury, there is no compelling evidence to indicate that emissions from coal-burning electric utility generators cause human health problems. The absence of detectable health problems is in part due to the fact that the coals burned in the US generally contain low to modest concentrations of potentially toxic trace elements and that many coal-burning utilities employ sophisticated pollution control systems that efficiently reduce the emissions of hazardous elements. This is not so in many developing countries, especially in homes where coal is used for heating and cooking. Domestic use of coal can present serious human health problems because the coals are generally mined locally with little regard to their composition and the coals are commonly burned in poorly vented or unvented stoves directly exposing residents to the emissions. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal's in the region contain up to 35,000 ppm arsenic. Chili peppers dried over these high-arsenic coal fires absorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is due to eating corn dried over burning briquettes made from high-fluorine coals and high-fluoring clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion has also caused selenium poisoning and possibly mercury

  16. Monitoring the impact of sulphur with the Austrian Bioindicator Grid

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Alfred; Smidt, Stefan; Herman, Friedl

    2003-09-01

    With the help of the Austrian Bioindicator Grid, the annual and regional development of the impact of sulphur could be assessed all over the country. - In Austria, the impact of sulphur has been assessed since 1985 with the help of the Austrian Bioindicator Grid on 760 sample plots with Picea abies as the main tree species (90%). The annual sampling allows a precise evaluation of the temporal and regional development of the impact of sulphur on the basis of legal standards. Despite the reduction of SO{sub 2} emissions in Austria, the legal standard is still exceeded on 8% of the plots. These plots are mainly located near large Austrian emitters, but also in areas affected by transboundary sulphur emissions from neighbouring countries. The present paper describes how the Bioindicator Grid can be applied for the control of legal requirements to enact effective clean air measures in Austria and take supportive measures that reduce the impact of sulphur from emitters in neighbouring countries.

  17. Placing an upper limit on cryptic marine sulphur cycling.

    Science.gov (United States)

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  18. Ignition of Water Coal Particles Coated with a Waterfilm in the Stream of High-Temperature Environment

    Directory of Open Access Journals (Sweden)

    Syrodoy Semen

    2015-01-01

    Full Text Available The characteristics and conditions of the ignition of coal-water fuel droplets (WCF in a surface coating with a thin layer of water last film have been determined experimentally. A significant impact on the dynamics of the water layer of the thermal preparation and ignition of the fuel particles has been established. It has been shown that the time of evaporation of water of the surface layer can take up to 50% of all of the induction period. The latter indicates the need to consider the existence of the surface of the film during the process modeling of ignition of coal-water particles.

  19. The Gaia-ESO Survey: Galactic evolution of sulphur and zinc

    Science.gov (United States)

    Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.; Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.; François, P.; Skúladóttir, Á.; Bragaglia, A.; Donati, P.; Spina, L.; Gallagher, A. J.; Ludwig, H.-G.; Christlieb, N.; Hansen, C. J.; Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.; Friel, E.; Jiménez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino, E.; Tang, B.; Tautvaišienė, G.; Vallenari, A.; Hawkins, K.; Gilmore, G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.

    2017-08-01

    Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims: We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods: By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results: We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions: Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 188.B-3002, 193.B-0936.The full table of S abundances is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  1. Evolution of Pennsylvanian (Late Carboniferous) peat swamps of the Ruhr Basin, Germany: Comparison of palynological, coal petrographical and organic geochemical data

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, K. [Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany); Institute of Geology and Palaeontology, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany); Hartkopf-Froeder, C. [Geological Survey North Rhine-Westphalia, de-Greiff-Strasse 195, 47803 Krefeld (Germany); Flajs, G. [Institute of Geology and Palaeontology, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany); Littke, R. [Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany)

    2010-09-01

    thermal maturity, e.g. CPI values correlate with vitrinite reflectance. Sulphur/organic carbon (S/TOC) ratios are quite uniform in clastic rocks with low to moderate TOC contents, but highly variable in coals, probably reflecting variable sulphate availability during deposition of peats. Sphenophyll-rich floral assemblages are restricted to low sulphur environments. (author)

  2. WS{sub 2} nanotube formation by sulphurization: Effect of precursor tungsten film thickness and stress

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sheung Mei; Wong, Hon Fai; Wong, Wang Cheung; Tan, Choon Kiat; Choi, Sin Yuk; Mak, Chee Leung; Li, Gui Jun [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Dong, Qing Chen [MOE Key Laboratory for Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024 (China); Leung, Chi Wah, E-mail: dennis.leung@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2016-09-15

    Transition metal dichalcogenides can exhibit as 2-dimensional layers, 1-dimensional nanotubes or 0-dimensional quantum dot structures. In general, dichalcogenide nanotubes are grown under stringent conditions, using high growth temperatures with tedious processes. Here, we report the controlled formation of tungsten disulphide (WS{sub 2}) nanostructures by manipulating the precursor film thickness, followed by a direct sulphurization process. WS{sub 2} nanotubes were formed by ultra-thin tungsten precursor films, while particle-like WS{sub 2} were obtained from thicker tungsten films under identical sulphurization conditions. To elucidate the origin of WS{sub 2} nanostructure formation, micron-sized tungsten film tracks were prepared, and such patterned films were found to suppress the growth of WS{sub 2} nanotubes. We attribute the suppression of nanotube formation to the relieving of film stress in patterned precursor films. - Highlights: • WS{sub 2} were obtained by sulphurization of sputtered tungsten films on Si substrates. • Resultant WS{sub 2} nanostructure morphology was dependent on precursor film thickness. • Patterning into micro-size W tracks suppressed the formation of nanotubes. • Stress relaxation was attributed as controlling factor for WS{sub 2} structure formation.

  3. Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress.

    Science.gov (United States)

    de Lucena, Rodrigo Mendonça; Elsztein, Carolina; de Barros Pita, Will; de Souza, Rafael Barros; de Sá Leitão Paiva Júnior, Sérgio; de Morais Junior, Marcos Antonio

    2015-11-01

    In bioethanol production plants, yeast cells are generally recycled between fermentation batches by using a treatment with sulphuric acid at a pH ranging from 2.0 to 2.5. We have previously shown that Saccharomyces cerevisiae cells exposed to sulphuric acid treatment induce the general stress response pathway, fail to activate the protein kinase A signalling cascade and requires the mechanisms of cell wall integrity and high osmolarity glycerol pathways in order to survive in this stressful condition. In the present work, we used transcriptome-wide analysis as well as physiological assays to identify the transient metabolic responses of S. cerevisiae under sulphuric acid treatment. The results presented herein indicate that survival depends on a metabolic reprogramming of the yeast cells in order to assure the yeast cell viability by preventing cell growth under this harmful condition. It involves the differential expression of a subset of genes related to cell wall composition and integrity, oxidation-reduction processes, carbohydrate metabolism, ATP synthesis and iron uptake. These results open prospects for application of this knowledge in the improvement of industrial processes based on metabolic engineering to select yeasts resistant to acid treatment.

  4. Suspected nasopharyngeal carcinoma in three workers with long-term exposure to sulphuric acid vapour.

    Science.gov (United States)

    Ho, C K; Lo, W C; Huang, P H; Wu, M T; Christiani, D C; Lin, C T

    1999-06-01

    Sulphuric acid vapour has been suspected of being an industrial carcinogen. In this study, a cluster is presented of three patients with nasopharyngeal carcinoma (NPC) who worked in the same building of a telecommunications conveyance station in southern Taiwan with long term exposure to sulphuric acid vapour concentrations as high as 0.18 mg/m3. All three workers were diagnosed with NPC within a 5 month period between September 1992, and March 1993. Compared with 19 other healthy workers from the same building, these three workers with NPC had worked significantly longer in this building than had the others (mean (SD) (years): 12.7 (0.6) v 7.4 (4.4); p = 0.01). With an in situ nucleic acid hybridisation and immunostaining method for colocalised Epstein-Barr virus (EBV) and secretory component (SC) protein among biopsy specimens of these three patients with NPCs, it was found that some tumour cells did not contain EBV and SC protein staining signals. These results indicate that EBV infection is not the only risk factor for NPC and long term exposure to relatively low concentrations of sulphuric acid vapour may be associated with the development of NPC.

