WorldWideScience

Sample records for high strength wastewater

  1. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  2. Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling

    Directory of Open Access Journals (Sweden)

    Abdelsalam Elawwad

    2018-09-01

    Full Text Available Wastewater containing high ammonium concentrations is produced from various industrial activities. In this study, the author used a complex activated sludge model, improved by utilizing BioWin© (EnviroSim, Hamilton, Canada simulation software, to gain understanding of the problem of instability in biological nitrogen removal (BNR. Specifically, the study focused on BNR in an industrial wastewater treatment plant that receives high-strength ammonium wastewater. Using the data obtained from a nine-day sampling campaign and routinely measured data, the model was successfully calibrated and validated, with modifications to the sensitive stoichiometric and kinetic parameters. Subsequently, the calibrated model was employed to study various operating conditions in order to optimize the BNR. These operating conditions include alkalinity addition, sludge retention time, and the COD/N ratio. The addition of a stripping step and modifications to the configuration of the aerators are suggested by the author to increase the COD/N ratio and therefore enhance denitrification. It was found that the calibrated model could successfully represent and optimize the treatment of the high-strength ammonium wastewater.

  3. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant.

    Science.gov (United States)

    Baban, Ahmet; Yediler, Ayfer; Ciliz, NilgunKiran; Kettrup, Antonius

    2004-11-01

    Textile dyeing and finishing industry involves considerable amount of water usage as well as polluted and highly colored wastewater discharges. Biological treatability by means of mineralization, nitrification and denitrification of high strength woolen textile dye bathes, first- and second-rinses is presented. COD fractionation study was carried out and kinetic parameters were determined. Biodegradability of organic compounds in highly loaded composite wastewater after segregation and the effluent of applied biological treatment of high strength composite wastewater were measured by determining oxygen consumption rates. The results were used in terms of assessing an alternative method for inert COD fractionation. The study implied that about 80% soluble COD, 50% color and 75% toxicity reduction were possible by single sludge biological processes. Sixteen per cent of total COD was found to be initially inert. Inert fraction was increased to 22% by production of soluble and particulate microbial products through biological treatment. copyright 2004 Elsevier Ltd.

  5. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  6. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  7. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu

    2011-01-01

    Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal subsur...

  8. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment.

    Science.gov (United States)

    Sun, D D; Zeng, J L; Tay, J H

    2003-01-01

    A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.

  9. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Science.gov (United States)

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  10. Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Jinxiang Zhou

    2016-03-01

    Full Text Available This article reports findings on the use of nanofiltration (NF and reverse osmosis (RO for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS and chemical oxygen demand (COD; however, only two membranes (Koch MPF-34 and Toray 70UB gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM, X-ray dispersive spectroscopy (EDS, and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF and found membrane process costs could be less than about 40% of the current DAF process.

  11. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.

    Science.gov (United States)

    Jamal Khan, S; Ilyas, Shazia; Javid, Sadaf; Visvanathan, C; Jegatheesan, V

    2011-05-01

    The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater.

    Science.gov (United States)

    Sui, Qianwen; Jiang, Chao; Yu, Dawei; Chen, Meixue; Zhang, Junya; Wang, Yawei; Wei, Yuansong

    2018-01-15

    Due to high-strength of organic matters, nutrients and pathogen, swine wastewater is a major source of pollution to rural environment and surface water. A sequencing-batch membrane bioreactor (SMBR) system with an automatic control strategy was developed for high-strength swine wastewater treatment. Short-cut nitrification and denitrification (SND) was achieved at nitrite accumulation rate of 83.6%, with removal rates of COD, NH 4 + -N and TN at 95%, 99% and 93%, respectively, at reduced HRT of 6.0 d and TN loading rate of 0.02kgN/(kgVSS d). With effective membrane separation, the reduction of total bacteria (TB) and putative pathogen were 2.77 logs and 1%, respectively. The shift of microbial community was well responded to controlling parameters. During the SND process, ammonia oxidizing bacteria (AOB) (Nitrosomonas, Nitrosospira) and nitrite oxidizing bacteria (NOB) (Nitrospira) were enriched by 52 times and reduced by 2 times, respectively. The denitrifiers (Thauera) were well enriched and the diversity was enhanced. Copyright © 2017. Published by Elsevier B.V.

  13. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    Science.gov (United States)

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    Science.gov (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2017-06-01

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m -2 .

  16. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal.

    Science.gov (United States)

    Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi

    2014-01-01

    Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.

  17. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities

  18. Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR.

    Science.gov (United States)

    Moore, Adam W; Zytner, Richard G; Chang, Sheng

    High strength food processing wastewater from two processing plants was studied to determine the effectiveness of an aerobic membrane bioreactor (MBR) to reduce BOD, TSS and nutrients below municipal sewer discharge limits. The MBR comprised a 20 L lab-scale reactor combined with a flat sheet, ultrafiltration membrane module. The parameters studied included the operational flux, solids and hydraulic retention times and recirculation ratio with regards to nitrification/denitrification. The MBR system provided excellent removal efficiency at 97% COD, 99% BOD, 99.9% TSS, 90% TKN, and 60% TP for both processing plants, which eliminated the surcharges, allowing the firms to stay competitive. Effluent reuse tests showed that activated carbon proved effective in removing color from the MBR permeate, while UV treatment was able to achieve a 5 log reduction in bacteriophage. Overall, these treatment successes show the potential for water reuse in the agrifood sector.

  19. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater.

    Science.gov (United States)

    Cao, Shenbin; Du, Rui; Li, Baikun; Ren, Nanqi; Peng, Yongzhen

    2016-07-01

    In this study, the microbial community structure was assessed in an anaerobic ammonium oxidation-upflow anaerobic sludge blanket (ANAMMOX-UASB) reactor treating high-strength wastewater (approximately 700 mg N L(-1) in total nitrogen) by employing Illumina high-throughput sequencing analysis. The reactor was started up and reached a steady state in 26 days by seeding mature ANAMMOX granules, and a high nitrogen removal rate (NRR) of 2.96 kg N m(-3) day(-1) was obtained at 13.2∼17.6 °C. Results revealed that the abundance of ANAMMOX bacteria increased during the operation, though it occupied a low proportion in the system. The phylum Planctomycetes was only 8.39 % on day 148 and Candidatus Brocadia was identified as the dominant ANAMMOX species with a percentage of 2.70 %. The phylum of Chloroflexi, Bacteroidetes, and Proteobacteria constituted a percentage up to 70 % in the community, of which the Chloroflexi and Bacteroidetes were likely to be related to the sludge granulation. In addition, it was found that heterotrophic denitrifying bacteria of Denitratisoma belonging to Proteobacteria phylum occupied a large proportion (22.1∼23.58 %), which was likely caused by the bacteria lysis and decay with the internal carbon source production. The SEM images also showed that plenty of other microorganisms existed in the ANAMMOX-UASB reactor.

  20. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Microaerobic biodegradation of high organic load wastewater by ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... concentration in the simulated wastewater as in the RCVBN medium. Optimization of wastewater composition and treatment conditions. SW with pollutants strength of 3600 mgl-1 COD was used to incubate the phototrophic bacteria microaerobically in the light (appro- ximately 2000 lx), the COD reduction ...

  2. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods

    Directory of Open Access Journals (Sweden)

    José de Anda

    2018-01-01

    Full Text Available This paper describes the preliminary monitoring results of an onsite pilot wastewater treatment plant consisting of a septic tank, an anaerobic up-flow filter, and a horizontal subsurface flow wetland system planted with Agapanthus africanus. The system was designed to treat heavily polluted domestic wastewater produced in a research and development (R&D center, reaching additional goals of zero energy consumption and eliminating the use of chemical additives. First water quality data shows that organic load in the treated sewage were removed achieving more than 95% efficiency. Nutrients were removed by almost 50%, and fecal and total coliform counts decreased by 99.96%. The results were compared to official Mexican regulations for wastewater discharged into lakes and reservoirs complied with all of them except for nutrients. In this pilot project, the resulting treated wastewater was directly reused for watering the green areas of the R&D center. The result was that the excess of nutrients improved the quality of the grass, avoiding the use of synthetic fertilizers, and created a wetland habitat for small wildlife species living in the area.

  3. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    International Nuclear Information System (INIS)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L.; Garcia, J.; Serp, P.; Kalck, P.

    2005-01-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO 3 modified) and MWNT-COONa (HNO 3 /Na 2 CO 3 modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT)≥RuCl 3 ≥Ru(C 5 H 5 ) 2 . The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of

  4. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L. [Porto Univ., Lab. de Catalise e Materiais, Dept. de Engenharia Quimica, Faculdade de Engenharia (Portugal); Garcia, J. [Madrid Univ. Complutense, Grupo de Catalisis y Operaciones de Separacion, Dept. de Ingenieria Quimica, Facultad de Ciencias (Spain); Serp, P.; Kalck, P. [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiques, Lab. de Catalyse, Chimie Fine et Polymeres, 31 - Toulouse (France)

    2005-07-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained

  5. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L

    2013-01-01

    A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.

  6. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Advanced oxidation treatment of high strength bilge and aqueous petroleum waste

    Energy Technology Data Exchange (ETDEWEB)

    Hulsey, R.A.; Kobylinski, E.A. [Black and Veatch, Kansas City, MO (United States); Leach, B. [EEC, Inc., Virginia Beach, VA (United States); Pearce, L. [TRITECH, Greensboro, NC (United States)

    1996-11-01

    The Craney Island Fuel Depot is the largest US Navy fuel terminal in the continental US. Services provided at this facility include fuel storage (current capacity is 1.5 million barrels), fuel reclamation (recovery of oil from oily wastewater), and physical/chemical treatment for the removal of residual oil from bilge water and from aqueous petroleum waste. Current wastewater treatment consists of storage/equalization, oil/water separation, dissolved air flotation, sand filtration, and carbon adsorption. The Navy initiated this study to comply with the State requirement that its existing physical/chemical oily wastewater treatment plant be upgraded to remove soluble organics and produce an effluent which would meet acute toxicity limits. The pilot tests conducted during the study included several variations of chemical and biological wastewater treatment processes. While biological treatment alone was capable of meeting the proposed BOD limit of 26 mg/L, the study showed that the effluent of the biological process contained a high concentration of refractory (nonbiodegradable) organics and could not consistently meet the proposed limits for COD and TOC when treating high-strength wastewater. Additional tests were conducted with advanced oxidation processes (AOPs). AOPs were evaluated for use as independent treatment processes as well as polishing processes following biological treatment. The AOP processes used for this study included combinations of ozone (O{sub 3}) ultraviolet radiation (UV), and hydrogen peroxide (H{sub 2}O{sub 2}).

  8. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... the application of the process for the industrial wastewater treatment. In order to solve or reduce the fouling problem it is necessary to have a good insight into the processes that take place both on and in the membrane pores during filtration. Therefore, the objective of this study is to contribute to a better...

  9. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  10. Utilizing Slurry and Carwash Wastewater as Fresh Water Replacement in Concrete Properties

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The high demand for concrete production generates wastewater which causes environmental problems. However, if wastewater is able to be recycled as part of engineering construction materials, many benefits can be reaped. Unfortunately, the use of wastewater in manufacturing concrete is not common. Therefore, this research aims to identify the influence of using slurry water and car wash wastewater on concrete properties, focusing particularly on its mechanical properties. The basic characteristics of wastewater were studied according to USEPA method while the properties of concrete with wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this paper, the compressive strength, modulus of elasticity and tensile strength were examined in order to determine the mechanical properties of concrete. The wastewater was replaced in the concrete mix from 0% up to 40%. The results indicated that the characteristics of wastewater complied with the BS and ASTM standards. In addition, the results also recommended that the concrete mixture with 20% of wastewater has given the highest compressive strength and modulus of elasticity.

  11. Treatment of marine sewage pumpout and RV park pumpout wastewater containing high strength concentrations of formaldehyde

    International Nuclear Information System (INIS)

    Salonich, J.

    2002-01-01

    'Full text:' A consortium of companies has developed an integrated 'on-site' wastewater treatment technology that is capable of handling and degrading RV Park and Marine Sewage Pumpout Wastes which contain formaldehyde [35 - 80 mg/L]. Boat and RV owners add formaldehyde to their toilets to eliminate odors. When these materials are pumped out they are high in solids content and have high concentrations of HCHO, which makes them difficult to degrade at POTWs. At the heart of this process is 1. An aeration tank with a Venturi Aerator totally external to the tank and 2. The addition of a blend of cultured bacteria that have selected for their ability to degrade formaldehyde. For a complete 'on-site' treatment system Bioclere Trickling Filters can follow this aeration/bacterial treatment system. This is an ideal system configuration for remote locations (RV Parks) or for fresh water lake Marinas looking to reduce their disposal costs and for groundwater discharge with no adverse effect on water quality. Until the development of the formaldehyde degrading bacteria for an industrial wastewater process there were no cultures commercially available specifically for degrading formaldehyde. The most commonly used bacteria were pseudomonas strains for carbohydrate or hydrocarbon wastewater extracted from activated sludge plants. And since formaldehyde is infinitely soluble in a liquid it is difficult to degrade or mineralize. The process in an activated sludge WWTP plant took over 72 hours. With the newly selected consortia of cultures, HCHO can be degraded in 12-14 hours on a batch basis. This is accomplished in a uniquely configured aeration tank where the 'environment' of the tank is constantly conditioned by a Venturi Aerator which strips carbon dioxide generated by the aerobes to maintain a neutral pH, and provide high levels of DO (>5.0 mg/L) to keep the process aerobic. (author)

  12. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  13. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  14. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  15. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  16. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  17. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  18. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications

    Science.gov (United States)

    Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao

    2016-02-01

    Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future.

  19. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.

    Science.gov (United States)

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang

    2013-11-01

    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  1. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  2. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  3. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  4. Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

    KAUST Repository

    Jimenez Sandoval, Rodrigo J.

    2013-11-01

    Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.

  5. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  6. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  7. Effects of ionizing radiation on struvite crystallization of livestock wastewater

    International Nuclear Information System (INIS)

    Kim, Tak- Hyun; Nam, Yun-Ku; Joo Lim, Seung

    2014-01-01

    Livestock wastewater is generally very difficult to be treated by conventional wastewater treatment techniques because it contains high-strength organics (COD), ammonium (NH 4 + ), phosphate (PO 4 3− ) and suspended solids. Struvite crystallization has been recently studied for the simultaneous removal of NH 4 + and PO 4 3− . In this study, gamma ray irradiation was carried out prior to struvite crystallization of the anaerobically digested livestock wastewater. The effects of gamma ray irradiation on the struvite crystallization of livestock wastewater were investigated. As a result, gamma ray irradiation can decrease the concentration of COD, NH 4 + and PO 4 3− contained in the livestock wastewater. This results in not only an enhancement of the struvite crystallization efficiency but also a decrease in the chemical demands for the struvite crystallization of livestock wastewater. - Highlights: • Gamma ray was applied prior to struvite crystallization of livestock wastewater. • Gamma ray resulted in an enhancement of struvite crystallization efficiency. • This is due to the decrease of COD concentration by gamma ray irradiation

  8. Supply-chain environmental effects of wastewater utilities

    International Nuclear Information System (INIS)

    Stokes, Jennifer R; Horvath, Arpad

    2010-01-01

    This letter describes a comprehensive modeling framework and the Wastewater-Energy Sustainability Tool (WWEST) designed for conducting hybrid life-cycle assessments of the wastewater collection, treatment, and discharge infrastructure in the United States. Results from a case study treatment plant which produces electricity using methane offgas are discussed. The case study system supplements influent with 'high-strength organic waste' to augment electricity production. The system balance is 55 kg of greenhouse gases per million liters of wastewater. Sensitivity analysis confirms that reusing biogas from anaerobic digestion for electricity reduces life-cycle greenhouse gas emissions by nine times. When biogas is captured and reused for electricity, material production (e.g., chemicals and pipes) and the corresponding supply chains, rather than energy production, are responsible for most of the environmental effects. When biogas is flared, the material and energy production contributions are similar.