  5. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  6. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  7. Fireside corrosion of nickel base alloys in future 700 C coal fired power plants; Rauchgasseitige Korrosion von Nickelbasislegierungen fuer zukuenftige 700 C-Dampfkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Luettschwager, Frank

    2011-09-27

    Coal is still the most important energy source in Germany. In 2009 it produced 42.9 % of the overall German electrical power. Coal is available world-wide in large quantities and can be delivered economically. One of the possible ways to reduce CO{sub 2} pollution is the increase of efficiency of coal fired power plants, which requires steam conditions of up to 700 C - 730 C and 350 bar. Because many German power units will reach the end of their technical lifespan in a few years or the following decade, one will have the possibility to build up modern types of power plants with increased efficiency of more than 50 %. Some international standards (European Pressure Equipment Directive or ASME Boiler and Pressure Vessel Code) require 100 000 hour creep rupture strength of 100 MPa at 750 C. Therefore, nickel base alloys are in the focus of material qualification processes. Nickel base alloys are well investigated due to their hot corrosion behaviour. It is known that sodium sulphate may generate hot corrosion on those alloys at temperatures above its melting point of 884 C. On nickel base alloys an eutectic mixture of nickel sulphate and sodium sulphate with a melting point of 671 C can be generated, which leads to accelerated corrosion. This work examines, whether the high amount of sulphur and alkali metals will induce hot corrosion at the estimated working temperature on devices manufactured from nickel base alloy. Two synthetic coal ash deposits, according to the chemical composition of hard coal and lignite, and typical flue gases with and without sulphur dioxide were blended of pure agents. The reactions of the deposits with heater tubes' materials and synthetic flue gases are examined in the temperature range from 650 C to 800 C and different time ranges up to 2000 hours. The corroded specimen are examined with SEM/EDX to identify relevant corrosion products and determine the corrosivity of deposited compounds. Deposits increase the corrosion rate of

  8. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  9. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  10. The detection of sulphur in contamination spots in electron probe X-ray microanalysis

    Science.gov (United States)

    Adler, I.; Dwornik, E.J.; Rose, H.J.

    1962-01-01

    Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.

  11. Twenty-five years of continuous sulphur dioxide emission reduction in Europe

    Directory of Open Access Journals (Sweden)

    V. Vestreng

    2007-07-01

    Full Text Available During the last twenty-five years European emission data have been compiled and reported under the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP as part of the work under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP. This paper presents emission trends of SO2 reported to EMEP and validated within the programme for the period 1980–2004. These European anthropogenic sulphur emissions have been steadily decreasing over the last twenty-five years, amounting from about 55 Tg SO2 in 1980 to 15 Tg SO2 in 2004. The uncertainty in sulphur emission estimates for individual countries and years are documented to range between 3% and 25%. The relative contribution of European emissions to global anthropogenic sulphur emissions has been halved during this period. Based on annual emission reports from European countries, three emission reduction regimes have been identified. The period 1980–1989 is characterized by low annual emission reductions (below 5% reduction per year and 20% for the whole period and is dominated by emission reductions in Western Europe. The period 1990–1999 is characterised by high annual emission reductions (up to 11% reduction per year and 54% for the whole period, most pronounced in Central and Eastern Europe. The annual emission reductions in the period 2000–2004 are medium to low (below 6% reduction per year and 17% for the whole period and reflect the unified Europe, with equally large reductions in both East and West. The sulphur emission reduction has been largest in the sector Combustion in energy and transformation industries, but substantial decreases are also seen in the Non-industrial combustion plants together with the sectors Industrial combustion and Industrial production processes. The majority of European countries have reduced their emissions by more than

  12. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. Microbial solubilization of coal

    Science.gov (United States)

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  14. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  15. Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash.

    Science.gov (United States)

    Panitchakarn, Panu; Laosiripojana, Navadol; Viriya-Umpikul, Nawin; Pavasant, Prasert

    2014-05-01

    Coal fly ash (CFA) was used as a raw material for the synthesis of zeolite molecular sieve. The synthesis began with the pretreatment of CFA to remove impurities (e.g., Fe2O3, CaO, etc.) under various acid types (HCl, H2SO4, and HNO3) and acid/CFA ratios (5-25 mL(acid)/g(CFA)). High product purity (up to 97%) was achieved with HCl (20%wt), and acid/CFA ratio of 20 mL(HCl)/g(CFA). The treated CFA was then converted to zeolite by the fusion reaction under various Si/Al molar ratios (0.54-1.84). Zeolite type A was synthesized when the Si/Al molar ratios were lower than 1, whereas sodium aluminum silicate hydrate was formed when the Si/Al molar ratio were higher than 1. The highest water adsorption performance of the zeolite product, i.e., the outlet ethanol concentration of 99.9%wt and the specific adsorption capacity of 2.31 x 10(-2) g(water)/g(zeolite), was observed with the Si/Al molar ratio of 0.82. The zeolite was tested for its water adsorption capacity repeatedly 10 times without deactivation. This work evaluated the technical feasibility in the conversion of CFA to zeolite, which would help reduce the quantity of waste needed to be landfilled. This adds value to the unwanted material by converting it into something that can be further used. The synthesized products were shown to be quite stable as water adsorbent for the dehydration of ethanol solution.

  16. Analysis and characterization of ash-free coals from the Pechora coal basin obtained by organic solvent extraction

    Science.gov (United States)

    Burdelnaya, N. S.; Burtsev, I. N.; Bushnev, D. A.; Kuzmin, D. V.; Mokeev, M. V.

    2017-12-01

    The probability of obtaining of ash-free coal extracts, so-called "hyper-coals," has been shown for coals of the Pechora basin for the first time. The ash content in them does not exceed a few percent, whereas initial coals contain up to 20% ash. High-resolution 13C NMR shows the similarity in the structure of the initial coal and the extract. It is demonstrated that the solvent selected for hyper-coal extraction is not chemically inert, and the products of interaction of N-metylpyrrolidone and organic matter of coal are present in the composition of the extracts obtained.

  17. Coal-fired high performance power generating system. Quarterly progress report, October 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Our team has outlined a research plan based on an optimized analysis of a 250 MWe combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FUTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The Cycle Optimization effort under Task 2 outlines the evolution of our designs. The basic combined cycle approach now includes exhaust gas recirculation to quench the flue gas before it enters the convective air heater. By selecting the quench gas from a downstream location it will be clean enough and cool enough (ca. 300F) to be driven by a commercially available fan and still minimize the volume of the convective air heater. Further modeling studies on the long axial flame, under Task 3, have demonstrated that this configuration is capable of providing the necessary energy flux to the radiant air panels. This flame with its controlled mixing constrains the combustion to take place in a fuel rich environment, thus minimizing the NO{sub x} production. Recent calculations indicate that the NO{sub x} produced is low enough that the SNCR section can further reduce it to within the DOE goal of 0. 15 lbs/MBTU of fuel input. Also under Task 3 the air heater design optimization continued.

  18. Directory of coal production ownership, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.

    1981-10-01

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  19. Influence of sulphuric acid contaminants on Fricke dosimetry.

    Science.gov (United States)

    Palm, A; Mattsson, O

    2000-09-01

    The sulphuric acid used for the preparation of the Fricke dosimeter solution may contain trace impurities that can affect the yield of ferric ions. Two methods, pre-irradiation or oxidation with hydrogen peroxide, have been proposed to reduce the influence of these impurities. Fricke users sometimes omit this treatment. In the present work Fricke solutions prepared from six different brands and qualities of sulphuric acid were compared in order to study any influences of the acid on the ferric ion yield. It was shown that the use of analytical grade sulphuric acid from one manufacturer resulted in a reduction of the ferric ion yield of about 5% at an absorbed dose of approximately 20 Gy. If this solution were to be used for an absolute dose determination together with epsilon(m) G values from the literature the absorbed dose would be underestimated by the same amount.