  9. Effect of wastewater on properties of Portland pozzolana cement

    Science.gov (United States)

    Babu, G. Reddy

    2017-07-01

    This paper presents the effect of wastewaters on properties of Portland pozzolana cement (PPC). Fourteen water treatment plants were found out in the Narasaraopet municipality region in Guntur district, Andhra Pradesh, India. Approximately, from each plant, between 3500 and 4000 L/day of potable water is selling to consumers. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. During water treatment, plants are discharging approximately 1,00,000 L/day as wastewater in side drains in Narasaraopet municipality. Physical and chemical analysis was carried out on fourteen plants wastewater and distilled water as per producer described in APHA. In the present work, based on the concentrations of constituent's in wastewater, four typical plants i.e., Narasaraopeta Engineering College (NECWW), Patan Khasim Charitable Trust (PKTWW), Mahmadh Khasim Charitable Trust (MKTWW) and Amara (ARWW) were considered. The performance of four plants wastewater on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were performed in laboratories and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time but setting times of selected wastewaters were retarded as compared to that of reference water. Almost, no change was observed in 90 days compressive and flexural strengths in four plants wastewaters specimens compared to that of reference water specimens. XRD technique was employed to find out main hydration compounds formed in the process.

  10. Digested livestock wastewater treatment using gamma-ray irradiation and struvite crystallization

    International Nuclear Information System (INIS)

    Kim, Tak Hyun; Lee, Sang Ryul; Nam, Youn Ku; Lee, Myun Joo

    2009-01-01

    Livestock wastewater generally contains high strength of organics (COD), ammonia nitrogen (NH 4 + -N), phosphate phosphorus (PO 4 3- -P) and suspended solids. It is very difficult to treat by conventional wastewater treatment techniques. In this study, struvite crystallization was carried out to treat the digested livestock wastewater. 1.0 :1.2 :1.2 was determined as an optimal NH 4 + :Mg 2+ : PO 4 3- mol ratio of struvite crystallization. For the digested livestock wastewater, COD, NH 4 + -N and PO 4 3- -P removal efficiencies by struvite crystallization were 72.4%, 98.9%, and 74.8%, respectively. Gamma-ray irradiation was carried out prior to struvite crystallization of livestock wastewater. The enhancement of struvite crystallization efficiency could be obtained by the pretreatment of gamma-ray irradiation due to the decrease of COD, NH 4 + -N and PO 4 3- -P concentration

  11. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  12. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment.

    Science.gov (United States)

    Healy, M G; Burke, P; Rodgers, M

    2010-10-01

    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  13. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater.

    Science.gov (United States)

    Liu, Jinmeng; Wang, Xinhua; Wang, Zhiwei; Lu, Yuqin; Li, Xiufen; Ren, Yueping

    2017-03-01

    Microbial fuel cells (MFCs) and forward osmosis (FO) are two emerging technologies with great potential for energy-efficient wastewater treatment. In this study, anaerobic acidification and FO membrane were simultaneously integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and water recovery from low-strength wastewater. During a long-term operation of approximately 40 days, the AAFO-MFC system achieved a continuous and relatively stable power generation, and the maximum power density reached 4.38 W/m 3 . The higher bio-electricity production in the AAFO-MFC system was mainly due to the accumulation of ethanol resulted from anaerobic acidification process and the rejection of FO membrane. In addition, a proper salinity environment in the system controlled by the addition of MF membrane enhanced the electricity production. Furthermore, the AAFO-MFC system produced a high quality effluent, with the removal rates of organic matters and total phosphorus of more than 97%. However, the nitrogen removal was limited for the lower rejection of FO membrane. The combined biofouling and inorganic fouling were responsible for the lower water flux of FO membrane, and the Desulfuromonas sp. utilized the ethanol for bio-electricity production was observed in the anode. These results substantially improve the prospects for simultaneous wastewater treatment and energy recovery, and further studies are needed to optimize the system integration and operating parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fluidized bed anaerobic biodegration of food industry wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Toldra, F.; Flors, A.; Lequerica, J.L.; Valles, S.

    1987-01-01

    Anaerobic fluidized bed reactors were used to reduce the COD of low-strength food industry wastewaters. Soluble organic removal efficiencies of 75%, 80% and 50% were obtained for hog slaughterhouse, dairy and brewery wastewaters, respectively, at 35 degrees C and 8 hours hydraulic retention time. Removal efficiencies decreased with decreasing temperature (35 degrees C to 20 degrees C); no detrimental effect of temperature was observed when treating the slaughterhouse wastewater. Methane production rate was only relevant on brewery wastewater treatment. (Refs. 17).

  15. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  16. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  17. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  18. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  19. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  20. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  2. Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.

    Science.gov (United States)

    Buyukkamaci, Nurdan; Koken, Emre

    2010-11-15

    Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants

    DEFF Research Database (Denmark)

    Calheirosa, C.S.C.; Silva, G.; Quitério, P.V.B.

    2012-01-01

    The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted ...

  4. Disinfection of wastewaters: high-energy electron vs gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Civil Engineering; Kurucz, C N; Waite, T D [Miami Univ., Coral Gables, FL (United States); Cooper, W J [Florida International Univ., Miami, FL (United States). Drinking Water Research Center

    1993-07-01

    A study was undertaken to examine the sensitivity of a wastewater population of coliphage, total coliforms and total flora present in raw sewage and secondary effluent after irradiating with similar doses delivered by a high-energy electron beam and [gamma]-radiation. The electron beam study was conducted on a large scale at the Virginia Key Wastewater Treatment Plant, Miami, Florida. The facility is equipped with a 1.5 MeV, 50 mA electron accelerator, with a wastewater flow rate of 8ls[sup -1]. Concurrent [gamma]-radiation studies were conducted at laboratory scale using a 5000 Ci, [sup 60]Co [gamma]-source. Three logs reduction of all three test organisms were observed at an electron beam dose of 500 krads, while at least four logs reduction were observed at the same dose utilizing the [gamma]'source. (Author).

  5. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  6. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  7. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  8. Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, N. [Renewable Energy Technology Center (CETER), ' ' Jose Antonio Echeverria' ' Polytechnical University, Calle 127 s/n, CP 19390, Apdo. 6028, Habana 6 Marianao, Ciudad de La Habana (Cuba); Montalvo, S. [Department of Chemical Engineering, Santiago de Chile University, Ave. Lib. Bernardo O' Higgins 3363, Santiago de Chile (Chile); Borja, R.; Travieso, L.; Raposo, F. [Instituto de la Grasa (CSIC), Avenida Padre Garcia Tejero 4, 41012 Sevilla (Spain); Guerrero, L. [Department of Chemical, Biotechnological and Environmental Processes, Federico Santa Maria Technical University, Casilla 110-V, Valparaiso (Chile); Sanchez, E.; Colmenarejo, M.F. [Centro de Ciencias Medioambientales (CSIC), C/Serrano, 115-Duplicado, 28006 Madrid (Spain); Cortes, I. [Environment Nacional Center, Chile University, Ave. Larrain 9975, La Reina, Santiago de Chile (Chile)

    2008-11-15

    The performance of two laboratory-scale fluidized bed reactors with natural zeolite as support material when treating high-strength distillery wastewater was assessed. Two sets of experiments were carried out. In the first experimental set, the influences of the organic loading rate (OLR), the fluidization level (FL) and the particle diameter of the natural zeolite (D{sub P}) were evaluated. This experimental set was carried out at an OLR from 2 to 5 g COD (chemical oxygen demand)/l d, at FL 20% and 40% and with D{sub P} in the range of 0.2-0.5 mm (reactor 1) and of 0.5-0.8 mm (reactor 2). It was demonstrated that OLR and FL had a slight influence on COD removal, whereas they had a strong influence on the methane production rate. The COD removal was slightly higher for the highest particle diameter used. The second experimental set was carried out at an OLR from 3 to 20 g COD/l d with 25% of fluidization and D{sub P} in the above-mentioned ranges for reactors 1 and 2. The performance of the two reactors was similar; no significant differences were found. The COD removal efficiency correlated with the OLR based on a straight line. COD removal efficiencies higher than 80% were achieved in both reactors without significant differences. In addition, a straight line equation with a slope of 1.74 d{sup -1} and an intercept on the y-axis equal to zero described satisfactorily the effect of the influent COD on the COD removal rate. It was also observed that both COD removal rate and methane production (Q{sub M}) increased linearly with the OLR, independently of the D{sub P} used. (author)

  9. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  10. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    Science.gov (United States)

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez

    2005-09-01

    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  12. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  13. Organic Removal Efficiency of the Nanofiltration and Adsorption Hybrid System in High Strength Wastewater

    Directory of Open Access Journals (Sweden)

    Amir Hessam Hassani

    2011-03-01

    Full Text Available Surface and groundwater resources are increasingly jeopardized by discharges from pharmaceutical, chemical, and detergent plants. The high pollutant load of the effluents from these industries requires specific treatments. The objective of this research was to study and compare the nanofiltration and adsorption hybrid system with the plain nanofiltration system in wastewater treatment.For this purpose, a pilot nanofiltration system with a capacity of 7.6 m3/d using 1 and 5 micron filters and a FILMTEC NF90-4040 membrane was used in the first phase of the study. In the second phase, granular activated carbon cartridges were used. Inluent and effluent discharges as well as the COD removal were measured in both systems under variable times and organic load conditions. The results showed that COD removal efficiency was higher in the hybrid system than in the plain naonofiltration one. In the hybrid system, the Maximum in the hybrid system, the COD removal efficiencies achieved for organic loads of 1000, 2000, and 3000 mg/L were 99%, 95.86%, and 92.93%, respectively. The same values for the plain nanofiltration system were 87.34%, 50%, and 29.41%, respectively. It was found that polarization and membrane fouling decreased both the effluent flow and the COD removal efficiency with time. Fouling of the membrane was, however, lower in the hybrid system compared to the plain nanofiltration; thus, the hybrid system was associated with higher values of COD removal and delayed membrane fouling.

  14. Ecological surveys of the proposed high explosives wastewater treatment facility region

    International Nuclear Information System (INIS)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area

  15. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  16. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M.; Logan, Bruce E.

    2013-01-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  17. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  18. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  19. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    Science.gov (United States)

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  20. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  1. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  2. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  3. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    Science.gov (United States)

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling.

    Science.gov (United States)

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-12-25

    This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    Science.gov (United States)

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  6. Utilization of struvite recovered from high-strength ammonium-containing simulated wastewater as slow-release fertilizer and fire-retardant barrier.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Kocak, Emel; Akbin, Havva Melda; Özçimen, Didem

    2018-06-28

    Sustainable uses of the struvite (magnesium ammonium phosphate hexahydrate, MgNH 4 PO 4 ·6H 2 O, MAP) recovered from the synthetic wastewater, as a high-quality slow-release fertilizer for the growth of nine medicinal plants and a fire-retardant barrier on the flammability of cotton fabric and wooden plate, were explored in this study. The previous experimental results demonstrated that under the optimal conditions, about 98.7% of [Formula: see text] (initial [Formula: see text] = 1000 mg/L) could be effectively and successfully recovered from simulated wastewater in the form of MAP precipitate. Rates of increase in total fresh weights, total dry weights, and fresh heights of plants grown in soil fertilized with the struvite were determined as 67%, 52%, and 12% for valerian; 121%, 75%, and 18% for cucumber; 421%, 260%, and 47% for dill; 314%, 318%, and 27% for coriander; 432%, 566%, and 30% for tomato; 285%, 683%, and 26% for parsley; 200%, 225%, and 9% for basil; 857%, 656%, and 92% for rocket; and 146%, 115%, and 28% for cress, respectively, compared to the control pots. The microstructure, elemental composition, surface area, thermal behaviour, and functional groups of the grown crystals were characterized using SEM, EDS, BET, TGA-DTG-DSC, and FTIR analyses, respectively. Flammability tests and thermal analyses concluded that the dried and crumbled/implanted form of struvite used as a fire-retardant barrier demonstrated a remarkable flame-resistant behaviour for both cotton fabric and wooden plate. Findings of this experimental study clearly corroborated the versatility of struvite as non-polluting and environmentally friendly clean product for the sustainable usage in different fields.

  7. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  8. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  9. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  10. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  11. Integrated constructed wetland systems: design, operation, and performance of low-cost decentralized wastewater treatment systems.

    Science.gov (United States)

    Behrends, L L; Bailey, E; Jansen, P; Houke, L; Smith, S

    2007-01-01

    Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.

  12. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  13. Treatment of heavy oil wastewater by UASB-BAFs using the combination of yeast and bacteria.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-01-01

    A novel system integrating an upflow anaerobic sludge blanket (UASB) reactor and a two-stage biological aerated filter (BAF) system was investigated as advanced treatment of heavy oil wastewater with large amounts of dissolved recalcitrant organic substances and low levels of nitrogen and phosphorus nutrients. #1 BAF, inoculated with two yeast strains (Candida tropicalis and Rhodotorula dairenensis), was installed in the upper reaches of #2 BAF inoculated with activated sludge. During the 180-day study period, the chemical oxygen demand (COD), ammonia nitrogen (NH3-N), oil and polyaromatic hydrocarbons (PAHs) in the wastewater were removed by 90.2%, 90.8%, 86.5% and 89.4%, respectively. Although the wastewater qualities fluctuated and the hydraulic retention time continuously decreased, the effluent quality index met the national discharge standard steadily. The UASB process greatly improved the biodegradability of the wastewater, while #1 BAF played an important role not only in degrading COD but also in removing oil and high molecular weight PAHs. This work demonstrates that the hybrid UASB-BAFs system containing yeast-bacteria consortium has the potential to be used in bioremediation of high-strength oily wastewater.

  14. Stabilisation of Biological Phosphorus Removal from Municipal Wastewater

    DEFF Research Database (Denmark)

    Krühne, Ulrich

    variations of the influent wastewater concentrations and are not yet always guaranteed. Even though the scientific knowledge and practical experience has reached a high level of understanding of the involved key-processes it is still necessary to apply chemical precipitation of phosphorus during the time...... periods, where the complete BPR can not be achieved. The understanding of the main phenomena involved into such failure of BPR and the development of operational or control strategies to overcome these deficiencies are the main areas of investigation of this thesis. Investigations of the failure of BPR...... and increased hydraulic load, with subsequent re-establishment of normal conditions. A process disturbance of this type results in an increase in the phosphate concentration level in the effluent, shortly after the wastewater returns to normal strength. During the first part of the thesis it was examined...

  15. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  16. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan

    2011-10-01

    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  17. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  18. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  19. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  20. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  1. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  2. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  3. New Biocatalyst with Multiple Enzymatic Activities for Treatment of Complex Food Wastewaters

    Directory of Open Access Journals (Sweden)

    Olga Senko

    2008-01-01

    Full Text Available The cells of filamentous fungus R. oryzae entrapped in the polyvinyl alcohol cryogelare capable of producing various extracellular hydrolytic enzymes (proteases, amylases, lipases and are used for the treatment of complex wastewaters of food industry. Five types of media simulating the wastewater of various food enterprises were treated under batch conditions for 600 h. Fats containing mostly residues of unsaturated fatty acids, as well as casein, glucose, sucrose, starch, soybean flour and various salts were the main components of the treated wastewaters. The immobilized cells concurrently possessed lipolytic, amylolytic and proteolytic activities. The level of each enzymatic activity depended on the wastewater content. The physiological state of immobilized cells was monitored by bioluminescent method. The intracellular adenosine triphosphate (ATP concentration determined in the granules with immobilized cells was high enough and almost constant for all the period of biocatalyst application confirming thereby the active metabolic state of the cells. The study of mechanical strength of biocatalyst granules allowed revealing the differences in the values of modulus of biocatalyst elasticity at the beginning and at the end of its use for the wastewater treatment. The decrease in chemical oxygen demand of the tested media after their processing by immobilized biocatalyst was 68–79 % for one working cycle.

  4. Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry.

    Science.gov (United States)

    González-Mariño, Iria; Gracia-Lor, Emma; Bagnati, Renzo; Martins, Claudia P B; Zuccato, Ettore; Castiglioni, Sara

    2016-06-01

    Analysis of drug residues in urban wastewater could complement epidemiological studies in detecting the use of new psychoactive substances (NPS), a continuously changing group of drugs hard to monitor by classical methods. We initially selected 52 NPS potentially used in Italy based on seizure data and consumption alerts provided by the Antidrug Police Department and the National Early Warning System. Using a linear ion trap-Orbitrap high resolution mass spectrometer, we designed a suspect screening and a target method approach and compared them for the analysis of 24 h wastewater samples collected at the treatment plant influents of four Italian cities. This highlighted the main limitations of these two approaches, so we could propose requirements for future research. A library of MS/MS spectra of 16 synthetic cathinones and 19 synthetic cannabinoids, for which analytical standards were acquired, was built at different collision energies and is available on request. The stability of synthetic cannabinoids was studied in analytical standards and wastewater, identifying the best analytical conditions for future studies. To the best of our knowledge, these are the first stability data on NPS. Few suspects were identified in Italian wastewater samples, in accordance with recent epidemiological data reporting a very low prevalence of use of NPS in Italy. This study outlines an analytical approach for NPS identification and measurement in urban wastewater and for estimating their use in the population.