  20. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  2. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  3. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Science.gov (United States)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  4. Investigation on characterization of Ereen coal deposit

    Directory of Open Access Journals (Sweden)

    S. Jargalmaa

    2016-03-01

    Full Text Available The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8 at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter.Mongolian Journal of Chemistry 16 (42, 2015, 18-21

  5. Radioactive elements in Paleozoic coals of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, S.I.; Rikhvanov, L.P.; Volostnov, A.V.; Varlachev, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation)

    2005-05-01

    The geochemistry of radioactive elements was examined in the Kuznetsk, Minusinsk, Tunguska, and Gorlovo Paleozoic coal basins in Siberia. Quantitative analytical techniques (INAA, delayed neutron analysis, and XRF) were used to study 2600 samples of coals and their host rocks. The average U and Th concentrations in the coals are 2 and 3 ppm, respectively. The lateral and vertical variability of the distribution of radioactive elements was examined on the scale of coal basins, deposits, and individual coal seams. It was determined that elevated U and Th concentrations in coals are often related to rock blocks enriched in radioactive elements in the surroundings of the basins or are correlated with volcanic activity during coal accumulation. High concentrations of these elements in coal seams are restricted to zones near the tops of the seams and the soil zones, the boundaries of partings, or to beds enriched in pyroclastic material. Using the f-radiography method, it was determined that the main mechanism of U accumulation in coals is its sorption on the organic matter. Thorium is contained in both the mineral and the organic constituents of coals. An increase in the ash contents of coals with clarke radioactivity is associated with an increase in the contents of U and Th in the mineral matter.

  6. Analysis of photographic records of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Dodoo, J.N.D.

    1991-10-01

    Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

  7. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  8. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  9. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    Science.gov (United States)

    Du, Meili; Yang, Zongyi; Fan, Jinwen

    2018-01-01

    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  10. Structural parameters of perhydrous Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Khare, P.; Baruah, B.P. [CSIR, Jorhat (India). North East Institute of Science & Technology

    2010-07-01

    Higher hydrogen content of perhydrous coals exhibits a different composition and physicochemical properties in comparison with normal coals. In the present investigation, a structural study of perhydrous coals and coke was done using FTIR and HPLC data. These coals have high volatile matter with high-calorific values and low-moisture content. The structural study suggests that the major structural units of these coals are simple phenols with para-alkyl substituted derivatives. They have high alkyl substitution groups and low aromatic compounds. The structural studies reveal that these coals contain high amounts of low-molecular weight PAH compounds with 1-2 ring structures. These 1-2 ring structures have high H/C ratios as compared to large ring polyaromatic hydrocarbons (PAHs). It may also be one of the reasons for high H/C ratios in these coals. The alkyl groups contribute significantly to their high volatile matter (VM) contents. The presence of alcoholic groups found in pyrolytic products may also be due to the conversion of catechol-like structures to those of cresols. Coal properties, such as moisture, VM, H/C ratio, and CV, do not correlate with the rank as normally classified. A definite relationship has been found between the characteristics of these coals, char/cokes, and aromatic characters (f{sub a}, H{sub ar}).

  11. Sulphur enrichment in a sediment core from the central western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.

    Anomalous sulphur values in relation to organic carbon have been found in the sediments of a core collected from the central western continental margin of India. The relationship between organic carbon and sulphur is similar to that of the sediments...

  12. Dry deposition of sulphur on the Mpumalanga highveld: a pilot study using the inferential method

    CSIR Research Space (South Africa)

    Zunckel, M

    1996-10-01

    Full Text Available A pilot study which uses the inferential method to estimate dry deposition of sulphur on the central Mpumalanga highveld is discussed in this paper. Ambient concentrations of sulphur dioxide, particulates and micro-meteorological measurements from 2...

  13. Sulphur-bearing molecules in AGB stars. I. The occurrence of hydrogen sulphide

    Science.gov (United States)

    Danilovich, T.; Van de Sande, M.; De Beck, E.; Decin, L.; Olofsson, H.; Ramstedt, S.; Millar, T. J.

    2017-10-01

    Context. Sulphur is a relatively abundant element in the local Galaxy that is known to form a variety of molecules in the circumstellar envelopes of AGB stars. The abundances of these molecules vary based on the chemical types and mass-loss rates of AGB stars. Aims: Through a survey of (sub-)millimetre emission lines of various sulphur-bearing molecules, we aim to determine which molecules are the primary carriers of sulphur in different types of AGB stars. In this paper, the first in a series, we investigate the occurrence of H2S in AGB circumstellar envelopes and determine its abundance, where possible. Methods: We surveyed 20 AGB stars with a range of mass-loss rates and different chemical types using the Atacama Pathfinder Experiment (APEX) telescope to search for rotational transition lines of five key sulphur-bearing molecules: CS, SiS, SO, SO2, and H2S. Here we present our results for H2S, including detections, non-detections, and detailed radiative transfer modelling of the detected lines. We compared results based on various descriptions of the molecular excitation of H2S and different abundance distributions, including Gaussian abundances, where possible, and two different abundance distributions derived from chemical modelling results. Results: We detected H2S towards five AGB stars, all of which have high mass-loss rates of Ṁ ≥ 5 × 10-6 M⊙ yr-1 and are oxygen rich. H2S was not detected towards the carbon or S-type stars that fall in a similar mass-loss range. For the stars in our sample with detections, we find peak o-H2S abundances relative to H2 between 4 × 10-7 and 2.5 × 10-5. Conclusions: Overall, we conclude that H2S can play a significant role in oxygen-rich AGB stars with higher mass-loss rates, but is unlikely to play a key role in stars of other chemical types or in lower mass-loss rate oxygen-rich stars. For two sources, V1300 Aql and GX Mon, H2S is most likely the dominant sulphur-bearing molecule in the circumstellar envelope.

  14. NO reduction by coal reburning

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.B.; Naja, T.A.; Hampartsoumian, E.; Gibbs, B.M. [Univ. of Leeds (United Kingdom). Dept. of Fuel and Energy

    1997-12-31

    In this paper coal reburning for the reduction of NO emission was investigated in a 0.2MWt pilot-scale furnace. Eight bituminous coals were selected for study over a wide range of operational parameters including primary and reburn zone stoichiometric ratios, reburn zone residence time, reburn-fuel fraction, type of coal, furnace temperature level, particle size distribution of the reburn coal and primary NO concentration. The maximum NO reduction achieved was over 60%, accomplished mainly in the reburn zone, with the burnout zone accounting for about 10% of the total NO reduction. As expected, the reburn zone stoichiometric ratio was the most important operating parameter, with the reduction increasing as operation was made increasingly fuel-rich. The NO reduction also increased with reburn-fuel fraction up to 24%, but changed little when the reburn-fuel fraction was further increased beyond that point. NO reduction increased with reburn zone residence time up to about 450ms but then only a marginal gain in NO reduction was obtained with further increase in the reburn zone residence time; NO reduction also increased with primary zone NO level up to 600ppm but was unaffected by any further increase with the primary NO. Primary zone temperature had a negative effect on NO reduction, but this effect tended to diminish when reburn zone stoichiometry was below 0.9. A finer particle size distribution resulted in higher NO reductions. It was also found that coals with a high volatile matter content and hydrogen content made the best reburn coals while nitrogen of the reburn coal had little influence on NO reduction. Although most reburn processes call for natural gas or oil as a secondary fuel, for coal-burning power plants, coal is the fuel of choice.

  15. Total sulphate vs. sulphuric acid monomer in nucleation studies: which represents the "true" concentration?

    OpenAIRE

    Neitola, K.; Brus, D.; Makkonen, U.; Sipilä, M; R. L. Mauldin III; K. Kyllönen; H. Lihavainen; M. Kulmala

    2013-01-01

    Sulphuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulphuric acid concentration is crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulphuric acid monomer and total sulphate concentrations measured from the same source of sulphuric acid vapour. The discrepancy of about one to two orders of magnitude was found with similar formation rates. The reason for this ...

  16. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  17. A METHODOLOGY BASED ON AN ECOLOGICAL ECONOMY APPROACH FOR THE INTEGRATING MANAGEMENT OF THE SULPHUROUS WATER IN AN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    Gabriel Orlando Lobelles Sardiñas

    2016-10-01

    Full Text Available Despite the current highly stringent international standards regulating the contaminating emissions to the environment, the Oil refinery of Cienfuegos is still generating liquid and gaseous emissions contaminating the environment. The construction of new units as part of the Refinery expansion leads to an increase of these emissions due to the lack of technologies for the reutilization of the sulphurous water. The objective of this paper is to propose a methodology for the integral management of the sulphurous residual water in the oil refining process, including the evaluation and selection of the most feasible technological variant to minimize the sulphur contamination of water and the resulting emissions during the process. The methodology is based on the ecological economy tools, allowing a comprehensible evaluation of six technological variants at the refinery of Cienfuegos. The Life Cycle Assessment was applied (ACV by its Spanish acronym, by means of the software SimaPro 7.1. It was evaluated through the Eco Speed Method, to minimize the possible uncertainty. An economic evaluation was performed, taking into account the external costs for a more comprehensive analysis, enabling, along with the ecological indicators, the selection of the best technological variant, achieving a methodology based on a comprehensive evaluation, and as a positive impact, the implementation of the chosen variant (V5, 98.27% of the process water was recovered, as well as the sulphur that recovered from 94 to 99.8 %, reducing the emissions from 12 200 to 120 mg/Nm3 as SO2.

  18. High thallium content in rocks associated with Au-As-Hg-Tl and coal mineralization and its adverse environmental potential in SW Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, T.F.; Guha, J.; Boyle, D. [Chinese Academy of Science, Guiyang (China)

    2004-08-15

    This study is focused on high concentrations of Tl in rocks in SW Guizhou, China, that are related to several widely scattered disseminated gold-mercury-arsenic and coal deposits, and a primary Tl deposit within an Au-As-Hg-Tl metallogenic belt of the Huijiabao anticline. The Tl, Hg and As in the Lanmuchang Hg-Tl deposit area are associated with the abundant occurrence of sulfide minerals such as lorandite, realgar, orpiment and cinnabar. Concentrations of Tl range from 100 to 35 000 ppm in sulfide ores, and 39-490 ppm in host rocks. The enrichment of Au, Tl, Hg, As, and Sb in the Yanshang gold mineralized area reflects the occurrence of Au mineralization and its mineral assemblage of Tl-Hg-As-Sb sulfides. Thallium ranges from 0.22 to 16 ppm in Au ores and host rocks. Thallium in coals is enriched up to 46 ppm within the Au-As-Hg-TI metallogenic belt, and is derived from the regional Au-As-Hg-Tl mineralization. Mercury and As show a similar distribution to Tl with high concentrations in sulfide ores, coals and host rocks. Human populations living near and downstream of Tl deposits and Tl-bearing ore deposits are susceptible to Tl contamination because of its high toxicity and high uptake rate by crops. The dispersion of Tl, Hg and As associated with the primary mineralization of Au-As-Hg-TI can be traced through physical erosion and chemical weathering, producing secondary dispersion into sods, groundwater and surface water and crops. Mining activities compound the natural processes, readily dispersing Tl into the surface environment.

  19. High resolution microgravity investigations for the detection and characterisation of subsidence associated with abandoned, coal, chalk and salt mines

    Energy Technology Data Exchange (ETDEWEB)

    Styles, P.; Toon, S.; Branston, M.; England, R. [Keele Univ., Applied And Environmental Geophysics Group, School of Physical and Geographical Sciences (United Kingdom); Thomas, E.; Mcgrath, R. [Geotechnology, Neath (United Kingdom)

    2005-07-01

    The closure and decay of industrial activity involving mining has scarred the landscape of urban areas and geo-hazards posed by subsurface cavities are ubiquitous throughout Europe. Features of concern consist of natural solution cavities (e.g. swallow holes and sinkholes in limestone gypsum and chalk) and man-made cavities (mine workings, shafts) in a great variety of post mining environments, including coal, salt, gypsum, anhydrite, tin and chalk. These problems restrict land utilisation, hinder regeneration, pose a threat to life, seriously damage property and services and blight property values. This paper outlines the application of microgravity techniques to characterise abandoned mining hazard in case studies from Coal, Chalk and Salt Mining environments in the UK. (authors)

  20. Sulphur Mustard Poisoning and Its Complications in Iranian Veterans

    Directory of Open Access Journals (Sweden)

    Beeta Balali-Mood

    2009-09-01

    Full Text Available Sulphur mustard is a chemical warfare agent, which was largelyused during the World War One and in Iraq-Iran conflict. It mayalso be used as a chemical terrorism agent. Therefore, medicalprofessions should have sufficient knowledge and be preparedfor medical intervention of any such chemical attack.Sulphur mustard exerts direct toxic effects on the eyes, skin,and respiratory tract, with subsequent systemic actions on thenervous, immunologic, hematologic, digestive, and reproductivesystems. It is an alkylating agent that affects DNA synthesis andthus, delayed complications have been considered since theWorld War One. Cases of malignancies in the target organs particularlyin hematopoietic, respiratory, and digestive systemswere reported. Common delayed respiratory complications includechronic bronchitis, bronchiectasis, frequent bronchopneumonia,and pulmonary fibrosis, all of which tend to deterioratewith time. Severe dry skin, delayed keratitis, and reduction ofnatural killer cells with subsequent increased risk of infectionsand malignancies are also among the most distressing long-termconsequences of sulphur mustard intoxication. However, despiteextensive research that has been conducted on Iranian veteransduring the past decades, major gaps continue to remain in thesulphur mustard literature. Immunological and neurological dysfunctionsand the relationship between exposure to sulphur mustardand mutagenicity, carcinogenicity, and teratogenicity areimportant fields that require further studies, particularly on Iranianveterans with chronic health problems caused by sulphurmustard poisoning. There is also a paucity of information on themedical management of acute and delayed toxic effects of sulphurmustard poisoning, a subject that greatly challenges themedical professions.

  1. Effects of sulphuric acid and hot water treatments on seed ...

    African Journals Online (AJOL)

    A study was carried out to investigate the effects of sulphuric acid and hot water treatments on the germination of Tamarind (Tamarindus indica L). Seeds were placed on moistened filter papers in 28 cm diameter Petri dishes under laboratory condition for germination. 330 seeds of T. indica (10 seeds per Petri dish) with ...

  2. Development of a Linear Flow Channel Reactor for sulphur removal ...

    African Journals Online (AJOL)

    2013-09-23

    Sep 23, 2013 ... in acid mine wastewater treatment operations ... bed reactor treating a synthetic acid mine water (2 000 mg∙ℓ−1 Na2SO4 solution) and the Liner Flow Channel Reactors (sur- face area 1.1 m2 and ... Keywords: floating sulphur biofilms, acid mine drainage, AMD passive treatment, linear flow channel reactor,.

  3. Rubber composites cured with sulphur and peroxide and ...

    Indian Academy of Sciences (India)

    Besides classical applications of rubber products in tyres, conveyer belts and other products from technical rubber, ... application of sulphur curing systems leads to the forming of sulphidic bridges with various number of ... have advantages but also drawbacks, the main aim was to suppress the main negatives of both curing ...

  4. Synergetic effect of sulphur and nitrogen oxides on corrosion of ...

    African Journals Online (AJOL)

    The synergetic effect of nitrogen dioxide (NO2) and sulphur dioxide (SO2) on corrosion of galvanized iron roofing sheets has been investigated. The field studies were conducted in Ibeno and Ebocha (Niger Delta, Nigeria). Specimens of the roofing sheets were exposed for one year to outdoor environment to record the ...