  5. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  6. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  7. Treatment of reactive process wastewater with high-level ammonia by blow-off method

    International Nuclear Information System (INIS)

    Chen Xiaotong; Quan Ying; Wang Yang; Fu Genna; Liu Bing; Tang Yaping

    2012-01-01

    The ceramic UO 2 kernels for nuclear fuel elements of high temperature gas cooled reactors were prepared through sol-gel process with uranyl nitrate, which produces process wastewater containing high-level ammonia and uranium. The blow-off method on a bench scale was investigated to remove ammonia from reactive wastewater. Under the optimized operating conditions, the ammonia can be removed by more than 95%, with little reactive uranium distilled. The effects of pH, heating temperature and stripping time were studied. Static tests with ion-exchange resin indicate that ammonia removal treatment increases uranium accumulation in anion exchange resin. (authors)

  8. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  9. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  10. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    Science.gov (United States)

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  11. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  12. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  13. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  14. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  15. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  16. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Appropriate technology for domestic wastewater management in under-resourced regions of the world

    Science.gov (United States)

    Oladoja, Nurudeen Abiola

    2017-11-01

    Centralized wastewater management system is the modern day waste management practice, but the high cost and stringent requirements for the construction and operation have made it less attractive in the under-resourced regions of the world. Considering these challenges, the use of decentralized wastewater management system, on-site treatment system, as an appropriate technology for domestic wastewater treatment is hereby advocated. Adopting this technology helps save money, protects home owners' investment, promotes better watershed management, offers an appropriate solution for low-density communities, provides suitable alternatives for varying site conditions and furnishes effective solutions for ecologically sensitive areas. In the light of this, an overview of the on-site treatment scheme, at the laboratory scale, pilot study stage, and field trials was conducted to highlight the operational principles' strength and shortcomings of the scheme. The operational requirements for the establishing and operation of the scheme and best management practice to enhance the performance and sustenance were proffered.

  18. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  19. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  20. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  1. Advanced Oxidation Processes (AOPs for Refinery Wastewater Treatment Contains High Phenol Concentration

    Directory of Open Access Journals (Sweden)

    Azizah Alif Nurul

    2018-01-01

    Full Text Available Petroleum Refinery wastewater is characterized by a high phenol content. Phenol is toxic and resistant to biological processes for treatment of the petroleum refinery wastewater. The combination of an AOP and a biological process can be used for treatment of the refinery wastewater. It is necessary to conduct a study to determine the appropriate condition of AOP to meet the phenol removal level. Two AOP configurations were investigated: H2O2 / UV and H2O2 / UV / O3. From each process samples, COD, phenol and pH were measured. The oxidation was carried out until the targeted phenol concentration of treated effluent were obtained. The better result obtained by using process H2O2 / UV / O3 with the H2O2 concentration 1000 ppm. After 120 minutes, the final target has been achieved in which phenol concentration of 37.5 mg/L or phenol degradation of 93.75%.

  2. Utilization of the high energy electrons beams generated in accelerator for treatment of drinking water and wastewater

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-01-01

    Samples of drinking water and wastewater were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% of trihalomethanes (THM) in drinking water (concentration from 2.7μg/l to 45μg/l, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid wastewater. (author)

  3. Hydrolytic pretreatment of oily wastewater by immobilized lipase.

    Science.gov (United States)

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-06-25

    The purpose of this study was to evaluate the hydrolysis of wastewater with high oil and grease (O&G) concentration from a pet food industry using immobilized lipase (IL) as a pretreatment step for anaerobic treatment through batch and continuous-flow experiments. The intrinsic Michaelis constant (K(m)) and maximum reaction rate (V(max)) were estimated experimentally and the K(m) value of IL (22.5g O&G/L) was six-folds higher than that of the free lipase (FL) (3.6gO&G/L), whereas V(max) of both FL (31.3mM/gmin) and IL (33.1mM/gmin) were similar. Preliminary batch anaerobic respirometric experiments showed that chemical oxygen demand (COD) and O&G reduction were 49 and 45% without pretreatment and 65 and 64% with IL pretreatment respectively, while the maximum growth rate (micromax) for pretreated wastewater (0.17d(-1)) was 3.4-folds higher than that of raw wastewater (0.05d(-1)) with similar Monod half-saturation constants (K(s) approximately 2.7gCOD/L). The continuous-flow experimental study showed the feasibility of employing the hybrid packed bed reactor (PBR)-upflow anaerobic sludge blanket (UASB) system for the treatment of high-strength oily wastewater, as reflected by its ability to operate at an oil loading rate (LR) of 4.9kgO&G/m(3)d (to the PBR) without any problems for a period of 100days. During pseudo-steady-state conditions, the hybrid UASB produced relatively higher biogas compared to the control UASB, The effluent COD and O&G concentrations of hybrid system were 100mg/L lower than that of the control UASB reactor and no foam production was observed in the hybrid UASB compared to the control UASB reactor.

  4. Hydrolytic pretreatment of oily wastewater by immobilized lipase

    International Nuclear Information System (INIS)

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-01-01

    The purpose of this study was to evaluate the hydrolysis of wastewater with high oil and grease (O and G) concentration from a pet food industry using immobilized lipase (IL) as a pretreatment step for anaerobic treatment through batch and continuous-flow experiments. The intrinsic Michaelis constant (K m ) and maximum reaction rate (V max ) were estimated experimentally and the K m value of IL (22.5 g O and G/L) was six-folds higher than that of the free lipase (FL) (3.6 g O and G/L), whereas V max of both FL (31.3 mM/g min) and IL (33.1 mM/g min) were similar. Preliminary batch anaerobic respirometric experiments showed that chemical oxygen demand (COD) and O and G reduction were 49 and 45% without pretreatment and 65 and 64% with IL pretreatment respectively, while the maximum growth rate (μ max ) for pretreated wastewater (0.17 d -1 ) was 3.4-folds higher than that of raw wastewater (0.05 d -1 ) with similar Monod half-saturation constants (K s ∼ 2.7 g COD/L). The continuous-flow experimental study showed the feasibility of employing the hybrid packed bed reactor (PBR)-upflow anaerobic sludge blanket (UASB) system for the treatment of high-strength oily wastewater, as reflected by its ability to operate at an oil loading rate (LR) of 4.9 kg O and G/m 3 d (to the PBR) without any problems for a period of 100 days. During pseudo-steady-state conditions, the hybrid UASB produced relatively higher biogas compared to the control UASB, The effluent COD and O and G concentrations of hybrid system were 100 mg/L lower than that of the control UASB reactor and no foam production was observed in the hybrid UASB compared to the control UASB reactor

  5. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  6. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  7. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  8. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor.

    Science.gov (United States)

    Kim, Tae Gwan; Yun, Jeonghee; Cho, Kyung-Suk

    2015-10-01

    The up-flow anaerobic sludge blanket (UASB) reactor is a promising method for the treatment of high-strength industrial wastewaters due to advantage of its high treatment capacity and settleable suspended biomass retention. Molasses wastewater as a sugar-rich waste is one of the most valuable raw material for bioenergy production due to its high organic strength and bioavailability. Interpretation for complex interactions of microbial community structures and operational parameters can help to establish stable biogas production. RNA-based approach for biogas production systems is recommended for analysis of functionally active community members which are significantly underestimated. In this study, methane production and active microbial community were characterized in an UASB reactor using molasses wastewater as feedstock. The UASB reactor achieved a stable process performance at an organic loading rate of 1.7~13.8-g chemical oxygen demand (COD,·L(-1) day(-1); 87-95 % COD removal efficiencies), and the maximum methane production rate was 4.01 L-CH4·at 13.8 g-COD L(-1) day(-1). Lactococcus and Methanosaeta were comprised up to 84 and 80 % of the active bacterial and archaeal communities, respectively. Network analysis of reactor performance and microbial community revealed that Lactococcus and Methanosaeta were network hub nodes and positively correlated each other. In addition, they were positively correlated with methane production and organic loading rate, and they shared the other microbial hub nodes as neighbors. The results indicate that the close association between Lactococcus and Methanosaeta is responsible for the stable production of methane in the UASB reactor using molasses wastewater.

  9. Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater

    Science.gov (United States)

    Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

    2010-11-01

    The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4ṡ7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

  10. High energy electron disinfection of sewage wastewater in flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T; Arai, H; Hosono, M; Tokunaga, O; Machi, S [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kondoh, M; Minemura, T; Nakao, A; Seike, Y [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    1990-01-01

    The disinfection of effluent municipal wastewaters by high-energy electrons in flow systems was studied using an experimental apparatus which has the maximum treatment capacity of 10.8 m{sup 3}/h. An electron accelerator with an accelerating voltage of 2 MV was used. The electron beam current was controlled to deliver the desired doses ranging from 0.05 to 1 kGy. Treatment times were in the range from 0.0022 to 0.051 s. Preliminary experiments with batch system using Petri dish of 100 ml showed that the effectiveness of electron irradiation on inactivation of coliforms was not influenced significantly by factors such as pH, SS, COD, DO and irradiation temperature. The dose required to produce 99.9% kill in the total population presented in wastewater were markedly affected by the thickness of water exposure to electron irradiation; that is, 0.39, 0.4 and 0.44 kGy for the depth of 5, 6 and 7 mm, respectively. The data obtained after a suitable correction for the doses due to the depth dose distribution showed no deviation from an experimental survival curve. Experiments with flow system indicated no measureable effect of the flow rate of wastewaters on the efficiency of disinfection in the range from 0.5 to 3.5 m/s. (author).

  11. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrochemical treatment of organic wastewater with high salt content. Ko enbun yuki haisui no denkai shori

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hideo; Kitamura, Takao; Kato, Shunsaku; Oyashiki, Satoru (Goverment Industrial Research Inst. Shikoku, Takamatsu, (Japan) Toyo Engineering Work Ltd., Tokyo, (Japan))

    1990-01-31

    Wastewater containing organic pollutants is generally treated by the biological methods like the activated sludge process, etc. But these biological methods are not necessarily applied to the wastewater with high salt content generated at pickles making plants, etc.. In this report, with the objective of application of the electrolytic oxidation treatment to the organic wastewater with high salt content of pickles making plants, the effects of such conditions as pH, temperature and current, etc. on the treatment rate and treatment efficiency were examined, furthermore, the treatment process was simulated on the basis of a simple reaction model, and its simulation results were compared for study with the experimental results. The results are shown below: No effect of pH was observed, hence no pH control is required; The higher temperature of the wastewater accelerates the treatment rate; It was considered that in high temperature, a loss due to autolysis of hypochlorous acid increases, but the current efficiency of generating hypochlorous acid increases too and since the latter effect is bigger, the above phenomenon occurs. The current has a small effect on the treatment efficiency. With the simple reaction model, the change of residual chlorine concentration, etc. with time can be reproduced semiquantitatively. 7 refs., 6 figs.

  13. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  14. ENHANCEMENT OF PHENOL REMOVAL EFFICIENCY IN DORA REFINERY WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Salah F. Sharif

    2013-05-01

    Full Text Available Because the sanctions imposed on Iraq by the United Nations, programmed maintenance and wearing parts replacement has not been performed according to schedules in DORA Refinery Wastewater Unit, which resulted in higher phenol content and BOD5 in effluents disposed to river. The investigations showed that two main reasons were behind this problem: Firstly, increased emissions of hydrocarbons in the complexity of refinery equipment and Secondly, the decreased efficiency of the aerators in the biological. During the last few months, phenol average concentration in the effluent, after biological treatment was found to be between 0.06-0.13 mg/L, while COD was exceeding 110 mg/L after treatment in the same period. Considerable enhancement, has been indicated recently, after the following performances: First: Recycling wastewater from some heat exchangers, and the segregation of low and high strength of wastewaters, Second: Minimizing emissions of hydrocarbons from fluid catalytic cracking and steam cracking, Third: Replacement of driving motors of the aerators in the biological treatment unit. After replacement of these units, a significant decrease in phenol concentration was obtained in purified water (0.03-0.05 mg/L and COD of 60 mg/L before the tertiary treatment. It is concluded that a better quality of effluents has been obtained after a series of emissions control and wastewater treatment unit equipment maintenance performances.

  15. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  16. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation.

    Science.gov (United States)

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei

    2017-03-01

    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    Directory of Open Access Journals (Sweden)

    Nurdan BÜYÜKKAMACI

    2016-06-01

    Full Text Available The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB and an ultrafiltration (UF membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days and organic loading rates (5-15 kg COD/m3.day. As a result of the experimental studies, maximum treatment efficiency with respect to COD reduction (95% was achieved at 7.5 kg COD/m3.day OLR (CODinfluent=15.000 mg/L, HRT=2 days applications. When OLR was increased to 15 kg COD/m3.day, system performance decreased sharply. Similarly, methane gas production decreased by increasing OLR. After then, feed was changed to real wastewater, which was alcoholic beverage industry effluent. At this study, maximum COD removal efficiency of the system and maximum methane gas production was 88% and 74%, respectively.

  18. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  19. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  20. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    Science.gov (United States)

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Jin, S.H.

    2010-01-01

    This study presents a screening protocol to evaluate the applicability of the ZVI pretreatment to various industrial wastewaters of which major constituents are not identified. The screening protocol consisted of a sequential analysis of UV-vis spectrophotometry, high-performance liquid chromatograph (HPLC), and bioassay. The UV-vis and HPLC analyses represented the potential reductive transformation of unknown constituents in wastewater by the ZVI. The UV-vis and HPLC results were quantified using principal component analysis (PCA) and Euclidian distance (ED). The short-term bioassay was used to assess the increased biodegradability of wastewater constituents after ZVI treatment. The screening protocol was applied to seven different types of real industrial wastewaters. After identifying one wastewater as the best candidate for the ZVI treatment, the benefit of ZVI pretreatment was verified through continuous operation of an integrated iron-sequencing batch reactor (SBR) resulting in the increased organic removal efficiency compared to the control. The iron pretreatment was suggested as an economical option to modify some costly physico-chemical processes in the existing wastewater treatment facility. The screening protocol could be used as a robust strategy to estimate the applicability of ZVI pretreatment to a certain wastewater with unknown composition.

  2. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  3. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  4. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi

    2015-01-01

    Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength...

  5. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  6. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  7. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.

    Science.gov (United States)

    Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H

    2005-01-01

    Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be treatment) and sufficient P-removal.

  8. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  9. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    Science.gov (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  10. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  11. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  12. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Charmaine Ng

    2017-11-01

    Full Text Available The dissemination of antimicrobial resistance (AMR is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6 were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb and surface water (n = 5, 35 subtypes, 7,985 x/Gb. A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus, the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter and opportunistic pathogens (Prevotella, Comamonas, Neisseria. Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS, quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., blaKPC, blaCTX-M, blaSHV, blaTEM. The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of blaKPC-2 genes (142,200 x/Gb, encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401, a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin–antitoxin (TA system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the

  13. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  14. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  15. Tetracycline removal during wastewater treatment in high-rate algal ponds

    International Nuclear Information System (INIS)

    Godos, Ignacio de; Muñoz, Raúl; Guieysse, Benoit

    2012-01-01

    Highlights: ► Tetracycline removal was most likely caused by photodegradation and biosorption. ► Tetracycline presence was linked to biomass deflocculation and poor settleability. ► Deflocculation did not impact treatment efficiency. ► Deflocculation may hamper biomass recover during full-scale treatment. - Abstract: With the hypothesis that light supply can impact the removal of veterinary antibiotics during livestock wastewater treatment in high rate algal ponds (HRAPs), this study was undertaken to determine the mechanisms of tetracycline removal in these systems. For this purpose, two HRAPs were fed with synthetic wastewater for 46 days before tetracycline was added at 2 mg L −1 to the influent of one of the reactors (Te-HRAP). From day 62, dissolved tetracycline removal stabilized around 69 ± 1% in the Te-HRAP and evidence from batch assays suggests that this removal was mainly caused by photodegradation and biosorption. Tetracycline addition was followed by the deflocculation of the Te-HRAP biomass but had otherwise no apparent impact on the removal of the chemical oxygen demand (COD) and biomass productivity. The results from the batch assays also suggested that the light-shading and/or pollutant-sequestrating effects of the biomass limited tetracycline removal in the pond. For the first time, these results demonstrate that the shallow geometry of HRAPs is advantageous to support the photodegradation of antibiotics during wastewater biological treatment but that the presence of these pollutants could hamper biomass recovery. These findings have significant implications for algal-based environmental biotechnologies and must be confirmed under field conditions.