  5. SULPHUR CONTAINING LICKS AND THEIR EFFECT ON THE ...

    African Journals Online (AJOL)

    BARRON, E-S-G- & DICKMAN, S., 1948-49. J. gen. Phy- oxidant capacity of the body thus increasing tissue near sio1.32,595. and tear. BOYAZOGLU. P.A.. 1964. Sulfur-S€lenium-Vitamin E. This experiment was not designed to evaluate the interralationships in the nutrition of sheep. Ph. D. benefits derived from sulphur ...

  6. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    driniev

    The formation of floating sulphur biofilm was observed in the microbial ecology studies of tannery ponds undertaken by the. Environmental Biotechnology Group at Rhodes University. This was related to the steep Redox gradients established at the air/ water interface of anaerobic, organically loaded and actively sulphate ...

  7. Effects of cold stratification, sulphuric acid, submersion in hot and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... This study was carried out to determine which pre-treatments should be preferred to overcome dormancy problems of Colutea armena seeds which were collected from three different provenances. Pre-treatments applied to the seeds were submersion in concentrated (98%) sulphuric acid for 30 min,.

  8. Effects of sulphuric acid, mechanical scarification and wet heat ...

    African Journals Online (AJOL)

    Effects of different treatment methods on the germination of seeds of Parkia biglobosa (mimosaceae) were carried out. Prior treatment of seeds with sulphuric acid, wet heat and mechanical scarification were found to induce germination of the dormant seeds. These methods could be applied to raise seedlings of the plant for ...

  9. Effect of irrigation frequency and application levels of sulphur ...

    African Journals Online (AJOL)

    A field experiment was conducted at Indian Agricultural Research Institute, New Delhi during the crop season of 2007 to 2008 and 2008 to 2009 to study the effect of irrigation and sulphur on yield and water use efficiency of Indian mustard (Brassica juncea var. PusaJagannath). The experiment was carried out in split plot ...

  10. Cellulose sulphuric acid as a biodegradable catalyst for conversion ...

    Indian Academy of Sciences (India)

    This article describes simple and efficient method for the diazotization and azidation of different aromatic amines over cellulose sulphuric acid, sodium nitrite and sodium azide under mild conditions at room temperature. Various aryl amines possessing electron-withdrawing groups or electron-donating groups have been ...

  11. Hydrolysis conditions for the analysis for sulphur amino acids in ...

    African Journals Online (AJOL)

    A study of methods of analysis for sulphur amino acids in feeds was undertaken with a view to finding methods suitable for the routine analysis of feedstuffs. In the case of cyst(e)ine, it was found that the results ob- tained from simple oxidation and hydrolysis with a mixture of dimethylsulphoxide (OMSO) and hydrochloric ...

  12. The effect of sulphur applications on nutrient composition, yield and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Fertilizing is one of the most important agricultural practices in grain production. Nitrogen and phosphorus are the basic fertilizers used commonly, whereas sulphur application is very little or non-existence in the production of barley in Turkey. Agricultural areas in the province of. Van and its surroundings in ...

  13. Selective removal of chromium from sulphuric acid leach liquor of ...

    African Journals Online (AJOL)

    The selective removal of chromium, a trace impurity that degrades the whiteness of titanium(IV) oxide pigments, from sulphuric acid leach liquor of ilmenite, was investigated by solvent extraction with xylene solutions of trioctylamine. Important factors of commercial significance affecting the extraction operation have been ...

  14. The effect of sulphur applications on nutrient composition, yield and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... 2Ege University, Faculty of Agriculture, Department of Field Crops, 35100, Bornova, Izmir, Turkey. Accepted 21 August ... The trial was conducted in a randomized complete block design with three replications. The results ... common and so sulphur fertilizing in cereal agriculture has very important role in ...

  15. Effects of cold stratification, sulphuric acid, submersion in hot and ...

    African Journals Online (AJOL)

    Effects of cold stratification, sulphuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder-Senna ... This study was carried out to determine which pre-treatments should be preferred to overcome dormancy problems of Colutea armena seeds which were ...

  16. The effect of sulphur applications on nutrient composition, yield and ...

    African Journals Online (AJOL)

    This study was carried out to investigate the effect of different sulphur applications on nutrient composition, yield and some yield components of barley during 2004-05 and 2005-06 winter seasons in. Eastern Anatolia, Turkey. The trial was conducted in a randomized complete block design with three replications. The results ...

  17. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate.

    Science.gov (United States)

    Cheng, Hongfei; Liu, Qinfu; Cui, Xiaonan; Zhang, Qian; Zhang, Zhiliang; Frost, Ray L

    2012-06-15

    The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite-potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO(3), KCO(3) and KAlSiO(4), which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300°C, and the thermal decomposition products (H(2)O and CO(2)) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    Science.gov (United States)

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  19. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  20. Electrohydraulic preconditions for shield supports in high-output coal faces; Elektrohydraulische Voraussetzungen fuer Schildausbau in Hochleistungsstreben

    Energy Technology Data Exchange (ETDEWEB)

    Langefeld, O. [Abt. Betriebsanalyse/Technische Systeme, Hauptabteilung Technik unter Tage, Ruhrkohle Bergbau AG, Herne (Germany)

    1997-11-01

    The need to reduce the cost of coal mining in Germany has led, among others, to higher face output, and face automation is an important aspect of this. Ruhrkohle Bergbau AG developed a standardized, efficient and future-oriented electrohydraulic control unit for all control tasks in coal mining. As higher face output necessitates higher volume flows in the shield support supply systems, measurements and analyses were made to establish a model which facilitates orientation. An appropriately dimensioned hydraulic system and an efficient,standardized control system provide the basis for cost-optimized perfomance improvement of coal works. (orig.) [Deutsch] Die Notwendigkeit von Kostensenkungen im deutschen Steinkohlenbergbau ist u.a. Anlass zu Leistungssteigerungen in den Streben. Ein wichtiger Ansatz ist dabei die Automatisierung mit geeigneten Betriebsmitteln. Im Rahmen einer Entwicklung der Ruhrkohle Bergbau AG wurde mit einer einheitlichen, leistungsfaehigen und zukunftsorientierten Baugruppe fuer elektrohydraulische Steuerungen ein Standard geschaffen, der den unterschiedlichen Steuerungsaufgaben im Steinkohlenbergbau gerecht wird. Da hoehere Betriebspunktfoerderungen auch hoehere Volumenstroeme in den Versorgungseinrichtungen des Schildausbaus erfordern, wurde fuer diese durch Messungen und Analysen ein Rechenmodell geschaffen, das eine einfache Orientierung erlaubt. Eine ausreichend dimensionierte Strebhydraulik und eine leistungsfaehige, standardisierte Steuerung sind die Grundlage fuer eine kostenoptimierte Leistungssteigerung der Gewinnungsbetriebe. (orig.)

  1. Biodesulphurization of coal: effect of pulse feeding and leachate recycle

    Energy Technology Data Exchange (ETDEWEB)

    Malik, A.; Dastidar, M.G.; Roychoudhury, P.K. [Indian Institute of Technology, New Delhi (India). Dept. of Biochemical Engineering and Biotechnology

    2001-07-01

    Biodesulphurization of coal was carried out under four modes of operation namely: conventional batch, constant volume pulse feeding (CVPF), increasing volume pulse feeding (IVPF) and leachate recycle. The effects of different pulse feeding strategies and leachate (product) recycle on biological performance were studied and compared with a conventional batch process. The sulphur removal rates for each of the four processes were 0.04 g/day (batch), 0.09 g/day (CVPF), 0.19 g/day (IVPF) and 0.05 g/day (leachate recycle). The values of iron solubilization rate also followed the same trend. The percentage sulphur removal on the 30th day using batch, CVPF, IVPF and leachate recycle processes was 72%, 93%, 97% and 90%, respectively. IVPF was found to be the best operational strategy for biodesulphurization process at enhanced rates for longer duration.

  2. Coal liquefaction

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  3. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  4. Biostrategic Removal of Sulphur Contamination in Groundwater With Sulphur-Reducing Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    Sandeep Satapathy

    2017-02-01

    Full Text Available The rapid growth in the use of fertilizers and pesticides in agriculture, excessive extraction of groundwater, and rise in the number of industries with inefficient waste disposal system have been some of the key factors in degradation of groundwater quality during the past years. Although groundwater is considered as a valuable natural resource, the quality control of this resource has systematically failed in India. Irrespective of rural or urban locations, the average sulphate contamination of groundwater in India has reached 90 to 150 mg/L. Such a borderline contamination concentration poses threat both to livelihood and to economy. In addition, the negative health effects of sulphate-contaminated drinking water can range from dermatitis to lung problems and skin cancer. The biostrategic manipulation of groundwater discussed in this article involves sulphate-reducing bacteria used in addition to a 3-step procedure involving constitutive aeration, filtration, and shock chlorination. With earlier use of a similar strategy in the United States and Europe proven to be beneficial, we propose a combinatorial and economical approach for processing of groundwater for removal of sulphur contamination, which still largely remains unnoticed and neglected.

  5. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  6. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  7. Quantification of chemical sulphur species in bulk soil and organic sulphur fractions by S K-edge Xanes spectroscopy

    DEFF Research Database (Denmark)

    Boye, K; Almkvist, G; Nilsson, S I

    2011-01-01

    A new data treatment method for fitting spectra obtained by sulphur (S) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to quantify the chemical S speciation at three experimental sites with arable soils receiving the same long-term field treatments. Two treatments, crop...

  8. On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2005-01-01

    Full Text Available The European PartEmis project (Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. The combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN activation potential, and off-line analysis of chemical composition. Based on this extensive data set, the role of sulphuric acid coating and of the organic fraction of the combustion particles for the CCN activation was investigated. Modelling of CCN activation was conducted using microphysical and chemical properties obtained from the measurements as input data. Coating the combustion particles with water-soluble sulphuric acid, increases the potential CCN activation, or lowers the activation diameter, respectively. The adaptation of a Köhler model to the experimental data yielded coatings from 0.1 to 3 vol-% of water-soluble matter, which corresponds to an increase in the fraction of CCN-activated combustion particles from ≤10−4 to ≌10−2 at a water vapour saturation ratio Sw=1.006. Additional particle coating by coagulation of combustion particles and aqueous sulphuric acid particles formed by nucleation further reduces the CCN activation diameter. In contrast, particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. The resulting reduction in the potential CCN activation with an increasing fraction of non-volatile OC becomes visible as a trend in the experimental data. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at

  9. Effects of Dietary Selenium, Sulphur and Copper Levels on Selenium Concentration in the Serum and Liver of Lamb

    Directory of Open Access Journals (Sweden)

    Arlindo Saran Netto

    2014-08-01

    Full Text Available Thirty-two lambs were distributed in eight treatments under 2×2×2 factorial experiment to compare the effects of two levels of selenium (0.2 to 5 mg/kg dry matter [DM], sulphur (0.25% and 0.37% and copper (8 and 25 mg/kg DM levels on selenium concentration in liver and serum of lambs. A liver biopsy was done on all animals and blood samples were collected from the jugular vein prior to the beginning of the treatments. The blood was sampled every thirty days and the liver was sampled after 90 days, at the slaughter. Increasing differences were noticed during the data collection period for the serum selenium concentration, and it was found to be 0.667 mg/L in animals fed with 5 mg Se/kg DM and normal sulphur and copper concentrations in their diet. However, a three-way interaction and a reduction of selenium concentration to 0.483 mg/L was verified when increasing copper and sulphur concentration levels to 25 ppm and 0.37% respectively. The liver selenium concentration was also high for diets containing higher selenium concentrations, but the antagonist effect with the increased copper and sulphur levels remained, due to interactions between these minerals. Therefore, for regions where selenium is scarce, increasing its concentration in animal diets can be an interesting option. For regions with higher levels of selenium, the antagonistic effect of interaction between these three minerals should be used by increasing copper and sulphur dietary concentrations, thus preventing possible selenium poisoning.

  10. Geological structure and coal contents of Guvilgra cavity of Gonamsk coal-bearing area of southern Yakut coal basin

    Science.gov (United States)

    Rukovich, A. V.

    2017-10-01

    Southern Yakut coal basin is a huge and reliable base of the high-quality coked and steam coals in the east of the country. The Southern Yakut TPC was begun in the 70-s in the south of Yakutia forming, what predetermined considerable strengthening in this region of exploration works on coal. Now the fields of Neryungri, Elga and certain sites on Denisovsk and Chulmakan fields are developed by an open method. Absence near the operating Neryungri coal mine of the coalfields suitable for open-cast mining, and also finite useful lives of the Neryungri field (till 2018-2020) caused expansion of search works on coal on flanks of the basin, directed at identification of the powerful coal layers suitable for development by an open method.

  11. Application of sodium carbonate prevents sulphur poisoning of catalysts in automated total mercury analysis

    Science.gov (United States)

    McLagan, David S.; Huang, Haiyong; Lei, Ying D.; Wania, Frank; Mitchell, Carl P. J.

    2017-07-01

    Analysis of high sulphur-containing samples for total mercury content using automated thermal decomposition, amalgamation, and atomic absorption spectroscopy instruments (USEPA Method 7473) leads to rapid and costly SO2 poisoning of catalysts. In an effort to overcome this issue, we tested whether the addition of powdered sodium carbonate (Na2CO3) to the catalyst and/or directly on top of sample material increases throughput of sulphur-impregnated (8-15 wt%) activated carbon samples per catalyst tube. Adding 5 g of Na2CO3 to the catalyst alone only marginally increases the functional lifetime of the catalyst (31 ± 4 g of activated carbon analyzed per catalyst tube) in relation to unaltered catalyst of the AMA254 total mercury analyzer (17 ± 4 g of activated carbon). Adding ≈ 0.2 g of Na2CO3 to samples substantially increases (81 ± 17 g of activated carbon) catalyst life over the unaltered catalyst. The greatest improvement is achieved by adding Na2CO3 to both catalyst and samples (200 ± 70 g of activated carbon), which significantly increases catalyst performance over all other treatments and enables an order of magnitude greater sample throughput than the unaltered samples and catalyst. It is likely that Na2CO3 efficiently sequesters SO2, even at high furnace temperatures to produce Na2SO4 and CO2, largely negating the poisonous impact of SO2 on the catalyst material. Increased corrosion of nickel sampling boats resulting from this methodological variation is easily resolved by substituting quartz boats. Overall, this variation enables an efficient and significantly more affordable means of employing automated atomic absorption spectrometry instruments for total mercury analysis of high-sulphur matrices.

  12. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  13. Utilization of activated carbon loaded with sulphur for sulphur fertilization in agriculture; Verwertung von mit Schwefel beladener Aktivkohle als Schwefelduenger in der Landwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Kirfel, Kristina; Hoffmann, Heide [Humboldt Univ. Berlin (Germany). AG Agraroekologie und Oekologischer Landbau

    2013-01-15

    Due to the decrease of atmospheric sulphur deposition, sulphur fertilization has gained significance for agriculture in recent years. Carbon-sulphur-pellets (CSP), activated carbon pellets loaded with sulphur, previously used for desulphurization in biogas plants, are up to now disposed of as waste. In this context the question arises if CSP could be of use for sulphur fertilization of agricultural crops. The objective of this study was to test sulphur release and plant availability from, and plant tolerance towards CSP. A pot experiment using Zea mays with different shares of CSP was carried out. Leaf green intensity of vital plants, indicating plants' current nutritional status, was measured and differences in plant development were documented regularly. At the end of the trial period biomass and elemental contents of the test plants, as well as electrical conductivity and pH-value of the substrate-CSP-mixtures were determined. Amendments of 0.2 m.-% to 1.0 m.-% had a positive effect on plants' dry mass yield; higher shares led to considerable yield losses. By addition of CSP, sulphur content in the plant dry mass increased compared to the control without sulphur fertilization. This result indicates that sulphur adsorbed to activated carbon becomes plant available when applicated to cultural substrate. (orig.)