  16. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  17. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  18. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  19. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    Directory of Open Access Journals (Sweden)

    Ciara eKeating

    2016-03-01

    Full Text Available We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD. A hybrid sludge bed/fixed-film (packed pumice stone reactor was employed for low-temperature (12°C anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2% within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was

  20. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  1. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  2. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  3. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  5. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thelhawadigedara, Lahiru Niroshan Jayakody [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Christopher W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pleitner, Brenna P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cleveland, Nicholas S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitham, Jason M. [Oak Ridge National Laboratory; Giannone, Richard J. [Oak Ridge National Laboratory; Klingeman, Dawn M. [Oak Ridge National Laboratory; Brown, Robert C. [Iowa State University; Brown, Steven D. [Oak Ridge National Laboratory; LanzaTech, Inc.; Hettich, Robert L. [Oak Ridge National Laboratory; Guss, Adam M. [Oak Ridge National Laboratory

    2018-04-17

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putida grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.

  6. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  7. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  8. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  9. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  10. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  11. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    Science.gov (United States)

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  12. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO 3 - -N and TN in winter; and in summer with NH 4 + N, NO 3 - -N, NO 2 - -N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  14. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  15. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  16. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  17. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  18. The performance of a three-phase fluidized bed reactor in treatment of wastewater with high organic load

    Directory of Open Access Journals (Sweden)

    R. R. Souza

    2004-06-01

    Full Text Available An experimental study was carried out aiming to evaluate the performance of a three-phase fluidized bed bioreactor (FBBR used to treat milk wastewater. In this study three different concentrations of milk wastewater substrate (462, 825 and 1473 mg O2/L were tested. Using the same number of support particles, the results demonstrate that the average efficiency of COD removal decreased as the concentration of organic load in the substrate was increased. The growth of microorganism in the FBBR was followed by a count of viable cells in both liquid phase and the biofilms attached to the support. An increased number of viable cells were observed inside the reactor when it was used to degrade higher organic loads, with most of the cells on the support. The higher concentration of active biomass was responsible for achieving a relatively high absolute degradation of the wastewater containing the high organic load.

  19. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  20. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  1. Biomass production and nutrient assimilation by a novel microalga, Monoraphidium spp. SDEC-17, cultivated in a high-ammonia wastewater

    International Nuclear Information System (INIS)

    Jiang, Liqun; Pei, Haiyan; Hu, Wenrong; Hou, Qingjie; Han, Fei; Nie, Changliang

    2016-01-01

    Highlights: • The algae Monoraphidium SDEC-17 was identified as a suitable feedstock for biofuel. • SDEC-17 has been domesticated to survive in high-ammonia wastewater (CW). • SDEC-17 exhibited robust growth and nutrient assimilation in CW. • CW improved protein accumulation of SDEC-17. - Abstract: To obtain suitable microalgae species for successful algal biomass production from low-cost wastewater, four axenic algae strains were isolated from a local lake. Through acclimation with the high-ammonia complex wastewater (CW) of a gourmet powder factory, one algae species showed good ability to yield biomass and endure high-ammonia conditions (>170 mg L"−"1) in CW. This was verified as a Monoraphidium spp. by molecular identification, and named as SDEC-17. The algae were 27–60 μm in length and 4–10 μm in width, with relatively low specific surface area for withstanding ammonia ingress through the cell membrane. The final biomass densities of SDEC-17 in CW (1.29 ± 0.09 g L"−"1) and BG11 medium (1.31 ± 0.08 g L"−"1) did not show a statistically significant difference (p > 0.05). Moreover, protein content was stimulated to 44% by CW, compared to 35% in BG11. Lipid accumulation of SDEC-17 was not significantly influenced by CW, and fatty acid profiles resembled those of palm oil. The algae would utilize ammonia first under conditions with various nitrogen sources present, and absorb large amounts of phosphorus from the wastewater. Thus, phosphorus and ammonia were removed with efficiencies of nearly 100%, satisfying the discharge standard of pollutants for municipal wastewater treatment plants. These results suggested that Monoraphidium spp. SDEC-17 is a promising candidate for algae biomass production and possibly chemical energy recovery from the complex wastewater.

  2. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  3. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  4. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  5. Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater.

    Science.gov (United States)

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang

    2017-10-28

    Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

  6. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  7. Processing of Cu-Cr alloy for combined high strength and high conductivity

    Directory of Open Access Journals (Sweden)

    A.O Olofinjanaa

    2017-11-01

    Full Text Available High strength and high conductivity (HSHC are two intrinsic properties difficult to combine in metallic alloy design because; almost all strengthening mechanisms also lead to reduced conductivity. Precipitation hardening by nano-sized precipitates had proven to be the most adequate way to achieve the optimum combination of strength and conductivity in copper based alloys. However, established precipitation strengthened Cu- alloys are limited to very dilute concentration of solutes thereby limiting the volume proportion hardening precipitates. In this work, we report the investigation of the reprocessing of higher Cr concentration Cu- based alloys via rapid solidification. It is found that the rapid solidification in the as-cast ribbon imposed combined solution extension and ultra-refinement of Cr rich phases. X-ray diffraction evidences suggest that the solid solution extension was up to 6wt%Cr. Lattice parameters determined confirmed the many folds extension of solid solution of Cr in Cu.  Thermal aging studies of the cast ribbons indicated that peak aging treatments occurred in about twenty minutes. Peak aged hardness ranged from about 200 to well over 300Hv. The maximum peak aged hardness of 380Hv was obtained for alloy containing 6wt.%Cr but with conductivity of about 50%IACS. The best combined strength/conductivity was obtained for 4wt.%Cr  alloy with hardness of 350HV and conductivity of 80% IACS. The high strengths observed are attributed to the increased volume proportion of semi-coherent Cr rich nano-sized precipitates that evolved from the supersaturated solid solution of Cu-Cr that was achieved from the high cooling rates imposed by the ribbon casting process. The rapid overaging of the high Cr concentration Cu-Cr alloy is still a cause for concern in optimising the process for reaching peak HSHC properties. It is still important to investigate a microstructural design to slow or severely restrict the overaging process. The optimum

  8. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  9. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  10. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  11. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  12. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  13. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.

    Science.gov (United States)

    Alcántara, Cynthia; Muñoz, Raúl; Norvill, Zane; Plouviez, Maxence; Guieysse, Benoit

    2015-02-01

    This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.

    Science.gov (United States)

    Wang, Hangyao; Zhou, Qin; Zhang, Guangming; Yan, Guokai; Lu, Haifeng; Sun, Liyan

    A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

  15. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater

    International Nuclear Information System (INIS)

    Yang Yu; Wang Peng; Shi Shujie; Liu Yuan

    2009-01-01

    This paper explored a novel process for wastewater treatment, i.e. microwave enhanced Fenton-like process. This novel process was introduced to treat high concentration pharmaceutical wastewater with initial COD loading of 49,912.5 mg L -1 . Operating parameters were investigated and the optimal condition included as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.42, H 2 O 2 dosage was 1300 mg L -1 and Fe 2 (SO 4 ) 3 dosage was 4900 mg L -1 , respectively. Within the present experimental condition used, the COD removal and UV 254 removal reached to 57.53% and 55.06%, respectively, and BOD 5 /COD was enhanced from 0.165 to 0.470. The variation of molecular weight distribution indicated that both macromolecular substances and micromolecular substances were eliminated quite well. The structure of flocs revealed that one ferric hydrated ion seemed to connect with another ferric hydrated ion and/or organic compound molecule to form large-scale particles by means of van der waals force and/or hydrogen bond. Subsequently, these particles aggregated to form flocs and settled down. Comparing with traditional Fenton-like reaction and conventional heating assisted Fenton-like reaction, microwave enhanced Fenton-like process displayed superior treatment efficiency. Microwave was in favor of improving the degradation efficiency, the settling quality of sludge, as well as reducing the yield of sludge and enhancing the biodegradability of effluent. Microwave enhanced Fenton-like process is believed to be a promising treatment technology for high concentration and biorefractory wastewater.

  16. Quantum leap for treating wastewaters

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: For many Australian food manufacturers there is increasing pressure from government agencies to reach higher standards of wastewater treatment for environmental discharge. In fact, throughout the western wolrd industrual water users are facing a similar challenge. One of the big problems is ageing pipe networks, particularly sewage pipes. Also, industrial wastewaters with high sugar-nutrient loads can cause serious damage to pipelines. This is because fermentation occurs within the wastewater, eroding and degrading the pipes, causing numerous cracks and fractures. This in turn leads to water ingress, which puts a strain on treatment plants because of the higher volume of water, especially in wet weather. Food manufacturing produces large volumes of mostly biodegradable liquid and solid waste. Wastewaters released from food manufacturing can be 'muddy', with high concentrations of suspended solids, fats, oils and grease (FOGs), and, usually, nutrients such as nitrogen. The issue for many food manufacturers is that existing wastewater treatment systems are unable to reduce the nutrient load in the biological treatment stage to a level allowing acceptable discharge. In addition, most rely on large tanks housing bacteria that are submerged in water and aerated. Aeration is energy-hungry and can create a 'sludge-cake' on top of the water, which is difficult to treat. Most existing technologies also use filters, but they foul easily and require ongoing maintenance. According to BioGill chief executive John West, the BioGill technology is groundbreaking and radically different from conventional bioreactors because the 'gills' are not submerged. Instead, the gills, composed of Nano-Ceramic Membrane sheets arranged vertically in pairs, are suspended in the air, above ground, with wastewater travelling down between them. “Fungi and bacteria, known as biomass, grow on the membranes in direct contact with the air, eating nutrients much faster than other systems

  17. Thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)--utilisation of main carbon sources.

    Science.gov (United States)

    Krzywonos, Małgorzata; Cibis, Edmund; Lasik, Małgorzata; Nowak, Jacek; Miśkiewicz, Tadeusz

    2009-05-01

    The aim of the study was to ascertain the extent to which temperature influences the utilisation of main carbon sources (reducing substances determined before and after hydrolysis, glycerol and organic acids) by a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in the course of aerobic batch biodegradation of potato stillage, a high-strength distillery effluent (COD=51.88 g O(2)/l). The experiments were performed at 20, 30, 35, 40, 45, 50, 55, 60 and 63 degrees C, at pH 7, in a 5l working volume stirred-tank bioreactor (Biostat B, B. Braun Biotech International) with a stirrer speed of 550 rpm and aeration at 1.6 vvm. Particular consideration was given to the following issues: (1) the sequence in which the main carbon sources in the stillage were assimilated and (2) the extent of their assimilation achieved under these conditions.

  18. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  19. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  20. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  1. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  2. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  3. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  4. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  5. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  6. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    Science.gov (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  7. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  8. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    investments. Therefore, the EU funds are very important for the countries such as Greece anor Serbia. Egypt, Jordan, Tunisia, Palestine, Morocco and Syria irepresent a group of countries with a high need for the reuse of wastewater, but also with prevailing economic problems, limited experience, inadequate infrastructures, including sewers and wastewater treatment factories. Strict standards for the reuse of water such as the standards in California and other states in the U.S.A. (USEPA 1992,are not easy to achieve. The WHO directive is less severe, and it defines the treatment of wastewater for irrigation of crops, especially in developing countries. The countries that are the EU members, such as Greece, can expect to be provided with funding to improve health and to implement certain laws and regulations (Andreadakis A.. et al., 2001, 7th Conference on Environmental Science and Technology, Greece, September nd Reuse of wastewater from households Gray water is water that comes from common household activities such as shaving, showering and washing machines. Since graywater represents 50-80% of common household water consumption, environmentalists believe that its discharge into drains is a waste and a missed opportunity to use such a resource. It can easily be captured, treated on site and reused in toilets and for landscaping, instead of  commonly used drinking water. Systems used for purification and disinfection depend on countries and requirements    that treated water must meet. In Australia, it is not allowed to treat water from the kitchen as gray water because of the presence of food, i.e. possible and therefore may be presen pathogenic organisms which make the purification process difficult. Some other states prohibit the reuse of gray water from washing machines- since cloth diapers can be washed in them clot, the water can be  contaminated with faeces despite no contact with the main sewage drains. In California, treated gray water has been used for garden

  9. Advanced Oxidation Treatment of Drinking Water and Wastewater Using High-energy Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2007-03-01

    Full Text Available Application of electron beam as a strong oxidation method for disinfection of drinking water and wastewater has been investigated. Drinking water samples were prepared from wells in rock zones in Yazd Province. Wastewater samples were collected from Yazd Wastewater Treatment Plant. Samples were irradiated by 10 MeV electron beam accelerator at Yazd Radiation Processing Center. The irradiation dose range varied from 0.5-5 kGy. Biological parameters and microbial agents such as aerobic mesophiles and coliforms including E. coli count before and after irradiation versus irradiation dose were obtained using MPN method. The data obtained from irradiated water and wastewater were compared with un-irradiated (control samples. The results showed a removal of 90% of all microorganisms at irradiation doses below 5 kGy, suggesting electron beam irradiation as an effective method for disinfection of wastewater.

  10. Toxicity identification evaluation of cosmetics industry wastewater.

    Science.gov (United States)

    de Melo, Elisa Dias; Mounteer, Ann H; Leão, Lucas Henrique de Souza; Bahia, Renata Cibele Barros; Campos, Izabella Maria Ferreira

    2013-01-15

    The cosmetics industry has shown steady growth in many developing countries over the past several years, yet little research exists on toxicity of wastewaters it generates. This study describes a toxicity identification evaluation conducted on wastewater from a small Brazilian hair care products manufacturing plant. Physicochemical and ecotoxicological analyses of three wastewater treatment plant inlet and outlet samples collected over a six month period revealed inefficient operation of the treatment system and thus treated wastewater organic matter, suspended solids and surfactants contents consistently exceeded discharge limits. Treated wastewater also presented high acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. This toxicity was associated with suspended solids, volatile or sublatable and non-polar to moderately polar organic compounds that could be recovered in filtration and aeration residues. Seven surfactants used in the largest quantities in the production process were highly toxic to P. subcapitata and D. similis. These results indicated that surfactants, important production raw materials, are a probable source of toxicity, although other possible sources, such as fragrances, should not be discarded. Improved treatment plant operational control may reduce toxicity and lower impact of wastewater discharge to receiving waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  12. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  13. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  14. Segregation of metals-containing wastewater by pH

    International Nuclear Information System (INIS)

    Taylor, P.A.; McTaggart, D.R.

    1990-10-01

    A pH-based sampling system has shown that there is a high correlation between low pH and metals contamination for the wastewater from the 4500 area (manhole 190) and the 2000 area (pump station). Wastewater from the Radiochemical Engineering Development Center (REDC) and the High Flux Isotope Reactor (HFIR) has not shown any metals concentrations above the National Pollutant Discharge Elimination System (NPDES) permit limits for the Nonradiological Wastewater Treatment Plant (NRWTP). It is recommended that pH be used as the diversion criteria for wastewater from manhole 190 and the pump station to be sent to the metals tank of the NRWTP. Any wastewater with a pH less than 6.0 or greater than 10.0 should be sent to the metals tank. Based on the results of 29 weeks of sampling, it is expected that on the order of 36m 3 /wk (9500 gal/wk) of wastewater will be diverted to the metals tank of the NRWTP. Wastewater from REDC and HFIR can be sent to the nonmetals tank, but it should be sampled periodically and analyzed by Inductively Coupled Plasma (ICP) spectrophotometer to confirm that the metals concentration is not increasing. 1 ref., 2 figs., 9 tabs

  15. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    Science.gov (United States)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  16. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  17. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  18. Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method.