  14. Specific Energy of Hard Coal Under Load

    Science.gov (United States)

    Bogusz, Anna; Bukowska, Mirosława

    2015-03-01

    The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW) - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the susceptibility

  15. Solid and fly ash materials ofbrown coal power plants, their characteristics and utilisation

    Directory of Open Access Journals (Sweden)

    Kovács Ferenc

    2002-09-01

    Full Text Available coal-fired power plants, a significant amount of residues is produced, depending on the technical parameters of coal separation and firing equipment. A large quantity of solid and fly ash and, in the case of flue gas desulphurisation, REA gypsum and wash-water is produced. The quantity of residues depends primarily on the ash and sulphur content of the fuel.Coal has a significant role in energy production and represents a considerable quantity in electric energy generation. At the turn of the millenary, about 4 billion tones of black coal and 800 million tones of brown coal and lignite are produced in the world annually. Depending on the ash content of the coals – it varies between 5-8% and 30-35% –, the quantity of solid and fly ash produced by firing is 1.0-1.5 billion tones per year. The quantity of residues of this kind accumulated in the past amounts to 100 billion tones.As far as the residues of coal-fired power plants are concerned, the annual fuel demand of the power plants of the Rhenish brown coal basin, where the average ash content of lignite is 7% and the average sulphur content is 0.2-0.8%, is 1 Mt referred to a power plant capacity of 100 MW. 60-70 kt solid + fly ash and, in the case of flue gas desulphurisation, 12-15 kt of gypsum is produced annually, referred to a capacity of 100 MW. In the East German areas, after the reconstruction of power plants, 30-50 kt of fly ash and, because of the higher sulphur content, 25-30 kt of gypsum and 4-5000 m3 of wash-water is produced annually, referred to a capacity of 100 MW.The composition of Hungarian lignite is significantly different to that of Rhenish brown coal. The ash content and combustible sulphur content of domestic lignite is considerably higher. The ash content of lignite varies between 15 and 25%, the average is 20%. In Visonta, 160-200 tones of solid + fly ash is produced annually, referred to a power plant capacity of 100 MW. With the flue gas desulphuriser installed

  16. Effect of the grinding behaviour of coal blends on coal utilisation for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, CSIC, Oviedo (Spain); Miles, N. [School of Chemical, Environmental and Mining Engineering, Nottingham Univ. (United Kingdom)

    1999-11-01

    Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different hardgrove grindability index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. (orig.)

  17. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  18. Delivered costs of Western coal shipped on the Great Lakes versus Eastern coal for Eastern Great Lakes hinterland utility plants. With appendices on relative cost impacts of coal scrubbing and on other Western coal transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.M.

    1979-02-01

    This report analyzes the present and projected delivered cost competitiveness of Great Lakes shipped, low sulfur Western coal with low and high sulfur Eastern coal at Eastern Great Lakes hinterland utility plants. Its findings are based upon detailed data acquired from appropriate transportation firms and four eastern utility companies which use or have studied using the appropriate coal types. Two appendices provide: (1) a tentative, preliminary analysis of this competition with additional costs required by likely EPA scrubbing (sulfur removal) requirements, and (2) background information on other Western coal transport systems. Briefly, the findings of this report are that if Western coal is shipped via the Great Lakes to utility plants in the eastern Great Lakes hinterlands (i.e., inland from ports up to 200 miles): currently, based upon delivered costs only, it cannot compete with any type of Eastern coal; by 1989, with favorable interim Western versus Eastern cost escalation rate advantages on minemouth coal and transportation costs, Western coal delivered costs can begin competing with those of Eastern low sulfur, but not high sulfur coal; by 1999, with favorable relative cost escalation rate advantages, Western coal's delivered costs can become substantially less expensive than Eastern low sulfur coal's, and just begin to be competitive with Eastern high sulfur coal's; extremely high Eastern rail costs due to port area system characteristics are the main cost factor driving Western coal delivered costs to uneconomic levels.

  19. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  20. Zero emission coal

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  1. Physical and chemical coal cleaning

    Science.gov (United States)

    Wheelock, T. D.; Markuszewski, R.

    1981-02-01

    Coal is cleaned industrially by freeing the occluded mineral impurities and physically separating the coal and refuse particles on the basis of differences in density, settling characteristics, or surface properties. While physical methods are very effective and low in cost when applied to the separation of coarse particles, they are much less effective when applied to the separation of fine particles. Also they can not be used to remove impurities which are bound chemically to the coal. These deficiencies may be overcome in the future by chemical cleaning. Most of the chemical cleaning methods under development are designed primarily to remove sulfur from coal, but several methods also remove various trace elements and ash-forming minerals. Generally these methods will remove most of the sulfur associated with inorganic minerals, but only a few of the methods seem to remove organically bound sulfur. A number of the methods employ oxidizing agents as air, oxygen, chlorine, nitrogen dioxide, or a ferric salt to oxidize the sulfur compounds to soluble sulfates which are then extracted with water. The sulfur in coal may also be solubilized by treatment with caustic. Also sulfur can be removed by reaction with hydrogen at high temperature. Furthermore, it is possible to transform the sulfur bearing minerals in coal to materials which are easily removed by magnetic separation.

  2. Coal trade means shipbuilders' goldmine

    Energy Technology Data Exchange (ETDEWEB)

    Ridgeway, J.

    1980-03-01

    Nowhere is the advent of a new international trade in coal more important than in the shipping industry. Since the middle of the last decade the world shipping industry has been in the doldrums. As the world switches slowly away from oil, the trade in coal probably will increase dramatically. As it does, the structure of the trade will change. Much of the coal will be shipped by water. During the past decade, US influence declined as the energy crisis changed the nature of the trade away from metallurgical coals to thermal coals. Shipping experts predict the dry bulk carriers that are used for coal, grain, and iron ore (a commodity whose trade is expected to increase) will replace the oil tankers as the most-important class of ships on the high seas by the year 2000.

  3. Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China.

    Science.gov (United States)

    Li, Xuexian; Wu, Pan

    2017-09-01

    Acid mine drainage (AMD) represents a major source of water pollution in the small watershed of Xingren coalfield in southwestern Guizhou Province. A detailed geochemical study was performed to investigate the origin, distribution, and migration of REEs by determining the concentrations of REEs and major solutes in AMD samples, concentrations of REEs in coal, bedrocks, and sediment samples, and modeling REEs aqueous species. The results highlighted that all water samples collected in the mining area are identified as low pH, high concentrations of Fe, Al, SO 4 2- and distinctive As and REEs. The spatial distributions of REEs showed a peak in where it is nearby the location of discharging of AMD, and then decrease significantly with distance away from the mining areas. Lots of labile REEs have an origin of coal and bedrocks, whereas the acid produced by the oxidation of pyrite is a prerequisite to cause the dissolution of coal and bedrocks, and then promoting REEs release in AMD. The North American Shale Composite (NASC)-normalized REE patterns of coal and bedrocks are enriched in light REEs (LREEs) and middle REEs (MREEs) relative to heavy REEs (HREEs). Contrary to these solid samples, AMD samples showed slightly enrichment of MREEs compared with LREEs and HREEs. This behavior implied that REEs probably fractionate during acid leaching, dissolution of bedrocks, and subsequent transport, so that the MREEs is primarily enriched in AMD samples. Calculation of REEs inorganic species for AMD demonstrated that sulfate complexes (Ln(SO 4 ) + and Ln(SO 4 ) 2 - ) predominate in these species, accounting for most of proportions for the total REEs species. The high concentrations of dissolved SO 4 2- and low pH play a decisive role in controlling the presence of REEs in AMD, as these conditions are necessary for formation of stable REEs-sulfate complexes in current study. The migration and transportation of REEs in AMD are more likely constrained by adsorption and co