    Science.gov (United States)

    Wode, Florian; van Baar, Patricia; Dünnbier, Uwe; Hecht, Fabian; Taute, Thomas; Jekel, Martin; Reemtsma, Thorsten

    2015-02-01

    A target screening method using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was developed. The method was applied to 14 groundwater and 11 surface water samples of a former wastewater infiltration site, where raw wastewater was applied until 1985 and treated wastewater is applied since 2005. The measured data are compared with mass spectrometric data of over 2000 organic micropollutants (OMPs), including pharmaceuticals, personal care products, pesticides, industrial chemicals and metabolites of these classes. A total number of 151 and 159 OMPs were detected in groundwater and surface water, respectively, of which 12 have not been reported before in these matrices. Among these 12 compounds were 11 pharmaceuticals and one personal care product. The identity of 55 of the detected OMPs (35%) was verified by analysis of standard compounds. Based on the distribution in the study area, two groups of OMPs were clearly distinguished: current OMPs introduced with treated municipal wastewater since 2005 and legacy OMPs originating from infiltration of untreated wastewater until 1985. A third group included OMPs contained in historic as well as in current wastewater. During infiltration, OMPs with molecular mass >500 g/mol and log DOW > 3.9 were preferentially removed. Speciation had a strong impact with cationic OMPs showing high, neutral OMPs medium and anionic OMPs lowest elimination during infiltration. This target screening method proved useful to study a wide range of compounds, even in retrospect and at sites with poorly documented history and with a complex and variable hydrological situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sustainable technologies for olive mill wastewater management (abstract)

    Science.gov (United States)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  20. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  1. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  2. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  3. Measurement of Surface Damage through Boundary Detection: An Approach to Assess Durability of Cementitious Composites under Tannery Wastewater

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Concrete structures are often subjected to aggressive aqueous environments which consist of several chemical agents that can react with concrete to produce adverse effects. A Central Effluent Treatment Plant consisting of reinforced concrete structures which is being constructed at Savar, Bangladesh, is an example of such a case. The purpose of this treatment facility is to reduce the environmental pollution created by tannery wastewater. However, tannery wastewater consists of several chemicals such as sulfates, chlorides, and ammonium, which, from the literature, are known to generate detrimental effects on concrete. Evaluation of durability of concrete structures in such environments is therefore imperative. This paper highlights a technique of boundary detection developed through image processing performed using MATLAB. Cement mortar cubes were submerged in simulated tannery wastewater and the images of the surface of cubes were taken at several time intervals. In addition, readings for compressive strength and weight were also taken on the same days. In this paper, an attempt is made to correlate the results from image processing with that of strength and weight loss. It was found, within the scope of this study, that the specimens which suffered greater strength and weight loss also underwent greater loss of surface area.

  4. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  5. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.

    Science.gov (United States)

    Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian

    2016-11-01

    In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  7. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  8. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  9. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  10. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  11. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  12. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  13. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  14. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  15. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, C. E-mail: cbarrera@uaemex.mx; Urena-Nunez, F. E-mail: fun@nuclear.inin.mx; Campos, E.; Palomar-Pardave, M. E-mail: mepp@correo.azc.uam.mx; Romero-Romo, M

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus {gamma}-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a {gamma}-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC {gamma}-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  16. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    International Nuclear Information System (INIS)

    Barrera-Diaz, C.; Urena-Nunez, F.; Campos, E.; Palomar-Pardave, M.; Romero-Romo, M.

    2003-01-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms

  17. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Science.gov (United States)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  18. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  19. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  20. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  1. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  2. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  3. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  4. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  5. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    International Nuclear Information System (INIS)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon

    2014-01-01

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar

  6. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar.

  7. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  8. Incentives in the water chain: wastewater treatment and reuse in developing countries

    NARCIS (Netherlands)

    Gengenbach, M.F.

    2010-01-01

    The proper management of wastewater and its reuse is crucial in order to reduce hazards and maintain a variety of benefits. The merits of improvements in wastewater management are particularly high where effective wastewater treatment is not in place and completely untreated wastewater is reused.

  9. Characterization of natural ventilation in wastewater collection systems.

    Science.gov (United States)

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne

    2011-03-01

    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  10. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  11. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  12. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  13. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  14. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  15. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  16. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  17. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  18. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  19. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  20. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  2. Technical note The formulation of synthetic domestic wastewater ...

    African Journals Online (AJOL)

    Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory. ... Journal Home > Vol 42, No 2 (2016) > ... Domestic wastewater sludge is however highly variable in its composition, making laboratory experimentation difficult.

  3. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  4. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  5. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  6. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    International Nuclear Information System (INIS)

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  7. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  8. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  9. Case study of the application of Fenton process to highly polluted wastewater from power plant.

    Science.gov (United States)

    Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J

    2013-05-15

    This work investigates the application of Fenton process to the treatment of a highly polluted industrial wastewater resulting from the pipeline cleaning in a power plant. This effluent is characterized by a high chemical oxygen demand (COD>40 g/L), low biodegradability and quite a high iron concentration (around 3g/L) this coming from pipeline corrosion. The effect of the initial reaction temperature (between 50 and 90 °C) and the way of feeding H2O2 on the mineralization percentage and the efficiency of H2O2 consumption has been analyzed. With the stoichiometric amount of H2O2 relative to initial COD, fed in continuous mode, more than 90% COD reduction was achieved at 90 °C. That was accompanied by a dramatic improvement of the biodegradability. Thus, a combined treatment based on semicontinuous high-temperature Fenton oxidation (SHTF) and conventional aerobic biological treatment would allow fulfilling the COD and ecotoxicity regional limits for industrial wastewaters into de municipal sewer system. For the sake of comparison, catalytic wet air oxidation was also tested with poor results (less than 30% COD removal at 140 °C and 8 atm oxygen pressure). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  11. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  12. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  13. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  14. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  15. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    Science.gov (United States)

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-09-01

    An aluminum dioxide (Al 2 O 3 ) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m 2 h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m 3 , which is only about 17% of the electrical energy that could be generated with the methane produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    Science.gov (United States)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  17. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    International Nuclear Information System (INIS)

    Mok, Young Sun; Ahn, Hyun Tae; Kim, Joeng Tai

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly

  18. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  19. Wastewater Treatment

    Science.gov (United States)

    ... day before releasing it back to the environment. Treatment plants reduce pollutants in wastewater to a level nature can handle. Wastewater is used water. It includes substances such as human waste, food ...

  20. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  1. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    Science.gov (United States)

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  3. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  4. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  5. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  6. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    Science.gov (United States)

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  7. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  8. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  9. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  10. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  11. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  12. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  13. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    International Nuclear Information System (INIS)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-01-01

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  14. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  15. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  16. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly

    2014-01-01

    the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects......The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. Also, a speciation sub-routine based on a multi-dimensional Newton-Raphson iteration method accounts for the formation of some of the ion pairs playing an important role in wastewater treatment...

  17. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  18. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options

    International Nuclear Information System (INIS)

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Thi, Ngoc Bao Dung; Zhen, Guangyin; Chandrasekhar, Kuppam; Kadier, Abudukeremu

    2017-01-01

    Highlights: • Hydrogen production from various wastewaters has been reviewed. • Physico-chemical composition of the wastewater influences the H_2 yield. • Sugar rich wastewaters could be a feasible source for dark fermentative H_2 production. - Abstract: This review focuses on the current developments and new insights in the field of dark fermentation technologies using wastewater as carbon and nutrient source. It has begun with the type of wastewaters (sugar rich, toxic and industrial) employed in the H_2 production and their production performances with pure (or) mixed microbiota as seeding source in the batch reactors. Secondly, well-documented continuous system performances and their failure reasons were examined along with the enhancement possibilities in ways of strategies. A SWOT analysis has been performed to validate the strength and weakness of the continuous systems towards its industrialization and possible scheme of the integration methods have been illustrated. Additionally, an outlook has been provided with enlightening the remedies for its success. Moreover, the practical perspectives of the continuous systems are highlighted and challenges towards scale up are mentioned. Finally, the possible integrative approaches along with continuous systems towards the bioH_2 technologies implementation are enlightened.

  19. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  20. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ge-Fu; Wu, Peng; Wei, Qun-Shan; Lin, Jian-yi; Liu, Hai-Ning [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Gao, Yan-Li [China University of Geosciences, Wuhan 430074 (China)

    2010-08-15

    Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H{sub 2}) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m{sup 3} d, hydraulic retention time (HRT) of 6 h and temperature of (35 {+-} 1) C, when the pH value, alkalinity and oxidation-reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO{sub 3}/L, and -220 to -250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H{sub 2} volume content was estimated to be 48-53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H{sub 2} production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H{sub 2} production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H{sub 2} production from high-strength chemical wastewater. (author)

  1. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  2. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  3. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  4. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  5. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  6. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  7. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  8. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  9. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  10. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    Science.gov (United States)

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  11. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  12. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Directory of Open Access Journals (Sweden)

    Dinéia Tessaro

    2016-06-01

    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  13. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  14. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    International Nuclear Information System (INIS)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-01-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  15. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  16. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed. IWA Publishing 2008.

  17. Analysis of pollution removal from wastewater by Ceratophyllum ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... The treatments included raw municipal wastewater (RMW) and treated ... municipal wastewater (from 1.34 to 0.95 ds/m) and the EC of raw ... wastes are generated daily from highly populated cities ... plants is an integral part of the biogeochemical cycle of .... Waste Management and Treatment, 2nd ed.

  18. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  19. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.

    Science.gov (United States)

    Vendramel, S; Bassin, J P; Dezotti, M; Sant'Anna, G L

    2015-01-01

    Petroleum refineries produce large amount of wastewaters, which often contain a wide range of different compounds. Some of these constituents may be recalcitrant and therefore difficult to be treated biologically. This study evaluated the capability of an aerobic submerged fixed-bed reactor (ASFBR) containing a corrugated PVC support material for biofilm attachment to treat a complex and high-strength organic wastewater coming from a petroleum refinery. The reactor operation was divided into five experimental runs which lasted more than 250 days. During the reactor operation, the applied volumetric organic load was varied within the range of 0.5-2.4 kgCOD.m(-3).d(-1). Despite the inherent fluctuations on the characteristics of the complex wastewater and the slight decrease in the reactor performance when the influent organic load was increased, the ASFBR showed good stability and allowed to reach chemical oxygen demand, dissolved organic carbon and total suspended solids removals up to 91%, 90% and 92%, respectively. Appreciable ammonium removal was obtained (around 90%). Some challenging aspects of reactor operation such as biofilm quantification and important biofilm constituents (e.g. polysaccharides (PS) and proteins (PT)) were also addressed in this work. Average PS/volatile attached solids (VAS) and PT/VAS ratios were around 6% and 50%, respectively. The support material promoted biofilm attachment without appreciable loss of solids and allowed long-term operation without clogging. Microscopic observations of the microbial community revealed great diversity of higher organisms, such as protozoa and rotifers, suggesting that toxic compounds found in the wastewater were possibly removed in the biofilm.

  20. Effects of cathodic protection on cracking of high-strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Elboujdaini, M.; Revie, R. W.; Attard, M. [CANMET Materials Technology Laboratory, Ottawa, ON(Canada)], email: melboujd@nrcan.gc.ca

    2010-07-01

    Four strength levels of pipeline steels, ranging from X-70 to X-120, were compared to determine whether higher strength materials are more susceptible to hydrogen embrittlement under cathodic protection. Ductility was measured in a solution at four protection levels, going from no cathodic protection to 500 mV of overprotection. All four steels showed loss of ductility under cathodic protection. Under cathodic polarization, the loss of ductility increased with the strength of the steel and the activity of the potential. After slow-strain-rate experiments conducted in air and examination of fracture surfaces, it is concluded that application of cathodic potentials, cathodic overprotection, higher strength of steel, and exposure to aqueous solution are factors that decrease the ductility of steel. Hydrogen reduction seems to be an important factor in ductility reduction and fractures. Observations suggest that high-strength pipelines need better control of cathodic protection than lower-strength pipelines.

  1. Adsorption of Sr on kaolinite, illite and montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.J.; Langmuir, D. (Colorado School of Mines, Golden (USA). Dept. of Chemistry and Geochemistry)

    1991-01-01

    Experimental measurements of Sr adsorption onto kaolinite, illite and montmorillonite in up to 4.0 mol/kg NaCl solutions, were modelled with the surface ionization and complexation triple-layer (SIC) model (Davis et al.) to determine if model adjustments were required for high ionic strengths. Improved model fits to the adsorption data were obtained at high ionic strengths, reflecting a lowered sensitivity of the model. A general reduction in Sr adsorption with increasing ionic strength was caused by an increase in the outer layer surface charge, rather than by a drop in the number of available adsorption sites. Sensitivity analysis showed that the range of values of model constants yielding acceptable fits was as large as variations reported in the literature for these constants. The study demonstrates that adsorption will not retard Sr migration in brines, and that it is unnecessary to introduce a Pitzer ion interaction subroutine in the SIC model when considering adsorption at high ionic strengths. (orig.).

  2. Chemical Characterisation of Printed Circuit Board Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sobri, S; Ali, A H M, E-mail: eeza@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    Manufacturing of PCBs is highly complicated and involves many processes. Recycling of PCB wastewater receives wide concerns as the recent international growth in the electronics industry has generated a drastic increase in the amount of waste PCBs with profound environmental impacts such as soil and groundwater contamination. This paper reports on the chemical characterization of PCB wastewater as the initial investigation for selective metal recovery.

  3. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  4. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  5. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  6. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  7. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  9. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  10. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  11. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  12. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  13. High-lying neutron hole strengths observed in pick-up reactions

    International Nuclear Information System (INIS)

    Gales, S.

    1980-01-01

    Neutron-hole states in orbits well below the Fermi surface have been observed in a number of medium-heavy nuclei from A=90 to 209 using one nucleon pick-up reactions. The excitation energies, angular distributions of such broad and enhanced structures will be discussed. The fragmentation of the neutron-hole strengths as well as the spreading of such simple mode of excitations into more complex states are compared to recent calculations within the quasiparticle-phonon or the single particle-vibration coupling nuclear models. We report on recent measurements of J for inner-hole states in 89 Zr and 115 Sn 119 Sn using the analyzing power of the (p,d) and (d,t) reactions. Large enhancement of cross-sections are observed at high excitation energy in the study of the (p,t) reactions on Zr, Cd, Sn, Te and Sm isotopes. The systematic features of such high-lying excitation are related to the ones observed in one neutron pick-up experiments. The origin of such concentration of two neutron-hole strengths in Cd and Sn isotopes will be discussed. Preliminary results obtained in the study of the (α, 6 He) reaction at 218 MeV incident energy on 90 Zr, 118 Sn and 208 Pb targets are presented and compared to the (p,t) results. Finally the properties of hole-analog states populated in neutron pick-up reactions (from 90 Zr to 208 Pb) will be presented

  14. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  15. ETV Program Report: Coatings for Wastewater Collection ...

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  16. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  17. Grinding damage assessment on four high-strength ceramics.

    Science.gov (United States)

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  18. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  19. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  20. Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

    DEFF Research Database (Denmark)

    Gu, April Z.; Pedros, Philip B; Kristiansen, Anja

    2007-01-01

    This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon...

  1. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  2. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  3. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini

    2008-01-01

    ) were compared to the theoretical methane yields (Bo,th) in order to evaluate the biodegradability of the tested wastewaters and the influence of their physico-chemical characteristics. The analytical method applied to quantify the wastewaters’ organic content proved to influence the estimation...... of their theoretical yields. The substrate:inoculum ratio as well as the dilution factor of the wastewaters influenced the ultimate practical methane yields differently in each of the wastewaters assessed. Substrate chemical oxygen demand (COD) concentrations did not present any influence on ultimate practical methane...... yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  4. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  5. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  6. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  8. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  9. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  10. Recent practices on wastewater reuse in Turkey.

    Science.gov (United States)

    Tanik, A; Ekdal, A; Germirli Babuna, F; Orhon, D

    2005-01-01

    Reuse of wastewater for irrigational purposes in agriculture has been a widely applied practice all around the world compared to such applications in industries. In most of the developing countries, high costs of wastewater treatment stimulate the direct reuse of raw or partly treated effluent in irrigation despite the socio-cultural objections in some countries regarding religious rituals towards consuming wastewater. In Turkey, reuse applications in agriculture have been in use by indirect application by means of withdrawing water from the downstream end of treatment plants. Such practices affected the deterioration of surface water resources due to the lack of water quality monitoring and control. However, more conscious and planned reuse activities in agriculture have recently started by the operation of urban wastewater treatment plants. Turkey does not face any severe water scarcity problems for the time being, but as the water resources show the signs of water quality deterioration it seems to be one of the priority issues in the near future. The industrial reuse activities are only at the research stage especially in industries consuming high amounts of water. In-plant control implementation is the preferred effort of minimizing water consumption in such industries. The current reuse activities are outlined in the article forming an example from a developing country.

  11. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.

  12. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  13. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    Science.gov (United States)

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  14. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  15. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  16. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  17. Wastewater Irrigation and Health: Assessing and Mitigating Risk in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    18 déc. 2009 ... The book therefore complements other books on the topic of wastewater which focus on high-end treatment options and the use of treated wastewater. ... Pay Drechsel is Global Theme Leader on Water Quality, Health and Environment at the International Water Management Institute ( IWMI ), Sri Lanka.

  18. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China.