  4. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  5. Coal-sand attrition system and its importance in fine coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhu, Qinsheng

    1993-08-01

    It is known that ultra-fine coals are prerequisite for the deep cleaning of most US coal seams if environmental pollution arising from the use of such coals is to be minimized. Therefore, the production of finely liberated coal particles in conjunction with reduced heavy metal contaminants at low costs is desirable, if not mandatory. The liberation of intimately disseminated impurities from the coal matrix therefore, demands that the material be ground to a high degree of fineness. Similarily, some technologies for coal utilization require superfine particles (i.e., sizes less than ten microns). This implies additional costs for coal preparation plants due to the high energy and media costs associated with fine grinding operations. Besides, there are problems such as severe product contaminations due to media wear and impairment of the quality of coal. Hence, proper choice of grinding media type is important from the viewpoints of cost reduction and product quality. The use of natural quartz sand as grinding media in the comminution of industrial minerals in stirred ball mills has been indicated. The advantages of natural sand compared to steel media include low specific energy inputs, elimination of heavy metal contaminants and low media costs. In this work, the effect of rotor speed, solids concentration and feed-size are studied on four coals in conjunction with silica sand and steel shot. The results obtained are used to evaluate the suitability of silica sands as an alternative grinding media. for coal. Coal-sand and coal-steel systems are compared in terms of specific energy consumption, product fineness, media/wear contaminationanalysis and calorific values, liberation spectrum and particle shape characteristics. In general cleaner flotation concentrate was obtained from coals when they were ground with sand media. The zeta potential of coals was found to be different and lower when they ground with sand.

  6. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas.

    Science.gov (United States)

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-07-06

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise.

  7. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    Directory of Open Access Journals (Sweden)

    Wanli Liu

    2015-07-01

    Full Text Available Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise.

  8. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.

    Science.gov (United States)

    Yuan, Shuai; Dai, Zheng-hua; Zhou, Zhi-jie; Chen, Xue-li; Yu, Guang-suo; Wang, Fu-chen

    2012-04-01

    Rapid pyrolysis of rice straw (RS) and Shenfu bituminous coal (SB) separately, and rapid co-pyrolysis of RS/SB blends (mass ratio 1:4, 1:4, and 4:1), were carried out in a high-frequency furnace which can ensure both high heating rate and satisfying contact of fuel particles. Synergies between RS and SB during rapid co-pyrolysis were investigated. Intrinsic and morphological structures of residual char from co-pyrolysis, and their effects on gasification characteristics were also studied. Synergies occurred during rapid co-pyrolysis of RS and SB (RS/SB=1:4) resulting in decreasing char yields and increasing volatile yields. Synergies also happened during gasification of the char derived from co-pyrolysis of RS and SB with mass ratio of 1:4. The increased mass ratio of RS to SB did not only weaken synergies during co-pyrolysis, but significantly reduced the gasification rates of the co-pyrolysis char compared to the calculated values. Results can help to optimize co-conversion process of biomass/coal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  10. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    Science.gov (United States)

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  11. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  12. Influence of sulphur and multi-component fertilizer application on the content of Cu, Zn and Mn in different types of soil under maize

    Directory of Open Access Journals (Sweden)

    Barbara MURAWSKA

    2017-09-01

    Full Text Available The aim of the study was to determine the influence of the soil type and differential sulphur rates used with or without Basfoliar 36 Extra on the soil pH as well as the amount of available forms of copper, zinc and manganese based on the micro plots field experiment. Moreover, the relationship between the studied microelements was examined. The experiment was performed in two-factor design; the first-order factor was the soil type (Typic Hapludolls, Typic Hapludalfs, Typic Haplorthods, Typic Endoaquolls, while the second-order factor - fertilization with sulphur and compound fertilizer - Basfoliar 36 Extra. The plant tested was Rota cultivar maize. The use of sulphur and sulphur combined with Basfoliar 36 Extra changed the classification of the soils in terms of their pH. In the soils under study, as a result of the 10-years application of sulphur and/or foliar fertiliser with NPK fertilization as well as growing maize in monoculture showing a high uptake of macro- and micro-nutrients, there was reported a clear decrease in the content of zinc, copper and manganese, as compared with the initial content. With that in mind, one shall assume that growing maize in a 10-year monoculture is connected with an intensive use of soils, which can result in a clear deficit of the elements studied in soil.

  13. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  14. DNA damage in internal organs after cutaneous exposure to sulphur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Boudry, Isabelle; Mouret, Stéphane; Cléry-Barraud, Cécile; Wartelle, Julien [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex (France); Bérard, Izabel [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Douki, Thierry, E-mail: thierry.douki@cea.fr [Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France)

    2014-07-01

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.

  15. Extraction of As (V from sulphuric acid solutions by Cyanex 925

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    1998-05-01

    Full Text Available The extraction of As (V from sulphuric acid solutions using the phosphine oxide Cyanex 925 dissolved in various diluents was studied. Arsenic extraction depends strongly of temperature, decreasing with the increase of this variable, and to a lesser extent on the sulphuric acid concentration, approximately up to 300 g/L H2SO4. To increase the degree of arsenic extraction it needs to operate with Cyanex 925 concentrations of at least 50 % v/v, although this also promotes the coextraction of the acid. Stripping of the loaded arsenic and sulphuric acid can be carried out using water, better As-H2SO4 separations can be obtained at lower temperatures or operating using high O/A ratios for acid stripping and lower O/A ratios for arsenic stripping.

    Se estudia la extracción de As (V de disoluciones sulfúricas mediante Cyanex 925 disuelto en varios diluyentes. La extracción de arsénico depende de la temperatura y disminuye al aumentar esta variable, y también la concentración de ácido sulfúrico, hasta 300 g/L del ácido. Para aumentar la extracción del metal es necesario trabajar con concentraciones de Cyanex 925 superiores a 50 % v/v, aunque a la vez aumenta la coextracción del ácido. La reextracción se puede llevar a cabo con agua, obteniéndose mejores separaciones As-H2SO4 trabajando con temperaturas bajas o con altas relaciones O/A, para reextraer el ácido, y bajas relaciones para el arsénico.

  16. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    Science.gov (United States)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  17. Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India

    Science.gov (United States)

    Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.

    2016-12-01

    Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.

  18. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  19. Microbiological transformations of phosphorus and sulphur compounds in acid soils

    Directory of Open Access Journals (Sweden)

    Stamenov Dragana

    2012-01-01

    Full Text Available The dynamics of phosphorus and sulphur in soil is closely related to the dynamics of the biological cycle in which microorganisms play a central role. There is not much microbiological activity in acid soils because aerobes are scarce, rhizosphere is restricted to the shallow surface layer, and the biomass of microorganisms decreases with higher acidity. The aim of the research was to investigate the number of microorganisms, which decompose organic and inorganic phosphorus compounds and organic sulphur compounds in calcocambisol, luvisol, and pseudogley. The following parameters were determined in the soil samples: pH in H2O and in 1MKCl; the content of CaCO3 (%; humus content (%, nitrogen content (%; the content of physiologically active phosphorus and potassium (mg P2O5/100g of soil; mg K2O/100g of soil. The number of microorganisms was determined by the method of agar plates on appropriate nutrient media: the number of microorganisms solubilizing phosphates on a medium by Muramcov; the number of microorganisms that decompose organic phosphorus compounds on a medium with lecithin; and the number of microorganisms that transform organic sulphur compounds on a medium by Baar. All three types of soil are acid non-carbonate soils with a low level of available phosphorus and a more favorable amount of potassium, nitrogen, and humus. The largest number of bacteria, which transform organic phosphorus compounds, was found in calcocambisol. The largest number of phosphate solubilizing bacteria was recorded in pseudogley, whereas the largest number of phosphate solubilizing fungi was recorded in calcocambisol. The largest number of bacteria, which transform organic sulphur compounds, was recorded in pseudogley.