    Science.gov (United States)

    Chen, Kunlun; Liu, Xiaoqiong; Ding, Lei; Huang, Gengzhi; Li, Zhigang

    2016-12-09

    Based on the increasing pressure on the water environment, this study aims to clarify the overall status of wastewater discharge in China, including the spatio-temporal distribution characteristics of wastewater discharge and its driving factors, so as to provide reference for developing "emission reduction" strategies in China and discuss regional sustainable development and resources environment policies. We utilized the Exploratory Spatial Data Analysis (ESDA) method to analyze the characteristics of the spatio-temporal distribution of the total wastewater discharge among 31 provinces in China from 2002 to 2013. Then, we discussed about the driving factors, affected the wastewater discharge through the Logarithmic Mean Divisia Index (LMDI) method and classified those driving factors. Results indicate that: (1) the total wastewater discharge steadily increased, based on the social economic development, with an average growth rate of 5.3% per year; the domestic wastewater discharge is the main source of total wastewater discharge, and the amount of domestic wastewater discharge is larger than the industrial wastewater discharge. There are many spatial differences of wastewater discharge among provinces via the ESDA method. For example, provinces with high wastewater discharge are mainly the developed coastal provinces such as Jiangsu Province and Guangdong Province. Provinces and their surrounding areas with low wastewater discharge are mainly the undeveloped ones in Northwest China; (2) The dominant factors affecting wastewater discharge are the economy and technological advance; The secondary one is the efficiency of resource utilization, which brings about the unstable effect; population plays a less important role in wastewater discharge. The dominant driving factors affecting wastewater discharge among 31 provinces are divided into three types, including two-factor dominant type, three-factor leading type and four-factor antagonistic type. In addition, the

  19. Production of Spirulina sp by utilization of wastewater from the powder type energy drinks

    Science.gov (United States)

    Sumantri, Indro; Priyambada, Ika Bagus

    2015-12-01

    Wastewater of energy drink type of powder produced when the the production equipment required cleaning treatment to produce one taste to others. These equipments washed by water, so that, it produced wastewater. It contains high organic substances and classified as high degradable due to food product. The content of wastewater is high carbon and nitrogen substances. Microalgae is an autotrophic microorganism, live without carbon presence, utilized to digest the substances in wastewater especially for nitrogen substances. Spirulina sp is the type of microalgae selected to utilize the wastewater of energy drink, the selection criteria is the size of Spirulina sp is relatively large and easy to separated from its solution. The experiment conducted by cultivate the seeding microalgae with certain nutrients until the certain volume. The synthetic wastewater obtained from one of energy drink type of powder with commercial brand as Kuku Bima Ener-G, the wastewater concentration selected under the close to the real condition of wastewater as basis of COD measurement (6 sachet/L or COD of 12.480mg/L) and aqueous concentration (1 sachet/L or COD of 2080mg/L). The batch experiments with 1L volume conducted and with variable of percent volume of wastewater added in order to observe the growth of microlagae. The response of the microalgae growth obtained by increasing the optical density of the microalgae solution and continued by calculation for the growth rate of microalgae. The result of the experiments indicated that for the aqueous concentration (1 sachet/L or COD of 2080mg/L) the optimum added of wastewater is 40 % with growrate of 0.55/day while for the concentrated wastewater (6 sachet/L or COD of 12.480mg/L), the optimum condition is 25 % wastewater added with growth rate of 0.43/day.

  20. Renewable energy for the aeration of wastewater ponds.

    Science.gov (United States)

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  1. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  2. Livestock wastewater treatment by zeolite ion exchange and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Lee, Sang Ryul; Kim, Tak Hyun; Lee, Myun Joo

    2008-01-01

    Livestock wastewater containing high concentrations of organic matters and ammonia-nitrogen has been known as one of the recalcitrant wastewater. It is difficult to treat by conventional wastewater treatment techniques. This study was carried out to evaluate the feasibility of zeolite ion exchange and gamma-ray irradiation treatment of livestock wastewater. The removal efficiencies of SCOD Cr and NH3-N were significantly enhanced by gamma-ray irradiation after zeolite ion exchange as a pre-treatment. However, the effects of zeolite particle size on the SCOD Cr and NH 3 -N removal efficiencies were insignificant. These results indicate that the combined process of zeolite ion exchange and gamma-ray irradiation has potential for the treatment of livestock wastewater

  3. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  4. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  5. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  6. Hazardous substances in wastewater systems:a delicate issue for wastewater management

    OpenAIRE

    Palmquist, Helena

    2001-01-01

    Many substances derived from human activity end up in wastewater systems at some point. A large number of different substances - up to 30,000 - are present in wastewater. Some of them are valuable, such as nitrogen and phosphorus, but there are also hazardous substances such as heavy metals and anthropogenic organic substances. To be able to utilise the wastewater nutrients on arable land (agriculture, forestry or other alternatives), it is of great importance to investigate the sources of ha...

  7. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  8. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  9. Treatability and kinetics studies of mesophilic aerobic biodegradation of high oil and grease pet food wastewater

    International Nuclear Information System (INIS)

    Liu, Victor Lei; Nakhla, G.; Bassi, A.

    2004-01-01

    In this work, batch activated sludge studies were investigated for the treatment of raw pet food wastewater characterized by oil and grease concentrations of 50,000-66,000 mg/L, COD and BOD concentrations of 100,000 and 80,000 mg/L, respectively, as well as effluent from an existing anaerobic digester treating the aforementioned wastewater. A pre-treatment process, dissolved air flotation (DAF) achieved 97-99% reduction in O and G to about 400-800 mg/L, which is still atypically high for AS. The batch studies were conducted using a 4-L bioreactor at room temperature (21 deg. C) under different conditions. The experimental results showed for the DAF pretreated effluent, 92% COD removal efficiency can be achieved by using conventional activated sludge system at a 5 days contact time and applied initial soluble COD to biomass ratio of 1.17 mg COD/mg VSS. Similarly for the digester effluent at average oil and grease concentrations of 13,500 mg/L, activated sludge affected 63.7-76.2% soluble COD removal at 5 days. The results also showed that all kinetic data best conformed to the zero order biodegradation model with a low biomass specific maximum substrate utilization rate of 0.168 mg COD/mg VSS day reflecting the slow biodegradability of the wastewater even after 99% removal of oil and grease

  10. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  11. Toxicity formation and distribution in activated sludge during treatment of N,N-dimethylformamide (DMF) wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Chen, Xiurong, E-mail: xrchen@ecust.edu.cn; Lin, Fengkai; Ding, Yi; Zhao, Jianguo; Chen, Shanjia

    2014-01-15

    Highlights: • We studied mechanism of sludge organic toxicity formation in wastewater treatment. • The organic toxicity distributed mainly in the inner section of sludge flocs. • The organic toxicity of sludge increased with DMF initial concentrations increments. • The property of bacteria community correlates significantly with sludge toxicity. -- Abstract: The organic toxicity of sludge in land applications is a critical issue; however, minimal attention has been given to the mechanism of toxicity formation during high-strength wastewater treatment. To investigate the relevant factors that contribute to sludge toxicity, synthetic wastewater with N,N-dimethylformamide (DMF) was treated in a sequential aerobic activated sludge reactor. The acute toxicity of sludge, which is characterised by the inhibition rate of luminous bacteria T3, is the focus of this study. Using an operational time of 28 days and a hydraulic retention time of 12 h, the study demonstrated a positive relationship between the acute toxicity of sludge and the influent DMF concentration; the toxicity centralised in the intracellular and inner sections of extracellular polymeric substances (EPS) in sludge flocs. Due to increased concentrations of DMF, which ranged from 40 to 200 mg L{sup −1}, the sludge toxicity increased from 25 to 45%. The organic toxicity in sludge flocs was primarily contributed by the biodegradation of DMF rather than adsorption of DMF. Additional investigation revealed a significant correlation between the properties of the bacterial community and sludge toxicity.

  12. Effect of time on dyeing wastewater treatment

    Science.gov (United States)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  13. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  14. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  15. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  16. Process design of high-concentration benzimidazole wastewater treatment based on the molecular structure of contaminants.

    Science.gov (United States)

    Li, Chenru; Qian, Kun; Liu, Qinyao; Zhang, Qianyi; Yao, Chen; Song, Wei; Wang, Yihong

    2018-04-01

    Benzimidazole is an important intermediate in industry and it is usually difficult to be degraded by many treatment technologies. Looking for a highly effective, environment-friendly degradation process for benzimidazole wastewater is of great significance to reduce pollution. Based on the structure of contaminants, the micro-electrolysis (ME) coupled with the Fenton technique was chosen to degrade the industrial benzimidazole wastewater. Special feeding was applied to maintain the suitable hydrogen peroxide (H 2 O 2 ) concentration to produce the hydroxyl radicals (•OH) as much as possible and protect •OH from being quenched by excess H 2 O 2 according to the reaction mechanism. The results showed that this combined technique was highly efficient to decompose benzimidazole compounds. More chemical oxygen demand (COD) could be reduced when flow control was used, compared to the flow not being controlled. The COD removal rate could reach 85.2% at optimal parameters. Then the effluent of this process was combined with the existing biochemical system for further degradation. The studies of Ultraviolet Spectrophotometry, Fourier Transform Infrared Spectroscopy and Liquid Chromatography Mass Spectrometry showed that both 2-(a-Hydroxyethyl) benzimidazole and 2-Acetylbenzimidazole were decomposed to the isopropanolamine and aniline after the ME treatment; then the intermediates were oxidized into oxalic acid after the Fenton reaction.

  17. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  18. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  19. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  20. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  1. Basic Principles of Wastewater Treatment

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books...

  2. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  3. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  4. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  5. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    Science.gov (United States)

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  6. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  7. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  8. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  9. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  11. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  12. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  13. Neutralization of wastewater from nitrite passivation

    International Nuclear Information System (INIS)

    Pawlowski, L.; Mientki, B.; Wasag, H.

    1982-01-01

    A method for neutralization of wastewater formed in nitrite passivation has been presented. The method consists of introducing urea into wastewater and acidifying it with sulphuric acid. Wastewater is neutralized with lime. After clarification, wastewater can be drained outside the plant

  14. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  15. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  16. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  17. Winery wastewater inhibits seed germination and vegetative growth of common crop species.

    Science.gov (United States)

    Mosse, Kim P M; Patti, Antonio F; Christen, Evan W; Cavagnaro, Timothy R

    2010-08-15

    The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Characterization and study of correlations among major pollution parameters in textile wastewater

    International Nuclear Information System (INIS)

    Hyder, S.; Bari, A.

    2011-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a textile mill in Lahore, Punjab. The results of this study demonstrated that the composition of textile wastewater could change continuously due to inherent nature of textile operations. In general, textile wastewater was high in temperature and alkaline in nature. It was highly polluted in terms of solids and organic content. Most of the portion of solids and organic load was in the soluble form. On the basis of mean values, temperature, pH, TDS (Total Dissolved Solids), BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) were above the limits set by NEQS (National Environmental Quality Standards) while chlorides and sulfates were below the limits set by NEQS. Prior neutralization of wastewater with an acid and addition of phosphorus and nitrogen is imperative for its effective treatment. (author)

  19. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  1. Determination of aromatic and PAH content of oily wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I. (Rockwell International, Canoga Park, CA); Russell, E.C.

    1978-08-01

    A method for analysis of oil and grease in water is described. The method is used to provide data on total, dissolved, and suspended organic content of wastewater sample and the concentration of hydrocarbons. Additionally, volatile and water soluble fractions which contain many organic compounds critical to the environment are characterized both qualitatively and quantitatively. A number of real-life treated and untreated bilge waste samples were collected at the U.S. Army Fort Eustis facility and analyzed using this method. It was found that untreated bilge wastewater contained both suspended and dissolved organic matter. The suspended organics ranged between 10 and 300 ppM, while the dissolved organics were in the 10 to 150 ppM range. Treated bilge wastewater usually contained no suspended organics but did contain rather high levels of dissolved organic matter 700 to 200 ppM). Up to 70% of the dissolved organics in untreated bilge wastewater were chloroform extractable, while less than 10% of the dissolved organis in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater were extractable into chloroform. It is believed that the bulk of organic matter in treated bilge wastewater is biologically derived from the degradation of petroleum, while smaller portions consist of refractory, petroleum derived, water-soluble organic compounds.

  2. Continuous, flexible, and high-strength superconducting Nb3Ge and Nb3Sn filaments

    International Nuclear Information System (INIS)

    Ahmad, I.; Heffernan, W.J.

    1976-01-01

    Fabrication of continuous, flexible, and high-strength (1600 MN/m 2 ) composite filaments of Nb 3 Ge (T/subc/ 18 0 K) and Nb 3 Sn is reported, involving chemical vapor deposition of these compounds on Nb-coated high-strength W--1% ThO 2 filaments

  3. Preparation and properties of high-strength recycled concrete in cold areas

    Directory of Open Access Journals (Sweden)

    Haitao, Y.

    2015-06-01

    Full Text Available Concrete waste was processed into recycled coarse aggregate (RCA, subsequently used to prepare high-strength (> 50 MPa recycled concrete. The resulting material was tested for mechanical performance (ULS. The recycled concrete was prepared to the required design strength by adjusting the water/cement ratio. Concrete containing 0, 20, 50, 80 and 100% recycled aggregate was prepared and studied for workability, deformability and durability. The ultimate aim of the study was to prepare high-strength recycled concrete apt for use in cold climates as a theoretical and experimental basis for the deployment of recycled high-strength concrete in civil engineering and building construction.En este estudio se preparó un hormigón de altas resistencias (> 50 MPa utilizando residuos de hormigón como árido grueso reciclado (RCA. El material resultante se ensayó para determinar sus prestaciones mecánicas (ULS. Para adaptarse a los requerimientos resistentes, se ajustó la relación agua/cemento del hormigón reciclado. Se estudió la trabajabilidad, deformabilidad y durabilidad del hormigón con contenidos del 0, 20, 50, 80 y 100% de árido reciclado. El objetivo final del estudio fue preparar hormigón reciclado de altas resistencias apto para su uso en climas fríos como base teórica y experimental para el desarrollo de este tipo de materiales en obra civil y edificación.

  4. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... or water saving toilets. This opens up for co-treatment of organic waste fractions. Freezing and thawing has also been recognised as being a cost-effective wastewater treatment method in cold regions. Thus it was chosen to concentrate on the effect of the mentioned processes, namely freezing, anaerobic...... spreading of nutrients, diseases and potential pollution issues. Due to the above mentioned challenges alternative treatment methods are needed, especially in small and remotely located communities. Decentralized solutions are well suited for Greenland. Ideal solutions should reduce the need for expensive...

  5. Biodenitrification of industrial wastewater

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Walker, J.F. Jr.; Helfrich, M.V.

    1987-01-01

    The Feed Materials Production Center (FMPC), a US Department of Energy facility at Fernald, Ohio, is constructing a fluidized-bed biodenitrification plant based on pilot work conducted at the Oak Ridge National Laboratory (ORNL) in the late 1970s and early 1980s. This plant is designed to treat approximately 600 to 800 L/min of wastewater having a nitrate concentration as high as 10 g/L. The effluent is to contain less than 0.1 g/L of nitrate. Since this new facility is an extrapolation of the ORNL work to significantly larger scale equipment and to actual rather than synthetic wastewater, design verification studies have been performed to reduce uncertainties in the scaleup. The results of these studies are summarized in this report. 7 refs., 1 fig

  6. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  7. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  8. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  9. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  10. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  11. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  12. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  13. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  14. Phytoremediation of industrial mines wastewater using water hyacinth

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-01

    ABSTRACT The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved. PMID:27551860

  15. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  16. Qualitative and Quantitative Assessment of Wastewater of Pistachio Processing Terminals (Case Study: Kerman city

    Directory of Open Access Journals (Sweden)

    F Khademi

    2016-03-01

    Full Text Available Introduction: Wastewaters resulting from seasonal processing such as pistachio processing industry are one of the most important factors of environmental pollution. High concentration of pollutants are the qualitative characteristics of wastewaters that due high consumption of water and energy resources as well as high levels production of waste have a good potential to realization of projects to reduce the environmental impacts and optimizing the consumption of energy resources.The aim of this study was to determine the wastewater̛ s quality and quantity of pistachio processing terminals. Methods: this study is cross-sectional study that has been implemented from mid –September until late October (pistachio harvest season in each of the years 2012-2013-2014 in Kerman.Firstely according to field study, the characteristics and location of 20 pistachio processing terminals were determined by a GPS device. Then 8 pistachio processing terminals were selected in around of wastewater collection system. Composite sampling method with total of 72 samples was done in each year during pistachio operation. Samples were conducted from pistachio processing wastewater screen filter outlet. In each of samples BOD5, COD, TSS, pH and Total phenolic were determined. Sampling and tests were done according to water and wastewater standard methods book (20th edition. Concentration of Phenolic compounds was measured by folin ciocaltive method. The Data was analyzed by SPSS software. Results: the average of total produced wastewater in pistachio processing terminals in this study was 85.9m3/d. The average BOD5, COD, TSS, Total phenolic and PH were 6106, 21570, 682, 4154 (mg/L and 5.5 respectively. Conclusion: The obtained results from raw wastewater of pistachio processing terminals showed they have high BOD and COD. This is caused by presentation of priority pollutants (phenolic compounds which have high potential in pollution and toxicity for discharging any

  17. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  18. Treatment of high salinity organic wastewater by membrane electrolysis

    Science.gov (United States)

    Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao

    2018-03-01

    The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.

  19. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  20. Effect of steel fibres on mechanical properties of high-strength concrete

    International Nuclear Information System (INIS)

    Holschemacher, K.; Mueller, T.; Ribakov, Y.

    2010-01-01

    Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks' development, delay in microcracks' propagation to macroscopic level and the improved ductility after microcracks' formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2o6 mm and 2o12 mm) and three types of fibres' configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.

  1. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  2. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  3. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  4. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  5. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  6. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  7. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  8. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  9. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  10. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  11. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  12. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  13. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  14. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  15. High-density carbon nanotube wet-laid buckypapers with enhanced strength and conductivity using a high-pressure homogenization process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun; Jang, Si Hoon; Park, No Hyung; Jeong, Won Young; Lim, Dae Young [Human and Culture Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan (Korea, Republic of); Oh, Jun Young; Yang, Seung Jae [Dept. of Applied Organic Materials Engineering, Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this work, we prepared homogeneously dispersed carbon nanotubes in water using a high-pressure homogenizer, while high-density carbon nanotube buckypapers were prepared by wet-laid process. The strength and conductivity of the buckypaper were increased dramatically after the high-pressure homogenization because of the increased density and uniformity of the paper. In addition, the buckypapers containing various additives and treated with SOCl{sub 2} exhibited further increase of strength and conductivity resulting from the binding and the p-type doping effect. The buckypapers with high electrical conductivity exhibited superior electromagnetic interference shielding effectiveness that could be applied for structural shielding materials.

  16. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  17. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  18. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  19. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  20. Properties of High Strength Concrete Applied on Semarang - Bawen Highway

    Science.gov (United States)

    Setiyawan, Prabowo; Antonius; Wedyowibowo, R. Hawik Jenny

    2018-04-01

    To fulfill the needs of highway construction then a high quality concrete is expected to be produced by a short time and high workability, therefore the addition of additive chemicals needs to be conducted. The objective of the study was to find out the properties of high quality concrete including slump value, compressive strength, flexural strength, elasticity modulus and stress-strain diagrams with the addition of fly ash and superplasticizer. There were five types of mixtures were made in this study with a fas (cement water factor) was 0,41 and an additional 15% of fly ash and a varied superplasticizer of 0%, 0.5%, 1%, 2% towards the weight/volume and cement/water. Test samples of cylinders and prisms or beams were tested in the laboratory at 1, 3, 7, 14, and 28 days. The test results were then compared with the test results made without additional additives. Based on the result of this research, it can be concluded that the increase of slump value due to the addition of 15% fly ash is 0,53 cm of the base slump value. The use of superplasticizer causes the weight of the type to be greater. The optimum dose of superplasticizer is 1,2%, it is still in the usage level according to the F-type admixture brochure (water reducing, high-range admixture) such as 0,6 % -1,5 %. All mixture types which use addition materials for flexural strength (fr'=45kg/cm2) can be achieved at 3 days.

  1. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  2. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  3. Alternative high-level radiation sources for sewage and waste-water treatment

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1975-01-01

    The choice of an energy source for the radiation treatment of waste-water or sludge is between an electron accelerator or a gamma-ray source of radioactive cobalt or caesium. A number of factors will affect the ultimate choice and the potential future adoption of radiation as a treatment technique. The present and future availability of radioactive sources of cobalt and caesium is closely linked to the rate of nuclear power development and the assumption by uranium fuel reprocessors of a role as radioactive caesium suppliers. Accelerators are industrial machines which could be readily produced to meet any conceivable market demand. For energy sources in the 20-30 kW range, electron accelerators appear to have an initial capital cost advantage of about seven and an operating cost advantage of two. While radioisotope sources are inherently more reliable, accelerators at voltages to 3 MeV have achieved a reliability level adequate to meet the demands of essentially continuous operations with moderate maintenance requirements. The application of either energy source to waste-water treatment will be significantly influenced by considerations of the relative penetration capability, energy density and physical geometrical constraints of each option. The greater range of the gamma rays and the lower energy density of the isotopic sources permit irradiation of a variety of target geometrics. The low penetration of electrons and the high-energy density of accelerators limit application of the latter to targets presented as thin films of several centimetres thickness. Any potential use of radiation must proceed from a clear definition of process objectives and critical comparison of the radiation energy options for that specific objective. (Author)

  4. Investigations into the biodegradation of microcystin-LR in wastewaters

    International Nuclear Information System (INIS)

    Ho, Lionel; Hoefel, Daniel; Palazot, Sebastien; Sawade, Emma; Newcombe, Gayle; Saint, Christopher P.; Brookes, Justin D.

    2010-01-01

    Microcystins are potent hepatotoxins that can be produced by cyanobacteria. These organisms can proliferate in wastewaters due to a number of factors including high concentrations of nutrients for growth. As treated wastewaters are now being considered as supplementary drinking water sources, in addition to their frequent use for irrigated agriculture, it is imperative that these wastewaters are free of toxins such as microcystins. This study investigated the potential for biodegradation of microcystin-LR (MCLR) in wastewaters through a biological sand filtration experiment and in static batch reactor experiments. MCLR was effectively removed at a range of concentrations and at various temperatures, with degradation attributed to the action of microorganisms indigenous to the wastewaters. No hepatotoxic by-products were detected following the degradation of MCLR as determined by a protein phosphatase inhibition assay. Using TaqMan polymerase chain reaction, the first gene involved in bacterial degradation of MCLR (mlrA) was detected and the responsible bacteria shown to increase with the amount of MCLR being degraded. This finding suggested that the degradation of MCLR was dependent upon the abundance of MCLR-degrading organisms present within the wastewater, and that MCLR may provide bacteria with a significant carbon source for proliferation; in turn increasing MCLR removal.

  5. Evaluation of optimal reuse system for hydrofluoric acid wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, Chan-Hee [Department of Environmental Engineering, Chonbuk National University, 567 Bakje-daero, Deokjin-Gu, Jeonju, Jeollabuk-Do, 561-756 (Korea, Republic of); Choi, Jeongyun [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of); Chung, Jinwook, E-mail: jin-wook.chung@samsung.com [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Coagulation and ion exchange technologies were ineffective in removing fluoride. Black-Right-Pointing-Pointer Polyamide RO was more efficacious than cellulose RO due to its high flux and rejection. Black-Right-Pointing-Pointer Spiral wound RO system was more preferential to disc tube RO system for reusing raw hydrofluoric acid wastewater. Black-Right-Pointing-Pointer Combined coagulation and RO technology can be applied to reuse raw hydrofluoric acid wastewater. - Abstract: The treatment of hydrofluoric acid (HF) wastewater has been an important environmental issue in recent years due to the extensive use of hydrofluoric acid in the chemical and electronics industries, such as semiconductor manufacturers. Coagulation/precipitation and ion exchange technologies have been used to treat HF wastewater, but these conventional methods are ineffective in removing organics, salts, and fluorides, limiting its reuse for water quality and economic feasibility. One promising alternative is reverse osmosis (RO) after lime treatment. Based on pilot-scale experiment using real HF wastewater discharged from semiconductor facility, the spiral wound module equipped with polyamide membranes has shown excellent flux and chemical cleaning cycles. Our results suggest that coagulation/precipitation and spiral wound RO constitute the optimal combination to reuse HF wastewater.

  6. Wastewater heat recovery apparatus

    Science.gov (United States)

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  7. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...... removed at 5 mg/l ClO2 dose. Removal of the same APIs from the high COD effluent was observed when the ClO2 dose was increased to 1.25 mg/l and an increase in API removal only after treatment with 8 mg/l ClO2. This illustrates that treatment of wastewater effluents with chlorine dioxide has potential...

  8. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling

    KAUST Repository

    Ye, Yaoli; Labarge, Nicole; Kashima, Hiroyuki; Kim, Kyoung Yeol; Hong, Pei-Ying; Saikaly, Pascal; Logan, Bruce E.

    2016-01-01

    Anaerobic fluidized bed membrane bioreactors (AFMBRs) use granular activated carbon (GAC) particles suspended by recirculation to effectively treat low strength wastewaters (∼100–200 mg L−1, chemical oxygen demand, COD), but the effluent can contain dissolved methane. An aerobic fluidized bed membrane bioreactor (AOFMBR) was developed to avoid methane production and the need for wastewater recirculation by using rising air bubbles to suspend GAC particles. The performance of the AOFMBR was compared to an AFMBR and a conventional aerobic membrane bioreactor (AeMBR) for domestic wastewater treatment over 130 d at ambient temperatures (fixed hydraulic retention time of 1.3 h). The effluent of the AOFMBR had a COD of 20 ± 8 mg L−1, and a turbidity of <0.2 NTU, for low-COD influent (153 ± 19 and 214 ± 27 mg L−1), similar to the AeMBR and AFMBR. For the high-COD influent (299 ± 24 mg L−1), higher effluent CODs were obtained for the AeMBR (38 ± 9 mg L−1) and AFMBR (51 ± 11 mg L−1) than the AOFMBR (26 ± 6 mg L−1). Transmembrane pressure of the AOFMBR increased at 0.04 kPa d−1, which was 20% less than the AeMBR and 57% less than the AFMBR, at the low influent COD. Scanning electron microscopy (SEM) analysis indicated a more uniform biofilm on the membrane in AOFMBR than that from the AeMBR biofilm, and no evidence of membrane damage. High similarity was found between communities in the suspended sludge in the AOFMBR and AeMBR (square-root transformed Bray–Curtis similarity, SRBCS, 0.69). Communities on the GAC and suspended sludge were dissimilar in the AOFMBR (SRBCS, 0.52), but clustered in the AFMBR (SRBCS, 0.63).

  9. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling

    KAUST Repository

    Ye, Yaoli

    2016-09-24

    Anaerobic fluidized bed membrane bioreactors (AFMBRs) use granular activated carbon (GAC) particles suspended by recirculation to effectively treat low strength wastewaters (∼100–200 mg L−1, chemical oxygen demand, COD), but the effluent can contain dissolved methane. An aerobic fluidized bed membrane bioreactor (AOFMBR) was developed to avoid methane production and the need for wastewater recirculation by using rising air bubbles to suspend GAC particles. The performance of the AOFMBR was compared to an AFMBR and a conventional aerobic membrane bioreactor (AeMBR) for domestic wastewater treatment over 130 d at ambient temperatures (fixed hydraulic retention time of 1.3 h). The effluent of the AOFMBR had a COD of 20 ± 8 mg L−1, and a turbidity of <0.2 NTU, for low-COD influent (153 ± 19 and 214 ± 27 mg L−1), similar to the AeMBR and AFMBR. For the high-COD influent (299 ± 24 mg L−1), higher effluent CODs were obtained for the AeMBR (38 ± 9 mg L−1) and AFMBR (51 ± 11 mg L−1) than the AOFMBR (26 ± 6 mg L−1). Transmembrane pressure of the AOFMBR increased at 0.04 kPa d−1, which was 20% less than the AeMBR and 57% less than the AFMBR, at the low influent COD. Scanning electron microscopy (SEM) analysis indicated a more uniform biofilm on the membrane in AOFMBR than that from the AeMBR biofilm, and no evidence of membrane damage. High similarity was found between communities in the suspended sludge in the AOFMBR and AeMBR (square-root transformed Bray–Curtis similarity, SRBCS, 0.69). Communities on the GAC and suspended sludge were dissimilar in the AOFMBR (SRBCS, 0.52), but clustered in the AFMBR (SRBCS, 0.63).

  10. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  12. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  13. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  14. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  15. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  16. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  17. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  18. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    mal stress and crack width for the tensional behaviour of concrete and has been proposed by ... stresses. To calculate concrete stress in a cross section of high strength concrete beams, failure strain is ..... American Concrete. Institute, Detroit.

  19. Wastewater reuse

    OpenAIRE

    Milan R. Radosavljević; Vanja M. Šušteršič

    2013-01-01

    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  20. Exposure to Airborne Noroviruses and Other Bioaerosol Components at a Wastewater Treatment Plant in Denmark

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Schultz, Anna Charlotte; Madsen, Anne Mette

    2011-01-01

    Exposure to bioaerosols associated with wastewater treatment processes may represent an occupational health risk for workers at wastewater treatment plants (WWTPs). A high frequency of acute symptoms in the gastrointestinal tract among the wastewater workers at a Danish WWTP has been reported. Th...

  1. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  2. A modified culture-based study of bacterial community composition in a tannery wastewater treatment plant.

    Science.gov (United States)

    Desta, Adey F; Dalhammer, Gunnel; Kittuva, Gunatrana R

    2010-01-01

    Though culture-independent methods have been used in preference to traditional isolation techniques for characterization of microbial community of wastewater treatment plants, it is difficult to widely apply this approach in resource-poor countries. The present study aimed to develop a test to identify the culturable portion of bacterial community in a high-strength wastewater. Wastewater samples were collected from nitrification-denitrification and settling tanks of the treatment plant of Elmo Leather AB tannery located in Borås, Sweden. After cultivating on nutrient agar with the optimal dilution (10⁻²), phenotypic and biochemical identification of the bacteria were done with colony morphology, Gram reaction, growth on MacConkey, phenylethanol media, triple sugar Iron agar slants, catalase and oxidase tests. Biochemical grouping of the isolates was done based on their test results for MacConkey, phenylethanol media, triple sugar Iron agar and oxidase test reaction. From the biochemical groups, isolates were randomly selected for API test and 16SrRNA gene sequencing. The isolates from the denitrification, nitrification tank were identified to be Paracoccus denitrificans (67%), Azoarcus spp (3%) and Spingomonas wittichii (1%). From the settling tank, Paracoccus denitrificans (22%), Corynebacterium freneyi (20%) and Bacillus cereus (1%) were identified. The grouping based on biochemical test results as well as the identification based on sequencing has shown coherence except for discrepancies with the API test. The preliminary implications of the grouping based on culture-based characteristics and its potential application for resource-limited environmental microbial studies is discussed.

  3. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater-Associated Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Wan, Min Tao; Chou, Chin Cheng

    2015-06-02

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater.

  4. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  5. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  6. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  7. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  8. Maximizing recovery of energy and nutrients from urban wastewaters

    International Nuclear Information System (INIS)

    Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J.

    2016-01-01

    Historically, UWWs (urban wastewaters) that contain high levels of organic carbon, N (nitrogen), and P (phosphorous) have been considered an environmental burden and have been treated at the expense of significant energy input. With the advent of new pollution abatement technologies, UWWs are now being regarded as a renewable resource from which, useful chemicals and energy could be harvested. This study proposes an integrated, algal-based system that has the potential to treat UWWs to the desired discharge standards in a sustainable manner while recovering high fraction of its energy content as well as its N- and P-contents for use as fertilizers. Key embodiments of the system being proposed are: i) cultivation of an extremophile microalga, Galdieria sulphuraria, in UWW for removal of carbon, N, and P via single-step by mixotrophic metabolism; ii) extraction of energy-rich biocrude and biochar from the cultivated biomass via hydrothermal processing; and, iii) enhancement of biomass productivity via partial recycling of the nutrient-rich AP (aqueous product) from hydrothermal-processed biomass to the cultivation step to optimize productivity, and formulation of fertilizers from the remaining AP. This paper presents a process model to simulate this integrated system, identify the optimal process conditions, and establish ranges for operational parameters. - Highlights: • Developed model for algal system for wastewater treatment/energy production. • Evaluated energy efficiency in algal wastewater treatment/energy production. • Optimized algal wastewater treatment/energy production. • Demonstrated feasibility of energy-positive wastewater treatment.

  9. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  10. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    Science.gov (United States)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  11. Anaerobic columnar denitrification of high nitrate wastewater

    International Nuclear Information System (INIS)

    Francis, C.W.; Malone, C.D.

    1975-01-01

    Anaerobic columns were used to test the effectiveness of biological denitrification of nitrate solutions ranging in concentration from 1 to 10 kg NO 3 /m 3 . Several sources of nitrate (Ca(CNO 3 ) 2 , NaNO 3 , NH 4 NO 3 , and actual nitrate wastes from a UO 2 fuel fabrication plant) were evaluated as well as two packing media. The packing media were anthracite coal particles, whose effective diameter size ranged between 2 and 3 mm, and polypropylene Raschig rings 1.6 x 1.6 diameter. The anthracite coal proved to be the better packing media as excessive hydraulic short circuiting occurred in a 120 x 15 cm diameter glass column packed with the polypropylene rings after 40 days operation. With anthracite coal, floatation of the bed occurred at flow rates greater than 0.80 cm 3 /s. Tapered columns packed with anthracite coal eliminated the floatation problem, even at flow rates as high as 5 cm 3 /s. Under optimum operating conditions the anthracite coal behaved as a fluidized bed. Maximum denitrification rates were 1.0--1.4 g NO 3 /m 3 /s based on initial bed volume. Denitrification kinetics indicated that rates of denitrification became substrate inhibited at nitrate concentrations greater than 6.5 kg NO 3 /m 3 Anaerobic columns packed with anthracite coal appear to be an effective method of nitrate disposal for nitrate rich wastewater generated at UO 2 fuel fabrication plants and fuel reprocessing facilities. (U.S.)

  12. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  13. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Belal Alsubari

    2015-04-01

    Full Text Available Palm oil fuel ash (POFA has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC. POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  14. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Science.gov (United States)

    Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin

    2015-01-01

    Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  15. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    International Nuclear Information System (INIS)

    Zhuang Xuliang; Han Zhen; Bai Zhihui; Zhuang Guoqiang; Shim Hojae

    2010-01-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  16. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Xuliang, E-mail: xlzhuang@rcees.ac.c [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Bureau of Science and Technology for Resources and Environment, Chinese Academy of Sciences, Beijing 100864 (China); Han Zhen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Bai Zhihui; Zhuang Guoqiang [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Shim Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau (China)

    2010-05-15

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  17. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  18. Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Hanwen Deng

    2018-01-01

    Full Text Available The rapid repair and retrofitting of existing transportation infrastructure requires dimensional stability and ductile repair material that can obtain sufficiently high strength in a few hours to accommodate the large loading and deformation at an early age. Engineering cementitious composites (ECCs is a class representative of the new generation of high-performance fiber-reinforced cement-based composites (HPFRCC with medium fiber content. The unique properties of tremendous ductility and tight multiple crack behavior indicate that ECC can be used as an effective retrofit material. The wide application of this material in China will require the use of all local ingredients. In this study, based on Chinese domestic ingredients, including matrix materials and all fibers, high-early-strength ECC (HES-ECC was designed under the guidance of strain-hardening criterion of ECC. The matrix properties and fiber/matrix interfacial micromechanics properties were obtained from three-point-bending test and single-fiber pullout test. The mechanical properties of HES-ECC were achieved by direct tensile test. The experimental results show that HES-ECC was successfully developed by using all Chinese materials. When using the domestic PVA fiber at 2%, the strength requirement can be achieved but only a low ductility. When using the domestic PE fiber at 0.8%, the strength and deformation requirement both can be obtained. The HES-ECC developed in this study exhibited compressive strength of more than 25 MPa within 6 hours, and an ultimate tensile strength of 5-6 MPa and tensile strain capacity of 3-4% after 60 days. Moreover, the cost of using domestic fiber can be largely reduced compared with using imported fiber, up to 70%; it is beneficial to the promotion of these high-early-strength ECCs in the Chinese market.

  19. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  20. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  1. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  2. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....

  3. Microstructure-property relationship in microalloyed high-strength steel welds

    International Nuclear Information System (INIS)

    Zhang, Lei

    2017-01-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  4. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  5. Sonochemical disinfection of municipal wastewater

    International Nuclear Information System (INIS)

    Antoniadis, Apostolos; Poulios, Ioannis; Nikolakaki, Eleni; Mantzavinos, Dionissios

    2007-01-01

    The application of high intensity, low frequency ultrasound for the disinfection of simulated and septic tank wastewaters is evaluated in this work. Laboratory scale experiments were conducted at 24 and 80 kHz ultrasound frequency with horn-type sonicators capable of operating in continuous and pulsed irradiation modes at nominal ultrasound intensities up to 450 W. For the experiments with simulated wastewaters, Escherichia coli were used as biological indicator of disinfection efficiency, while for the experiments with septic tank wastewaters, the total microbiological load was used. Complete elimination of E. coli could be achieved within 20-30 min of irradiation at 24 kHz and 450 W with the efficiency decreasing with decreasing intensity and frequency. Moreover, continuous irradiation was more effective than intermittent treatment based on a common energy input. Irradiation of the septic tank effluent prior to biological treatment at 24 kHz and 450 W for 30 min resulted in a three-log total microbiological load reduction, and this was nearly equal to the reduction that could be achieved during biological treatment. Bacterial cell elimination upon irradiation was irreversible as no reappearance of the microorganisms occurred after 24 h

  6. Caffeine as an indicator for the quantification of untreated wastewater in karst systems.

    Science.gov (United States)

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-02-01

    Contamination from untreated wastewater leakage and related bacterial contamination poses a threat to drinking water quality. However, a quantification of the magnitude of leakage is difficult. The objective of this work is to provide a highly sensitive methodology for the estimation of the mass of untreated wastewater entering karst aquifers with rapid recharge. For this purpose a balance approach is adapted. It is based on the mass flow of caffeine in spring water, the load of caffeine in untreated wastewater and the daily water consumption per person in a spring catchment area. Caffeine is a source-specific indicator for wastewater, consumed and discharged in quantities allowing detection in a karst spring. The methodology was applied to estimate the amount of leaking and infiltrating wastewater to a well investigated karst aquifer on a daily basis. The calculated mean volume of untreated wastewater entering the aquifer was found to be 2.2 ± 0.5 m(3) d(-1) (undiluted wastewater). It corresponds to approximately 0.4% of the total amount of wastewater within the spring catchment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Determination of high-strength materials diamond grinding rational modes

    Science.gov (United States)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  8. ASSESSMENT OF CARBON, NITROGEN AND PHOSPHORUS TRANSFORMATIONS DURING MUNICIPAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Lucyna Bogumiła Przywara

    2017-08-01

    Full Text Available Proper exploitation of waste water treatment plant is strictly connected with monitoring of basic parameters and effectiveness of particular its stages. Legal requirements include not only organic compounds (BOD5, COD and general suspensions but also highly effective removal of nutrients: nitrogen and phosphorus. Effectiveness of removal of biogenic compounds interferes with temperature fluctuations, effluent quality, problems of active sediment. The aim of this study was to show changes in concentrations of organic compounds, nitrogen and phosphorus in the municipal wastewater after subsequent stages of mechanical-biological treatment. During researches samples were taken down by the wastewater treatment line: raw wastewater, after mechanical treatment, pre-denitrification, dephosphatation, denitrification, nitrification and treated wastewater. Another aspect of this study was determination of COD fractions, and their changes in the municipal wastewater, after the successive stages of mechanical-biological treatment. It allows separation of dissolved and non-dissolved organic substances, taking into account also their biodegradability and the lack of susceptibility to biological decomposition. It can also be a very important method of the processes control during wastewater treatment.

  9. Experimental poisoning by cassava wastewater in sheep

    Directory of Open Access Journals (Sweden)

    Valdir C. Silva

    Full Text Available ABSTRACT: The processing of Manihot esculenta (cassava tubers yield different by-products, including cassava wastewater, which is the liquid pressed out of the tuber after it has been mechanically crushed. Cyanide poisoning after ingestion of cassava wastewater has been reported in ruminants and pigs in Northeastern Brazil. With the aim of studying its toxicity, cassava wastewater was administered orally to six sheep at doses of 0.99, 0.75, 0.70, 0.63, and 0.5 mg of hydrocyanic acid kg-1 body weight, which corresponded to 14.2, 10.6, 9.8, 8.89, and 7.1 mL of wastewater kg-1. On the second day, the sheep received a volume of wastewater which corresponded to 0.46, 0.34, 0.31, 0.28, and 0.23 mg of HCN kg-1. A sheep used as control received 9.9 mL of water kg-1 BW. Sheep that received from 0.75 to 0.99 mg kg-1 of HCN on the first day exhibited severe clinical signs of poisoning, and the sheep that received 0.63 and 0.5 mg kg-1 exhibited mild clinical signs. All sheep were successfully treated with sodium thiosulfate. On the second day, only the sheep that received 0.46 mg kg-1 and 0.34 mg kg-1 exhibited mild clinical signs and recovered spontaneously. The concentration of HCN in the wastewater was 71.69±2.19 μg mL-1 immediately after production, 30.56±2.45 μg mL-1 after 24 hours, and 24.25±1.28 μg mL-1 after 48 hours. The picric acid paper test was strongly positive 5 minutes after production; moderately positive 24 hours after production, and negative 48 hours after production. We conclude that cassava wastewater is highly toxic to sheep if ingested immediately after production, but rapidly loses toxicity in 24-48 hours.

  10. Garnet Yield Strength at High Pressures and Implications for Upper Mantle and Transition Zone Rheology

    International Nuclear Information System (INIS)

    Kavner, A.

    2008-01-01

    Garnet helps control the mechanical behavior of the Earth's crust, mantle, and transition zone. Here, measurements are presented suggesting that garnet, long considered to be a high-viscosity phase, is actually weaker than the other dominant components in the transition zone. The mechanical behavior of garnet at high pressures was examined using radial diffraction techniques in the diamond anvil cell. The yield strength of grossular garnet was inferred from synchrotron X-ray measurements of differential lattice strains. The differential stress was found to increase from 1.3 (±0.6) GPa at a hydrostatic pressure 5.8 (±1.1) GPa to 4.1 (±0.4) GPa at 15.7 (±1.0) GPa, where it was level to 19 GPa. The strength results are consistent with inferred strength values for majorite garnet from measurements in the diamond cell normal geometry, bolstering the idea that garnet-structured materials may all have similar strengths. In this low-temperature, high differential stress regime, garnet is shown to be significantly weaker than anhydrous ringwoodite and to have a strength similar to hydrous ringwoodite. This result suggests that the presence of water in the transition zone may not be required to explain a weak rheology, and therefore models of transition zone behavior built assuming that garnet is the high-strength phase may need to be revised.

  11. Carbamazepine behaviour and effects in an urban wastewater MBR working with high sludge and hydraulic retention time.

    Science.gov (United States)

    González-Pérez, Daniel María; Pérez, Jorge Ignacio; Nieto, Miguel Ángel Gómez

    2016-08-23

    The behaviour and fate of carbamazepine (CBZ) in urban wastewater treatment by a membrane bioreactor (MBR) and its possible effects on the system's efficiency, and on mixed microbial communities, has been studied. The experimental microfiltration MBR system, with capacity to treat 10.8 m(3) d(-1) of urban wastewater, operated with a pre-denitrification configuration with high sludge and hydraulic retention time. The CBZ concentration assayed was higher than in the usual urban wastewater, in order to provoke a strong biomass reaction. Influent, effluent, and all bioreactors of the MBR system were analysed in order to calculate a CBZ balance. Bench-scale experiments and respirometric analyses were performed, with and without the presence of CBZ, to evaluate its influence on the bacterial activity. The respirometric assays showed variations in the oxygen uptake rate (OUR) in the presence of CBZ. Negative effects were detected in the MBR bacterial community during the initial period of dosing. However, the effects were not permanent and the biomass spiked with CBZ had behaviour similar to that of the biomass without CBZ after a few hours. Biodegradation was not detected during the MBR treatment. The system showed an inefficient elimination of CBZ (less than 10%) with a high concentration in the effluent. The small percentage of CBZ removal was associated with the sludge retention and eliminated by the purge. All CBZ present in the influent was accounted for, and even an increase in the total amount of CBZ was registered in the permeate. During and after the experimental process, CBZ did not significantly affect the efficiency of the MBR system, and the quality of the effluent was not affected by the dosing of CBZ in terms of COD and nitrogen removal.

  12. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride

    International Nuclear Information System (INIS)

    Wu Kun; Wang Hongjie; Liu Ruiping; Zhao Xu; Liu Huijuan; Qu Jiuhui

    2011-01-01

    In this study, in situ formed Fe-Mn binary oxide (FMBO) was applied to treat a practical high-arsenic wastewater (5.81 mg/L). FMBO exhibited a remarkable removal capacity towards both As(III) and As(V), achieving a removal efficiency over 99.5%. However, the FMBO-As particles could not be sufficiently separated by gravitational sedimentation due to their low sizes and negative charges, as being indicated from laser particle size and zeta-potential analysis. Thus, poly-aluminum chloride (PACl) was introduced as a coagulant to facilitate the solid-liquid separation, and it remarkably improved As removal efficiencies. Results of scanning electron microscope (SEM) revealed that PACl contributed to the formation of precipitates with larger sizes and compact surfaces, which was favorable to sedimentation. Moreover, residual soluble As was removed by PACl hydroxides. The optimum dosages of FMBO and PACl were determined to be 60 mg/L and 80 mg/L, respectively. Additionally, the secondary pollution was minimized in FMBO-PACl process. Based on these bench-scale results, a full-scale treatment process was proposed to successfully treat 40,000 m 3 of high-arsenic wastewater in a municipal wastewater treatment plant (MWWTP). The average As concentration in the effluent was about 0.015 mg/L. FMBO-PACl process showed the advantages of high effectiveness, low cost, safety, and ease for operation.

  13. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  14. High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongchun, E-mail: hcyu@hnu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Wang, Mingpu; Jia, Yanlin [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao, Zhu, E-mail: xiaozhu8417@gmail.com [School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom); Chen, Chang; Lei, Qian; Li, Zhou; Chen, Wei [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Hao [Jiangsu Haoran Spray Forming Alloys Co., Ltd., Zhengjiang 212009, Jiangsu (China); Wang, Yanguo; Cai, Canying [School of Physics and Microelectronics, Hunan University, Changsha 410082, Hunan (China)

    2014-07-15

    Highlights: • Spray deposition process was used to produce Al alloys with excellent performance. • The deposited alloys exhibited a high strength of 690 MPa and elongation up to 17.2%. • The η′ phase was coherent with α-Al and their orientation relationship was studied. • The interface misfits and the transition matrixes of two phases were calculated. - Abstract: The mechanical properties and microstructure of large-scale Al–Zn–Mg–Cu alloys fabricated by spray deposition/rapid solidification technology were investigated in detail. The as-extruded alloys under peak-aging temper exhibited ultimate tensile strength (UTS), yield strength (YS) and elongation of 690 MPa, 638 MPa and 17.2%, respectively. The simultaneous coexisting of high strength and large tensile ductility of the alloys were achieved in our experiment. It was considered that the high-density nano-precipitates distributed uniformly in the peak-aged alloys may be responsible for the high strength and improved ductility. Orientation relationship between η′ precipitates and α-Al matrix were verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction patterns (SADPs) observations. The η′ phases in the alloy were fully coherent with the aluminum matrix, with the orientation relationship of (101{sup ¯}0){sub η{sup ′}}//{110}{sub Al} and [1{sup ¯}21{sup ¯}0]{sub η{sup ′}}//<1{sup ¯}12>{sub Al}. The relationship between the lattice parameters of η′ phase and the related plane-spacing of the aluminum were a{sub η{sup ′}}=3d{sub (112){sub A{sub l}}} and c{sub η{sup ′}}=6d{sub (111){sub A{sub l}}}. Based on obtained orientation relationship, the transition matrix of η′ phases were also calculated.

  15. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  16. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  17. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.

    Science.gov (United States)

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-03-01

    In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Problems with textile wastewater discharge

    International Nuclear Information System (INIS)

    Rantala, Pentti

    1987-01-01

    The general character of textile industry wastewaters is briefly discussed. General guidelines and practice in Finland when discharging textile industry wastewaters to municipal sewer systems is described. A survey revealed that most municipalities experience some problems due to textile industry wastewaters. Pretreatment is not always practiced and in some cases pretreatment is not operated efficiently. (author)

  19. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    Science.gov (United States)

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  20. A California Winery Wastewater Survey: Assessing the Salinity Challenge for Wastewater Reuse

    Science.gov (United States)

    The increasing scarcity of water and tighter regulations for discharge make onsite wastewater reuse an attractive prospect for the California wine industry. This study reports winery wastewater (WW) data from eighteen Northern California (Northern CA) wineries. The current study provides a baseline ...